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Abstract
Focal	cortical	dysplasias	(FCDs)	are	malformations	of	cortical	development	and	
one	of	the	most	common	pathologies	causing	pharmacoresistant	focal	epilepsy.	
Resective	neurosurgery	yields	high	success	rates,	especially	 if	 the	full	extent	of	
the	lesion	is	correctly	identified	and	completely	removed.	The	visual	assessment	
of	magnetic	resonance	imaging	does	not	pinpoint	the	FCD	in	30%–	50%	of	cases,	
and	half	of	all	patients	with	FCD	are	not	amenable	 to	epilepsy	 surgery,	partly	
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1 	 | 	 INTRODUCTION

Focal	 cortical	 dysplasias	 (FCDs)	 are	 malformations	 of	
cortical	 development	 and	 one	 of	 the	 most	 common	 pa-
thologies	 causing	 pharmacoresistant	 focal	 epilepsy.1,2	
Histopathological	 and	 genetic	 analysis	 may	 characterize	
FCDs	 into	 different	 types,	 potentially	 exhibiting	 certain	
features	 visible	 in	 magnetic	 resonance	 imaging	 (MRI).	
These	are	cortical	thickening,	blurring	of	the	gray–	white	
matter	interface,	abnormal	cortical	gyration,	hyperintense	
T2/fluid-	attenuated	 inversion	 recovery	 (FLAIR)	 signal,	
and	 transmantle	 sign,	 as	 depicted	 in	 Figure  1.	 Despite	
common	 visible	 abnormalities,	 almost	 one	 third	 of	 pa-
tients	show	no	abnormal	MRI	on	visual	analysis	and	are	
deemed	“MRI-	negative.”3

The	 neurosurgical	 resection	 of	 the	 dysplastic	 cortex	
usually	 yields	 high	 success	 rates,	 with	 70%	 of	 patients	
achieving	seizure	freedom.4,5	However,	postoperative	sei-
zure	freedom	is	highly	dependent	on	presurgical	identifi-
cation	of	the	lesion	on	MRI,6	accurate	assessment	of	the	
lesion	extent,7	lesion	location,5	complete	resection	of	the	
lesion,8	and	the	subtype	of	FCD.1,9	Notably,	the	favorable	
long-	term	 postoperative	 seizure	 outcome	 rate	 decreases	
to	approximately	11%	for	patients	with	extratemporal	epi-
lepsy	who	are	MRI-	negative.10

Because	 detecting	 an	 FCD	 on	 MRI	 substantially	 im-
pacts	 postoperative	 outcomes,	 many	 computer-	assisted	
approaches	 exist.	 Conventional	 examples,	 such	 as	 voxel-	
based	morphometry,	use	 statistical	methods	 to	 find	areas	

of	the	brain	that	differ	from	normal	controls.11,12	With	the	
increasing	capability	of	artificial	intelligence	(AI)	through	
machine	learning	(ML)	and	especially	deep	learning	(DL),	
new	approaches	based	on	artificial	neural	networks	(ANNs)	
have	emerged.	AI	has	dramatically	influenced	the	field	of	
automatic	FCD	detection	in	MRI-	negative	focal	epilepsies,	
with	recent	works	predominantly	involving	DL	models.13–	18

In	this	critical	review,	we	look	at	current	research	on	
computational	approaches	for	FCD	detection,	highlighting	

because	the	FCD	could	not	be	sufficiently	localized.	Computational	approaches	
to	FCD	detection	are	an	active	area	of	research,	benefitting	from	advancements	in	
computer	vision.	Automatic	FCD	detection	is	a	significant	challenge	and	one	of	
the	first	clinical	grounds	where	the	application	of	artificial	intelligence	may	trans-
late	into	an	advance	for	patients'	health.	The	emergence	of	new	methods	from	the	
combination	of	health	and	computer	sciences	creates	novel	challenges.	Imaging	
data	need	to	be	organized	into	structured,	well-	annotated	datasets	and	combined	
with	other	clinical	information,	such	as	histopathological	subtypes	or	neuroim-
aging	 characteristics.	 Algorithmic	 output,	 that	 is,	 model	 prediction,	 requires	 a	
technically	correct	evaluation	with	adequate	metrics	that	are	understandable	and	
usable	for	clinicians.	Publication	of	code	and	data	is	necessary	to	make	research	
accessible	and	reproducible.	This	critical	review	introduces	the	field	of	automatic	
FCD	detection,	explaining	underlying	medical	and	technical	concepts,	highlight-
ing	its	challenges	and	current	limitations,	and	providing	a	perspective	for	a	novel	
research	environment.

K E Y W O R D S

digitalization	in	medicine,	focal	epilepsy,	image	processing,	neuroimaging,	presurgical	
evaluation

Key Points

•	 FCD	detection	is	one	of	the	first	clinical	grounds	
where	 the	 application	 of	 artificial	 intelligence	
may	 translate	 into	 an	 advance	 for	 patients'	
health

•	 FCD	datasets	should	be	openly	available	and	in-
clude	detailed	information	about	histopatholog-
ical	subtypes	and	neuroimaging	characteristics

•	 Using	 appropriate	 metrics	 improves	 model	
evaluation	and	increases	clinical	impact

•	 Postprocessing	 strategies	 for	model	output	aid	
patient-	level	diagnosis

•	 Publishing	 artificial	 intelligence	 models	 as	
“ready-	to-	use”	 software	 would	 support	 inde-
pendent	validation,	ease	of	use,	and	adoption	of	
these	models	by	external	groups
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advantages	and	successful	examples	and	discussing	what	
has	prevented	their	widespread	application	in	routine	clin-
ical	practice.	The	latter	requires	a	mutual	understanding	
of	the	matter	by	clinicians,	translational	researchers,	and	
computer	scientists.	We	want	to	create	a	common	ground	
by	introducing	clinical	aspects	of	FCD	detection	and	the	
basic	concepts	of	AI	before	diving	into	specific	challenges	
and	solutions	for	when	these	different	areas	of	expertise	
meet.	Given	 the	clinical	 relevance	of	FCD	detection,	we	
think	 this	 is	 one	 of	 the	 first	 fields	 where	 AI	 algorithms	
may	 translate	 successfully	 from	 “bit	 to	 bedside”19	 into	 a	
measurable	advance	for	health	care.

1.1	 |	 AI for computer vision

Computer	 vision	 is	 one	 of	 the	 major	 applications	 of	 AI	
and	 laid	 the	 foundation	 for	 DL	 model	 development	 a	
decade	ago.	ML	and	DL	are	subfields	of	AI,	and	although	
frequently	used	interchangeably,	these	terms	have	differ-
ent	 meanings.20,21	 ML	 generally	 refers	 to	 methods	 that	
learn	 from	 data,	 involve	 statistical	 models,	 and	 depend	
on	human	intervention.	DL	specifically	applies	models	in	
the	 form	 of	 deep	 ANNs.	 An	 ANN	 is	 a	 network	 of	 small	
connected	computational	units	 inspired	by	neurons	and	
axons	in	the	brain.	These	artificial	neurons	are	commonly	
arranged	in	layers	with	connections	from	lower	to	higher	
layers.	For	DL,	ANN	architectures	have	many	(up	to	hun-
dreds)	 of	 these	 layers,	 hence	 the	 adjective	 deep.	 ANN-	
based	models	 for	computer	vision	 take	data	 in	 the	 form	
of	images	as	input	and	produce	an	output,	commonly	re-
ferred	to	as	a	prediction.

In	FCD	detection,	the	prediction	typically	takes	a	value	
between	0	and	1.	These	values	can	be	interpreted	as	prob-
abilities,	 for	example,	a	prediction	value	of	 .7	means	the	
model	predicts	the	input	data	to	be	70%	“lesional.”	These	
probabilities	can	be	thresholded	to	arrive	at	binary	labels:	

0	for	“nonlesional”	and	1	for	“lesional.”	In	a	later	section,	
we	explain	different	approaches	for	arriving	at	such	pre-
dictions	in	more	detail.	The	learning,	or	training,	happens	
by	 iteratively	 letting	 a	 model	 predict	 input	 data,	 com-
paring	 the	predicted	 to	 the	real	value,	and	changing	 the	
computations	 inside	 the	 model	 (i.e.,	 the	 model	 parame-
ters).	 The	 real	 value	 is	 commonly	 referred	 to	 as	 ground 
truth,	which	for	the	above	example,	would	be	whether	the	
image	contains	a	lesion.	For	FCD	detection	in	general,	the	
ground	truth	is	often	derived	in	the	form	of	lesion masks,	
with	clinicians	manually	demarking	the	location	and	ex-
tent	of	the	FCD.

