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Abstract

The classical Fischer decomposition of spinor-valued polynomials is
a key result on solutions of the Dirac equation in the Euclidean space R

m.

As is well-known, it can be understood as an irreducible decomposition
with respect to the so-called L-action of the Pin group Pin(m). But, on
Clifford algebra valued polynomials, we can consider also the H-action of
Pin(m). In this paper, the corresponding Fischer decomposition for the
H-action is obtained. It turns out that, in this case, basic building blocks
are the spaces of homogeneous solutions to the Hodge-de Rham system.
Moreover, it is shown that the Fischer decomposition for the H-action can
be viewed even as a refinement of the classical one.
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1 Introduction

Clifford analysis is, from the very beginning, considered to be a refinement
of harmonic analysis for Clifford algebra (or spinor) valued functions. The
perfect description of this statement is the Fischer decomposition of spinor-
valued polynomials.

Let us first recall the Fischer decomposition of the space P of complex-
valued polynomials in the Euclidean space R

m. Denote by Hk the space of
k-homogeneous harmonic polynomials in Rm. Then, under a natural action of
the orthogonal group O(m), the space P has an irreducible (not multiplicity
free) decomposition

P =

∞
⊕

k=0

∞
⊕

p=0

r2pHk (1)

where r2 = x2
1 + · · ·+ x2

m for the vector variable x = (x1, . . . , xm) ∈ Rm.

For spinor-valued polynomials, there is a refinement of this decomposition.
Let Cm be the complex Clifford algebra generated by vectors of the standard
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basis (e1, . . . , em) of Rm. Recall that the L-action of the Pin group Pin(m) on
functions f : Rm → Cm is defined by

[L(s)(f)](x) = s f(s−1xs), s ∈ Pin(m) and x = (x1, . . . , xm) ∈ R
m. (2)

Denote by S a basic spinor representation for Pin(m). As is well-known, the
spinor space S can be realized inside the Clifford algebra Cm. Let us remark that,
under the L-action, the space P(S) = P ⊗ S of spinor valued polynomials forms
a Pin(m)-module. Denote by Mk(S) the space of k-homogeneous polynomials
P ∈ P(S) which are (left) monogenic, i.e., which satisfy the Dirac equation
DP = 0 where

D = e1∂x1
+ · · ·+ em∂xm

.

Now we are ready to state the Fischer decomposition (sometimes called also
Almansi decomposition) for this case. Namely, under the L-action, the space
P(S) has an irreducible (not multiplicity free) decomposition

P(S) =

∞
⊕

k=0

∞
⊕

p=0

xpMk(S) (3)

with x = e1x1 + · · ·+ emxm. See [7, 40, 43]. As Hk ⊗ S = Mk(S)⊕ xMk−1(S)
and x2 = −r2, it is easy to see that (3) is a real refinement of (1).

The main aim of the underlying paper is to show that there exists a natu-
ral further refinement of the monogenic Fischer decomposition (3). It is quite
surprising that such a finer Fischer decomposition was not described earlier.
It was the study of special solutions of the Dirac equation which led to such
a refinement. By special solutions we mean just solutions having their values in
a chosen subspace V of the Clifford algebra Cm. There are a lot of possibilities
for a choice of V, but it is clearly preferable to choose the subspace V having
some special properties.

Typical examples are solutions of the Dirac equation having values in spinor
subspaces of the Clifford algebra. This case is closely related to the L-action
(2). Indeed, it is well-known that the Clifford algebra Cm, considered as a
Pin(m)-module by left multiplication, decomposes into many equivalent spinor
submodules. Moreover, for every choice of the spinor submodule, the Pin(m)-
module of spinor-valued solutions has quite analogous properties.

