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Abstract
Focal cortical dysplasias (FCDs) are malformations of cortical development and 
one of the most common pathologies causing pharmacoresistant focal epilepsy. 
Resective neurosurgery yields high success rates, especially if the full extent of 
the lesion is correctly identified and completely removed. The visual assessment 
of magnetic resonance imaging does not pinpoint the FCD in 30%–50% of cases, 
and half of all patients with FCD are not amenable to epilepsy surgery, partly 
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1   |   INTRODUCTION

Focal cortical dysplasias (FCDs) are malformations of 
cortical development and one of the most common pa-
thologies causing pharmacoresistant focal epilepsy.1,2 
Histopathological and genetic analysis may characterize 
FCDs into different types, potentially exhibiting certain 
features visible in magnetic resonance imaging (MRI). 
These are cortical thickening, blurring of the gray–white 
matter interface, abnormal cortical gyration, hyperintense 
T2/fluid-attenuated inversion recovery (FLAIR) signal, 
and transmantle sign, as depicted in Figure  1. Despite 
common visible abnormalities, almost one third of pa-
tients show no abnormal MRI on visual analysis and are 
deemed “MRI-negative.”3

The neurosurgical resection of the dysplastic cortex 
usually yields high success rates, with 70% of patients 
achieving seizure freedom.4,5 However, postoperative sei-
zure freedom is highly dependent on presurgical identifi-
cation of the lesion on MRI,6 accurate assessment of the 
lesion extent,7 lesion location,5 complete resection of the 
lesion,8 and the subtype of FCD.1,9 Notably, the favorable 
long-term postoperative seizure outcome rate decreases 
to approximately 11% for patients with extratemporal epi-
lepsy who are MRI-negative.10

Because detecting an FCD on MRI substantially im-
pacts postoperative outcomes, many computer-assisted 
approaches exist. Conventional examples, such as voxel-
based morphometry, use statistical methods to find areas 

of the brain that differ from normal controls.11,12 With the 
increasing capability of artificial intelligence (AI) through 
machine learning (ML) and especially deep learning (DL), 
new approaches based on artificial neural networks (ANNs) 
have emerged. AI has dramatically influenced the field of 
automatic FCD detection in MRI-negative focal epilepsies, 
with recent works predominantly involving DL models.13–18

In this critical review, we look at current research on 
computational approaches for FCD detection, highlighting 

because the FCD could not be sufficiently localized. Computational approaches 
to FCD detection are an active area of research, benefitting from advancements in 
computer vision. Automatic FCD detection is a significant challenge and one of 
the first clinical grounds where the application of artificial intelligence may trans-
late into an advance for patients' health. The emergence of new methods from the 
combination of health and computer sciences creates novel challenges. Imaging 
data need to be organized into structured, well-annotated datasets and combined 
with other clinical information, such as histopathological subtypes or neuroim-
aging characteristics. Algorithmic output, that is, model prediction, requires a 
technically correct evaluation with adequate metrics that are understandable and 
usable for clinicians. Publication of code and data is necessary to make research 
accessible and reproducible. This critical review introduces the field of automatic 
FCD detection, explaining underlying medical and technical concepts, highlight-
ing its challenges and current limitations, and providing a perspective for a novel 
research environment.

K E Y W O R D S

digitalization in medicine, focal epilepsy, image processing, neuroimaging, presurgical 
evaluation

Key Points

•	 FCD detection is one of the first clinical grounds 
where the application of artificial intelligence 
may translate into an advance for patients' 
health

•	 FCD datasets should be openly available and in-
clude detailed information about histopatholog-
ical subtypes and neuroimaging characteristics

•	 Using appropriate metrics improves model 
evaluation and increases clinical impact

•	 Postprocessing strategies for model output aid 
patient-level diagnosis

•	 Publishing artificial intelligence models as 
“ready-to-use” software would support inde-
pendent validation, ease of use, and adoption of 
these models by external groups
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advantages and successful examples and discussing what 
has prevented their widespread application in routine clin-
ical practice. The latter requires a mutual understanding 
of the matter by clinicians, translational researchers, and 
computer scientists. We want to create a common ground 
by introducing clinical aspects of FCD detection and the 
basic concepts of AI before diving into specific challenges 
and solutions for when these different areas of expertise 
meet. Given the clinical relevance of FCD detection, we 
think this is one of the first fields where AI algorithms 
may translate successfully from “bit to bedside”19 into a 
measurable advance for health care.

1.1  |  AI for computer vision

Computer vision is one of the major applications of AI 
and laid the foundation for DL model development a 
decade ago. ML and DL are subfields of AI, and although 
frequently used interchangeably, these terms have differ-
ent meanings.20,21 ML generally refers to methods that 
learn from data, involve statistical models, and depend 
on human intervention. DL specifically applies models in 
the form of deep ANNs. An ANN is a network of small 
connected computational units inspired by neurons and 
axons in the brain. These artificial neurons are commonly 
arranged in layers with connections from lower to higher 
layers. For DL, ANN architectures have many (up to hun-
dreds) of these layers, hence the adjective deep. ANN-
based models for computer vision take data in the form 
of images as input and produce an output, commonly re-
ferred to as a prediction.

In FCD detection, the prediction typically takes a value 
between 0 and 1. These values can be interpreted as prob-
abilities, for example, a prediction value of .7 means the 
model predicts the input data to be 70% “lesional.” These 
probabilities can be thresholded to arrive at binary labels: 

0 for “nonlesional” and 1 for “lesional.” In a later section, 
we explain different approaches for arriving at such pre-
dictions in more detail. The learning, or training, happens 
by iteratively letting a model predict input data, com-
paring the predicted to the real value, and changing the 
computations inside the model (i.e., the model parame-
ters). The real value is commonly referred to as ground 
truth, which for the above example, would be whether the 
image contains a lesion. For FCD detection in general, the 
ground truth is often derived in the form of lesion masks, 
with clinicians manually demarking the location and ex-
tent of the FCD.