The	performance	of	a	model	is	usually	only	evaluated	
based	 on	 how	 often	 the	 prediction	 is	 correct.	 Analyzing	
exactly	how	a	model	arrives	at	a	particular	prediction	and	
what	it	has	learned	is	nontrivial	and	is	actively	researched	
under	the	term	explainable AI.	Common	terms	in	the	field	
of	FCD	detection	are	summarized	in	Table 1.

2 	 | 	 CLINICAL CHALLENGES IN 
FCD DETECTION

This	 section	 summarizes	 challenges	 for	 clinicians	 when	
diagnosing	FCDs,	which	center	around	collecting	and	as-
sessing	patient	data.	In	terms	of	how	AI	can	help	in	the	
diagnostic	process,	we	show	how	each	clinical	aspect	po-
tentially	 affects	 model	 development	 and	 evaluation.	 We	
specifically	want	to	draw	attention	to	the	two	most	chal-
lenging	 scenarios	 for	 clinicians	 and	 for	 which	 AI	 could	
be	 most	 beneficial.	 First,	 given	 a	 person	 deemed	 “MRI-	
negative”	but	where	clinical	evaluation	is	indicative	of	an	
FCD,	can	an	AI	still	pinpoint	the	FCD	on	MRI?	Second,	
given	a	potentially	abnormal	region	on	the	MRI,	can	an	
AI	evaluate	whether	it	is	pathologic?	We	will	refer	to	the	
first	scenario	as	“hypothesis	formation”	and	the	second	as	
“hypothesis	refinement.”

F I G U R E  1  Typical	features	of	focal	cortical	dysplasias	(FCDs)	visible	in	magnetic	resonance	imaging.	The	prevalence	of	these	features	
depends	on	the	histopathological	type	of	FCD.	FLAIR,	fluid-	attenuated	inversion	recovery.
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2.1	 |	 Data and ground truth

The	data	necessary	for	FCD	detection	consist	of	input	data	
and	 ground	 truth.	 Input	 data,	 usually	 MRI	 data	 but	 po-
tentially	other	 imaging	or	 clinical	 information,	 can	vary	
significantly	across	studies.	MRI	data	can	stem	from	dif-
ferent	scanners	with	varying	field	strengths	and	may	con-
sist	of	different	 imaging	modalities,	 for	example,	T1	and	
FLAIR	 sequences.	 The	 choice	 of	 MRI	 sequences	 can	 be	
significant,	as	Demerath	et	al.26	show,	where	specific	T1	
sequences,	for	example,	affect	downstream	processing	and	
visual	assessment.	For	human	readers,	FLAIR	sequences	
are	most	helpful	in	diagnosing	FCDs.27

In	most	studies,	FCDs	are	labeled	manually	in	all	three	
dimensions	on	a	voxelwise	level	using	a	binary	mask	as	a	

lesion mask.	The	ground	truth	of	these	lesion	masks	has	
different	levels	of	“certainty.”	The	gold	standard	for	vali-
dation	of	an	FCD	case	is	histopathological	confirmation,	
which	is	only	possible	after	surgery.	However,	only	about	
half	of	 the	patients	with	FCD	will	receive	surgical	 treat-
ment.	 The	 patients	 considered	 MRI-	negative,	 one	 third	
overall,	present	a	particular	challenge	for	automated	im-
aging	 analysis	 but	 the	 most	 critical	 group	 regarding	 the	
potential	clinical	impact	of	automatic	FCD	detection.	As	
stated	in	the	introduction,	“MRI-	negative”	loosely	means	
medical	experts	could	not	pinpoint	the	lesion	on	routine	
assessment,	 but	 the	 term	 is	 underdefined.	 Some	 studies	
define	 it	 as	 the	 lesion	 being	 overlooked	 at	 least	 once	 in	
regular	radiological	assessment.18	In	contrast,	in	others,	it	
means	that	even	after	reevaluation	with	additional	clini-
cal	information,	a	lesion	is	deemed	invisible	in	MRI.28	It	
remains	 unclear	 how	 other	 modalities,	 such	 as	 electro-
encephalography	(EEG)	and	positron	emission	 tomogra-
phy	(PET),	often	known	to	the	clinician,	impact	the	MRI	
diagnosis.

2.1.1	 |	 On	“MRI-	negative”

For	a	finding	to	be	truly	MRI-	negative	has	to	imply	that	
the	MRI	contains	no	information	that	helps	pinpoint	the	
lesion.	In	this	case,	the	MRI	must	be	deemed	entirely	un-
helpful	 for	FCD	detection.	As	stated	at	 the	beginning	of	
this	section,	current	hopes	for	the	help	of	AI	in	cases	where	
the	visual	(human)	assessment	of	MRI	is	unsuccessful	are	
twofold.	On	the	one	hand,	there	are	cases	where	informa-
tion	for	lesion	localization	is	still	contained	in	the	image	
and	that	algorithms	can	leverage	(hypothesis	formation).	
On	the	other	hand,	there	are	scenarios	where	MRI	diagno-
sis	is	only	possible	in	combination	with	additional	nonim-
aging	information,	for	example,	MRI	features	that	are	not	
lesion-	specific	 but	 that	 combined	 with	 EEG,	 semiology,	
and	other	 imaging	modalities	add	 to	 the	evidence	about	
lesion	location	(hypothesis	refinement).	AI	that	uses	ad-
ditional	imaging	modalities	and	other	clinical	information	
must	be	developed	for	these	cases.

The	 ratio	 of	 histopathologically	 confirmed	 seizure-	
free	and	MRI-	negative	patients	varies	significantly	across	
FCD-	related	research.	For	example,	the	percentage	of	pa-
tients	labeled	“MRI-	negative,”	regardless	of	the	exact	defi-
nition,	varies	between	0%	and	100%,	as	shown	in	Table 2.	
This	variability	makes	model	comparability	difficult.	Most	
datasets	are	not	publicly	available,	so	most	works	evalu-
ate	their	model	on	single-	center	data.	Encouragingly,	the	
number	of	multicenter	studies	is	increasing.

Many	works	only	use	T1	sequences24,46	or	add	FLAIR	
sequences.16,34	FLAIR	sequences	can	benefit	FCD	detec-
tion	 because	 FCDs	 may	 exhibit	 local	 hyperintensities,	

T A B L E  1 	 Common	terminology	used	in	FCD	detection	
research.

Term Meaning

ANN Artificial	neural	network

DL Deep	learning

ML Machine	learning

Prediction The	output	of	an	ML	algorithm

Ground	truth True	labels	for	input	data	(e.g.,	lesion	
mask)

Voxel The	smallest	part	of	a	three-	dimensional	
image

Vertex A	point	on	a	surface

Patch Part	of	a	larger	image

Lesion A	type	of	structural	abnormality

FCD An	epilepsy-	causing	malformation	of	
cortical	development

T1,	FLAIR Types	of	imaging	sequences	resulting	in	
different	highlighting	of	various	tissue	
types	(most	importantly	gray	and	white	
matter)

MRI-	negative Lesion	could	not	be	found	on	MRI

FreeSurfer/
FastSurfer

A	software	tool	to	reconstruct	the	cortical	
surface	from	brain	images22,23

MAP18 Software	for	voxel-	based	FCD	detection	
using	morphometric	maps	as	input	for	a	
shallow	ANN24,25

MELD Software	for	vertex-	based	FCD	detection	
based	on	using	surface	features	
generated	with	FreeSurfer	and	an	
ANN18

deepFCD Software	for	patch-	based	FCD	detection	
that	takes	T1	and	FLAIR	images	as	
input16

Abbreviations:	FCD,	focal	cortical	dysplasia;	FLAIR,	fluid-	attenuated	
inversion	recovery;	MAP18,	Morphometric	Analysis	Program	v2018;	MELD,	
Multi-	centre	Epilepsy	Lesion	Detection;	MRI,	magnetic	resonance	imaging.
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   | 1097WALGER et al.

which	 is	 the	 case	 for	 50%–	70%	 of	 FCD	 type	 II	 cases.	
However,	they	may	be	less	helpful	for	the	harder-	to-	detect	
type	 I	 FCDs,	 where	 <20%	 are	 associated	 with	 a	 FLAIR	
hyperintensity.47	For	the	human	eye,	hyperintensities	are	
better	recognizable	than	changes	in	cortical	thickness	or	
blurring	of	the	gray–	white	boundary.	Whether	the	choice	
of	input	sequences	similarly	impacts	model	performance	
remains	an	open	question.

