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Abstract
The interrelationships of the extant crocodylians Gavialis gangeticus and Tomistoma 
schlegelii have been historically disputed. Whereas molecular analyses indicate a 
sister taxon relationship between these two gavialoid species, morphological data-
sets typically place Gavialis as the outgroup to all other extant crocodylians. Recent 
morphological- based phylogenetic analyses have begun to resolve this discrepancy, 
recovering Gavialis as the closest living relative of Tomistoma; however, several strati-
graphically early fossil taxa are recovered as closer to Gavialis than Tomistoma, result-
ing in anomalously early divergence timings. As such, additional morphological data 
might be required to resolve these remaining discrepancies. ‘Tomistoma’ dowsoni is an 
extinct species of gavialoid from the Miocene of North Africa. Utilising CT scans of 
a near- complete, referred skull, we reconstruct the neuroanatomy and neurosensory 
apparatus of ‘Tomistoma’ dowsoni. Based on qualitative and quantitative morphomet-
ric comparisons with other crocodyliforms, the neuroanatomy of ‘Tomistoma’ dowsoni 
is characterised by an intermediate morphology between the two extant gavialoids, 
more closely resembling Gavialis. This mirrors the results of recent studies based on 
the external anatomy of these three species and other fossil gavialoids. Several neu-
roanatomical features of these species appear to reflect ecological and/or phyloge-
netic signals. For example, the ‘simple’ morphology of their neurosensory apparatus is 
broadly similar to that of other long and narrow- snouted (longirostrine), aquatic croco-
dyliforms. A dorsoventrally short, anteroposteriorly long endosseous labyrinth is also 
associated with longirostry. These features indicate that snout and skull morphology, 
which are themselves partly constrained by ecology, exert an influence on neuroana-
tomical morphology, as has also been recognised in birds and turtles. Conversely, the 
presence of a pterygoid bulla in Gavialis and several extinct gavialoids, and its absence 
in Tomistoma schlegelii, could be interpreted as a phylogenetic signal of crocodylians 
more closely related to Gavialis than to Tomistoma. Evaluation of additional fossil 
gavialoids will be needed to further test whether these and other neuroanatomical 
features primarily reflect a phylogenetic or ecological signal. By incorporating such 
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2  |    BURKE and MANNION

1  |  INTRODUC TION

Crocodylia is a clade of semi- aquatic, ambush predators that inhabit 
both freshwater and estuarine environments (Grigg & Kirshner, 2015). 
They are broadly restricted to the subtropical latitudinal belt, with 
over 25 extant species currently recognised, consisting of alligators, 
caimans, crocodiles and gavials (Grigg & Kirshner, 2015). Crocodylian 
interrelationships have been debated for decades, most notably due 
to conflicting results from phylogenetic analyses based on molecu-
lar (Densmore & Owen, 1989) versus morphological (Brochu, 1997) 
data. The most notable discrepancy pertains to the position of the 
extant species Gavialis gangeticus: whereas molecular data recover it 
as the closest living relative of Tomistoma schlegelii, forming the clade 
Gavialidae, morphological data have typically placed it as the sister 
taxon to all other extant crocodylians (Brochu, 1997). For the first 
time based solely on morphological data, Rio and Mannion (2021) 
robustly recovered Gavialis gangeticus as the closest living relative 
of Tomistoma schlegelii (see also Ristevski et al., 2022). Additionally, 
their analyses recovered more widespread similarities between fossil 
taxa traditionally referred to Tomistominae and Gavialoidea (see also 
Iijima et al., 2022; Iijima & Kobayashi, 2019). Despite this, a temporal 
incongruence is still evident in Gavialoidea, with several stratigraph-
ically early fossil taxa recovered as closer to Gavialis than Tomistoma, 
resulting in inferred divergence timings for Gavialidae that greatly 
predate those estimated from molecular data (Rio & Mannion, 2021). 
Although the incorporation of further taxa (e.g. Iijima et al., 2022), as 
well as methodological approaches such as total evidence analyses 
(Darlim et al., 2022; Lee & Yates, 2018), might help resolve this dis-
crepancy, one potential additional resource might emanate from the 
internal anatomy of specimens (Gold et al., 2014), utilising previously 
inaccessible data increasingly made available through computed 
tomography.

Evaluation of neuroanatomy via computed tomography is a 
relatively new approach, with the first applications to crocodyl-
ians and their extinct relatives by Rowe et al. (1999) and Tykoski 
et al. (2002), who presented data on Alligator mississippiensis and 
the Early Jurassic goniopholid neosuchian Calsoyasuchus valli-
ceps respectively. Since then, neuroanatomical reconstructions 
of the group have included studies of extant species (e.g. Dufeau 

& Witmer, 2015; Gold et al., 2014; Kuzmin et al., 2021; Lessner & 
Holliday, 2022; Witmer et al., 2008; Witmer & Ridgely, 2008), as 
well as an increasing number of extinct taxa, including early diverg-
ing crocodylomorphs (Leardi et al., 2020; Melstrom et al., 2022; 
Ruebenstahl et al., 2022), thalattosuchians (e.g. Herrera et al., 2018; 
Pierce et al., 2017; Schwab et al., 2021; Wilberg et al., 2022), 
notosuchians (e.g. Dumont Jr et al., 2022; Kley et al., 2010; 
Pochat- Cottilloux et al., 2021; Sereno & Larsson, 2009; Sertich & 
O'connor, 2014) and eusuchian taxa outside of the crocodylian ra-
diation (Blanco et al., 2015; Holliday & Gardner, 2012; Puértolas- 
Pascual et al., 2022; Serrano- Martínez et al., 2019, 2021). Within 
Crocodylia, there are surprisingly few published neuroanatom-
ical reconstructions of extinct species, limited to the alligatoroid 
Diplocynodon tormis (Serrano- Martínez et al., 2019), the meko-
suchines Paludirex vincenti (Ristevski et al., 2020) and Trilophosuchus 
rackhami (Ristevski, 2022), the caimanine Mourasuchus arendsi 
(Bona et al., 2013), and the gavialoids Gryposuchus neogaeus (Bona 
et al., 2015) and Gunggamarandu maunala (Ristevski et al., 2021). 
Although many lineages remain unstudied, these analyses are 
beginning to reveal evolutionary transitions in crocodylomorph 
neuroanatomy, including features that appear to be unique to in-
dividual clades (e.g. Barrios et al., 2023; Ruebenstahl et al., 2022; 
Schwab et al., 2020; Serrano- Martínez et al., 2021). However, they 
also document morphological similarities between distantly related 
taxa (e.g. Gavialis and Thalattosuchia), mirroring patterns in external 
anatomy (e.g. Ballell et al., 2019; Brochu, 2001; Felice et al., 2021; 
Groh et al., 2020; Jouve, 2009).