Another interesting example of special solutions of the Dirac equation is
given by the so-called generalized Moisil-Théodoresco system (GMT system for
short). A lot of interest has recently been paid to GMT systems (see [18] and
the references there). In this case, the space V is supposed to be invariant under
another (both side) action of the Pin group, namely the so-calledH-action. The
H-action on Clifford algebra valued functions f : Rm → Cm is given by

[H(s)(f)](x) = s f(s−1xs)s−1, s ∈ Pin(m) and x ∈ R
m. (4)

In what follows, we shall use the language of differential forms. Indeed, fol-
lowing [6], we identify naturally the Clifford algebra Cm with the Grassmann
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algebra Λ∗(Cm) and we study the space P∗ = P ⊗Λ∗(Cm) of polynomial differ-
ential forms instead of Clifford algebra valued polynomials. Then the H-action
translates into a natural action of the orthogonal group O(m) on P∗ and the
Dirac operator D corresponds to the operator d + d∗. Here d and d∗ are, re-
spectively, the standard de Rham differential and its adjoint (see (11) below).
As an O(m)-module, the Grassmann algebra Λ∗(Cm) has a multiplicity free
irreducible decomposition

Λ∗(Cm) =
m
⊕

s=0

Λs(Cm)

with Λs(Cm) being the space of s-vectors over Cm. A GMT system is then
defined as the homogeneous system obtained by restricting the operator d+ d∗

to functions having values in the space

V =
⊕

s∈S

Λs(Cm)

for some (suitable) subset S ⊂ {0, 1, . . . ,m}, i.e.

(d+ d∗)P = 0 for V -valued P.

In particular, for V = Λs(Cm), the corresponding GMT system coincide with
the so-called Hodge-de Rham system

dP = 0, d∗P = 0. (5)

Various versions of GMT systems of PDE’s were studied for a long time
(in particular in low dimensions) and they were used in many different appli-
cations. Applications in numerical analysis and engineering sciences can be
found in [27, 28]. In a review paper [46], you can find various generalizations
of the well-known Hodge-de Rham decomposition of smooth 1-forms, including
decompositions for quaternionic and Clifford algebra valued functions and the
Almansi (i.e., monogenic Fischer) decomposition. For applications in theory of
electromagnetic fields we can refer to [45].

The Fischer decomposition always played a key role in Clifford analysis. In
[33], the Fischer decomposition for the H-action has been recently applied to
inframonogenic functions introduced in [39]. Moreover, in [33], the obtained
results for the space P∗ are translated back into the framework of Clifford
analysis. For yet another application, we can refer to [35].

Recently, the Fischer decomposition (together with the Cauchy-Kovalevskaya
extension) was used systematically for construction of orthogonal bases in the
spaces of homogeneous polynomial solutions. In the classical Clifford analysis,
it has a quite long history (see [1] for historical account, various results can be
found in [2, 3, 4, 5, 12, 13, 14, 17, 15, 37, 16, 21, 22, 29, 30, 34, 36, 38, 41,
42, 44, 47]). Analogous results in Hermitean Clifford analysis are described in
[8, 9, 10, 11]. Finally, in [20], the Fischer decomposition for the H-action plays
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a key role in constructing orthogonal bases not only for the spaces Hs
k of so-

lutions to the Hodge-de Rham system but even for the spaces of homogeneous
solutions of an arbitrary generalized Moisil-Théodoresco system.

In this paper, we will establish (using results from [31]) a form of the Fischer
decomposition appropriate for the H-action. The theory of the Howe duality
developed in [32] shows us that we may expect a further refinement of the
monogenic Fischer decomposition (3), see [19] for details. Indeed, this is visible
from the form of invariants contained in the polynomial spaces considered. For
scalar valued functions, invariant polynomials are generated by powers of r2,
and the basic equation is the Laplace equation. For spinor-valued polynomials
with the left action, we have to look for invariants with values in the space
of endomorphisms of the spinor space (which is, basically, the corresponding
Clifford algebra) and there is just a new invariant x, acting as a refinement of
r2. The corresponding basic equation is the Dirac equation.