2.2	 |	 Histopathological considerations on 
ground truth

Histopathological	assessment	categorizes	FCDs	into	sev-
eral	types	with	several	possible	features	visible	in	the	MRI,	
as	 Figure  1	 shows.	 In	 FCD	 type	 I,	 MRI	 may	 show	 mild	
hyperintensity	of	the	white	matter	in	T2/FLAIR	images	or	
cortical	atrophy,	albeit	most	patients	have	no	visible	MRI	
abnormalities.48	 In	 FCD	 type	 IIa,	 MRI	 findings	 include	
abnormal	focal	patterns	of	sulci	and	gyri,	cortical	dimple,	

mild	cortical	thickening,	blurring	of	the	gray–	white	mat-
ter	interface,	and	at	times	a	mild	hyperintense	T2/FLAIR	
signal	 in	 the	 subcortical	 and	 deep	 white	 matter.49	 MRI	
changes	of	FCD	type	IIb,	or	FCDs	with	balloon	cells,	often	
show	deep	 sulci,	 abnormal	cortical	gyration,	and	hyper-
intense	T2/FLAIR	signal	in	the	subcortical	white	matter,	
sometimes	with	a	wedge	shape	that	extends	to	the	ventri-
cle	ependymal	surface	defined	as	transmantle	sign.50	FCD	
type	III	lesions	share	the	typical	features	of	the	associated	
lesions.49	 Mild	 malformations	 of	 cortical	 development	
(mMCDs)	and	mMCDs	with	oligodendroglial	hyperplasia	
(MOGHEs)	may	exhibit	blurring	of	the	gray–	white	matter	
interface	and	FLAIR	hyperintensities	 in	children.51,52	 In	
adults,	MRI	findings	in	MOGHE	include	changes	in	gyri	
and	sulci	morphology	with	mild	or	no	cortical/subcortical	
hyperintense	FLAIR	signal,	blurring	of	gray–	white	matter	
interface,	and	cortical	thickening.53

Inter-		and	intraobserver	agreement	in	evaluating	the	
International	 League	 Against	 Epilepsy	 classification	 of	
FCDs	strongly	depends	on	the	FCD	type.54	Particularly	

T A B L E  2 	 Ratios	of	MRI-	negative	patients	across	FCD-	related	studies,	if	reported	and	regardless	of	the	exact	definition	of	
“MRI-	negative.”

Total MRI- positive MRI- negative
Ratio of 
MRI- negative

Adler	et	al.13 27 27 0 0%

Ahmed	et	al.29 31 7 24 77%

Alaverdyan	et	al.30 21 3 18 86%

Chen	et	al.31 39 15 24 61%

Chen	et	al.32 16 8 8 50%

Colombo	et	al.33 118 93 25 21%

David	et	al.24 173 173 0 0%

Ganji	et	al.34 30 20 10 33%

Gill	et	al.16 171 79 92 54%

Hong	et	al.35 45 3 T|36 1.5 T 26|22 19|14 42%|39%

Kim	et	al.36 48 30 18 38%

Kral	et	al.37 53 51 2 4%

Lee	et	al.38 21	IIa|25	IIb 5|9 16|16 76%|64%

Martin	et	al.12 22 15 7 32%

Mellerio	et	al.39 25 17 8 32%

Mo	et	al.40 18 IIa|22 IIb 40 0 0%

Radhakrishnan	et	al.41 78 60 18 23%

Seong	et	al.42 81 34 47 58%

Spitzer	et	al.18 538 360 178 33%

Wagner	et	al.43 17	IIa|74	IIb 11|67 6|7 35%|9%

Wang	et	al.44 43 0 43 100%

Wang	et	al.45 150 80|0a 70|150a 47%|100%a

Note:	Automatic	FCD	detection	approaches	are	highlighted	in	bold.	Some	studies	differentiate	between	scanner	field	strength	(1.5	or	3	T)	or	histopathological	
types	(types	IIa	and	IIb).Abbreviations:	FCD,	focal	cortical	dysplasia;	MRI,	magnetic	resonance	imaging.
aUsing	two	definitions	of	MRI-	negative	(after	reevaluation	with	additional	clinical	information	vs.	“overlooked	once”).
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1098 |   WALGER et al.

FCDs	of	type	I	represent	a	considerable	challenge	for	cor-
rect	diagnosis,	which	generally	requires	neuroanatomi-
cally	excellent	brain	tissue	representation.	Although	the	
histopathological	diagnosis	of	type	II	FCDs	is	straightfor-
ward	due	to	the	robust	cellular	characteristics	of	dysmor-
phic	neurons	and	balloon	cells,	 there	may	be	sampling	
problems	and	misclassification	of	FCD	type	IIb	as	type	
IIa.	Although	resectioning	the	MRI-	documented	cortical	
abnormality	 in	 FCD	 IIb	 is	 crucial	 for	 a	 favorable	 post-
operative	outcome,28	these	tissue	portions	often	contain	
mainly	 dysmorphic	 neurons.	 In	 contrast,	 balloon	 cells	
are	primarily	present	in	the	white	matter	adjacent	to	the	
abnormal	cortex.55	Because	resection	of	 the	subcortical	
hyperintense	 zone	 in	 FCD	 type	 IIb	 is	 not	 essential	 for	
seizure	 freedom,28	 neuropathological	 assessments	 may	
miss	balloon	cells.	New	molecular–	genetic	and	epigene-
tic	characterizations	of	FCD	biopsies	may	improve	diag-
nostic	accuracy56	and	be	 integrated	 into	a	multilayered	
diagnostic	 scheme	 yielding	 more	 fine-	grained	 classifi-
cations.50	Forthcoming	advances	and	the	 limitations	of	
neuropathological	 categorization57	 need	 consideration	
for	 image	 analyses,	 especially	 when	 describing	 a	 data-
set	and	defining	a	ground	truth.	Like	different	imaging	
sequences,	 the	 proportion	 of	 various	 FCD	 types	 and	
imaging	 features	 within	 a	 dataset	 can	 impact	 model	
evaluation.

2.3	 |	 Neurosurgical considerations on 
ground truth

Preoperative	lesion	masks	are	important	for	guiding	FCD	
resection.	 Unlike	 tumors,	 FCDs	 are	 usually	 not	 visible	
macroscopically	in	situ,	but	surgeons	may	assess	lesion	ex-
tent	intraoperatively	using	intraoperative	MRI	and,	more	
recently,	intraoperative	ultrasonography.58,59	The	success	
of	surgery	depends	on	exact	intraoperative	neuronaviga-
tion	and	complete	resection	of	the	FCD.60,61	There	are	dif-
ferent	definitions	of	“complete	resection.”	They	include	
pathological	proof	of	“clear	margin,”62	a	combination	of	
preoperative	 evaluation	 and	 intraoperative	 electrocor-
ticography,63	 or	 the	 removal	 of	 the	 "abnormal	 cortex"	
based	 on	 EEG	 analyses64	 or	 of	 all	 visible	 abnormalities	
on	 MRI.65	 FCD	 detection	 approaches	 yielding	 accurate	
lesion	segmentation	may	inform	surgeons.	Nonetheless,	
epilepsy	 surgery	 has	 to	 balance	 a	 “complete	 resection”	
against	the	risk	of	collateral	damage.	Particularly	in	the	
vicinity	 of	 eloquent	 areas—	any	 brain	 area	 involved	 in	
language,	 somatic,	 memory,	 or	 sensory	 processing66—	
epilepsy	surgery	yields	lower	seizure	freedom	rates,	likely	
reflecting	 conservative	 resection.5	 To	 not	 risk	 resecting	
more	 tissue	 than	 necessary,67	 procedures	 such	 as	 MRI-	
guided	stereotactic	laser	interstitial	thermal	therapy	can	

be	more	suitable	for	patients	with	discrete	lesions.68	It	al-
lows	for	a	nearly	“voxel-	level”	ablation	of	 the	 lesion,	as	
indicated	by	the	lesion	mask.	However,	the	common	oc-
currence	 of	 FCDs	 in	 the	 depth	 of	 sulci	 can	 make	 them	
difficult	to	target.68

3 	 | 	 WHAT IS AUTOMATIC FCD 
“DETECTION”?

