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Abstract

Behavioural adaptation is a fundamental cognitive ability, ensuring survival by
allowing for flexible adjustment to changing environments. In laboratory set-
tings, behavioural adaptation can be measured with reversal learning paradigms
requiring agents to adjust reward learning to stimulus-action-outcome contin-
gency changes. Stress is found to alter flexibility of reward learning, but effect
directionality is mixed across studies. Here, we used model-based functional
MRI (fMRI) in a within-subjects design to investigate the effect of acute psycho-
social stress on flexible behavioural adaptation. Healthy male volunteers
(n = 28) did a reversal learning task during fMRI in two sessions, once after the
Trier Social Stress Test (TSST), a validated psychosocial stress induction method,
and once after a control condition. Stress effects on choice behaviour were inves-
tigated using multilevel generalized linear models and computational models
describing different learning processes that potentially generated the data. Com-
putational models were fitted using a hierarchical Bayesian approach, and
model-derived reward prediction errors (RPE) were used as fMRI regressors. We
found that acute psychosocial stress slightly increased correct response rates.
Model comparison revealed that double-update learning with altered choice
temperature under stress best explained the observed behaviour. In the brain,
model-derived RPEs were correlated with BOLD signals in striatum and ventro-
medial prefrontal cortex (vmPFC). Striatal RPE signals for win trials were stron-

ger during stress compared with the control condition. Our study suggests that
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1 | BACKGROUND

Humans and other agents are routinely confronted with
decision-making situations under stress, for example,
when choosing an efficient and cheap way of commuting
to work, despite running late. Different choice options,
such as taking the car, bike or train, are associated with
relatively stable and predictable levels of cost (such as
arriving at work sweaty in case of the bike) and reward
(such as exercising in case of the bike). In contrast, a flat
tire or a train delay is a more uncertain, less predictable
factor. Both stable and uncertain factors interact, in that
cycling to work may be rewarding in sunny weather but
not on a rainy day. Stress impacts individuals’ emotions,
mood and physiological responses and may affect their
cognitive processing resources, influencing their
decision-making strategies (Lupien et al., 2007). This
might be especially relevant in situations that afford high
behavioural flexibility, for instance, in constantly chang-
ing environments. Stress is also an important factor in
causing and maintaining psychiatric conditions
(McEwen, 2004) and strongly influences health-related
behaviour in general (Cohen et al., 2016).

Flexible decision-making requires one to learn what
is most rewarding in the current environment and adapt
one’s decision-making to that. With regard to cognitive
flexibility as a well-studied subdomain of decision-mak-
ing, studies have found mixed results for the influence of
stress, ranging from beneficial to detrimental effects
across paradigms (Goldfarb et al, 2017; Plessow
et al., 2012, 2011). In a meta-analysis, acute stress showed
a small negative impact for tasks in which reward seek-
ing and risk taking is disadvantageous (d = 0.26 and
d = 0.44) but showed no effect if this was not the case
(Starcke & Brand, 2016). Similarly, a meta-analysis over a
small number of studies investigating the effects of acute
stress on cognitive flexibility concluded that stress had a
small impairing effect (Hedges’ g = —0.30) (Shields,
Sazma, et al., 2016). Different processes involved in
decision-making are presumably differentially prone to
interruption by stress (Schwabe & Wolf, 2011, 2009).
Whereas habitual decision-making relies on simple
stimulus-related associations, goal-directed decision-
making associates actions with a motivational value and
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acute psychosocial stress could enhance reversal learning and RPE brain
responses in healthy male participants and provides a starting point to explore

these effects further in a more diverse population.

cognitive flexibility, computational modelling, decision-making, TSST

is therefore more flexible but also computationally more
costly. It has been found that acute and chronic stress
causes a shift from goal-directed decision-making to
habitual decision-making on a neural and behavioural
level (Schwabe & Wolf, 2011). One possible explanation
for the variable findings are different types of standard-
ized stressors, which are commonly used in behavioural
experiments. They can be physiological as in the Cold
Pressor Task, psychosocial as in the Trier Social Stress
Test (TSST) or both as in the Socially Evaluated Cold
Pressor Test (Starcke & Brand, 2016). Depending on the
type of paradigm, the time point of when physiological
effects reach their peak level can differ quite strongly
(McRae et al., 2006). Another reason for the interindivi-
dual differences are the endocrinological and neural sex
differences (Bale & Epperson, 2015) and their interaction
with decision-making (Starcke & Brand, 2016). For exam-
ple, stress exposure before a decision-making task
increased brain activation and was related to reward-
seeking behaviour in males but not in females (Lighthall
et al.,, 2012). A further source of variability for meta-
analytical findings lies in how cognitive flexibility was
measured. Both meta-analyses predominantly focused on
classical paradigms such as the Wisconsin card sorting
test or task-switching tests. While providing valuable
insight into overall cognitive flexibility, these paradigms
mostly rely on averaged outcome measures. In contrast,
tasks designed for computational modelling may provide
a more fine-grained measure of behavioural adaptation.
In a behavioural study applying computational
modelling, participants under recent and acute stress
exhibited suboptimal foraging behaviour with a tendency
to overexploit their current options. Increased persever-
ance has also been observed in a task that differentiates
habitual and goal-directed behaviour (Raio et al., 2020).
Probabilistic reversal learning requires participants to
choose between stimuli with varying reward contingen-
cies. In these paradigms, contingencies are reversed sev-
eral times throughout the task unannounced and
therefore demand behavioural adaptation to a changing
environment. A computational mechanism underlying
the putative learning process can be formalized by the
reward prediction error (RPE), a computational quantity
derived from the reinforcement learning framework. RPE
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signal the difference between an observed and expected
reward (Dolan & Dayan, 2013) and are used to update
the value of a stimulus, a state or an action. The neural
signature of RPE during reversal learning is reliably
found in the human ventral frontostriatal circuitry
(O’Doherty et al., 2003).