The performance of a model is usually only evaluated 
based on how often the prediction is correct. Analyzing 
exactly how a model arrives at a particular prediction and 
what it has learned is nontrivial and is actively researched 
under the term explainable AI. Common terms in the field 
of FCD detection are summarized in Table 1.

2   |   CLINICAL CHALLENGES IN 
FCD DETECTION

This section summarizes challenges for clinicians when 
diagnosing FCDs, which center around collecting and as-
sessing patient data. In terms of how AI can help in the 
diagnostic process, we show how each clinical aspect po-
tentially affects model development and evaluation. We 
specifically want to draw attention to the two most chal-
lenging scenarios for clinicians and for which AI could 
be most beneficial. First, given a person deemed “MRI-
negative” but where clinical evaluation is indicative of an 
FCD, can an AI still pinpoint the FCD on MRI? Second, 
given a potentially abnormal region on the MRI, can an 
AI evaluate whether it is pathologic? We will refer to the 
first scenario as “hypothesis formation” and the second as 
“hypothesis refinement.”

F I G U R E  1   Typical features of focal cortical dysplasias (FCDs) visible in magnetic resonance imaging. The prevalence of these features 
depends on the histopathological type of FCD. FLAIR, fluid-attenuated inversion recovery.
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2.1  |  Data and ground truth

The data necessary for FCD detection consist of input data 
and ground truth. Input data, usually MRI data but po-
tentially other imaging or clinical information, can vary 
significantly across studies. MRI data can stem from dif-
ferent scanners with varying field strengths and may con-
sist of different imaging modalities, for example, T1 and 
FLAIR sequences. The choice of MRI sequences can be 
significant, as Demerath et al.26 show, where specific T1 
sequences, for example, affect downstream processing and 
visual assessment. For human readers, FLAIR sequences 
are most helpful in diagnosing FCDs.27

In most studies, FCDs are labeled manually in all three 
dimensions on a voxelwise level using a binary mask as a 

lesion mask. The ground truth of these lesion masks has 
different levels of “certainty.” The gold standard for vali-
dation of an FCD case is histopathological confirmation, 
which is only possible after surgery. However, only about 
half of the patients with FCD will receive surgical treat-
ment. The patients considered MRI-negative, one third 
overall, present a particular challenge for automated im-
aging analysis but the most critical group regarding the 
potential clinical impact of automatic FCD detection. As 
stated in the introduction, “MRI-negative” loosely means 
medical experts could not pinpoint the lesion on routine 
assessment, but the term is underdefined. Some studies 
define it as the lesion being overlooked at least once in 
regular radiological assessment.18 In contrast, in others, it 
means that even after reevaluation with additional clini-
cal information, a lesion is deemed invisible in MRI.28 It 
remains unclear how other modalities, such as electro-
encephalography (EEG) and positron emission tomogra-
phy (PET), often known to the clinician, impact the MRI 
diagnosis.

2.1.1  |  On “MRI-negative”

For a finding to be truly MRI-negative has to imply that 
the MRI contains no information that helps pinpoint the 
lesion. In this case, the MRI must be deemed entirely un-
helpful for FCD detection. As stated at the beginning of 
this section, current hopes for the help of AI in cases where 
the visual (human) assessment of MRI is unsuccessful are 
twofold. On the one hand, there are cases where informa-
tion for lesion localization is still contained in the image 
and that algorithms can leverage (hypothesis formation). 
On the other hand, there are scenarios where MRI diagno-
sis is only possible in combination with additional nonim-
aging information, for example, MRI features that are not 
lesion-specific but that combined with EEG, semiology, 
and other imaging modalities add to the evidence about 
lesion location (hypothesis refinement). AI that uses ad-
ditional imaging modalities and other clinical information 
must be developed for these cases.

The ratio of histopathologically confirmed seizure-
free and MRI-negative patients varies significantly across 
FCD-related research. For example, the percentage of pa-
tients labeled “MRI-negative,” regardless of the exact defi-
nition, varies between 0% and 100%, as shown in Table 2. 
This variability makes model comparability difficult. Most 
datasets are not publicly available, so most works evalu-
ate their model on single-center data. Encouragingly, the 
number of multicenter studies is increasing.

Many works only use T1 sequences24,46 or add FLAIR 
sequences.16,34 FLAIR sequences can benefit FCD detec-
tion because FCDs may exhibit local hyperintensities, 

T A B L E  1   Common terminology used in FCD detection 
research.

Term Meaning

ANN Artificial neural network

DL Deep learning

ML Machine learning

Prediction The output of an ML algorithm

Ground truth True labels for input data (e.g., lesion 
mask)

Voxel The smallest part of a three-dimensional 
image

Vertex A point on a surface

Patch Part of a larger image

Lesion A type of structural abnormality

FCD An epilepsy-causing malformation of 
cortical development

T1, FLAIR Types of imaging sequences resulting in 
different highlighting of various tissue 
types (most importantly gray and white 
matter)

MRI-negative Lesion could not be found on MRI

FreeSurfer/
FastSurfer

A software tool to reconstruct the cortical 
surface from brain images22,23

MAP18 Software for voxel-based FCD detection 
using morphometric maps as input for a 
shallow ANN24,25

MELD Software for vertex-based FCD detection 
based on using surface features 
generated with FreeSurfer and an 
ANN18

deepFCD Software for patch-based FCD detection 
that takes T1 and FLAIR images as 
input16

Abbreviations: FCD, focal cortical dysplasia; FLAIR, fluid-attenuated 
inversion recovery; MAP18, Morphometric Analysis Program v2018; MELD, 
Multi-centre Epilepsy Lesion Detection; MRI, magnetic resonance imaging.
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      |  1097WALGER et al.

which is the case for 50%–70% of FCD type II cases. 
However, they may be less helpful for the harder-to-detect 
type I FCDs, where <20% are associated with a FLAIR 
hyperintensity.47 For the human eye, hyperintensities are 
better recognizable than changes in cortical thickness or 
blurring of the gray–white boundary. Whether the choice 
of input sequences similarly impacts model performance 
remains an open question.