The	 task	 of	 finding	 FCDs	 is	 commonly	 called	 “FCD	
detection.”	 It	 is	 noteworthy	 that	 the	 word	 “detec-
tion”	 originates	 from	 the	 clinical	 context	 of	 finding	
(i.e.,	localizing)	an	FCD	and	differs	from	the	technical	
computer	vision	 term	“object	detection.”	This	 section	
will	 detail	 different	 techniques	 for	 “automatic	 FCD	
detection.”	 A	 processing	 pipeline	 typically	 consists	 of	
three	parts:	preprocessing,	the	AI	algorithm,	and	post-
processing.	 Pre-		 and	 postprocessing	 steps	 will	 be	 de-
tailed	later;	first,	we	want	to	focus	on	the	different	AI	
models	applied.

Figure  2	 shows	 example	 predictions	 for	 two	 sub-
jects	 with	 FCD	 generated	 by	 three	 recent	 works.16,18,24	
Although	 each	 produces	 an	 output	 for	 the	 whole	 brain,	
the	predictions	differ,	for	example,	in	the	number	of	pre-
dicted	 voxels,	 their	 probability	 values	 and	 distribution,	
and	the	results	for	various	evaluation	metrics.	Generally,	
models	 for	 image	 processing	 fall	 into	 one	 of	 the	 three	
major	categories	of	computer	vision:	classification,	object	
detection,	and	segmentation.	Figure 3	shows	an	example	
output	for	each	task.

3.1	 |	 Classification

A	classification	model	predicts	what	the	input	data	are.	Its	
output	is	a	value	between	0	and	1,	akin	to	the	probability	
for	the	input	data	belonging	to	a	particular	class,	as	shown	
in	Figure 3A,B.	For	FCD	detection,	the	possible	classes	are	
usually	either	“lesional”	or	“nonlesional.”	Most	approaches	
formulate	the	problem	of	FCD	detection	as	a	classification	
task.13,16,24,34,35,40,46,69,70,71–	74	Input	data	range	from	raw	MRI	
data	to	morphometric	maps	or	surface	features.	They	can	
be	one-	dimensional,	that	is,	single	voxels	(or	vertices	if	the	
input	data	are	surface-	based),	or	two-		or	three-	dimensional	
images.	 In	 the	 two-		 and	 three-	dimensional	 cases,	 an	 al-
gorithm	 often	 only	 operates	 on	 smaller	 image	 parts,	 so-	
called	“patches.”	The	output	is	thus	generated	on	the	voxel	
level,24,46,71–	73	vertex	level,13,18,35,40,70	or	patch	level.16,34,69,74	
Figure 2	shows	examples	of	the	outputs	from	Multi-	centre	
Epilepsy	 Lesion	 Detection	 (MELD),18	 Morphometric	
Analysis	 Program	 v2018	 (MAP18),24	 and	 deepFCD16	
models.
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   | 1099WALGER et al.

3.1.1	 |	 Anomaly	detection

Anomaly	 or	 outlier	 detection	 is,	 despite	 the	 name,	 a	
case	of	binary,	that	is,	two-	class,	classification,	which	
involves	 comparing	 test	 data	 with	 an	 “assumption	 of	
what	 is	 ‘normal.’”	This	assumption	can,	 for	example,	
stem	 from	 a	 database	 of	 healthy	 subjects.25	 More	 re-
cent	 approaches	 learn	 from	 healthy	 subjects	 through	
DL	 architectures	 to	 estimate	 healthy	 anatomical	
variability	 and	 identify	 lesions	 as	 outliers	 from	 this	
distribution.30

3.2	 |	 Object detection

An	object	detection	model	decides	what	and	where	an	ob-
ject	(i.e.,	an	FCD	lesion)	is	in	the	input	image.	The	output	
consists	of	coarse	localization	information	in	the	form	of	a	
center	point	and	a	bounding	box	in	addition	to	classifica-
tion	information.	Figure 3C,D	shows	two	example	outputs	
for	single	or	multiple	object	detection.	DL	approaches	for	
object	 detection,	 such	 as	 the	 YOLO	 architecture,75	 have	
been	successfully	applied	for	other	areas	of	medical	image	
processing,	 such	 as	 skin	 cancer,	 breast	 cancer,	 or	 brain	

F I G U R E  2  Predictions	for	two	example	patients	with	histopathologically	confirmed	focal	cortical	dysplasia	(FCD)	type	IIa	from	
three	recent	works	on	automatic	FCD	detection—	Morphometric	Analysis	Program	v2018	(MAP18),24	deepFCD,16	and	Multi-	centre	
Epilepsy	Lesion	Detection	(MELD)18—	and	visualization	of	suggested	evaluation	metrics.	Two	medical	experts	determined	the	ground	
truth	lesion	mask	(green	outline)	independently	using	all	available	imaging	sequences	and	pre-		and	postoperative	information,	including	
histopathological	confirmation	of	FCD.	MAP18	and	deepFCD	pipelines	output	voxelwise	probabilities,	and	MELD	outputs	clusters	(i.e.,	
groupings	of	voxels)	with	an	additional	report	about	cluster	features	(not	displayed).	Determining	whether	an	algorithm	has	actually	
“found”	a	lesion	is	not	trivial.	The	current	widely	used	criterion	of	counting	a	single	voxel	overlap	as	a	successful	localization	leads	to	all	
models	finding	both	examples.	However,	the	respective	predictions	differ	significantly,	for	example,	in	the	number	of	predicted	voxels,	
resulting	in	very	different	values	for	evaluation	metrics	such	as	the	true	positive	rate	(TPR),	positive	predictive	value	(PPV),	and	Dice	scores.
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1100 |   WALGER et al.

tumor	segmentation.76–	79	However,	such	approaches	have	
not	been	used	for	FCD	detection.

3.3	 |	 Segmentation

A	segmentation	model	also	predicts	what	the	input	image	
is,	but	in	contrast	to	classification,	segmentation	produces	
a	class	label	for	every	input	voxel.	The	output	thus	has	the	
same	dimension	as	the	input	data,	whereas	for	classifica-
tion,	 the	 outcome	 is	 a	 single	 value	 for	 the	 whole	 input.	
Additionally	 to	 this	 so-	called	 semantic	 segmentation	 ex-
ists	 instance	 segmentation,	 where	 the	 voxels	 are	 further	
grouped	(clustered)	into	objects	(i.e.,	clusters).	Figure 3E,F	
gives	 one	 example	 for	 both.	 House	 et	 al.80	 and	 Thomas	
et	 al.,81	 have	 published	 approaches	 for	 segmentation	
based	on	 the	 successful	UNet	model82—	a	 type	of	model	
that	is	widely	applied	in	medical	imaging.	Segmentation	
might	be	most	important	for	planning	surgery,	where	one	
goal	is	to	identify	and	remove	as	much	lesional	cortex	as	
accurately	as	possible.

3.4	 |	 Comparison

Many	works	do	not	uniquely	belong	to	one	of	these	three	
categories	 and	 involve	 a	 mix	 of	 other	 processing	 steps.	
For	example,	several	approaches	use	morphometric	maps	

and	other	differences	compared	to	a	“normal”	cohort	as	
inputs	to	a	classification	model.13,24,71,73	Colliot	et	al.83	ex-
plore	 segmentation	 with	 coarse	 localization	 information	
as	additional	input,	which	could	be	helpful	for	hypothesis	
refinement.

Each	task	has	certain	aspects,	pros,	and	cons,	which	we	
briefly	highlight	and	put	into	perspective.	Table 3	shows	
a	 condensed	 overview.	 The	 ground	 truth	 for	 classifica-
tion	 tasks	 is	 usually	 the	 easiest	 to	 obtain	 in	 the	 form	 of	
a	 single	 label	 indicating	“lesional”	or	 “nonlesional.”	For	
voxel-	,	vertex-	,	or	patch-	based	approaches,	the	number	of	
training	 samples	 is	 much	 larger	 than	 the	 number	 of	 le-
sions.	However,	 these	approaches	have	a	 limited	field	of	
view	and	can	thus	only	take	part	of	the	brain	as	context.	
Other	 approaches	 can	 also	 take	 whole-	brain	 images	 as	
input,	primarily	 for	 two-	dimensional	or	2.5-	dimensional	
data.	The	latter	means	concatenating	slices	from	coronal,	
sagittal,	and	axial	slices	around	a	given	coordinate.	Three-	
dimensional	 whole-	brain	 processing	 is	 complicated	 be-
cause	of	its	computational	cost.