So far, heterogeneous subdomains in the operationali-
zation of decision-making and methodological differ-
ences regarding the type of stressor have complicated the
picture (Porcelli & Delgado, 2017). Most previous studies
on stress effects on decision-making have employed
between-subject designs—but subjects vary drastically in
both individual stress responses, choice behaviour and
how stress affects performance. In the previously used
between-subject designs, it thus remains unclear how
much of stress-related changes to the neural correlates of
probabilistic reversal learning can be attributed to the
stressor and how much may be related to interindividual
differences in stress reactivity. Stress reactivity may also
differ, depending on long-term stress exposure
(Radenbach et al., 2015) or cognitive (Otto et al., 2013)
and personality trait (Raio et al., 2020) variables. The few
studies using within-subjects designs to investigate learn-
ing are either purely behavioural (Radenbach et al., 2015)
focused on psychoimmunological measures (Treadway
et al., 2017) or neuroimaging methods such as electroen-
cephalography (Cavanagh et al., 2011), which lacks the
possibility of precise spatial signal localization and ana-
tomical specificity with respect to the neural representa-
tion of RPE signals. To our knowledge, only two studies
combine a within-subjects design with computational
modelling and functional neuroimaging (fMRI) to eluci-
date underlying cognitive mechanisms (Carvalheiro
et al., 2021; Robinson et al., 2013). However, in both stud-
ies, effectiveness of stressor was only confirmed with sub-
jective ratings instead of physiological correlate such as
cortisol or heart rate. Furthermore, the nature of stressors
in both studies, namely, uncontrollable sounds
(Carvalheiro et al., 2021) and threat of shock (Robinson
et al., 2013), differs from our focus on psychosocial stress.
Although both studies employed reward-learning para-
digms, they did not tap reversal learning specifically. To
assess the effect of psychosocial stress on cognitive flexi-
bility, we used the TSST and fMRI to study probabilistic
reversal learning in healthy male participants, employing
a within-subjects design. In contrast to previous studies,
we used a state-of-the-art hierarchical Bayesian model-
ling approach (Piray et al., 2019) with a two-level struc-
ture, which allowed us to model the impact of stress on
behavioural adaptation.

2 | METHODS

2.1 | Study design

Employing a within-subjects design, 38 healthy male
adult participants (n = 28 in the final analysed sample,
all right-handed) performed a probabilistic reversal
learning task during fMRI in two separate sessions
7 days apart (Figure 1). Participants were only male
because cortisol reactivity to the TSST (Liu et al., 2017)
and cognitive flexibility (Shields, Trainor, et al., 2016)
were apt to sex differences, the latter of which may be
further amplified by stress (Mather & Lighthall, 2012)
and potential impact of cyclical changes. This would ren-
der interpretation of possible effects related to (physio-
logical) stress response challenging in this stage of
studying stress effects in decision-making. As we discuss
in the discussion part of this manuscript, we do advice
for follow-ups to study effects in more diverse samples,
which include females or other gender identities. Partici-
pants were recruited from the database of the Max
Planck Institute for Human Cognitive and Brain
Sciences in Leipzig, Germany, and through advertising
in the local community. They were included only in the
absence of medical, neurological and current or lifetime
psychiatric disorders assessed by the German version of
the Structured Clinical Interview for Diagnostic and Sta-
tistical Manual of Mental Disorders (SCID-IV). Clinical
interviews were conducted in person by a clinically
trained physician (MP). Procedures and materials are
identical with a previous study from our laboratory
using a different paradigm (Luettgau et al., 2018). The
study was approved by the ethics committee of the medi-
cal faculty at the University of Leipzig, including
informed consent prior to inclusion and a full debriefing
about the aims of the study after the entire protocol.
During the stress condition, participants were exposed to
a mock interview and calculus in front of a socially
unresponsive committee in white lab coats, following
the standardized TSST  protocol (Kirschbaum
et al., 1993). During the control condition, participants
read a neutral text in absence of the committee (see Sup-
porting Information). Order of session type (stress
vs. control) was counterbalanced across participants. In
order to prevent confounding effects of circadian rhythm
on cortisol levels (Kudielka et al., 2004), both experimen-
tal sessions were scheduled at the same time of the day.
Acute stress responses were assessed at physiological
(cortisol) and subjective (self-report) levels at six time
points throughout the session (Figure 2).
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FIGURE 1 Study design (a) and task design (b).