Here, we present a reconstruction of the neuroanatomy and 
neurosensory apparatus of the Miocene North African fossil croco-
dylian species ‘Tomistoma’ dowsoni. In recent phylogenetic analyses, 
‘Tomistoma’ dowsoni has been recovered as a gavialoid, more closely 
related to Gavialis gangeticus than to Tomistoma schlegelii (Groh 
et al., 2020; Rio & Mannion, 2021). Given its ‘intermediate’ position 
within Gavialoidea (sensu Iijima et al., 2022), the neuroanatomy of 
both extant gavialoids is also reconstructed for comparative pur-
poses. Additionally, we quantitatively evaluate morphological varia-
tion in crocodyliform neuroanatomy, especially that of crocodylians 
and their close relatives, as well as test how this corresponds to the 
environment they inhabit.

previously inaccessible information of extinct and extant gavialoids into phylogenetic 
and macroecological studies, we can potentially further constrain the clade's interre-
lationships, as well as evaluate the timing and ecological association of the evolution 
of these neuroanatomical features. Finally, our study supports recent phylogenetic 
analyses that place ‘Tomistoma’ dowsoni as being phylogenetically closer to Gavialis 
gangeticus than to Tomistoma schlegelii, indicating the necessity of a taxonomic revi-
sion of this fossil species.

K E Y W O R D S
computed tomography, crocodylian, ecomorphology, gharial, morphometrics neuroanatomy, 
Tomistominae
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    |  3GAVIALOID NEUROANATOMICAL EVOLUTION

Institutional abbreviations. AMNH; American Museum of Natural 
History, New York City, New York, USA; BSPG, Bavarian State 
Collection for Palaeontology and Geology, Munich, Germany; 
BP, Evolutionary Studies (formerly Bernard Price) Institute, 
Johannesburg, South Africa; FLMNH, Florida Museum of Natural 
History, Gainesville, Florida, USA; IVPP, Institute of Vertebrate 
Paleontology and Paleoanthropology, Beijing, China; MLP, Museo 
de La Plata, Buenos Aires, Argentina; NMB, National Museum of 
the Bahamas, Nassau, Bahamas; NHMUK, Natural History Museum, 
London, UK; OUVC, Ohio University Vertebrate Collection, Athens, 
Ohio, USA; QMF, Queensland Museum, Brisbane, Queensland, 
Australia; TMM, Texas Memorial Museum, Austin, Texas, USA; 
UMZC, University Museum of Zoology, Cambridge, UK; USNM, 
Smithsonian Institution National Museum of Natural History, 
Washington D.C., USA.

2  |  MATERIAL S AND METHODS

2.1  |  Specimens and CT scan reconstructions

The neuroanatomy of ‘Tomistoma’ dowsoni was interpreted from 
NHMUK PV R 4769. This is a referred specimen purchased by the 
NHMUK in 1920 from Lady Moon, and it was collected from near the 
Siwa Oasis, in the Western Desert of Egypt (Hamilton, 1973). Its pre-
cise stratigraphic provenance is uncertain, but it is likely to be from 
the lower Miocene Moghra (=Moghara) Formation (Hamilton, 1973). 
NHMUK PV R 4769 has been used as the basis for the ‘Tomistoma’ 
dowsoni operational taxonomic unit in recent phylogenetic analyses 
(Groh et al., 2020; Rio & Mannion, 2021), in which it has been recov-
ered as more closely related to Gavialis gangeticus than to Tomistoma 
schlegelii. It is represented by a near- complete and well- preserved 
skull, missing the quadratojugals, pterygoids and ectopterygoids. 
The specimen is supported by a longitudinal metal rod which affects 
the reconstruction of some neuroanatomical features. Similarly, an 
incomplete left squamosal and postorbital also impacted recon-
struction of the paratympanic region.

NHMUK PV R 4769 was characterised at the NHMUK with X- 
ray micro- computed tomography using a Nikon Metrology XTH 
225 ST system (Nikon Metrology, Leuven, Belgium). Acquisition 
of the full skull was implemented in five parts, with a voltage 
of 215 kV and a current of 698 μA, resulting in a reconstructed 
isotropic voxel size of 75.999 μm3, and 4476 projections with an 
average of four frames, with an exposure time of 0.708 seconds 
per frame. Three acquisitions were carried out for the posterior 
portion of the skull, followed by the skull being turned upside- 
down and the last two acquisitions captured the anterior portion 
of the skull. Datasets were merged into a single volume using 
Avizo v. 9.7 (FEI Visualization Science Group; https://www.therm 
ofish er.com ), using the protocol described in (Butler et al., 2022). 
The neuroanatomy of NHMUK PV R 4769 was subsequently seg-
mented in Avizo v. 9.7, smoothed in Blender (Stichting Blender 

Foundation, Amsterdam) and rendered in Inkscape (Inkscape 
Project, 2020).

The neuroanatomy of the extant gavialoids Gavialis gangeticus 
(FLMNH UF 118998) and Tomistoma schlegelii (TMM M6342) was 
reconstructed based on data available in MorphoSource (https://
www.morph osour ce.org/). As the paratympanic region is not pre-
served in NHMUK PV R 4769, these features were not segmented in 
Gavialis gangeticus and Tomistoma schlegelii. Both specimens used are 
adults, for accurate comparison to NHMUK PV R 4769, as brain vol-
ume varies throughout ontogeny (Jirak & Janacek, 2017; Watanabe 
et al., 2019). These two extant taxa, as well as published neuro-
anatomical reconstructions of the extinct gavialoid Gryposuchus 
neogaeus from the Miocene of Argentina (Bona et al., 2015), the 
non- crocodylian allodaposuchid eusuchian Agaresuchus fontisensis 
from the Late Cretaceous of Spain (Serrano- Martínez et al., 2021), 
and the thalattosuchian Pelagosaurus typus from the Early Jurassic of 
the UK (Pierce et al., 2017), were used as a comparative framework 
during segmentation.