2.2  |  Histopathological considerations on 
ground truth

Histopathological assessment categorizes FCDs into sev-
eral types with several possible features visible in the MRI, 
as Figure  1 shows. In FCD type I, MRI may show mild 
hyperintensity of the white matter in T2/FLAIR images or 
cortical atrophy, albeit most patients have no visible MRI 
abnormalities.48 In FCD type IIa, MRI findings include 
abnormal focal patterns of sulci and gyri, cortical dimple, 

mild cortical thickening, blurring of the gray–white mat-
ter interface, and at times a mild hyperintense T2/FLAIR 
signal in the subcortical and deep white matter.49 MRI 
changes of FCD type IIb, or FCDs with balloon cells, often 
show deep sulci, abnormal cortical gyration, and hyper-
intense T2/FLAIR signal in the subcortical white matter, 
sometimes with a wedge shape that extends to the ventri-
cle ependymal surface defined as transmantle sign.50 FCD 
type III lesions share the typical features of the associated 
lesions.49 Mild malformations of cortical development 
(mMCDs) and mMCDs with oligodendroglial hyperplasia 
(MOGHEs) may exhibit blurring of the gray–white matter 
interface and FLAIR hyperintensities in children.51,52 In 
adults, MRI findings in MOGHE include changes in gyri 
and sulci morphology with mild or no cortical/subcortical 
hyperintense FLAIR signal, blurring of gray–white matter 
interface, and cortical thickening.53

Inter- and intraobserver agreement in evaluating the 
International League Against Epilepsy classification of 
FCDs strongly depends on the FCD type.54 Particularly 

T A B L E  2   Ratios of MRI-negative patients across FCD-related studies, if reported and regardless of the exact definition of 
“MRI-negative.”

Total MRI-positive MRI-negative
Ratio of 
MRI-negative

Adler et al.13 27 27 0 0%

Ahmed et al.29 31 7 24 77%

Alaverdyan et al.30 21 3 18 86%

Chen et al.31 39 15 24 61%

Chen et al.32 16 8 8 50%

Colombo et al.33 118 93 25 21%

David et al.24 173 173 0 0%

Ganji et al.34 30 20 10 33%

Gill et al.16 171 79 92 54%

Hong et al.35 45 3 T|36 1.5 T 26|22 19|14 42%|39%

Kim et al.36 48 30 18 38%

Kral et al.37 53 51 2 4%

Lee et al.38 21 IIa|25 IIb 5|9 16|16 76%|64%

Martin et al.12 22 15 7 32%

Mellerio et al.39 25 17 8 32%

Mo et al.40 18 IIa|22 IIb 40 0 0%

Radhakrishnan et al.41 78 60 18 23%

Seong et al.42 81 34 47 58%

Spitzer et al.18 538 360 178 33%

Wagner et al.43 17 IIa|74 IIb 11|67 6|7 35%|9%

Wang et al.44 43 0 43 100%

Wang et al.45 150 80|0a 70|150a 47%|100%a

Note: Automatic FCD detection approaches are highlighted in bold. Some studies differentiate between scanner field strength (1.5 or 3 T) or histopathological 
types (types IIa and IIb).Abbreviations: FCD, focal cortical dysplasia; MRI, magnetic resonance imaging.
aUsing two definitions of MRI-negative (after reevaluation with additional clinical information vs. “overlooked once”).
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FCDs of type I represent a considerable challenge for cor-
rect diagnosis, which generally requires neuroanatomi-
cally excellent brain tissue representation. Although the 
histopathological diagnosis of type II FCDs is straightfor-
ward due to the robust cellular characteristics of dysmor-
phic neurons and balloon cells, there may be sampling 
problems and misclassification of FCD type IIb as type 
IIa. Although resectioning the MRI-documented cortical 
abnormality in FCD IIb is crucial for a favorable post-
operative outcome,28 these tissue portions often contain 
mainly dysmorphic neurons. In contrast, balloon cells 
are primarily present in the white matter adjacent to the 
abnormal cortex.55 Because resection of the subcortical 
hyperintense zone in FCD type IIb is not essential for 
seizure freedom,28 neuropathological assessments may 
miss balloon cells. New molecular–genetic and epigene-
tic characterizations of FCD biopsies may improve diag-
nostic accuracy56 and be integrated into a multilayered 
diagnostic scheme yielding more fine-grained classifi-
cations.50 Forthcoming advances and the limitations of 
neuropathological categorization57 need consideration 
for image analyses, especially when describing a data-
set and defining a ground truth. Like different imaging 
sequences, the proportion of various FCD types and 
imaging features within a dataset can impact model 
evaluation.

2.3  |  Neurosurgical considerations on 
ground truth

Preoperative lesion masks are important for guiding FCD 
resection. Unlike tumors, FCDs are usually not visible 
macroscopically in situ, but surgeons may assess lesion ex-
tent intraoperatively using intraoperative MRI and, more 
recently, intraoperative ultrasonography.58,59 The success 
of surgery depends on exact intraoperative neuronaviga-
tion and complete resection of the FCD.60,61 There are dif-
ferent definitions of “complete resection.” They include 
pathological proof of “clear margin,”62 a combination of 
preoperative evaluation and intraoperative electrocor-
ticography,63 or the removal of the "abnormal cortex" 
based on EEG analyses64 or of all visible abnormalities 
on MRI.65 FCD detection approaches yielding accurate 
lesion segmentation may inform surgeons. Nonetheless, 
epilepsy surgery has to balance a “complete resection” 
against the risk of collateral damage. Particularly in the 
vicinity of eloquent areas—any brain area involved in 
language, somatic, memory, or sensory processing66—
epilepsy surgery yields lower seizure freedom rates, likely 
reflecting conservative resection.5 To not risk resecting 
more tissue than necessary,67 procedures such as MRI-
guided stereotactic laser interstitial thermal therapy can 

be more suitable for patients with discrete lesions.68 It al-
lows for a nearly “voxel-level” ablation of the lesion, as 
indicated by the lesion mask. However, the common oc-
currence of FCDs in the depth of sulci can make them 
difficult to target.68

3   |   WHAT IS AUTOMATIC FCD 
“DETECTION”?