In the case of the both side action, we deal with the space P∗ of Λ∗(Cm)-
valued polynomials. The space of invariants with values in the space of endomor-
phisms of the Grassmann algebra Λ∗(Cm) is now much richer. It is generated
by two elements x and x∗ which correspond to the differential operators d∗

and d by the Fischer duality (see (12) below). Consequently, the corresponding
basic system of equations is the Hodge-de Rham system (5) and the space of
invariants consists of polynomials in x and x∗. Actually, due to the fact that
x2 = (x∗)2 = 0, such invariants are generated by the set

Ω = {1, x, x∗, xx∗, x∗x, xx∗x, x∗xx∗, . . .}. (6)

Moreover, denote by P∗
k the space of k-homogeneous polynomial forms P ∈ P∗

and by Hs
k the space of Λs(Cm)-valued polynomial forms P ∈ P∗

k which satisfy
the Hodge-de Rham system (5). Then, using results from [31], we shall deduce
in Section 2 the corresponding Fischer decomposition for the H-action.

Theorem 1. The space P∗ = P ⊗ Λ∗(Cm) decomposes as follows:

P∗ = P∗
(0,0) ⊕

(

m−1
⊕

s=1

∞
⊕

k=0

P∗
(s,k)

)

⊕ P∗
(m,0) with P∗

(s,k) =
⊕

w∈Ω

wHs
k . (7)

Moreover, in (7), all O(m)-modules Hs
k are non-trivial, irreducible and mutually

inequivalent and all P∗
(s,k) are corresponding O(m)-isotypic components of P∗.

Now we show that the Fischer decomposition of the space P∗ given in The-
orem 1 is a refinement of the monogenic Fischer decomposition (3). Indeed,
when we identify the Clifford algebra Cm with the Grassmann algebra Λ∗(Cm)
on the space P∗ we know that

D = d+ d∗ and − x = x+ x∗.

Consequently, the space of spherical monogenics of order k is given by

Mk = {P ∈ P∗
k ; (d+ d∗)P = 0}.
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Moreover, recall that the Laplace operator ∆ is given by ∆ =
∑m

j=1 ∂
2
xj

and put

Kerk ∆ = {P ∈ P∗
k ; ∆P = 0}.

As we mentioned before, under the L-action, Cm ≃ Λ∗(Cm) decomposes into
many copies of basic spinor representations S of Pin(m) and so the whole space
Mk of spherical monogenics is not irreducible. Indeed, under the L-action,
the space Mk decomposes into many copies of irreducible modules Mk(S). In
particular, we have thus that Kerk ∆ = Mk ⊕ (x + x∗)Mk−1 and, by (1), we
get easily the following decomposition of the space P∗

P∗ =
∞
⊕

k=0

∞
⊕

p=0

r2p(Mk ⊕ (x+ x∗)Mk−1). (8)

In an obvious sense, the decomposition (8) is equivalent to (3).
In Section 3, we shall prove the following theorem which tells us that, under

the H-action, the spaces Mk and (x + x∗)Mk−1 decompose again into many
irreducible pieces but, in this case, these pieces are not equivalent and they have
a different representation character.

Theorem 2. For k ≥ 1, the following statements hold:

(a) Mk = (
⊕m

s=0 H
s
k)⊕

(

⊕m−1
s=1 Ms,k

)

where Ms,k = [(k − 1 +m− s)x∗ − (k − 1 + s)x]Hs
k−1.

(b) (x+ x∗)Mk−1 =
(
⊕m

s=0(x + x∗)Hs
k−1

)

⊕
(

⊕m−1
s=1 W s

k

)

where W s
k = [(k − 2 +m− s)xx∗ − (k − 2 + s)x∗x]Hs

k−2.

Using Theorem 2, we get from the decomposition (8) directly a finer decom-
position of the space P∗ which is irreducible with respect to the H-action.