In	clinical	practice,	localization	information	is	usually	
not	 communicated	 by	 bounding	 boxes	 or	 segmentation	
maps,	so	experts	must	manually	label	magnetic	resonance	
images	to	obtain	the	ground	truth.	Especially	for	segmen-
tation	(but	also	for	voxel-		and	vertex-	level	classification),	
this	is	a	very	time-	consuming	task.	Object	detection	offers	
a	tradeoff	between	classification	and	localization	informa-
tion,	 requiring	 less	 accurate	 manual	 labeling.	 However,	

F I G U R E  3  Examples	of	the	three	theoretical	tasks	in	computer	vision:	classification,	object	detection,	and	segmentation.	In	medical	
image	analysis,	a	classification	model	predicts	class	memberships	for	single	voxels	(or	vertices	if	based	on	surface	data)	or	for	image	patches,	
that	is,	parts	of	the	whole	image	(A,	B),	and	outputs	a	probability	score	between	0	and	1	(here	for	the	classes	“FCD”	and	“Healthy”).	Object	
detection	models	define	a	bounding	box	around	one	(C)	or	multiple	(D)	objects	with	accompanying	class	probabilities.	(E)	“Semantic”	
segmentation	models	predict	voxel-	level	class	membership	without	the	notion	of	objects	(i.e.,	clusters).	(F)	“Instance”	segmentation	groups	
voxelwise	class	labels	into	different	objects.	FCD,	focal	cortical	dysplasia;	FLAIR,	fluid-	attenuated	inversion	recovery.
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   | 1101WALGER et al.

lesions	might	not	fit	well	into	rectangular	bounding	boxes	
due	 to	 the	 folded	 morphology	 of	 the	 cerebral	 cortex.	
Segmentation	approaches	provide	the	most	lesion-	specific	
output	and	naturally	incorporate	spatial	context.	Anomaly	
detection	 tasks	 require	 the	 least	 manual	 labeling,	 but	
anomalies	alone	might	not	be	pathology-	specific.

3.5	 |	 “FCD detection” processing  
pipelines

The	 whole	 processing	 pipeline	 typically	 involves	 addi-
tional	 steps	 besides	 the	 AI	 model.	 Preprocessing	 trans-
forms	 raw	 (MRI)	 data	 into	 model	 input.	 For	 voxel-	,	
vertex-	,	or	patch-	level	processing,	input	data	are	typically	
sampled	from	the	whole	brain	so	that	predictions	are	gen-
erated	everywhere.	However,	one	can	 imagine	pipelines	
requiring	clinicians	to	select	specific	areas	they	want	to	be	
predicted,	which	has	yet	to	be	explored	for	FCD	detection.	
Postprocessing	further	alters	the	raw	model	prediction	to	
yield	the	final	output.	Figures 4	and	5	show	examples	of	
components	involved	in	both	steps,	respectively.

3.6	 |	 Patient- level diagnosis

A	 patient-	level	 diagnosis	 is	 the	 ultimate	 goal	 of	 clinical	
FCD	detection	and,	thus,	a	specific	purpose	of	automated	
approaches.	 The	 question	 is	 how	 low-	level	 predictions,	
for	 example,	 some	voxels	 classified	 to	be	 lesional,	 relate	
to	a	decision	on	the	patient	level,	that	is,	whether	some-
one	 has	 FCD.	 Current	 works	 often	 accept	 even	 a	 single	
voxel-		or	vertex-	level	true	positive	as	a	true	positive	on	the	
patient	level,	that	is,	a	person	with	FCD.	Equivalently,	for	
control	cases,	even	a	single	false	positive	prediction	on	the	

voxel	level	counts	as	a	false	positive	diagnosis.	It	remains	
to	be	seen	how	lower	level	(voxel-	,	vertex-	,	or	lesion-	level)	
or	 patient-	level	 predictions	 impact	 a	 clinician's	 decision	
for	hypothesis	 formation	and	refinement.16	Gill	and	col-
leagues,	 for	 example,	 state	 a	 patient-	level	 detection	 rate	
of	93%	“with	an	average	of	6	false	positive	[cluster]s	per	
patient.”16	However,	the	most	highly	ranked	cluster	coin-
cides	with	the	ground	truth	in	only	36%	of	cases,	leaving	
open	 whether	 a	 clinician	 would	 also	 correctly	 diagnose	
93%	of	patients	with	this	approach.

4 	 | 	 CHALLENGES IN CURRENT 
FCD DETECTION RESEARCH

We	have	so	 far	 introduced	essential	parts	of	FCD	detec-
tion	pipelines	and	shown	examples	of	how	they	may	look.	
In	the	following	sections,	we	will	highlight	crucial	areas	
for	 developing	 algorithms	 for	 automatic	 FCD	 detection.	
For	 the	 sake	 of	 brevity,	 we	 will	 refer	 to	 any	 processing	
pipeline	as	a	“model.”	An	object	detection	model	might	
recursively	contain	a	model	for	classification	and	cluster-
ing	postprocessing	steps.

4.1	 |	 Model training

4.1.1	 |	 Splitting	data

The	 data	 are	 split	 into	 three	 sets	 for	 training	 and	 testing	
a	 model:	 the	 training,	 validation,	 and	 test	 set.	 The	 train-
ing	 happens	 on	 the	 training	 set,	 and	 performance	 is	 pe-
riodically	 measured	 on	 the	 validation	 set.	 Training	 can	
be	 stopped	 when	 performance	 on	 the	 validation	 data	
saturates.	This	early stopping	 can	protect	 the	model	 from	

T A B L E  3 	 Description	of	the	three	tasks	in	computer	vision,	the	resulting	outputs,	and	the	advantages	and	disadvantages	when	
developing	and	applying	models.

Task Result Pros Cons

Classification Single	output	with	
probabilities	for	
class	membership

Large	number	of	training	examples	when	
using	voxels	or	vertices

Models	generally	require	fewer	parameters	
than	other	approaches

Anomaly	detection
Reduces	the	need	for	manual	labeling

Large	amount	of	work	creating	manual	
segmentation	labels	required	for	training

False	positives	due	to	limited	fields	of	view/
lack	of	whole-	brain	context

Anomaly	detection
Potentially	detects	abnormalities	not	

specific	to	a	pathology

Object	detection Probabilities	for	class	
membership,	
bounding	box

Spatial	information
Fast	labeling	via	bounding	boxes

Requires	annotated	data	in	the	form	of	
bounding	boxes

Detected	boxes	do	not	reflect	the	structure/
shape	of	the	cerebral	cortex

Segmentation Voxel-	level	
probabilities	for	
class	membership

Spatial	context-	aware,	lesion-	specific Requires	detailed	(voxel-	level)	labeling
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overfitting	the	training	data	and	failing	to	generalize	to	new	
data.	The	performance	on	the	test	set	is	only	evaluated	after	
all	 training	 has	 finished;	 the	 model	 never	 “sees”	 the	 test	
split	data	during	training	to	avoid	learning	something	from	
it,	an	error	commonly	called	data leakage.84	Because	of	the	
often-	limited	number	of	FCD	subjects,	approaches	might	
include	cross-	validation	without	a	separate	test	set,	a	prac-
tical	 option,	 although	 technically	 insufficient	 for	 model	

evaluation.	Recent	works	such	as	Gill	et	al.16	and	Spitzer	
et	al.,18	do	cross-	validation	and	keep	separate	test	sets	aside.