The task of finding FCDs is commonly called “FCD 
detection.” It is noteworthy that the word “detec-
tion” originates from the clinical context of finding 
(i.e., localizing) an FCD and differs from the technical 
computer vision term “object detection.” This section 
will detail different techniques for “automatic FCD 
detection.” A processing pipeline typically consists of 
three parts: preprocessing, the AI algorithm, and post-
processing. Pre-  and postprocessing steps will be de-
tailed later; first, we want to focus on the different AI 
models applied.

Figure  2 shows example predictions for two sub-
jects with FCD generated by three recent works.16,18,24 
Although each produces an output for the whole brain, 
the predictions differ, for example, in the number of pre-
dicted voxels, their probability values and distribution, 
and the results for various evaluation metrics. Generally, 
models for image processing fall into one of the three 
major categories of computer vision: classification, object 
detection, and segmentation. Figure 3 shows an example 
output for each task.

3.1  |  Classification

A classification model predicts what the input data are. Its 
output is a value between 0 and 1, akin to the probability 
for the input data belonging to a particular class, as shown 
in Figure 3A,B. For FCD detection, the possible classes are 
usually either “lesional” or “nonlesional.” Most approaches 
formulate the problem of FCD detection as a classification 
task.13,16,24,34,35,40,46,69,70,71–74 Input data range from raw MRI 
data to morphometric maps or surface features. They can 
be one-dimensional, that is, single voxels (or vertices if the 
input data are surface-based), or two- or three-dimensional 
images. In the two-  and three-dimensional cases, an al-
gorithm often only operates on smaller image parts, so-
called “patches.” The output is thus generated on the voxel 
level,24,46,71–73 vertex level,13,18,35,40,70 or patch level.16,34,69,74 
Figure 2 shows examples of the outputs from Multi-centre 
Epilepsy Lesion Detection (MELD),18 Morphometric 
Analysis Program v2018 (MAP18),24 and deepFCD16 
models.
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      |  1099WALGER et al.

3.1.1  |  Anomaly detection

Anomaly or outlier detection is, despite the name, a 
case of binary, that is, two-class, classification, which 
involves comparing test data with an “assumption of 
what is ‘normal.’” This assumption can, for example, 
stem from a database of healthy subjects.25 More re-
cent approaches learn from healthy subjects through 
DL architectures to estimate healthy anatomical 
variability and identify lesions as outliers from this 
distribution.30

3.2  |  Object detection

An object detection model decides what and where an ob-
ject (i.e., an FCD lesion) is in the input image. The output 
consists of coarse localization information in the form of a 
center point and a bounding box in addition to classifica-
tion information. Figure 3C,D shows two example outputs 
for single or multiple object detection. DL approaches for 
object detection, such as the YOLO architecture,75 have 
been successfully applied for other areas of medical image 
processing, such as skin cancer, breast cancer, or brain 

F I G U R E  2   Predictions for two example patients with histopathologically confirmed focal cortical dysplasia (FCD) type IIa from 
three recent works on automatic FCD detection—Morphometric Analysis Program v2018 (MAP18),24 deepFCD,16 and Multi-centre 
Epilepsy Lesion Detection (MELD)18—and visualization of suggested evaluation metrics. Two medical experts determined the ground 
truth lesion mask (green outline) independently using all available imaging sequences and pre- and postoperative information, including 
histopathological confirmation of FCD. MAP18 and deepFCD pipelines output voxelwise probabilities, and MELD outputs clusters (i.e., 
groupings of voxels) with an additional report about cluster features (not displayed). Determining whether an algorithm has actually 
“found” a lesion is not trivial. The current widely used criterion of counting a single voxel overlap as a successful localization leads to all 
models finding both examples. However, the respective predictions differ significantly, for example, in the number of predicted voxels, 
resulting in very different values for evaluation metrics such as the true positive rate (TPR), positive predictive value (PPV), and Dice scores.
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tumor segmentation.76–79 However, such approaches have 
not been used for FCD detection.

3.3  |  Segmentation

A segmentation model also predicts what the input image 
is, but in contrast to classification, segmentation produces 
a class label for every input voxel. The output thus has the 
same dimension as the input data, whereas for classifica-
tion, the outcome is a single value for the whole input. 
Additionally to this so-called semantic segmentation ex-
ists instance segmentation, where the voxels are further 
grouped (clustered) into objects (i.e., clusters). Figure 3E,F 
gives one example for both. House et al.80 and Thomas 
et al.,81 have published approaches for segmentation 
based on the successful UNet model82—a type of model 
that is widely applied in medical imaging. Segmentation 
might be most important for planning surgery, where one 
goal is to identify and remove as much lesional cortex as 
accurately as possible.

3.4  |  Comparison

Many works do not uniquely belong to one of these three 
categories and involve a mix of other processing steps. 
For example, several approaches use morphometric maps 

and other differences compared to a “normal” cohort as 
inputs to a classification model.13,24,71,73 Colliot et al.83 ex-
plore segmentation with coarse localization information 
as additional input, which could be helpful for hypothesis 
refinement.