2.2 | Physiological stress response

We assessed physiological stress response via salivary cor-
tisol, measured six times throughout the experiment at
the following time points relative to the start of interven-
tion (stress or control): t1: —30 min; t2: —2 min; t3:
+10 min; t4: +15min; t5: +30 min; t6: +45 min
(Luettgau et al., 2018). For collection and extraction of
saliva, we used Salivette saliva sampling tubes (Salivette
Cortisol®, Sarstedt, Nuembrecht, Germany) (see Support-
ing Information). Individual cortisol reactivity was deter-
mined by calculating the area under the curve (AUC)
with respect to ground (AUCg-stress and AUCg-control;
see Pruessner et al., 2003) separately for both conditions
and subtracting AUCg-control from AUCg-stress. The
AUC was calculated based on individual subject-wise
time points, to account for slight temporal dispersion in
the testing protocol. For an additional analysis to confirm
stress reactivity, please refer to the Supporting
Information.

2.3 | Subjective stress response

Three different visual analogue scales (VAS) ranging
from 0 to 100 were used to assess subjective arousal,
valence and stress at all time points (T1-T6). Participants
were asked to rate how they felt, regarding arousal on a
scale ‘Please rate your current state’ from 0 (sleepy) to
100 (active), valence on a scale from O (unhappy) to
100 (happy) and stress on a scale from 0 (not stressed) to
100 (stressed). Analogous to cortisol values, this was
determined by calculating the AUC with respect to
ground (AUCg-stress and AUCg-control; Pruessner et al.,
2003) separately for both conditions and subtracting
AUCg-control from AUCg-stress.

2.4 | Working memory capacity

Participants also performed the digit span backwards task
from the test battery Hamburg-Wechsler-Intelligenztest
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HAWIK (Tewes & Wechsler, 1991) to assess working
memory capacity.

2.5 | Pastsubjective stress response
Furthermore, participants filled in a German version of
the Perceived Stress Scale (PSS-10; Cohen et al., 1983), at
home via an Internet-based survey (LimeSurvey; www.
limesurvey.org). They evaluated potential situations in
their life, with regard to their respective stressfulness dur-
ing the last 30 days.

2.6 | Task design

Participants performed a probabilistic reversal learning
task, which included 160 trials and comprised around

15 min. The task (Boehme et al., 2015; Reiter et al., 2016)
was programmed in Matlab (The MathWorks, Natick,
MA) with Psychtoolbox (Brainard, 1997). On every trial,
participants chose between two cards, each depicting a
different geometric figure (different sets of figures were
used for both experimental sessions). The underlying
reward structure was not explicitly instructed but had to
be inferred: Reward probabilities associated with the two
choice options were anti-correlated (i.e. when card A had
a reward probability of 80% and therefore a punishment
probability of 20%, card B had a reward probability of
20% and a punishment probability of 80% and vice versa).
Furthermore, participants were informed of the probabi-
listic nature of the task but not on the actual probabili-
ties: The currently ‘better’ card was only rewarded in
80% of all trials with 10 cent. After a fixed number of
55 trials, contingencies reversed, and these reversals
repeated four times over the middle experimental phase,
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followed by another stable phase in the end starting at
trial 126 (see Figure S1). Participants were all subjected
to the same task structure and were instructed to win as
much money as possible because they would be receiving
the winnings at the end of the experiment. They received
a base rate of €8.00 per hour (8 h in total for all sessions)
and earned an additional mean win of €4.99 on the con-
trol day and €5.27 on the stress day.

Because feedback was drawn probabilistically on each
trial, and we wanted to ensure that the number of proba-
bilistic events was matched between the control and the
stress condition, six participants had to be excluded from
the final sample to avoid confounds, as they received dif-
ferent task environments in terms of the amount of prob-
abilistic errors due to a programming mistake.
Additionally, two participants had to be excluded due to
technical failure, and two additional participants had to
be excluded because they performed the task below
chance level, leaving a total of 28 participants for final
analyses.

2.7 | Analyses

2.7.1 | Stress response analyses

Cortisol responses (AUCg) and the three subjective VAS
scales were compared across conditions (stress
vs. control) using two-tailed paired-sample ¢-tests at a sig-
nificance level of p < 0.05.

2.7.2 | Behavioural data

Single-trial multilevel generalized linear models (logistic
regressions) were conducted using the Ime4 package
(Bates et al., 2015) in R (Version 4.0.3). Parameter esti-
mates were considered significant at p <.05. We ana-
lysed trial-by-trial correct responses (choose better
option), win-stay (select same stimulus after win) and
lose-switch (switch stimulus after loss) behaviour with
the factors stress condition (CT vs. ST, counterbalanced,
effect coding as —0.5 and 0.5) and experimental phase
(pre, reversal, post) as fixed effects and subject as a ran-
dom effect, allowing for an individually varying intercept
per subject. For the factor experimental phase, we speci-
fied a custom-centred contrast, testing the null hypothe-
sis of performance differences between first stable and
reversal and late stable and reversal phase using the
hypr package (Rabe et al., 2020). Main effects of condi-
tion and phase as well as an interaction effect were
added incrementally in two steps. We used >-tests based
on log-likelihood changes to compare a null model,

which predicted outcome variables with the individually
varying intercept per subject to a model including vary-
ing intercepts and all main effects. If this showed a sig-
nificant better fit, we compared the main effect model to
an interaction effect model. For the best-fitting model,
the parameter estimates’ Odds Ratio was computed to
assess effect size. Additionally, we performed the same
analysis using the cortisol AUCg values instead of condi-
tion labels as predictor. Participants were excluded when
their performance was below chance (correct responses
<50%), as described in Section 2.6. Across all trials, par-
ticipants missed a relatively low number of trials
(0.71%).