2.2  |  Reptile encephalisation quotient

The reptile encephalisation quotient (REQ) was developed by 
Hurlburt (1996) from the encephalisation Quotient of Jerison (1973), 
based on extant reptile species. The REQ is a commonly used metric 
to measure relative brain size of extinct species (Paulina- Carabajal & 
Currie, 2017), and has been previously applied to eusuchian neuro-
anatomy to infer cognitive capabilities (Serrano- Martínez et al., 2021). 
Measuring REQ requires an estimation of body and brain mass. Body 
mass was calculated for NHMUK PV R 4769 using the regression 
equation Ln (Total Length of Skull) = 0.32Ln (Body Mass) + 2.05 (Platt 
et al., 2009), which was subsequently rearranged to interpret body 
mass: Body mass = (Total Length of Skull x e−2.05)1/0.32. Brain mass 
was estimated using the endocast volume, applying a density of 1 g/
cm3 (Franzosa, 2004). As the endocast volume would not necessarily 
be the same as the brain volume, given that the endocast represents 
the brain and its associated tissues (Hopson & Gans, 1979; Jirak & 
Janacek, 2017; Watanabe et al., 2019), the relative brain volume was 
estimated using a linear regression derived by Serrano- Martínez 
et al. (2021) using data published by Jirak and Janacek (2017) and 
Watanabe et al. (2019). The REQ was subsequently calculated using 
the equation, REQ = MBr/(0.0155 × MBd0.553), where MBr is the 
mass of the brain and MBd is the body mass (Hurlburt et al., 2013; 
Paulina- Carabajal & Currie, 2017).

2.3  |  Olfactory capability and visual acuity 
calculations

The olfactory capabilities of ‘Tomistoma’ dowsoni were calculated 
using the methodology of Zelenitsky et al. (2011). Olfaction acuity 
is dependent on the size of mitral cells, as well as odour receptors, 
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4  |    BURKE and MANNION

which can be estimated from the relative size of the olfactory 
bulb (Lautenschlager et al., 2012; Serrano- Martínez et al., 2019; 
Zelenitsky et al., 2009). The greatest diameter of the olfactory bulb 
of each of NHMUK PV R 4769, Gavialis gangeticus, and Tomistoma 
schlegelii was compared to the greatest diameter of their respective 
cerebrum hemispheres, which was subsequently normalised via a log 
transformation (Serrano- Martínez et al., 2021).

Visual acuity is usually estimated from the size of the eye-
ball, which can be inferred from the sclerotic ring (Lautenschlager 
et al., 2012). As eusuchians lack sclerotic rings, Serrano- Martínez 
et al. (2021) estimated the relative size of the optic region using the 
optic lobes, which can be inferred from the rhombencephalon region 
of the endocast (Jirak & Janacek, 2017). The relative volume of the 
optic region was calculated with the Arithmetic function in Avizo v. 
9.7, by comparing the volume of the optic lobe to the volume of the 
whole endocast.

2.4  |  Morphometric data

Morphometric data were collated from the endocasts and endos-
seous labyrinths of NHMUK PV R 4769, Gavialis gangeticus and 
Tomistoma schlegelii, using the ‘Measurement’ tool in Avizo v. 9.7 
(Table 1). Selected dimensions followed Pierce et al. (2017). Our 
dataset was augmented by measurements from specimens of 
taxa presented in the published literature (Erb & Turner, 2021; 
Pierce et al., 2017; Ristevski, 2022), namely: the thalattosuchi-
ans Pelagosaurus typus and Plagiophthalmosuchus cf. graciliro-
stris; the dyrosaurid Rhabdognathus aslerensis; the mekosuchine 
Trilophosuchus rackhami; and several extant taxa, comprising 
Alligator mississippiensis, Caiman crocodilus, Crocodylus johnstoni, 
Crocodylus niloticus and an additional specimen of Gavialis gangeti-
cus (UMZC R5792). We also collected morphometric data by meas-
uring published digital endocasts and endosseous labyrinths of a 
third specimen of Gavialis gangeticus (MLP 602; Bona et al., 2015), 
Gyprosuchus neogaeus (Bona et al., 2015), the Miocene South 
American caimanine Mourasuchus grendsi (Bona et al., 2013), and 
the allodaposuchids Agaresuchus fontisensis (Serrano- Martínez 
et al., 2021) and Arenysuchus gascabadiolorum (Puértolas- Pascual 
et al., 2022). Following Pierce et al. (2017), we converted the raw 
morphometric data into ratios, in order to interpret the relative 
proportions of the olfactory tract, cerebrum, pituitary fossa and 
the endosseous labyrinth (Table 2).

Variation in the shape of the endosseous labyrinth was measured 
using 82 curved, semi- landmarks plotted around the inner ear, as well 
as around each of the semi- circular canals. We added ‘Tomistoma’ 
dowsoni to the dataset collated by Ristevski (2022), which consists 
of the morphologies of endosseous labyrinths across 20 crocodylo-
morphs, including terrestrial, semi- aquatic and pelagic species. Due 
to most species included in this study having a semi- aquatic ecol-
ogy, species were also classified based on their skull morphology. 
Adapting the classification system of Busbey (1995), the ratio of 

the rostrum length compared to the skull length is less than 0.55 in 
short- snouted/‘brevirostrine’ taxa, 0.55 to 0.7 in ‘mesorostrine’ taxa, 
and greater than 0.7 in long- snouted/‘longirostrine’ taxa. Skull width 
was also measured at the premaxilla and at the orbits, in order to 
determine the snout thickness (see Table 3). In this study, we use the 
term ‘longirostrine’ to describe crocodyliform skulls that have a long 
and narrow snout compared to the skull table and ‘brevirostrine’ to 
describe skulls that have a snout with a relatively similar width to the 
skull table (Table 3).