Each task has certain aspects, pros, and cons, which we 
briefly highlight and put into perspective. Table 3 shows 
a condensed overview. The ground truth for classifica-
tion tasks is usually the easiest to obtain in the form of 
a single label indicating “lesional” or “nonlesional.” For 
voxel-, vertex-, or patch-based approaches, the number of 
training samples is much larger than the number of le-
sions. However, these approaches have a limited field of 
view and can thus only take part of the brain as context. 
Other approaches can also take whole-brain images as 
input, primarily for two-dimensional or 2.5-dimensional 
data. The latter means concatenating slices from coronal, 
sagittal, and axial slices around a given coordinate. Three-
dimensional whole-brain processing is complicated be-
cause of its computational cost.

In clinical practice, localization information is usually 
not communicated by bounding boxes or segmentation 
maps, so experts must manually label magnetic resonance 
images to obtain the ground truth. Especially for segmen-
tation (but also for voxel- and vertex-level classification), 
this is a very time-consuming task. Object detection offers 
a tradeoff between classification and localization informa-
tion, requiring less accurate manual labeling. However, 

F I G U R E  3   Examples of the three theoretical tasks in computer vision: classification, object detection, and segmentation. In medical 
image analysis, a classification model predicts class memberships for single voxels (or vertices if based on surface data) or for image patches, 
that is, parts of the whole image (A, B), and outputs a probability score between 0 and 1 (here for the classes “FCD” and “Healthy”). Object 
detection models define a bounding box around one (C) or multiple (D) objects with accompanying class probabilities. (E) “Semantic” 
segmentation models predict voxel-level class membership without the notion of objects (i.e., clusters). (F) “Instance” segmentation groups 
voxelwise class labels into different objects. FCD, focal cortical dysplasia; FLAIR, fluid-attenuated inversion recovery.
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      |  1101WALGER et al.

lesions might not fit well into rectangular bounding boxes 
due to the folded morphology of the cerebral cortex. 
Segmentation approaches provide the most lesion-specific 
output and naturally incorporate spatial context. Anomaly 
detection tasks require the least manual labeling, but 
anomalies alone might not be pathology-specific.

3.5  |  “FCD detection” processing  
pipelines

The whole processing pipeline typically involves addi-
tional steps besides the AI model. Preprocessing trans-
forms raw (MRI) data into model input. For voxel-, 
vertex-, or patch-level processing, input data are typically 
sampled from the whole brain so that predictions are gen-
erated everywhere. However, one can imagine pipelines 
requiring clinicians to select specific areas they want to be 
predicted, which has yet to be explored for FCD detection. 
Postprocessing further alters the raw model prediction to 
yield the final output. Figures 4 and 5 show examples of 
components involved in both steps, respectively.

3.6  |  Patient-level diagnosis

A patient-level diagnosis is the ultimate goal of clinical 
FCD detection and, thus, a specific purpose of automated 
approaches. The question is how low-level predictions, 
for example, some voxels classified to be lesional, relate 
to a decision on the patient level, that is, whether some-
one has FCD. Current works often accept even a single 
voxel- or vertex-level true positive as a true positive on the 
patient level, that is, a person with FCD. Equivalently, for 
control cases, even a single false positive prediction on the 

voxel level counts as a false positive diagnosis. It remains 
to be seen how lower level (voxel-, vertex-, or lesion-level) 
or patient-level predictions impact a clinician's decision 
for hypothesis formation and refinement.16 Gill and col-
leagues, for example, state a patient-level detection rate 
of 93% “with an average of 6 false positive [cluster]s per 
patient.”16 However, the most highly ranked cluster coin-
cides with the ground truth in only 36% of cases, leaving 
open whether a clinician would also correctly diagnose 
93% of patients with this approach.

4   |   CHALLENGES IN CURRENT 
FCD DETECTION RESEARCH

We have so far introduced essential parts of FCD detec-
tion pipelines and shown examples of how they may look. 
In the following sections, we will highlight crucial areas 
for developing algorithms for automatic FCD detection. 
For the sake of brevity, we will refer to any processing 
pipeline as a “model.” An object detection model might 
recursively contain a model for classification and cluster-
ing postprocessing steps.

4.1  |  Model training

4.1.1  |  Splitting data

The data are split into three sets for training and testing 
a model: the training, validation, and test set. The train-
ing happens on the training set, and performance is pe-
riodically measured on the validation set. Training can 
be stopped when performance on the validation data 
saturates. This early stopping can protect the model from 

T A B L E  3   Description of the three tasks in computer vision, the resulting outputs, and the advantages and disadvantages when 
developing and applying models.

Task Result Pros Cons

Classification Single output with 
probabilities for 
class membership

Large number of training examples when 
using voxels or vertices

Models generally require fewer parameters 
than other approaches

Anomaly detection
Reduces the need for manual labeling

Large amount of work creating manual 
segmentation labels required for training

False positives due to limited fields of view/
lack of whole-brain context

Anomaly detection
Potentially detects abnormalities not 

specific to a pathology

Object detection Probabilities for class 
membership, 
bounding box

Spatial information
Fast labeling via bounding boxes

Requires annotated data in the form of 
bounding boxes

Detected boxes do not reflect the structure/
shape of the cerebral cortex

Segmentation Voxel-level 
probabilities for 
class membership

Spatial context-aware, lesion-specific Requires detailed (voxel-level) labeling
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1102  |      WALGER et al.

overfitting the training data and failing to generalize to new 
data. The performance on the test set is only evaluated after 
all training has finished; the model never “sees” the test 
split data during training to avoid learning something from 
it, an error commonly called data leakage.84 Because of the 
often-limited number of FCD subjects, approaches might 
include cross-validation without a separate test set, a prac-
tical option, although technically insufficient for model 

evaluation. Recent works such as Gill et al.16 and Spitzer 
et al.,18 do cross-validation and keep separate test sets aside.