Furthermore, to explore the potential moderating
impact of past stress exposure as well as working memory
capacity on stress-related learning (Otto et al.,, 2013;
Radenbach et al.,, 2015), we associated these with the
stress effect on task performance (based on total correct
responses in the stress condition — total correct
responses in the control condition). We correlated this
value with past subjective stress (PSS-10), as well as
working memory performance (digit span backwards
task). Due to missing values for four participants, regard-
ing the PSS-10, the former analysis was conducted with a
reduced sample of 24 participants.

2.7.3 | Computational models

We set up the following model space to describe different
learning processes that might have generated the data. It
comprised Rescorla-Wagner (RW; Rescorla &
Wagner, 1972) and Pearce-Hall (PH; Pearce &
Hall, 1980) models and a null model (no-learning). In the
RW and PH models, the expected value Q,; of an action
a at trial t is updated via the RPE &g, (Equation 1),
which is defined as the difference between received
reward R; and previously expected reward value for the
chosen stimulus Q,, (Equation 2):

5Qa,[ = Rt - Qa,l (1)
Qa,t+1 = Qa,t + (xwin/loss(SQa.[ (2)
Quai+1 = Qug, K ywin/loss * 6Qua,[ (3)

In RW models, we accounted for learning about the
unchosen option as indicated by the implicit anti-
correlated task structure in different sub-models [Equa-
tion 3; k=0 for single update (SU), k=1 for full double
update (DU) and freely fitted k for individually weighted
double update (iDU)]. We further varied whether
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learning rates o differed for wins and losses but always
implemented separate inverse decision noise tempera-
tures p for wins and losses. The PH model encompasses
Equations (1) and (2) with a dynamic learning rate
depending on a decay over time as and the absolute pre-
diction error (see Supporting Information or Pearce &
Hall, 1980). In the no-learning model, a stable bias
towards one of the stimuli was implemented. For all
learning models, trial-wise Q-action values are trans-
formed into choice probabilities by a softmax response
model with different inverse decision noise temperatures
p following wins and losses:

S
Zszl exp (Bwin/lossQaj)

p(ai) =

The inverse decision temperature parameter [ reflects
choice stochasticity with higher values equating more
deterministic and lower values equating more stochastic
choices.

We followed a two-step procedure: First, we fit our
model space to the behavioural data of the control
condition. Then, the best-fitting model from the control
condition was used for modelling behaviour under stress
now with additional ‘stress weights’ on the free parame-
ters. Taken together, the ‘step 1 model space’ consisted
of eight models for learning under the control condition.
In the following part, we will abbreviate Rescorla-
Wagner models with RW, Pearce-Hall models with
PH. RW-SU-1al, RW-SU-2al, RW-DU-1al, RW-DU-2al,
RW-iDU-1al, RW-iDU-1al, PH and no-learning. We
applied Bayesian model comparison (Piray & Daw, 2020)
to find out which of these models explained the data
best [see protected exceedance probabilities (PXP) in
Figure 4].

To model learning under the stress condition, we
added stress weights to the free parameters of the best-
fitting model from the first step (RW-DU-2al). The ‘step
2 model space’ included the DU-2al model without stress
effects (RW-DU-2al-NoStress), one with stress weights
affecting only the learning parameters oy, and ojoss
(RW-DU-2al-StressLearning) one model with stress only
affecting the temperature parameters f,,;, and P, (RW-
DU-2al-StressBetas) and a full model with stress affecting
all free parameter (RW-DU-2al-StressAll). This model
space was fitted to combined data from both conditions:
Trials were concatenated across control and stress condi-
tions within subjects, with the free stress parameters
quantifying the additive effect on the respective parame-
ters for the trials of the stress condition. As in Step
1, model fits were then compared between models.

2.74 | Model fitting

Models from both steps were fitted under the hierarchical
Bayesian inference approach as implemented in the cbm
toolbox (Piray & Daw, 2020) run in in Matlab R2018a.
This procedure allowed for concurrent model comparison
and parameter estimation. Thereby, the latter also fol-
lowed a multilevel modelling approach: The group mean
parameter affects individual parameter estimation and
vice versa, but the relationship is scaled by how (rela-
tively) well the model explains the individual subject’s
behaviour.