4.1.2	 |	 Hyperparameters

All	processing	steps	involve	design	choices,	that	is,	so-	called	
hyperparameters.	For	ANNs,	typical	hyperparameters	relate	

F I G U R E  4  Common	preprocessing	steps.	Typically,	preprocessing	involves	standardizing	input	data	through	intensity	normalization,	
resampling,	or	registration	to	a	template.	For	some	algorithms,	additional	input	needs	to	be	calculated,	such	as	volumetric24	or	surface-	
based18	feature	maps.	Finally,	voxels,	patches,	or	slices	can	be	extracted	from	the	whole	brain	volume	to	generate	the	artificial	intelligence	
model	input.	FLAIR,	fluid-	attenuated	inversion	recovery.
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   | 1103WALGER et al.

to	the	network	architecture,	learning	rate,	and	loss	function.	
Parameter	choices	for	the	postprocessing	step,	such	as	the	
probability	 thresholds,	 or	 those	 for	 a	 particular	 clustering	
and	cluster	selection	method,	are	also	essential	hyperparam-
eters.	These	are,	however,	rarely	discussed	or	carefully	evalu-
ated	and	may	introduce	additional	information	leakage.84,85

4.2	 |	 Model evaluation

4.2.1	 |	 Evaluation	metrics

One	assesses	a	model's	performance	with	different	evalu-
ation	metrics	depending	on	the	goal	(classification,	object	

F I G U R E  5  Common	postprocessing	steps.	Often,	a	whole-	brain	prediction	is	generated	from	the	model	output;	for	patch-	based	
approaches,	this	process	is	called	stitching.	Generally,	approaches	can	smooth	the	prediction	and	apply	outlier	removal	by	utilizing	spatial	
relationships	between	classified	voxels	or	patches.	Especially	for	voxel	and	vertex	level	classification,	pipelines	often	involve	an	additional	
clustering	step13,18,35	to	arrive	at	an	object	(i.e.,	lesion)-	level	diagnosis.	Clustering	also	allows	comparing	clusters,	for	example,	ranking	them	
and	removing	them	based	on	their	size,	mean	probability,	or	rank.	Cluster	removal	can	help	reduce	the	number	of	false	positive	clusters.
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1104 |   WALGER et al.

detection,	 or	 segmentation).	 Sensitivity,	 specificity,	 and	
derived	scores	such	as	likelihood	ratios	are	typical	choices	
for	 a	 classification	 task.	 The	 threshold	 for	 translating	
predictions	to	class	labels	is	critical	and	can	significantly	
alter	a	model's	performance	on	downstream	tasks,	such	as	
patient-	level	diagnosis.	The	same	metrics	apply	to	object	
detection	 after	 matching	 objects	 and	 ground-	truth	 clus-
ters.	 A	 match	 is	 typically	 accepted	 if	 the	 overlap,	 meas-
ured,	 for	example,	by	 the	 intersection	over	union	or	 the	
Dice	coefficient,	lies	above	a	threshold.	These	metrics	also	
help	 assess	 segmentation	 quality.	 They	 allow	 for	 model	
evaluation	on	the	level	of	the	model	output,	that	is,	voxel,	
vertex,	or	patch	 level.	Figure 2	shows	examples	of	 three	
potential	 evaluation	 metrics:	 true	 positive	 rate,	 positive	
predictive	value	(PPV),	and	Dice.

Additionally,	 the	 voxel-	level	 output	 may	 be	 postpro-
cessed	to	allow	a	lesion-	level,	that	is,	cluster-	level,	or	even	
patient-	level	 evaluation,	 as	 is	 often	 desired	 in	 a	 clinical	
context.	 Some	 methods	 involve	 clustering	 and	 ranking	
clusters	 according	 to	 their	 size,	 connectivity,	 or	 mean	
probability	 and	 exclude	 clusters	 below	 a	 given	 size	 or	
rank.16	As	mentioned,	cluster-		and	case-	level	analyses	in-
volve	a	cluster-	matching	step.	Therefore,	a	 threshold	 for	
the	overlap	to	be	accepted	as	a	“match”	must	be	chosen.	
Currently,	in	most	works,	the	criterion	is	“one	voxel	over-
lap,”	that	is,	Dice	>	0.	Because	human	performance	has	yet	
to	be	quantified	in	terms	of	Dice	scores	for	FCD	detection,	
it	is	unclear	what	values	would	be	acceptable.	Works	that	
assess	 the	clinical	 impact	do	not	quantify	overlap	or	 the	
number	of	false	positive	clusters.15,73,74	However,	current	
approaches	often	mix	voxel-	,	patch-	,	cluster-	,	and	patient-	
level	evaluation	metrics	and	fall	short	of	showing	the	ac-
tual	performance	and	impact	of	a	claimed	methodological	
novelty.

4.3	 |	 Reproducible science

The	confidentiality	of	medical	data	presents	a	significant	
hurdle	in	reproducible	science.	Few	works13,16	have	made	
used	 data	 accessible,	 allowing	 others	 to	 partially	 repro-
duce	 the	 analysis	 and	 compare	 models	 with	 the	 same	
input	data.	Another	more	straightforward	way	to	facilitate	
model	comparison	is	to	share	code	and	trained	models	and	
enable	others	to	apply	the	model	to	their	data.	Two	recent	
works	 share	 their	 code	 online.16,18	 Developing	 ready-	to-	
use	 code,	 however,	 is	 a	 labor-	intensive	 task.	 The	 appli-
cation	 of	 said	 models	 also	 requires	 high-	level	 technical	
expertise,	 for	example,	programming	skills,	 for	 structur-
ing	data	and	generating	predictions.	 Improving	 the	ease	
of	use	of	automatic	FCD	detection	algorithms	remains	an	
open	challenge.

4.4	 |	 The current best approach is: 
Humans?

Part	 of	 the	 reason	 existing	 approaches	 have	 yet	 to	 find	
their	way	into	everyday	clinical	practice	is	the	difficulty	of	
assessing	how	they	compare	to	medical	experts	and	how	
they	 impact	clinical	decision-	making.	A	 few	works	exist	
that	examine	the	impact	of	MAP18	software24,25	and	quali-
tatively	 assess	 the	 added	 benefit	 of	 a	 model's	 output	 for	
medical	 experts.73,74	 However,	 their	 evaluation	 depends	
on	 a	 human	 expert	 and	 lacks	 a	 quantification	 of	 the	 al-
gorithm's	 performance.	 Solely	 comparing	 model	 perfor-
mance,	for	example,	how	often	the	prediction	overlaps	the	
ground	 truth,	 to	 human	 performance	 on	 MRI-	negative	
patients	has	severe	shortcomings	beyond	there	being	no	
clear	definition	of	 the	 term	“MRI-	negative.”	The	pitfalls	
can	best	be	seen	in	(but	are	not	exclusive	to)	the	methodo-
logically	 interesting	 work	 of	 Alaverdyan	 et	 al.,30	 where,	
regarding	 the	 MRI-	negative	 patient	 group,	 they	 state	
that	“[…]	human	performance	is	at	0%.”30	However,	one	
must	be	very	careful;	the	output	of	a	human	expert's	as-
sessment	is	usually	a	single	or	very	few	areas	classified	as	
lesions	resulting	in	one	conclusive	diagnosis,	but	models	
can	generate	a	much	higher	number	of	cluster	predictions	
with	varying	probabilities.	For	a	fair	comparison	to	expert	
performance,	one	should	thus	restrict	a	model's	output	to	
only	a	few	clusters	per	patient.	The	highest	reported	result	
when	outputting	a	single	cluster	is	a	sensitivity	of	approxi-
mately	36%,16	which	lies	far	below	regular	performances	
from	medical	experts	in	clinical	settings.	However,	output-
ting	a	single	cluster	may	not	be	the	ultimate	goal	of	auto-
mated	FCD	detection,	especially	for	hypothesis	formation.

Regarding	false	positives,	experts	usually	know	about	
evidence	from	other	(nonimaging)	modalities	such	as	se-
miology,	EEG,	or	PET.	From	our	experience,	it	is	rare	for	
medical	 experts	 to	 find	 false	 positive	 lesions	 in	 healthy	
controls.	 The	 comparison	 to	 healthy	 control	 subjects	 is	
also	biased,	as	this	scenario	hardly	arises	in	a	clinical	set-
ting.	Recent	studies	hint	at	nonnegligible	rates	of	incident	
findings	of	brain	abnormalities	(not	specific	to	FCDs),86,87	
but	no	work	has	quantified	expert	FCD	detection	perfor-
mance	on	healthy	controls	or	how	likely	medical	experts	
are	to	rate	multiple	brain	regions	as	lesional.

5 	 | 	 TRANSLATING MODELS INTO 
CLINICAL PRACTICE

Having	highlighted	the	shortcomings	of	current	FCD	de-
tection	 models	 and	 the	 challenges	 when	 comparing	 ap-
proaches,	in	this	section,	we	want	to	provide	suggestions	
on	how	to	alleviate	these	problems	and	how	future	works	
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   | 1105WALGER et al.

can	best	explore	methodological	advancements	and	clini-
cal	benefits.