4.1.2  |  Hyperparameters

All processing steps involve design choices, that is, so-called 
hyperparameters. For ANNs, typical hyperparameters relate 

F I G U R E  4   Common preprocessing steps. Typically, preprocessing involves standardizing input data through intensity normalization, 
resampling, or registration to a template. For some algorithms, additional input needs to be calculated, such as volumetric24 or surface-
based18 feature maps. Finally, voxels, patches, or slices can be extracted from the whole brain volume to generate the artificial intelligence 
model input. FLAIR, fluid-attenuated inversion recovery.
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      |  1103WALGER et al.

to the network architecture, learning rate, and loss function. 
Parameter choices for the postprocessing step, such as the 
probability thresholds, or those for a particular clustering 
and cluster selection method, are also essential hyperparam-
eters. These are, however, rarely discussed or carefully evalu-
ated and may introduce additional information leakage.84,85

4.2  |  Model evaluation

4.2.1  |  Evaluation metrics

One assesses a model's performance with different evalu-
ation metrics depending on the goal (classification, object 

F I G U R E  5   Common postprocessing steps. Often, a whole-brain prediction is generated from the model output; for patch-based 
approaches, this process is called stitching. Generally, approaches can smooth the prediction and apply outlier removal by utilizing spatial 
relationships between classified voxels or patches. Especially for voxel and vertex level classification, pipelines often involve an additional 
clustering step13,18,35 to arrive at an object (i.e., lesion)-level diagnosis. Clustering also allows comparing clusters, for example, ranking them 
and removing them based on their size, mean probability, or rank. Cluster removal can help reduce the number of false positive clusters.
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1104  |      WALGER et al.

detection, or segmentation). Sensitivity, specificity, and 
derived scores such as likelihood ratios are typical choices 
for a classification task. The threshold for translating 
predictions to class labels is critical and can significantly 
alter a model's performance on downstream tasks, such as 
patient-level diagnosis. The same metrics apply to object 
detection after matching objects and ground-truth clus-
ters. A match is typically accepted if the overlap, meas-
ured, for example, by the intersection over union or the 
Dice coefficient, lies above a threshold. These metrics also 
help assess segmentation quality. They allow for model 
evaluation on the level of the model output, that is, voxel, 
vertex, or patch level. Figure 2 shows examples of three 
potential evaluation metrics: true positive rate, positive 
predictive value (PPV), and Dice.

Additionally, the voxel-level output may be postpro-
cessed to allow a lesion-level, that is, cluster-level, or even 
patient-level evaluation, as is often desired in a clinical 
context. Some methods involve clustering and ranking 
clusters according to their size, connectivity, or mean 
probability and exclude clusters below a given size or 
rank.16 As mentioned, cluster- and case-level analyses in-
volve a cluster-matching step. Therefore, a threshold for 
the overlap to be accepted as a “match” must be chosen. 
Currently, in most works, the criterion is “one voxel over-
lap,” that is, Dice > 0. Because human performance has yet 
to be quantified in terms of Dice scores for FCD detection, 
it is unclear what values would be acceptable. Works that 
assess the clinical impact do not quantify overlap or the 
number of false positive clusters.15,73,74 However, current 
approaches often mix voxel-, patch-, cluster-, and patient-
level evaluation metrics and fall short of showing the ac-
tual performance and impact of a claimed methodological 
novelty.

4.3  |  Reproducible science

The confidentiality of medical data presents a significant 
hurdle in reproducible science. Few works13,16 have made 
used data accessible, allowing others to partially repro-
duce the analysis and compare models with the same 
input data. Another more straightforward way to facilitate 
model comparison is to share code and trained models and 
enable others to apply the model to their data. Two recent 
works share their code online.16,18 Developing ready-to-
use code, however, is a labor-intensive task. The appli-
cation of said models also requires high-level technical 
expertise, for example, programming skills, for structur-
ing data and generating predictions. Improving the ease 
of use of automatic FCD detection algorithms remains an 
open challenge.

4.4  |  The current best approach is: 
Humans?

Part of the reason existing approaches have yet to find 
their way into everyday clinical practice is the difficulty of 
assessing how they compare to medical experts and how 
they impact clinical decision-making. A few works exist 
that examine the impact of MAP18 software24,25 and quali-
tatively assess the added benefit of a model's output for 
medical experts.73,74 However, their evaluation depends 
on a human expert and lacks a quantification of the al-
gorithm's performance. Solely comparing model perfor-
mance, for example, how often the prediction overlaps the 
ground truth, to human performance on MRI-negative 
patients has severe shortcomings beyond there being no 
clear definition of the term “MRI-negative.” The pitfalls 
can best be seen in (but are not exclusive to) the methodo-
logically interesting work of Alaverdyan et al.,30 where, 
regarding the MRI-negative patient group, they state 
that “[…] human performance is at 0%.”30 However, one 
must be very careful; the output of a human expert's as-
sessment is usually a single or very few areas classified as 
lesions resulting in one conclusive diagnosis, but models 
can generate a much higher number of cluster predictions 
with varying probabilities. For a fair comparison to expert 
performance, one should thus restrict a model's output to 
only a few clusters per patient. The highest reported result 
when outputting a single cluster is a sensitivity of approxi-
mately 36%,16 which lies far below regular performances 
from medical experts in clinical settings. However, output-
ting a single cluster may not be the ultimate goal of auto-
mated FCD detection, especially for hypothesis formation.

Regarding false positives, experts usually know about 
evidence from other (nonimaging) modalities such as se-
miology, EEG, or PET. From our experience, it is rare for 
medical experts to find false positive lesions in healthy 
controls. The comparison to healthy control subjects is 
also biased, as this scenario hardly arises in a clinical set-
ting. Recent studies hint at nonnegligible rates of incident 
findings of brain abnormalities (not specific to FCDs),86,87 
but no work has quantified expert FCD detection perfor-
mance on healthy controls or how likely medical experts 
are to rate multiple brain regions as lesional.

5   |   TRANSLATING MODELS INTO 
CLINICAL PRACTICE

Having highlighted the shortcomings of current FCD de-
tection models and the challenges when comparing ap-
proaches, in this section, we want to provide suggestions 
on how to alleviate these problems and how future works 
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      |  1105WALGER et al.

can best explore methodological advancements and clini-
cal benefits.