2.7.5 | {fMRI data

Scans were acquired on a Siemens 3-T high-resolution
PRISMA MR-System with a 20-channel head coil
(Siemens, Erlangen, Germany). Covering the whole
brain, 40 slices were acquired in oblique orientation at
20° to the anterior commissure-posterior commissure line
and in ascending order with the following parameters:
T2*-weighted gradient-echo echo-planar imaging (EPI)
(TR: 2.09s; TE: 22 ms; flip angle: 90°; 3 x 3 mm? in-
plane voxel resolution, 0.5 mm gap between slices, voxel
size: 3 x 3 x 4 mm). After preprocessing (see Supporting
Information), fMRI data was analysed within SPM12.
Separate first-level models were computed for the control
and stress condition. On the first individual, subject-level
feedback onsets were modelled as events with zero dura-
tion, and the RPE were included as parametric modula-
tor. Missing trials (when participants were slower than
3 s, or no response was given) were modelled as events of
no interest. The six realignment parameters were added
as nuisance regressors. Contrast images were computed
for the RPE separately for the control and stress condi-
tion and subsequently submitted to random-effects group
statistics (second level) using a paired t-test to compare
activation between conditions (stress/control). To control
for multiple comparisons, family-wise error correction
(prwe) was applied at the whole-brain level at
Prwe < 0.05 in SPM. For testing the condition effect, a
mask of the RPE main effect over both conditions were
used at prwg < 0.05. In order to differentiate RPE signals
for win and loss trials (similar to Carvalheiro et al., 2021),
additional first-level models were computed, which dif-
ferentiated feedback into win and loss trials, again sepa-
rately for control and stress day. Both trial types (win and
loss) were modelled separately introducing the RPE as
parametric modulator, which results in two contrast
images (RPE win and RPE loss). The contrast images of
RPE win and RPE loss were subjected to separate paired
t-tests to investigate activation between conditions
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(stress/control). For testing an effect of trial type, a mask
of the RPE main effect over both conditions was used at

3 | RESULTS

3.1 | Sample characteristics

The final sample consisted of n = 28 healthy male adult
human participants with a mean age of 26.9 (SD = 5.7;
range: 18-41) years, a mean of 12.2 (SD = 1.2) educa-
tional years and a mean verbal intelligence of 103.8
(SD = 10.1). The order in which participants performed
the control vs. stress was evenly spread (i.e. 13 partici-
pants performed the control condition on the first day
and the stress condition on the second day, and 15 partici-
pants performed the stress condition on the first day and
the control condition on the second day).

3.2 | Stress response analyses

The stress intervention significantly increased subjective
stress responses, such as arousal and subjective stress, as
well as physiological responses (cortisol levels). Valence
was decreased under stress (see Figure 2 and Table 1).

3.3 | Behavioural results

Best-fitting multilevel linear modelling included a
subject-specific intercept, as well as main effects of condi-
tion and phase. Predicting correct responses on a single-
trial basis with multilevel linear modelling indicated the
expected task effect in the reversal (p < 0.001) and in the
last stable phase (p < 0.001). For both phases, correct
responses decreased with respect to the first reference
phase. Furthermore, there was a main effect of condition
(p =0.020), suggesting that participants’ correct
responses subtly increased with a 1.13 higher chance
(Odd’s Ratio, OR = 1.13) for correct responses under

TABLE 1 Subjective and physiological stress responses.

Mean difference

1028 (ST-CT)

Stress response

Subjective arousal (AUC-G)
Subjective valence (AUC-G) —786.1 (ST-CT)
Subjective stress (AUC-G) 1194 (ST-CT)
Cortisol (AUC-G) 333.4

Nsubject

Note: Sample of n = 27 due to a missing cortisol value for one subject.
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stress (see Table 2 and Figure S2a). As shown in
Figure 3b, the effects of stress on correct responses were
quite heterogeneous with high interindividual variability.
The findings on correct responses were supported by a
significant main effect (p = 0.030) of stress when the
physiological stress level (AUC) was used as a continuous
predictor instead of experimental condition (see
Figure S2b and Table S1). In this model, task effects were
again significant for the reversal phase (p < 0.001) as well
as the last stable phase (p < 0.001).

Regarding win-stay behaviour, best-fitting multilevel
linear modelling included a subject-specific intercept, as
well as a main effect of condition and phase. Task effects
of the reversal phase (p < 0.001) and the last stable phase
(p <0.001) were significant, but not the experimental
condition (p = 0.22). Win-stay behaviour decreased in
the reversal phase, as well as the last stable phase with
respect to the first reference phase. Similarly, lose-switch
behaviour resulted in significant task effects of reversal
phase (p < 0.001) and last stable phase (p < 0.001), but
not experimental condition (p = 0.73) (see Tables S2 and
S3). Lose-switch behaviour increased in the reversal
phase, as well as the last stable phase with respect to the
first reference phase.

3.4 | Exploratory behavioural analysis of
moderator variables

The impact of stress on behavioural performance (A cor-
rect responses) did not correlate with working memory
capacity (1(26) = 0.16, p = 0.42) nor with our measure of
past subjective stress (1(22) = —0.19, p = 0.37).

3.5 | Computational modelling results

Behaviour in the control condition (‘step 1 model space’;
see Section 2 for the models) was best explained by an
RW model with full double update and two learning rates
(the RW-DU-2al) across all participants with a
PXP = 0.62 (see Figure 4). This indicates that most

t d p

—49 0.9 <0.001
4.2 0.8 <0.001

—6.7 1.3 <0.001

—26 0.5 0.02

28 (27 for AUC-G cortisol)

Abbreviations: AUG-G, area under the curve with respect to ground; CT, control condition; ST, stress condition.
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TABLE 2 Multilevel generalized linear modelling results of the best-fitting model predicting correct responses.