3  |  RESULTS

3.1  |  Nasal cavity and associated structures

The nasal cavity of ‘Tomistoma’ dowsoni (NHMUK PV R 4769) 
generally reflects that of both Gavialis gangeticus and Tomistoma 
schlegelii. This morphology is typical of Crocodylomorpha, in that 
the nasal cavity extends posteriorly from the premaxilla to the ba-
sicranium (Pierce et al., 2017; Serrano- Martínez et al., 2021). At 
the most anterior part of the snout in NHMUK PV R 4769, Gavialis 
gangeticus and Tomistoma schlegelii, the nasal cavity protrudes to 
form the external naris (Figure 1). Conversely, at its most posterior 
point, the nasal cavity retracts to form an internal naris in Gavialis 
gangeticus and Tomistoma schlegelii; however, this region is too in-
completely preserved in NHMUK PV R 4769 to determine whether 
a similar retraction is present. An extensive, longitudinal midline 
groove is present along the ventral surface of the nasal cavity in 
NHMUK PV R 4769, up to the point at which the nasal cavity con-
tacts the paranasal sinus and bifurcates to form the nasopharyn-
geal duct (Figure 2). The separation of the nasal cavity to form the 
nasopharyngeal duct also occurs at the point at which the former 
contacts the paranasal sinus in Gavialis gangeticus (Figure 3); how-
ever, in Tomistoma schlegelii, the nasopharyngeal duct splits pos-
terior to the paranasal sinus, ventral to the encephalic endocast 
(Figure 4).

The nasal cavity possesses nasal glands in all three species. 
These glands occupy small concavities located on the ventral sur-
face of the nasals, on the nasomaxillary suture (Cowgill et al., 2022; 
Witmer, 1995). Whereas they are restricted to the posterior half of 
the rostrum in Tomistoma schlegelii (Cowgill et al., 2022), these con-
cavities extend further anteriorly in both NHMUK PV R 4769 and 
Gavialis gangeticus.

Gavialis gangeticus bears a large, egg- shaped bulla parallel to 
the nasopharyngeal duct (Figure 3; Martin & Bellairs, 1977; Pierce 
et al., 2017), with this feature absent in Tomistoma schlegelii. As a 
result of poor preservation of the nasal cavity of NHMUK PV R 4769 
ventral to the encephalic endocast, it is unclear whether ‘Tomistoma’ 
dowsoni was also characterised by a bulla.

Anterior to the encephalic endocast, the paranasal system 
expands laterally to form the olfactory region in all three species 
(Figures 2– 4). This region is rounded and ventrolateral to the nasal 
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passageway, most likely representing the antorbital (=caviconchal) 
sinus (Fernández & Herrera, 2009; Witmer, 1995). Despite the sinus 
being closed off in extant crocodylians, this feature is still well de-
veloped in those taxa (Pierce et al., 2017). The olfactory bulb con-
nects to the olfactory region in NHMUK PV R 4769, resulting in a 
sharp contact, as is also the case in Tomistoma schlegelii. By contrast, 
the expansion of the olfactory region is more gradual in Gavialis 
gangeticus (Figure 3). In NHMUK PV R 4769, the olfactory region 
expands ventrolaterally at the contact between the nasal cavity and 
the nasopharyngeal duct to form the paranasal sinus (Figure 2). It 
is unclear whether this morphology is a preservational artefact of 
NHMUK PV R 4769, given that the entirety of the paranasal sinus 
protrudes dorsolaterally over the nasopharyngeal duct in Tomistoma 
schlegelii (Figure 4), whereas the paranasal sinus only protrudes dor-
solaterally over the nasopharyngeal duct in its most posterior part in 
Gavialis gangeticus (Figure 3). This expansion results in depressions 
on the internal surface of the prefrontal and lacrimal in the two ex-
tant gavialoids, likely due to enlargement of the nasal salt glands 
(Cowgill et al., 2022; Pierce et al., 2017). In all three species, the 
dorsal surface of the olfactory region is characterised by a shallow 
midline groove.

Both extant gharials are characterised by two channel- like naso-
lacrimal ducts that extend along the dorsal surface of the olfactory 
region (Pierce et al., 2017). However, it is unclear if NHMUK PV R 
4769 genuinely lacks this feature, or if it is just not preserved. The 
morphology of the nasolacrimal ducts differs between the two ex-
tant gavialoids: in Gavialis gangeticus each duct curves posteriorly 
at the point where the olfactory region expands (Figure 3), whereas 
they are straight and run parallel to one another in Tomistoma 
schlegelii (Figure 4).

The nasal cavity of all three species possesses two channels that 
extend from the olfactory region to the most anterior part of the 
nasal cavity. These channels have been referred to as neurovascular 
canals, and, more specifically, dorsal alveolar canals or ducts for the 
trigeminal nerve and maxillary veins and arteries (Pierce et al., 2017; 
Serrano- Martínez et al., 2019, 2021). In both extant gharials, these 
channels run anteroposteriorly on the lateral surfaces of the nasal 
cavity, with the channels meeting posterior to the external naris, 
on the dorsal surface of the nasal cavity (Figures 3 and 4). These 
two channels also run on the lateral surfaces of the nasal cavity in 
NHMUK PV R 4769; however, they do not meet on the dorsal sur-
face (Figure 2).

The paranasal system of Gavialis gangeticus, Tomistoma schlegelii 
and NHMUK PV R 4769 is characterised by a relatively simple mor-
phology, which is representative of longirostrine crocodyliforms 
(Witmer, 1997; Witmer & Ridgely, 2008). The morphology of the 
paranasal system of brevirostrine crocodyliforms differs to that of 
longirostrine crocodyliforms, as the paranasal sinus is broader, the 
external naris has a greater dorsolateral expansion, the dorsal alve-
olar ducts have multiple smaller ‘channels’ branching off the main 
duct, and there is a much larger, pronounced antorbital sinus in 
the former grouping (Serrano- Martínez et al., 2021; Witmer, 1997; 
Witmer & Ridgely, 2008).M
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    |  9GAVIALOID NEUROANATOMICAL EVOLUTION