5.1  |  Collecting and exploring datasets

A simple step to assess the complexity and quality of 
a dataset and put a model's performance into context is 
to report results for histopathologically confirmed and 
MRI-negative patient groups separately from the overall 
results. Listing the prevalence of MRI features and the 
different histopathological types across a given dataset 
would further help estimate its complexity.24 Because 
these can still be subjective, other more quantitative met-
rics could also help. Although it is common to provide 
clinical information such as age and sex across subjects, 
metrics such as average lesion size24,70,80 or the distribu-
tion of lesion locations5,16 should also be reported. These 
could provide a different categorization than seizure out-
come or histopathological type, which might need to be 
revised considering the previously mentioned challenges 
for neurosurgery and histopathology. Additionally, a de-
tailed description of MRI features ties into the multilay-
ered classification scheme, specifically Layer 3, proposed 
by Najm et al.50

There are efforts, such as the MELD project (https://
meldp​roject.github.io/), to collect multicenter data into 
larger datasets and make them available for algorithmic 
development. Nonetheless, a publicly available volumet-
ric MRI dataset for FCDs has yet to be created. In the fu-
ture, a public well-annotated benchmark dataset would 
provide a common ground for evaluating models. Diverse 
data are vital to ensure algorithms are widely applicable. 
In children, for example, the developing brain undergoes 
structural changes, including overall volume increases, 
gray–white matter contrast changes associated with white 
matter myelination, and dynamic changes in cortical 
thickness. These could all impact an algorithm's ability to 
detect FCD lesions. Therefore, FCD detection algorithms 
must be trained and evaluated on cohorts containing pe-
diatric patients and controls. Although some approaches 
have included pediatric cases,18 specific further develop-
ment is required to ensure robustness to these develop-
ment changes.

5.2  |  Common evaluation metrics

Table  4 provides an overview of suggested metrics for 
evaluating an FCD detection algorithm. These metrics 

T A B L E  4   Overview of metrics and curves for evaluating an FCD detection algorithm.

Metric/curve Voxel/vertex level Lesion level Patient level

PPV (precision) How many predicted voxels are true 
positives

“20% of predicted voxels lie inside the 
lesion”

How many predicted clusters 
overlap with lesions

“Half the predicted clusters 
overlap the real lesions”

How many predicted 
subjects have FCD

“80% of the predicted 
subjects have FCD”

TPR (sensitivity, 
recall)

How much of a lesion was found
“On average, the model finds 20% of all 

lesional voxels”

How many lesions were found
“The model finds 80% of all 

lesions”

How many patients were 
found

“The model identified all 
FCD patients”

Precision–recall 
curve

Helps determine thresholds for prediction 
probabilities

Helps determine thresholds for cluster probabilities, sizes, and 
ranking (same for both levels)

ROC curve Problematic because of class imbalance, use 
precision–recall curve instead

Helps determine thresholds for clustering criteria and cluster-
level thresholds (same for both levels)

AUC Summarizes information of evaluation curves into a single value (same for all levels)

FROC curve Not applicable Links lesion-level evaluation to patient-level diagnosis
“Our model finds 80% of all lesions with an average of three false 

positive clusters per case”

Dice similarity 
coefficient

For evaluating segmentation quality Not applicable Not applicable

Hausdorff distance For evaluating segmentation quality, 
especially regarding boundaries

Not applicable Not applicable

Volumetric 
similarity

Not applicable For evaluating segmentation 
quality

Not applicable

Note: These metrics can and should be applied separately to different levels of output: voxel, lesion, or patient level.
Abbreviations: AUC, area under the curve; FCD, focal cortical dysplasia; FROC, free-response ROC; PPV, positive predictive value; ROC, receiver operating 
characteristic; TPR, true positive rate.
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can and should be applied separately to different levels of 
output: voxel, lesion, or patient level. It remains an open 
research question how the intrinsic model performance, 
that is, the evaluation of the raw model output, relates 
to clinical usefulness and which model outputs best aid 
visual inspection of MRI data. For example, a single pre-
dicted “lesional” voxel might be as helpful for hypothesis 
formation as a better segmented lesion but with many 
more false positive predictions. The latter might benefit 
hypothesis refinement when lesion location is certain be-
cause of other clinical characteristics. We propose using 
voxel-level metrics, such as the PPV, as additional meas-
ures to estimate clinical usefulness. Figure 2 shows a vis-
ual example of PPV.

The postprocessing stage is especially relevant for 
translation into clinical practice. Typical steps include 
thresholding, clustering, voxel-  and cluster-level outlier 
removal, and cluster selection. These clustering steps must 
be consistent across the dataset; for example, they must 
not differ for patients and healthy controls. Furthermore, 
approaches should optimize hyperparameters for this 
stage separately on a subset of the data (i.e., the training 
dataset) to ensure that the model is not overfitting and 
achieves similar performance on new data.

Ablation studies are a standard tool to show the benefit 
of a claimed novelty. For example, Thomas et al.81 changed 
critical features of their proposed novel network archi-
tecture to showcase its advantage (while testing against 
baseline models). Other published works, however, lack 
this type of analysis. Suppose a claimed novelty lies in the 
input data type; one way to do an ablation study is to leave 
the specific input from training and testing by masking 
specific input channels, alleviating the need to change the 
network architecture. One can thus analyze the impact of 
novel feature maps and markers such as morphometric 
maps or different imaging modalities such as FLAIR.

Another way to evaluate performance is to examine 
metrics over varying conditions, such as probability 
thresholds or cluster-matching criteria. The receiver 

operating characteristic (ROC) curve alongside the 
area under curve score is one example of such an anal-
ysis. Because of the high imbalance between lesional 
and nonlesional tissue for FCDs, the ROC curve only 
gives meaningful results on the lesion or patient level. 
Another such curve would be the free-response ROC 
(FROC) curve.88,89 It combines case-  and lesion-level 
metrics, namely the average number of false positive 
clusters per case plotted against a lesion-level sensi-
tivity.90 For example, apply FROC to mammographic 
lesions.