Predictors Estimate (SE)
Intercept 1.23 (0.07)
Condition 0.12 (0.05)
Reversal phase 0.96 (0.06)
Last stable phase 0.8 (0.07)

ICC 0.04

Nsubject 28
Observations 8893
Marginal/conditional R* 0.053/0.088

(a) Correct responses across task
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®
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Condition [+ Control |

Stress

(¢) First stable phase

cI z P OR
1.08-1.38 17.13 <0.001
0.01-0.22 2.32 0.020 1.13
0.83-1.07 15.27 <0.001 2.6
0.65-0.94 10.89 <0.001 2.22
(b) Interindividual differences
o

I

< ®

o 10%- N

[

= ®

[4p] Lo J e

4 ¢ -

é 0%- o °

] . L.

5 4

g ° .

8 -10%- "

<

[ )

(d) Reversal phase

(e) Late stable phase

100% 1 100% 1 100% 1
H :
75%1 %— 75% 1 AEL* 75% 4% = —
€
¢ : :
®
50% 1 50% 1 € 50% 1
®
25°/o & 25°/o . 25°/o T
0% 0% 0%

FIGURE 3 Correct responses during control (blue) and stress condition (red) across task (a), as well as phases (c-e) with light grey

lines showing subject-wise changes and interindividual differences between conditions (b).

participants used the anti-correlated task structure and
updated the chosen and the unchosen choice option to a
similar extent (full double-update model, DU). Although
there was some evidence for use of an individual double
update (iDU) in our sample, we decided to focus on full
DU-learning, as evident in the majority of participants.
Furthermore, the learning rate in win trials was lower
than in loss trials (paired t-test on alpha win vs. alpha

loss: #27) = —6.7, p <0.001), resulting in stronger
updates after loss compared with win feedback. In a next
step, additional free parameters for potential stress effects
were entered for this winning model (the ‘step 2 model
space’; see Section 2 for an explanation of the models).
This resulted in a best fit for RW-DU-2al-StressBetas
(PXP = 0.92), indicating that only the temperature
parameters f,;, and P, were different between the
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FIGURE 4 Protected exceedance (a)
probability (PXP): (a) ‘step 1° model
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,Step 1 model space (only control condition)

space explaining behaviour in the
control condition, (b) ‘step 2° model PHALRE
space with added free stress parameters
to the best-fitting model of the control
condition, in order to detect stress- RW-DU-1al -
related parameter differences between

control and stress condition. 1al, one

learning rate for win/loss trials 2al; two RW=IDU-al -
separate learning rates for win/loss RW'SUZ'all
trials; DU, double update; iDU,

RW-SU-1alf-

individual double update; LR, learning
rate; PH, Pearce-Hall; RW, Rescorla-
Wagner; SU, single update.

NoLearning-Qbias |-

1 1 1 1 1

1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Protected Exceedance Probability PXP

(b) ,Step 2 model space (added stress parameters to winning model from 2a)

RW-DU-2al-StressAll -

*W-DU-2al-StressLearning |

RW-DU-2al-StressBetas

RW-DU-2al-NoStress

! 1

1 !

control and stress conditions, but not the learning rates
(see Table S4 for parameter estimates). Model compari-
son resulted in lower protected exceedance probabilities
(PXP <0.1) for all other models (see Figure 4). Choice
temperature parameters were significantly higher after
win trials compared with loss trials (F(1,27)=22.77,
p <.001) and numerically higher during the control com-
pared with the stress condition, although the latter effect
was not significant (F(1, 27)=0.25, p =.623). When
introducing order as an additional scaling effect, as sug-
gested by reviewers, the stress effect was indeed signifi-
cant (see Supporting Information).

3.6 | fMRI results

We found a main effect of RPE combined over both con-
ditions in the vmPFC, bilateral ventral striatum, posterior

1 L 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Protected Exceedance Probability PXP

cingulate cortex (PCC) and bilateral insula (prwr < .05
for the whole brain; see Figure 5 and Table S7). We did
not observe significant RPE-related activation differences
between control and stress condition when modelling
win and loss trials together. On an uncorrected level,
there was higher activation in the right insula during stress
compared with the control condition, but this did not
entirely survive multiple comparison correction ([46, 4, 10],
t =4.02, PrwE SvC main effect = .068, Puncorrected < 0.001; see
Figure S9).

Parallel to our exploratory behavioural analysis we
assessed potential associations between past subjective
stress (PSS) and working memory capacity (WM) with
changes in RPE signal induced by acute stress (A RPE
stress — control). We computed new first-level statistics
combining stress and control condition into one model
and generated a contrast image with the difference
between stress and control condition. These contrast
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images were then entered into separate second level
models with PSS and WM as covariates, respectively. We
did not find significant effects of PSS nor WM on the
changes in RPE activation.