5.1	 |	 Collecting and exploring datasets

A	 simple	 step	 to	 assess	 the	 complexity	 and	 quality	 of	
a	 dataset	 and	 put	 a	 model's	 performance	 into	 context	 is	
to	 report	 results	 for	 histopathologically	 confirmed	 and	
MRI-	negative	patient	groups	separately	 from	the	overall	
results.	 Listing	 the	 prevalence	 of	 MRI	 features	 and	 the	
different	 histopathological	 types	 across	 a	 given	 dataset	
would	 further	 help	 estimate	 its	 complexity.24	 Because	
these	can	still	be	subjective,	other	more	quantitative	met-
rics	 could	 also	 help.	 Although	 it	 is	 common	 to	 provide	
clinical	 information	such	as	age	and	sex	across	subjects,	
metrics	such	as	average	 lesion	size24,70,80	or	 the	distribu-
tion	of	lesion	locations5,16	should	also	be	reported.	These	
could	provide	a	different	categorization	than	seizure	out-
come	or	histopathological	 type,	which	might	need	 to	be	
revised	considering	the	previously	mentioned	challenges	
for	neurosurgery	and	histopathology.	Additionally,	a	de-
tailed	description	of	MRI	 features	 ties	 into	 the	multilay-
ered	classification	scheme,	specifically	Layer	3,	proposed	
by	Najm	et	al.50

There	are	efforts,	 such	as	 the	MELD	project	 (https://
meldp	roject.github.io/),	 to	 collect	 multicenter	 data	 into	
larger	 datasets	 and	 make	 them	 available	 for	 algorithmic	
development.	Nonetheless,	 a	publicly	available	volumet-
ric	MRI	dataset	for	FCDs	has	yet	to	be	created.	In	the	fu-
ture,	 a	 public	 well-	annotated	 benchmark	 dataset	 would	
provide	a	common	ground	for	evaluating	models.	Diverse	
data	are	vital	to	ensure	algorithms	are	widely	applicable.	
In	children,	for	example,	the	developing	brain	undergoes	
structural	 changes,	 including	 overall	 volume	 increases,	
gray–	white	matter	contrast	changes	associated	with	white	
matter	 myelination,	 and	 dynamic	 changes	 in	 cortical	
thickness.	These	could	all	impact	an	algorithm's	ability	to	
detect	FCD	lesions.	Therefore,	FCD	detection	algorithms	
must	be	trained	and	evaluated	on	cohorts	containing	pe-
diatric	patients	and	controls.	Although	some	approaches	
have	included	pediatric	cases,18	specific	 further	develop-
ment	 is	 required	 to	 ensure	 robustness	 to	 these	 develop-
ment	changes.

5.2	 |	 Common evaluation metrics

Table  4	 provides	 an	 overview	 of	 suggested	 metrics	 for	
evaluating	 an	 FCD	 detection	 algorithm.	 These	 metrics	

T A B L E  4 	 Overview	of	metrics	and	curves	for	evaluating	an	FCD	detection	algorithm.

Metric/curve Voxel/vertex level Lesion level Patient level

PPV	(precision) How	many	predicted	voxels	are	true	
positives

“20%	of	predicted	voxels	lie	inside	the	
lesion”

How	many	predicted	clusters	
overlap	with	lesions

“Half	the	predicted	clusters	
overlap	the	real	lesions”

How	many	predicted	
subjects	have	FCD

“80%	of	the	predicted	
subjects	have	FCD”

TPR	(sensitivity,	
recall)

How	much	of	a	lesion	was	found
“On	average,	the	model	finds	20%	of	all	

lesional	voxels”

How	many	lesions	were	found
“The	model	finds	80%	of	all	

lesions”

How	many	patients	were	
found

“The	model	identified	all	
FCD	patients”

Precision–	recall	
curve

Helps	determine	thresholds	for	prediction	
probabilities

Helps	determine	thresholds	for	cluster	probabilities,	sizes,	and	
ranking	(same	for	both	levels)

ROC	curve Problematic	because	of	class	imbalance,	use	
precision–	recall	curve	instead

Helps	determine	thresholds	for	clustering	criteria	and	cluster-	
level	thresholds	(same	for	both	levels)

AUC Summarizes	information	of	evaluation	curves	into	a	single	value	(same	for	all	levels)

FROC	curve Not	applicable Links	lesion-	level	evaluation	to	patient-	level	diagnosis
“Our	model	finds	80%	of	all	lesions	with	an	average	of	three	false	

positive	clusters	per	case”

Dice	similarity	
coefficient

For	evaluating	segmentation	quality Not	applicable Not	applicable

Hausdorff	distance For	evaluating	segmentation	quality,	
especially	regarding	boundaries

Not	applicable Not	applicable

Volumetric	
similarity

Not	applicable For	evaluating	segmentation	
quality

Not	applicable

Note:	These	metrics	can	and	should	be	applied	separately	to	different	levels	of	output:	voxel,	lesion,	or	patient	level.
Abbreviations:	AUC,	area	under	the	curve;	FCD,	focal	cortical	dysplasia;	FROC,	free-	response	ROC;	PPV,	positive	predictive	value;	ROC,	receiver	operating	
characteristic;	TPR,	true	positive	rate.
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can	and	should	be	applied	separately	to	different	levels	of	
output:	voxel,	lesion,	or	patient	level.	It	remains	an	open	
research	question	how	the	 intrinsic	model	performance,	
that	 is,	 the	 evaluation	 of	 the	 raw	 model	 output,	 relates	
to	 clinical	 usefulness	 and	 which	 model	 outputs	 best	 aid	
visual	inspection	of	MRI	data.	For	example,	a	single	pre-
dicted	“lesional”	voxel	might	be	as	helpful	for	hypothesis	
formation	 as	 a	 better	 segmented	 lesion	 but	 with	 many	
more	 false	 positive	 predictions.	 The	 latter	 might	 benefit	
hypothesis	refinement	when	lesion	location	is	certain	be-
cause	of	other	clinical	characteristics.	We	propose	using	
voxel-	level	metrics,	such	as	the	PPV,	as	additional	meas-
ures	to	estimate	clinical	usefulness.	Figure 2	shows	a	vis-
ual	example	of	PPV.

The	 postprocessing	 stage	 is	 especially	 relevant	 for	
translation	 into	 clinical	 practice.	 Typical	 steps	 include	
thresholding,	 clustering,	 voxel-		 and	 cluster-	level	 outlier	
removal,	and	cluster	selection.	These	clustering	steps	must	
be	 consistent	 across	 the	 dataset;	 for	 example,	 they	 must	
not	differ	for	patients	and	healthy	controls.	Furthermore,	
approaches	 should	 optimize	 hyperparameters	 for	 this	
stage	separately	on	a	subset	of	the	data	(i.e.,	the	training	
dataset)	 to	 ensure	 that	 the	 model	 is	 not	 overfitting	 and	
achieves	similar	performance	on	new	data.

Ablation studies	are	a	standard	tool	to	show	the	benefit	
of	a	claimed	novelty.	For	example,	Thomas	et	al.81	changed	
critical	 features	 of	 their	 proposed	 novel	 network	 archi-
tecture	 to	 showcase	 its	 advantage	 (while	 testing	 against	
baseline	 models).	 Other	 published	 works,	 however,	 lack	
this	type	of	analysis.	Suppose	a	claimed	novelty	lies	in	the	
input	data	type;	one	way	to	do	an	ablation	study	is	to	leave	
the	 specific	 input	 from	 training	 and	 testing	 by	 masking	
specific	input	channels,	alleviating	the	need	to	change	the	
network	architecture.	One	can	thus	analyze	the	impact	of	
novel	 feature	 maps	 and	 markers	 such	 as	 morphometric	
maps	or	different	imaging	modalities	such	as	FLAIR.

Another	way	to	evaluate	performance	is	to	examine	
metrics	 over	 varying	 conditions,	 such	 as	 probability	
thresholds	 or	 cluster-	matching	 criteria.	 The	 receiver	

operating	 characteristic	 (ROC)	 curve	 alongside	 the	
area	under	curve	score	is	one	example	of	such	an	anal-
ysis.	 Because	 of	 the	 high	 imbalance	 between	 lesional	
and	 nonlesional	 tissue	 for	 FCDs,	 the	 ROC	 curve	 only	
gives	meaningful	results	on	the	lesion	or	patient	level.	
Another	 such	 curve	 would	 be	 the	 free-	response	 ROC	
(FROC)	 curve.88,89	 It	 combines	 case-		 and	 lesion-	level	
metrics,	 namely	 the	 average	 number	 of	 false	 positive	
clusters	 per	 case	 plotted	 against	 a	 lesion-	level	 sensi-
tivity.90	 For	 example,	 apply	 FROC	 to	 mammographic	
lesions.