Developing and evaluating a pipeline for FCD de-
tection involves many design choices. Figure  6 gives a 
summary of the previously mentioned steps. Specifying 
these steps and carefully choosing adequate evaluation 
metrics are integral for correctly assessing the AI model 
and comparing it with other works. Evaluation metrics 
and acceptable thresholds could be applied differently 
for hypothesis formation or refinement. In summary, 
there needs to be more to model evaluation than solely 
evaluating performance on a downstream task, such as 
patient-level classification.

5.3  |  Making pipelines accessible

The most recent large-scale works on FCD detection 
have set a strong positive example by making their 
code available and providing instructions about apply-
ing it to new data.16,18 Publishing code marks a great 
start and can be further extended by following other 
steps to reproducibility in neuroscience, such as using 
the Brain Imaging Data Structure specification for a 
data structure.91 Processing pipelines should include 
detailed pre-  and postprocessing information to facili-
tate comparability further. Preferably, published code 
should incorporate these steps. Ideally, the final output 
should be in the same space as the input data, preferably 
a subject's structural space, to circumvent registration 

F I G U R E  6   Summary of common steps in the processing pipeline of automatic focal cortical dysplasia (FCD) detection approaches. AI, 
artificial intelligence.
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problems and simplify visual comparison for doctors, as 
exemplified in Wagstyl et al.92 Specifically for AI mod-
els, a step to improve performance on new data is fine-
tuning. A model is fine-tuned by partially retraining it 
with new (center-specific) data. This is not trivial, how-
ever, and this functionality in published code could im-
prove model performance when translating approaches 
into hospital environments.

To encourage accessibility, the scientific commu-
nity should gratify the development of ready-to-use 
and open-source code like peer-reviewed publications. 
However, it also takes combined institutional efforts 
to meet requirements for technical equipment and ex-
pertise and the long-term maintenance of software. We 
thus want to emphasize that making computational ap-
proaches and AI specifically accessible to a wide array 
of research and clinical institutions cannot rely solely 
on researchers.

5.4  |  Overtaking humans?

Lastly, we want to highlight future research directions to 
help close the gap between research approaches and clini-
cal practice. Direct comparison to human performance 
implies the goal of overtaking human performance. 
However, we believe that algorithms will not be used as 
“standalone” MRI analyses and will not substitute for 
imaging experts. Instead, automated approaches parallel 
to the standard visual MRI analysis may enhance clini-
cians' confidence in evaluating FCDs, that is, hypothesis 
refinement, especially because the visual analysis can be 
time-consuming, and the level of expertise varies consid-
erably among centers, which explains the variable, and 
sometimes high, percentage of MRI-negative patients. 
Although no dedicated work quantifies how a model best 
aids clinical decision-making, existing approaches have 
converged upon outputting several clusters. For example, 
El Tahry et al.15 and Urbach et al.,73 have shown that this 
may benefit hypothesis formation. Thus, existing algo-
rithms may already aid neuroradiological assessment, and 
we strongly encourage integrating available approaches 
into clinical practice.

Research efforts should focus on difficult-to-detect 
FCDs and hypothesis formation to further examine the 
models' benefits. Although it is necessary for successful 
training to include as many data as possible, evaluation 
should differentiate these cases. The additional value for 
detecting FCDs in patients with FLAIR hyperintensity 
might be small compared to subjects without typical MRI 
features. The impact of a model is also more significant for 
cases of FCD type I than for those with MRI-visible type 
II. Currently, no models accept nonimaging information 

as input, so the potential impact for truly MRI-negative 
cases remains unknown. As soon as we have better quan-
tified the benefit of FCD detection approaches on clinical 
grounds, they may be implemented as “decision support 
systems” and relieve radiologists from the additional 
workload caused by increased multimodal and high-
resolution scans.

Ultimately, an algorithm should be evaluated prospec-
tively based on its impact on the quality-adjusted life-years 
of people with epilepsy. Improved surgical outcome rates, 
more admissions to surgery, a faster diagnosis, or fewer 
other diagnostic procedures are other signs of a positive 
effect.

5.5  |  Current limitations

A few factors currently hamper the widespread impact of 
automatic FCD detection. These include a lack of detailed 
model evaluation due to small dataset sizes, insufficient 
data descriptions, and the unmet need for expertise and 
infrastructure for integrating research works into clini-
cal workflows. There is currently no research or guide-
lines on how algorithmic output can and should best be 
included in clinical decision-making and how it would 
impact hypothesis generation and refinement in prac-
tice. Advancements in disease classification, for example, 
the inclusion of mMCD and MOGHE, still need to be re-
flected in current models. There is also a significant per-
centage of cases where current algorithms do not detect 
a lesion. Recent works have already started to overcome 
these limitations by combining multicenter data and 
making models accessible. It remains to be seen how a 
streamlined model evaluation will further change model 
development and clinical impact. We deem the research 
into automated approaches for FCD detection too early to 
estimate a saturation point for how effective such models 
can become.

6   |   CONCLUSIONS

Research in automatic FCD detection has made signifi-
cant progress, and modern approaches combine advances 
in medical imaging with state-of-the-art methods from AI 
and DL. We have highlighted challenges in both fields and 
their combination, such as accumulating representative 
data, evaluating a model's impact, and making findings 
reproducible. We have suggested how researchers may 
design future studies to improve patient care. One strat-
egy could be to provide a detailed data description, and 
another to correctly evaluate models for their intrinsic 
performance and potential impact on decision-making. 
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We encourage scientists in the field to combine efforts to 
share data and code, thereby promoting the field of FCD 
detection as a template model for successful translational 
clinical research.
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