Furthermore, modelling win and loss trials sepa-
rately, participants under stress compared with the
control condition exhibited stronger signalling of RPE
for win trials in the left striatum (main effect of condi-
tion: [_10’ 10, 2]’ t = 6.43, DFWE whole brain corrected = 0-041;
see Figure 6). No significant difference between stress
and control condition was observed for RPE in loss
trials.

4 | DISCUSSION

The present within-subjects study investigated the beha-
vioural and neural effects of acute psychosocial stress on
probabilistic reversal learning in healthy male human
participants. In short, the stress induction worked prop-
erly, and the stress effects seemed to last long enough to
possibly induce stress effects in the scanner during the
task reported here (see Figure 2). We found that partici-
pants were slightly more accurate under acute stress.
Additionally, the neural representation of RPE signals
was significantly higher during acute stress for win trials

FIGURE 5 Neural activation related to reward prediction error across both conditions. Displayed are clusters showing significant RPE

coding in vmPFC, ventral striatum, posterior cingulate cortex and insula at prwg whole brain correctea < 0.05 combining stress and control

conditions (main effect of task).

Contrast estimate

Control

Condition

FIGURE 6 Neural activation related to reward prediction error (RPE) when modelling win and loss trials separately. Left-hand side

and middle: Main effect RPE during win trials across conditions (yellow-orange gradient) and the stress effect (stress condition > control

condition; red) in the left striatum at pFWE whole brain corrected < 0.05. Right-hand side: Box plot of contrast estimates for RPE win for

control and stress condition at the peak voxel (x = —10,y = 10, z = —2).
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in our sample. Computational modelling of choice behav-
iour, however, showed no stress effect on learning rates,
but rather stress effects in the use of learned values.

Specifically, on the behavioural level, participants
learned to choose the correct (i.e. more often rewarded)
stimulus and adapted their choices after changes in
reward contingencies (reversals) during both the control
and the stress condition. Unlike previous studies
(Shields, Sazma, et al., 2016), we observed more correct
responses during the stress compared with the control
condition, but the effect size was small (OR = 1.13) and
other behavioural measures such as win-stay or lose-
switch behaviour were not affected. Furthermore, partici-
pants displayed substantial interindividual variability
including better, worse or non-different performance
under acute stress in our within-subjects design; there-
fore, it is challenging to interpret these results by
themselves.

Follow-up computational modelling analyses of
choice behaviour showed that participant’s behaviour
was best explained by an RW model using RPE to update
the expected values of both the chosen and the unchosen
choice option, indicating that participants considered the
anti-correlated task structure. Acute stress did not affect
the learning rate, a parameter that scales the influence of
the RPE in updating of the expected values. Therefore,
within our model space, there was no evidence that stress
affected the updating speed of learned expected values
itself. In contrast, our modelling analysis did suggest that
the degree to which participants used the learned values
(temperature parameter) differed between the stress and
control condition. More specifically, introducing different
temperature parameters for the control and the stress
condition explained the observed behaviour best. When
introducing order as an additional scaling factor, we
found that temperature parameters were higher in the
stress condition indicating that participants followed the
learned values more closely during stress compared to
control condition. Two studies using cognitive computa-
tional modelling during learning tasks also observed
effects of acute stress on choice temperature, mostly
higher stochasticity (Cremer et al., 2021; Radenbach
et al., 2015), whereas other studies observed attenuation
of model-based behaviour (Otto et al., 2013) or an
increased tendency for win-stay behaviour (Raio
et al., 2020). However, comparability is limited due to the
different tasks used, mainly focusing on the balance
between model-free and model-based learning (Cremer
et al., 2021; Otto et al., 2013; Radenbach et al., 2015; Raio
et al., 2020), which was not the focus of the present study.

On the neural level, RPE signals were correlated with
neural activation in a network comprising vmPFC, bilat-
eral ventral striatum, posterior cingulate cortex and
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insula across both conditions, in line with previous stud-
ies using the same paradigm (Boehme et al., 2015;
Katthagen et al., 2020; Reiter et al., 2017, 2016) and with
meta-analytic findings of RPE fMRI studies (Fouragnan
et al., 2018). In another meta-analysis, vmPFC and the
posterior cingulate cortex were identified as regions spe-
cific to reward delivery (Jauhar et al., 2021) The posterior
cingulate cortex has also been suspected to signal change
detection (Pearson et al., 2011), which is crucial to per-
form well during reversal learning. No whole-brain cor-
rectable stress effects on RPE representation were
observed when assessing win and loss trials together. The
trendwise increase of RPE-related activation in the insula
during the stress compared with the control condition,
might contribute to the behavioural effect as the insula
has been implicated in error processing, mainly inter-
preted to code salience signals (Fouragnan et al., 2018).
However, this finding did not survive stringent correction
for multiple testing and therefore needs to be interpreted
with caution.