3.2  |  Endocranium

Crocodylian encephalic endocasts tend to be relatively straight in 
outline, with little curvature (Edinger, 1938; Hopson & Gans, 1979), 
including that of Gavialis gangeticus. Tomistoma schlegelii, however, 
appears to be the exception, showing greater curvature, as reflected 

in acute cephalic and pontine flexure angles (Table 1; Figure 4). The 
encephalic endocast of NHMUK PV R 4769 also shows a greater 
degree of curvature and more acute cephalic and pontine flexure 
angles than other crocodylians (Figures 2 and 3), although this is not 
to the same extent as that of Tomistoma schlegelii (Table 1). As is the 
case in other eusuchians (Bona et al., 2013, 2015; Serrano- Martínez 

F I G U R E  1  (a) Isosurface rendering of the skull of ‘Tomistoma’ dowsoni based on NHMUK PV R 4769; (b) reconstruction of the 
neuroanatomy and neurosensory apparatus of ‘Tomistoma’ dowsoni; (c) isosurface rendering of the skull of Gavialis gangeticus based on 
FLMNH UF 118998; (d) reconstruction of the neuroanatomy and neurosensory apparatus of Gavialis gangeticus; (e) isosurface rendering of 
the skull of Tomistoma schlegelii based on TMM M6342; (f) reconstruction of the neuroanatomy and neurosensory apparatus of Tomistoma 
schlegelii. Scale bars = 50 mm.
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10  |    BURKE and MANNION

et al., 2019, 2021), the encephalic endocast of each of the three spe-
cies in this study is characterised by a sigmoidal morphology in lat-
eral view (Figures 5– 7). The endocast volume of NHMUK PV R 4769 
(23,405 mm3) is intermediate between the two extant gavialoids, 
lower than that of Gavialis gangeticus (38,309 mm3) but exceeding 
that of Tomistoma schlegelii (19,390 mm3).

At the most anterior point of the encephalic endocast, the 
olfactory bulb is connected to the cerebrum via the olfactory 
tract (Figures 5– 7). A lack of osteological division between the 
olfactory tract and bulb has been previously reported in extant 
crocodylians (Witmer et al., 2008; Witmer & Ridgely, 2008); 
however, these features can be distinguished from one another 
in both NHMUK PV R 4769 and Tomistoma schlegelii (Serrano- 
Martínez et al., 2021), with a slight expansion ventrally and lat-
erally in NHMUK PV R 4769, and a greater expansion ventrally in 
Tomistoma schlegelii (Figures 5 and 7). By contrast, the olfactory 
bulb and tract in Gavialis gangeticus are difficult to distinguish 
from one another (Pierce et al., 2017), with only a slight lateral 
expansion anterior to the olfactory region (Figures 3 and 6). The 
olfactory bulb is anteroposteriorly longer relative to the total en-
cephalic endocast length in NHMUK PV R 4769 than in Gavialis 
gangeticus and Tomistoma schlegelii.

The cerebrum of NHMUK PV R 4769 is expansive and bulbous 
in comparison to the rest of the encephalic endocast (Figure 5). It 
is intermediate between that of Gavialis gangeticus and Tomistoma 
schlegelii in terms of the ratio of the cerebrum width to that of the 
skull width (Table 2). When the cerebrum width is compared to 
the encephalic endocast length, NHMUK PV R 4769 has a similar 
value to that of Gavialis gangeticus, with both lower than that of 
Tomistoma schlegelii (Table 2). The cerebrum of Tomistoma schlegelii 
has a near- symmetrical expansion in dorsal view, whereas the great-
est expansion in NHMUK PV R 4769 and Gavialis gangeticus occurs 
at the posterior end of the cerebrum (Figures 5– 7). This posterior 
expansion has also been noted in other crocodylomorphs (Colbert 
et al., 1946; Edinger, 1938; Hopson & Gans, 1979; Kley et al., 2010; 
Pierce et al., 2017). Posteroventral to the cerebrum, and anterior to 
the optic lobes, is the pituitary (Figures 5– 7). In NHMUK PV R 4769, 
the pituitary is much more laterally expansive than that of Gavialis 
gangeticus or Tomistoma schlegelii; however, it has a similar length 
to these two species (Table 2). The pituitary has two large channels 
that extend posterolaterally in all three species (Figures 5– 7). These 
channels curve dorsolaterally at the posterior part in all three spe-
cies and house the cerebral carotid artery (Dufeau & Witmer, 2015; 
Hopson & Gans, 1979; Pierce et al., 2017; Witmer et al., 2008).

F I G U R E  2  The neuroanatomy of ‘Tomistoma’ dowsoni (NHMUK PV R 4769) in dorsal, left lateral and ventral views. Abbreviations: CCA, 
cerebral carotid artery; EC, external choana; ED, endosseous labyrinth; END, encephalic endocast; NC, nasal cavity; NPD, nasopharyngeal 
duct; OR, olfactory region; PNS, paranasal sinus; VC, neurovascular canal. Scale bar = 10 mm.
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    |  11GAVIALOID NEUROANATOMICAL EVOLUTION

The optic lobes of the encephalic endocast are difficult to seg-
ment in crocodile- line archosaurs as a result of the thick dural en-
velope (Hopson & Gans, 1979; Pierce et al., 2017), but they can be 
deduced from the mesencephalon region of the brain (Serrano- 
Martínez et al., 2021). These lobes are more prominent in early 
ontogenetic stages, becoming less distinct as individuals mature 
(Hu et al., 2021; Jirak & Janacek, 2017; Ristevski, 2022). Similarly, 
segmentation of the cranial nerves is difficult in fossil taxa due to 
both preservation and quality of the scan (Pierce et al., 2017). This 
is particularly evident in NHMUK PV R 4769 due to the poor preser-
vation in this area (Figure 1a). As a result, this region, as well as the 
paratympanic sinuses, were not segmented in Tomistoma schlegelii 
and Gavialis gangeticus, as there would not have been a direct com-
parison with NHMUK PV R 4769.