Developing	 and	 evaluating	 a	 pipeline	 for	 FCD	 de-
tection	 involves	 many	 design	 choices.	 Figure  6	 gives	 a	
summary	of	the	previously	mentioned	steps.	Specifying	
these	steps	and	carefully	choosing	adequate	evaluation	
metrics	are	integral	for	correctly	assessing	the	AI	model	
and	comparing	it	with	other	works.	Evaluation	metrics	
and	 acceptable	 thresholds	 could	 be	 applied	 differently	
for	 hypothesis	 formation	 or	 refinement.	 In	 summary,	
there	needs	to	be	more	to	model	evaluation	than	solely	
evaluating	performance	on	a	downstream	task,	such	as	
patient-	level	classification.

5.3	 |	 Making pipelines accessible

The	 most	 recent	 large-	scale	 works	 on	 FCD	 detection	
have	 set	 a	 strong	 positive	 example	 by	 making	 their	
code	available	and	providing	 instructions	about	apply-
ing	 it	 to	 new	 data.16,18	 Publishing	 code	 marks	 a	 great	
start	 and	 can	 be	 further	 extended	 by	 following	 other	
steps	 to	 reproducibility	 in	 neuroscience,	 such	 as	 using	
the	 Brain	 Imaging	 Data	 Structure	 specification	 for	 a	
data	 structure.91	 Processing	 pipelines	 should	 include	
detailed	 pre-		 and	 postprocessing	 information	 to	 facili-
tate	 comparability	 further.	 Preferably,	 published	 code	
should	incorporate	these	steps.	Ideally,	the	final	output	
should	be	in	the	same	space	as	the	input	data,	preferably	
a	 subject's	 structural	 space,	 to	 circumvent	 registration	

F I G U R E  6  Summary	of	common	steps	in	the	processing	pipeline	of	automatic	focal	cortical	dysplasia	(FCD)	detection	approaches.	AI,	
artificial	intelligence.
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problems	and	simplify	visual	comparison	for	doctors,	as	
exemplified	in	Wagstyl	et	al.92	Specifically	for	AI	mod-
els,	a	step	to	improve	performance	on	new	data	is	fine-	
tuning.	A	model	 is	 fine-	tuned	by	partially	retraining	 it	
with	new	(center-	specific)	data.	This	is	not	trivial,	how-
ever,	and	this	functionality	in	published	code	could	im-
prove	model	performance	when	translating	approaches	
into	hospital	environments.

To	 encourage	 accessibility,	 the	 scientific	 commu-
nity	 should	 gratify	 the	 development	 of	 ready-	to-	use	
and	 open-	source	 code	 like	 peer-	reviewed	 publications.	
However,	 it	 also	 takes	 combined	 institutional	 efforts	
to	 meet	 requirements	 for	 technical	 equipment	 and	 ex-
pertise	and	the	long-	term	maintenance	of	software.	We	
thus	want	to	emphasize	that	making	computational	ap-
proaches	and	AI	specifically	accessible	 to	a	wide	array	
of	 research	 and	 clinical	 institutions	 cannot	 rely	 solely	
on	researchers.

5.4	 |	 Overtaking humans?

Lastly,	we	want	to	highlight	future	research	directions	to	
help	close	the	gap	between	research	approaches	and	clini-
cal	 practice.	 Direct	 comparison	 to	 human	 performance	
implies	 the	 goal	 of	 overtaking	 human	 performance.	
However,	we	believe	that	algorithms	will	not	be	used	as	
“standalone”	 MRI	 analyses	 and	 will	 not	 substitute	 for	
imaging	experts.	Instead,	automated	approaches	parallel	
to	 the	 standard	 visual	 MRI	 analysis	 may	 enhance	 clini-
cians'	confidence	in	evaluating	FCDs,	that	is,	hypothesis	
refinement,	especially	because	the	visual	analysis	can	be	
time-	consuming,	and	the	level	of	expertise	varies	consid-
erably	 among	 centers,	 which	 explains	 the	 variable,	 and	
sometimes	 high,	 percentage	 of	 MRI-	negative	 patients.	
Although	no	dedicated	work	quantifies	how	a	model	best	
aids	 clinical	 decision-	making,	 existing	 approaches	 have	
converged	upon	outputting	several	clusters.	For	example,	
El	Tahry	et	al.15	and	Urbach	et	al.,73	have	shown	that	this	
may	 benefit	 hypothesis	 formation.	 Thus,	 existing	 algo-
rithms	may	already	aid	neuroradiological	assessment,	and	
we	 strongly	 encourage	 integrating	 available	 approaches	
into	clinical	practice.

Research	 efforts	 should	 focus	 on	 difficult-	to-	detect	
FCDs	 and	 hypothesis	 formation	 to	 further	 examine	 the	
models'	 benefits.	 Although	 it	 is	 necessary	 for	 successful	
training	 to	 include	 as	 many	 data	 as	 possible,	 evaluation	
should	differentiate	these	cases.	The	additional	value	for	
detecting	 FCDs	 in	 patients	 with	 FLAIR	 hyperintensity	
might	be	small	compared	to	subjects	without	typical	MRI	
features.	The	impact	of	a	model	is	also	more	significant	for	
cases	of	FCD	type	I	than	for	those	with	MRI-	visible	type	
II.	Currently,	no	models	accept	nonimaging	 information	

as	 input,	 so	 the	 potential	 impact	 for	 truly	 MRI-	negative	
cases	remains	unknown.	As	soon	as	we	have	better	quan-
tified	the	benefit	of	FCD	detection	approaches	on	clinical	
grounds,	they	may	be	implemented	as	“decision	support	
systems”	 and	 relieve	 radiologists	 from	 the	 additional	
workload	 caused	 by	 increased	 multimodal	 and	 high-	
resolution	scans.

Ultimately,	an	algorithm	should	be	evaluated	prospec-
tively	based	on	its	impact	on	the	quality-	adjusted	life-	years	
of	people	with	epilepsy.	Improved	surgical	outcome	rates,	
more	 admissions	 to	 surgery,	 a	 faster	 diagnosis,	 or	 fewer	
other	diagnostic	procedures	are	other	signs	of	a	positive	
effect.

5.5	 |	 Current limitations

A	few	factors	currently	hamper	the	widespread	impact	of	
automatic	FCD	detection.	These	include	a	lack	of	detailed	
model	evaluation	due	to	small	dataset	sizes,	insufficient	
data	descriptions,	and	the	unmet	need	for	expertise	and	
infrastructure	 for	 integrating	 research	 works	 into	 clini-
cal	 workflows.	 There	 is	 currently	 no	 research	 or	 guide-
lines	on	how	algorithmic	output	can	and	should	best	be	
included	 in	 clinical	 decision-	making	 and	 how	 it	 would	
impact	 hypothesis	 generation	 and	 refinement	 in	 prac-
tice.	Advancements	in	disease	classification,	for	example,	
the	inclusion	of	mMCD	and	MOGHE,	still	need	to	be	re-
flected	in	current	models.	There	is	also	a	significant	per-
centage	of	cases	where	current	algorithms	do	not	detect	
a	lesion.	Recent	works	have	already	started	to	overcome	
these	 limitations	 by	 combining	 multicenter	 data	 and	
making	 models	 accessible.	 It	 remains	 to	 be	 seen	 how	 a	
streamlined	model	evaluation	will	further	change	model	
development	and	clinical	impact.	We	deem	the	research	
into	automated	approaches	for	FCD	detection	too	early	to	
estimate	a	saturation	point	for	how	effective	such	models	
can	become.

6 	 | 	 CONCLUSIONS

Research	 in	 automatic	 FCD	 detection	 has	 made	 signifi-
cant	progress,	and	modern	approaches	combine	advances	
in	medical	imaging	with	state-	of-	the-	art	methods	from	AI	
and	DL.	We	have	highlighted	challenges	in	both	fields	and	
their	 combination,	 such	 as	 accumulating	 representative	
data,	 evaluating	 a	 model's	 impact,	 and	 making	 findings	
reproducible.	 We	 have	 suggested	 how	 researchers	 may	
design	future	studies	 to	 improve	patient	care.	One	strat-
egy	 could	 be	 to	 provide	 a	 detailed	 data	 description,	 and	
another	 to	 correctly	 evaluate	 models	 for	 their	 intrinsic	
performance	 and	 potential	 impact	 on	 decision-	making.	

 15281167, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/epi.17522 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [03/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1108 |   WALGER et al.

We	encourage	scientists	in	the	field	to	combine	efforts	to	
share	data	and	code,	thereby	promoting	the	field	of	FCD	
detection	as	a	template	model	for	successful	translational	
clinical	research.
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