When differentiating RPE signals during win and loss
trials, we found stronger coding of positive RPEs in the
ventral striatum during the stress compared with the con-
trol condition in our sample of healthy male participants.
This increased neural activation following acute social
stress could correspond to better behavioural perfor-
mance in the stress condition. Stress has been shown to
affect the mesolimbic dopaminergic system although
both increasing and inhibiting effects have been
described depending on the intensity, duration and con-
trollability of the stressor (Baik, 2020). In line with our
finding, stressful experience in rodents has been found to
increase reward-evoked dopamine release in the ventral
lateral striatum (Stelly et al., 2020). Another study found
an increase of negative (unexpected aversive face stimuli)
but not of positive (appetitive) prediction error signals in
the ventral striatum in a condition of threat (potential of
electric shock), although no difference between positive
and negative PE signals were observed in the safe condi-
tion (Robinson et al., 2013). While we did not differenti-
ate between threatening and safe context, this finding
suggests that RPE signals are highly context-sensitive. In
contrast to our finding, another study observed a blunted
positive prediction error signal in the dorsal striatum
with impaired performance in win trials (Carvalheiro
et al., 2021). In our study, acute social stress was induced
using the TSST before scanning, whereas Carvalheiro
et al. used aversive sounds inside the scanner to induce
stress. Therefore, differences in stress induction likely
contribute to the different findings.

In rodents, acute stress improved reversal learning,
whereas chronic stress impaired reversal learning
(Bryce & Howland, 2015; Hurtubise & Howland, 2017).
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Differential long-term stress exposure may have led to
the heterogeneous effects of stress on reversal learning in
our sample. In humans, chronic stress increased the det-
rimental influence of acute stress on model-based learn-
ing (Radenbach et al., 2015). Apart from chronic stress
exposure, cognitive capacities or personality traits are
further potential explanations for the inconsistent
impact of acute stress on learning. A high working
memory capacity seems to hold a protective function
against the attenuation of model-based learning (Otto
et al., 2013), whereas trait impulsivity interacts with dif-
ferent aspects of learning differentially, but particularly
seems to increase perseveration (Raio et al., 2017). As
probabilistic reversal learning does not disentangle
model-based and model-free learning these effects of
moderators were impossible to replicate here. Explor-
atory analyses on working memory capacity and past
subjective stress did not reveal any respective effects on
stress in our sample.

We acknowledge that our findings are limited by sev-
eral factors. First of all, we found that the power in this
study is low, due to the small sample size. This means
that several effects found, especially the MRI results,
should be interpreted with great caution, and effects
found should be replicated independently. Second, we
only tested male participants. This was partly due to con-
straints in recruitment procedures and the fact that a part
of the sample was tested as a healthy control sample for a
patient study. Nonetheless, regardless of these con-
straints, we did make the decision to stick with a male-
only sample, as there might be the gender differences in
decision-making (Shields, Trainor, et al., 2016), which
may be amplified by stress (Mather & Lighthall, 2012)
and potential impact of cyclical changes. This could have
made interpretation of possible effects related to (physio-
logical) stress response even more challenging than we
face in the current sample. Furthermore, our sample was
homogeneously young and highly educated. This reduced
variability in our sample might have limited our ability to
find differences between both conditions, and these sam-
ple characteristics reduced the generalizability of effects
across sex, genders (females or non-binary), age and edu-
cation level, and we would advise for additional studies,
to investigate if similar effects are found in non-male,
older and lower educated populations, but also to patient
samples. Regarding our task used, it does not allow to
temporally disentangle value and RPE representations in
the brain. Stress effects may be related to the value repre-
sentation and utilizing of those values during the deci-
sion process as indicated by our modelling findings.
Although speculative at this point, our finding of altered
choice stochasticity parameters may hint towards this
and aligns with recent findings on the importance of

computational noise directly affecting value representa-
tion (Findling et al., 2019). Dissociating these computa-
tions might be a promising avenue for future studies to
determine the neurocomputational processes underlying
reversal learning performance increases under acute
stress.

Whereas our relatively young and healthy study sam-
ple has shown slight beneficial effects of acute stress,
other more vulnerable populations may show different
patterns. Stress, especially when long term or chronic, is
an important factor in causing and maintaining psychiat-
ric illness (McEwen, 2004). Although healthy individuals
can adapt to a certain level of stress and even find it ben-
eficial (Lighthall et al., 2013), decision-making frequently
goes awry in psychiatric disorders (Caceda et al., 2014).
Our results suggest that it might be worthwhile assessing
decision-making under acute stress in populations at risk
of developing psychiatric conditions to reveal how stress
is involved in maladaptive decision-making. Identifica-
tion of altered choice behaviour and relevant neural net-
works in healthy individuals make it possible to
disentangle how stress affects healthy decision-making
and what might be a maladaptive psychiatric alteration.
As an operationalization of cognitive flexibility, reversal
learning is a construct with high relevance for several
psychiatric disorders. For instance, cognitive flexibility
and its neural correlates are impaired in patients with
alcohol use disorder (Reiter et al., 2016), anorexia nervosa
(Bernardoni et al., 2017), binge-eating disorder (Reiter
et al., 2017), ADHD (Hauser et al., 2014) or schizophrenia
(Schlagenhauf et al., 2014).

5 | CONCLUSION

Our study combines the advantages of a within-subjects
design and fine-grained computational measures to
investigate the effect of acute psychosocial stress on prob-
abilistic reversal learning in healthy male adults. Several
lines of analysis showed slightly improved performance,
reflected in altered choice stochasticity, with whole-
brain-correctable neural effects of increased RPE signal-
ling for win trials under stress.
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