3.3  |  Endosseous labyrinth

Poor preservation of the region of the skull of NHMUK PV R 4769 
in which the endosseous labyrinth would have been housed made 

segmentation difficult; however, the overall shape could be recon-
structed (Figure 8). The endosseous labyrinths of Gavialis gangeticus 
and Tomistoma schlegelii have a similar morphology to one another, 
with the anterior semi- circular canal being larger than the poste-
rior semi- circular canal, as is the case in most archosaurs (Brusatte 
et al., 2016; Witmer et al., 2003), including other extant and extinct 
crocodylians (Bona et al., 2013, 2015; Dufeau & Witmer, 2015; 
Georgi & Sipla, 2008; Witmer et al., 2008; Witmer & Ridgely, 2008). 
In dorsal view, the anterior and posterior semi- circular canals appear 
more equidimensional in NHMUK PV R 4769 (Figure 8); however, 
when the area of each canal is quantified, the anterior semi- circular 
canal is more than double that of its posterior counterpart (Table 2), 
resulting in a similar value to that of Gavialis gangeticus (Pierce 
et al., 2017). The cochlear duct, responsible for auditory capabilities 
in the inner ear, is of comparable size across the three species in this 
study (Tables 1 and 2); however, whereas the cochlear duct extends 
posteroventrally in both the extant gharials, it projects anteroven-
trally in NHMUK PV R 4769. As a result of the poor preservation of 
NHMUK PV R 4769 in this region, it is not possible to distinguish the 
separation of the lateral semi- circular canal from the common crus.

F I G U R E  3  The neuroanatomy of Gavialis gangeticus (FLMNH UF 118998) in dorsal, left lateral and ventral views. Abbreviations: BL, 
pterygoid bulla; CCA, cerebral carotid artery; EC, external choana; ED, endosseous labyrinth; END, endocast; IC, internal choana; NC, nasal 
cavity; NLD, nasolacrimal duct; NPD, nasopharyngeal duct; OR, olfactory region; PNS, paranasal sinus; VC, neurovascular canal. Scale 
bar = 10 mm.
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12  |    BURKE and MANNION

3.4  |  Ecological capabilities

NHMUK PV R 4769 is estimated to have an olfactory ratio of 1.78, 
which is higher than that of Gavialis gangeticus (1.69), but lower than 
that of Tomistoma schlegelii (1.82). A comparable range of olfactory 
ratios is seen in other extant crocodylians including Alligator mis-
sissippiensis (1.76), Caiman crocodilus (1.75) and Crocodylus niloticus 
(1.86) (Table 4; Serrano- Martínez et al., 2021).

The relative size of the optic region, estimated as the ratio 
of the volume of the optic lobes to that of the encephalic endo-
cast, averages between 10% and 15% in most extant crocody-
lians, with that of Tomistoma schlegelii and NHMUK PV R 4769 
estimated to be 11% and 12% respectively (Table 5). By contrast, 
the relative volume for Gavialis gangeticus is estimated to be 18% 
(Table 5).

The REQ of NHMUK PV R 4769 is estimated as 0.86, lower 
than that of Gavialis gangeticus (1.22) and Tomistoma schlegelii (1.04) 

(Table 6). However, Wharton's (Wharton, 2002) study on Gavialis 
gangeticus showed that the REQ ranges from 0.8 to 2.0 in this spe-
cies, and the REQ of euschian species sampled by Serrano- Martínez 
et al. (2021) ranges from 0.9 to 1.2 (Table 6).

3.5  |  Landmark- based morphometrics

The endosseous labyrinth varies mostly in its width and height 
across crocodyliforms. The first three principal components 
(PCs) equate to approximately 66.5% of endosseous labyrinth 
shape variation, with only the first five principal components 
explaining more than 5% of variation (Figure 9). PC1 charac-
terises approximately 40.8% of variation, with positive values 
indicating dorsoventrally high and anteroposteriorly short laby-
rinths, which characterises taxa such as Mourasuchus arendsi 
and Junggarsuchus sloani (Figure 9c). Conversely, negative values 

F I G U R E  4  The neuroanatomy of Tomistoma schlegelii (TMM M6342) in dorsal, left lateral and ventral views. Abbreviations: CCA, cerebral 
carotid artery; EC, external choana; ED, endosseous labyrinth; END, endocast; IC, internal choana; NC, nasal cavity; NLD, nasolacrimal duct; 
NPD, nasopharyngeal duct; OR, olfactory region; PNS, paranasal sinus; VC, neurovascular canal. Scale bar = 10 mm.
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    |  13GAVIALOID NEUROANATOMICAL EVOLUTION

indicate dorsoventrally low and anteroposteriorly long laby-
rinths, which characterises taxa such as ‘Tomistoma’ dowsoni and 
Tomistoma schlegelii (see Figure 8). PC2 characterises 13.6% of 
variation, with positive values indicating a greater difference in 
the size of the anterior semi- circular canal to its posterior coun-
terpart, as seen in Tomistoma schlegelii and Osteolaemus tetraspis 
(Figure 9d), with positive values indicating equidimensional ca-
nals, such as in the thalattosuchians Cricosaurus araucanensis and 
Plagiophthalmosuchus cf. gracilirostris. PC3 characterises 12.2% of 
variation, with positive values indicating wider, anterior- directed 
cochlear ducts, such as in ‘Tomistoma’ dowsoni and Mourasuchus 
arendsi, and negative values indicating narrower, ventrally di-
rected cochlear ducts, such as in Mecistops cataphractus and 
Gunggamarandu maunala (Figure 9e).

When broadly classified into their environmental habitats, there 
is a large overlap in semi- aquatic, terrestrial and pelagic taxa (Table 3), 
although this is most likely because of the higher number of the sam-
pled species assigned to a semi- aquatic ecology in this study. When 
classified based on their skull shape (Table 3), distinct clusters of 
labyrinth shapes can be observed, with crocodyliforms categorised 
as longirostrine forming one grouping, and taxa with brevirostrine 
and intermediate skull morphologies forming a second grouping 
(Figure 9a,b).

4  |  DISCUSSION

4.1  |  Ecological versus phylogenetic signal

Features of the neuroanatomy and neurosensory apparatus of ga-
vialoids appear to show an ecological and/or phylogenetic signal. 
Below we discuss several of these features, including their potential 
implications for reconstructing the phylogenetic relationships and 
macroecology of gavialoids and other crocodyliforms.

The thickness of the semi- circular canals of the endosseous lab-
yrinths for example, is thought to be dependent on the ecology of 
crocodylomorph species (Schwab et al., 2020). Whereas terrestrial 
species have a dorsoventrally tall labyrinth, with thin semi- circular 
canals, and pelagic species have a compact labyrinth, semi- aquatic 
crocodyliforms have an intermediate labyrinth morphology (Schwab 
et al., 2020), which characterises ‘Tomistoma’ dowsoni, Gavialis gan-
geticus and Tomistoma schlegelii (Figure 8). The endosseous labyrinth 
appears to be anteroposteriorly wider and dorsoventrally shorter in 
longirostrine crocodyliforms, but narrower and taller in brevirostrine 
taxa (Figure 9b). More species, particularly fossil crocodylomorphs, 
need to be included in analyses to test this more robustly; however, 
this preliminary finding potentially indicates that snout and skull 
morphology, which are themselves partly constrained by ecology in 

F I G U R E  5  The endocast of ‘Tomistoma’ dowsoni (NHMUK PV R 4769) in dorsal, left lateral and ventral views. Abbreviations: CCA, 
cerebral carotid artery; CER, cerebrum; DLS, dorsal longitudinal sinus; MO, medulla oblongata; OB, olfactory bulb; OT, olfactory tract. Scale 
bar = 10 mm.
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14  |    BURKE and MANNION

crocodylomorphs, exert an influence on the shape of the endosse-
ous labyrinth in this group. Recent studies have also recognised the 
influence of skull shape on the endosseous labyrinth in turtles (Evers 
et al., 2022) and on braincase shape in birds (Chiappe et al., 2022), 
suggesting that this might be a more widespread pattern.

The relatively large size of the cerebrum in birds and mammals 
has been associated with refined sensory inputs in these groups, 
as a larger cerebral region implies a greater neuronal area to exe-
cute complex behaviours (Pierce et al., 2017; Rogers, 1999). When 
comparing cerebrum width to skull width, Tomistoma schlegelii has 
a higher value than ‘Tomistoma’ dowsoni and Gavialis gangeticus 
(Table 1), which could suggest that Tomistoma schlegelii has greater 
behavioural complexity, as also reflected in the higher olfactory 
acuity estimation for this species (Table 4). Ecological studies have 
suggested that Tomistoma schlegelii shows complex behavioural 

patterns during courtship, for example, employing visual, tactile 
and auditory cues (Staniewicz et al., 2022). Analysis of the vocal-
isations produced by the two living gavialoids has revealed dif-
ferences between their call structures (Bonke et al., 2015), with 
sounds produced by Tomistoma schlegelii having different acoustic 
properties and context, with a greater reliance on visual or olfac-
tory cues, particularly in underwater environments (Staniewicz 
et al., 2022). These differences in underwater signals have been 
suggested to result from morphological differences (Dinets, 2013; 
Staniewicz et al., 2022), with a possible role for the larger cere-
brum in Tomistoma schlegelii. Gavialis gangeticus and ‘Tomistoma’ 
dowsoni share a similar cerebrum morphology, in which its greatest 
expansion occurs posteriorly, whereas that of Tomistoma schlegelii 
has a symmetrical expansion (Figures 5– 7). Although both extant 
gharials occupy aquatic habitats, Gavialis gangeticus is observed 

F I G U R E  6  The endocast of Gavialis gangeticus (FLMNH UF 118998) in dorsal, left lateral and ventral views. Abbreviations: CCA, cerebral 
carotid artery; CER, cerebrum; DLS, dorsal longitudinal sinus; MO, medulla oblongata; OB, olfactory bulb; OT, olfactory tract. Scale 
bar = 10 mm.
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    |  15GAVIALOID NEUROANATOMICAL EVOLUTION

in streams and rivers with sandy, grassy or rocky shores, whereas 
Tomistoma schlegelii is observed in densely vegetated swamps 
and lowland forest rivers (Staniewicz et al., 2022). The palaeoen-
vironment of the Moghra Formation, which ‘Tomistoma’ dowsoni 
inhabited, is thought to be a tide- dominated estuary (Georgalis 
et al., 2020), closer to the environments inhabited by Gavialis gan-
geticus. As such, it is possible that cerebrum morphology might 
correspond to differences in ecology. Extant species such as 
Alligator mississippiensis, Crocodylus niloticus and Crocodylus john-
stoni are characterised by a cerebrum morphology that is similar to 
Gavialis gangeticus and ‘Tomistoma’ dowsoni (see Serrano- Martínez 
et al., 2021; Witmer et al., 2008), whereas extinct species such 
as Pelagosaurus typus and Rhabdognathus aslerensis share a 

closer cerebrum morphology with Tomistoma schlegelii (see Erb & 
Turner, 2021; Pierce et al., 2017), perhaps indicating a phyloge-
netic signal that has been overprinted by ecology. However, eval-
uations of more fossil crocodylomorphs will be necessary to more 
robustly test this hypothesis.

The nasal cavity endocast of ‘Tomistoma’ dowsoni generally re-
flects those of longirostrine crocodyliforms, specifically the two 
extant gavialoids. These are characterised by a relatively simple 
morphology, comprising a long and narrow nasal cavity which bi-
furcates, forming the nasopharyngeal duct anteriorly, an expanded 
paranasal sinus, and two dorsal alveolar ducts. Brevirostrine croc-
odyliforms, on the other hand, have more complex apparatuses 
(see Serrano- Martínez et al., 2021; Witmer, 1997; Witmer & 

F I G U R E  7  The endocast of Tomistoma schlegelii (TMM M6342) in dorsal, left lateral and ventral views. Abbreviations: CCA, cerebral 
carotid artery; CER, cerebrum; DLS, dorsal longitudinal sinus; MO, medulla oblongata; OB, olfactory bulb; OT, olfactory tract. Scale 
bar = 10 mm.
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16  |    BURKE and MANNION

Ridgely, 2008). In both Gavialis gangeticus and Tomistoma schlegelii, 
the nasolacrimal ducts are located on the dorsal surface of the ol-
factory region, which is not seen in early marine longirostrine taxa 
(Pierce et al., 2017), however, their morphology differs. Similarly, 
the external naris, which has a dorsal inflection, is not seen in early 
longirostrine crocodylomorphs, but characterises eusuchians 
(Pierce et al., 2017; Serrano- Martínez et al., 2021). The morphol-
ogy of this dorsal inflection also differs between longirostrine 
and brevirostrine eusuchians (Figures 2– 4; see Serrano- Martínez 
et al., 2021). Additionally, and by contrast with brevirostrine 

crocodylians (Serrano- Martínez et al., 2021), ‘Tomistoma’ dowsoni, 
Gavialis gangeticus and Tomistoma schlegelii lack a large antorbital 
sinus, nor are there smaller channels branching off the dorsal 
alveolar canals. Evaluation of the nasal endocast in more fossil 
gavialoids is therefore required, given that the morphology of all 
of these features could reflect an ecological and/or phylogenetic 
signal in this group.

Evaluation of additional gavialoid species, such as Hanyusuchus 
sinensis (Iijima et al., 2022), will also be crucial in determin-
ing whether the ‘intermediate’ morphology seen in ‘Tomistoma’ 

F I G U R E  8  Endosseous labyrinths of A) ‘Tomistoma’ dowsoni (NHMUK PV R 4769), Gavialis gangeticus (FLMNH UF 118998), and 
Tomistoma schlegelii (TMM M6342) in anterior, dorsal and posterior views. Abbreviations: ASC, anterior semi- circular canal; CC, common 
crus; CD, cochlear duct; LSC, lateral semi- circular canal; PSC, posterior semi- circular canal. Scale bar = 10 mm.
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18  |    BURKE and MANNION

dowsoni is also reflected in these taxa. Furthermore, there is 
evidence for a pterygoid bulla in Hanyusuchus sinensis (Iijima 
et al., 2022), a feature that characterises Gavialis gangeticus (Martin 
& Bellairs, 1977), but not Tomistoma schlegelii, and that has also 
been identified in extinct species of Gavialis (Gavialis lewisi and 
Gavialis bengawanicus), as well as the extinct gavialoid Eogavialis 
africanum from the late Eocene of Egypt (Hecht & Malone, 1972; 
Iijima et al., 2022; Lull, 1944; Martin et al., 2012). It might also 
be present in several South American gryposuchine gavialoids, in-
cluding Dadagavialis gunai and Gryposuchus (Riff & Aguilera, 2008; 
Salas- Gismondi et al., 2016, 2019). In Rio and Mannion's (2021) 
phylogenetic analysis, ‘Tomistoma’ dowsoni is recovered as the 
sister taxon to a clade that includes Eogavialis africanum, Gavialis 
and gryposuchines. Given that Eogavialis africanum is potentially 
a ‘problematic’ taxon in terms of its temporal incongruence with 
the reconstructed divergence date of Gavialis and Tomistoma, it 
will therefore be informative to determine if a bulla is truly syn-
apomorphic of this clade, or is more widespread among gavialoids, 
with either more than one independent origin of the bulla, or its 
apomorphic loss in Tomistoma schlegelii.

4.2  |  Systematics of ‘Tomistoma’ dowsoni and 
contemporaneous gavialoids

Coupled with the results from recent phylogenetic analyses 
(Groh et al., 2020; Rio & Mannion, 2021), the neuroanatomy of 
‘Tomistoma’ dowsoni further suggests this species is more closely 
related to Gavialis gangeticus than to Tomistoma schlegelii, and 
thus casts additional doubt as to its current generic attribution. 
Similarly, revision of contemporaneous Miocene species from 
the Mediterranean region that have previously been referred to 
Tomistoma indicates that none of them share close affinities with 
the extant species either (Nicholl et al., 2020). An anatomical and 
taxonomic revision of ‘Tomistoma’ dowsoni, including the type ma-
terial (Fourtau, 1920), is currently in preparation, along with on-
going systematic work on the Miocene gavialoids of Europe and 
North Africa (Burke et al., 2022).

5 | CONCLUSIONS

Our reconstruction of the neuroanatomy of the Miocene North 
African gavialoid ‘Tomistoma’ dowsoni demonstrates that it dis-
plays an intermediate morphology between the two extant gavia-
loids, Gavialis gangeticus and Tomistoma schlegelii. This morphology 
is relatively simple, with similar shaped endocasts seen in all three 
species. Features such as the endosseous labyrinth and the cere-
brum appear to have morphologies that are primarily influenced by 
ecology. By contract, the presence of a pterygoid bulla in Gavialis 
and other closely related gavialoids, but its absence in Tomistoma, 
could potentially reflect a phylogenetic signal of crocodylians more 
closely related to Gavialis than to Tomistoma. Comparison of the TA
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    |  19GAVIALOID NEUROANATOMICAL EVOLUTION

neuroanatomy and neurosensory apparatus of ‘Tomistoma’ dowsoni 
to the two extant gavialoids has potentially revealed more features 
that could be interpreted as an ecological or phylogenetic signal; 
however, the evaluation of more fossil gavialoids is needed to more 
robustly test such hypotheses. Finally, our study supports the place-
ment of ‘Tomistoma’ dowsoni as phylogenetically closer to Gavialis 
gangeticus than to Tomistoma schlegelii, highlighting the need for a 
taxonomic revision of this fossil species.
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F I G U R E  9  Principal component analysis (PCA) showing the variation in the shape of the endosseous labyrinth in 20 species of 
Crocodylomorpha. (a) shows the variation between PC1 versus PC2, (b) shows the variation between PC1 versus PC3. Skull morphology is 
highlighted in blue for longirostrine taxa, pink for mesorostrine taxa and red for brevirostrine taxa (see Table 3). (c) shows the shape variation 
in PC1, d) variation in PC2 and (e) variation in PC3. Arrows indicate the direction of change in the endosseous labyrinth. Skull silhouettes 
in (a) Tomistoma schlegelii (TMM M6342) and Cricosaurus araucanensis (MLP 72- IV- 7- 1) (blue); Crocodylus rhombifer (NMB AB50.0171) 
and Osteolaemus tetraspis (FMNH 98386) (pink); Junggarsuchus sloani (IVPP V14010) and Mourasuchus arendsi (MLP 73- IV- 15- 9) (red); (b) 
‘Tomistoma’ dowsoni (NHMUK PV R 4769) and Gunggamarandu maunala (QMF 548) (blue); Crocodylus rhombifer (NMB AB50.0171) (pink); 
Mourasuchus arendsi (MLP 73- IV- 15- 9) (red).
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