The results stated in Theorems 1 and 2 remain valid also for real valued
polynomial forms, that is, in the case when the complex Grassmann algebra
Λ∗(Cm) is replaced with the real one Λ∗(Rm). Indeed, it is sufficient to realize
that irreducible O(m)-representations Λs(Cm) are all of real type, see [24, p.
163].

2 A proof of the Fischer decomposition for the

H-action

In this section, we give a proof of Theorem 1 stated in Introduction. Let Pk

stand for the space of k-homogeneous (complex-valued) polynomials of P and
let Ps

k = Pk ⊗ Λs(Cm). Then it is easy to see that

P∗ =

m
⊕

s=0

∞
⊕

k=0

Ps
k. (9)

5



Let us remark that a polynomial form P belongs to Ps
k if and only if

P =
∑

I

PI dxI (10)

where the sum is taken over all finite strictly increasing sequences I = {ij}
s
j=1

of numbers of the set {1, · · · ,m}, PI ∈ Pk and dxI = dxi1 ∧ · · · ∧ dxis . The
contraction dxj ⌋ is defined as

dxj ⌋ dxI =

s
∑

k=1

(−1)k−1δjikdxI\{ik} and dxj ⌋ P =
∑

I

PI dxj ⌋ dxI

for a polynomial form P. Then we have that

d =

m
∑

j=1

∂xj
dxj ∧ and d∗ = −

m
∑

j=1

∂xj
dxj ⌋, (11)

x = −

m
∑

j=1

xj dxj ∧ and x∗ =

m
∑

j=1

xj dxj ⌋. (12)

It is easy to see that d, d∗, x and x∗ are O(m)-invariant operators on the space
P∗.

Now we describe explicitly an irreducible decomposition of O(m)-modules

Kersk ∆ = {P ∈ Ps
k; ∆P = 0}.

The following key result is obtained in [31].

Lemma 1. Given 0 ≤ s ≤ m and k ∈ N0, we have that

Kersk ∆ = Hs
k ⊕ Us

k ⊕ V s
k ⊕W s

k

where Hs
k, Us

k , V s
k and W s

k are irreducible O(m)-modules with the following
properties:

(a1) Hs
k = {P ∈ Ps

k; dP = 0, d∗P = 0} and Kers0 ∆ = Hs
0 = Ps

0 .

(a2) In addition, Hs
k = {0} for s ∈ {0,m} and k ≥ 1. Otherwise, all O(m)

modules Hs
k are non-trivial, irreducible and mutually inequivalent.

(b) Us
k = xHs−1

k−1 ≃ Hs−1
k−1 for 1 ≤ s ≤ m and k ≥ 1, and Us

k = {0} otherwise.

(c) V s
k = x∗Hs+1

k−1 ≃ Hs+1
k−1 for 0 ≤ s ≤ m − 1 and k ≥ 1, and V s

k = {0}
otherwise.

(d) W s
k = [(k − 2 +m− s)xx∗ − (k − 2 + s)x∗x]Hs

k−2 ≃ Hs
k−2

for 1 ≤ s ≤ m− 1 and k ≥ 2, and W s
k = {0} otherwise.

Now we are ready to prove Theorem 1.
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Proof of Theorem 1. As Kersk ∆ = Hk ⊗ Λs(Cm) the Fischer decomposition (1)
yields

Ps
k =

[k/2]
⊕

p=0

r2p Kersk−2p ∆,

where for y ∈ R, [y] denotes the greatest integer not greater than y. Conse-
quently, by Lemma 1, we get the decomposition

Ps
k = Hs

k ⊕

[k/2]
⊕

p=0

r2pUs
k−2p ⊕

[k/2]
⊕

p=0

r2pV s
k−2p ⊕

[k/2]
⊕

p=0

r2pZs
k−2p (13)

where Zs
k = r2Hs

k−2 ⊕W s
k . Since r2 = −(xx∗ + x∗x) Lemma 1 implies that, for

0 ≤ s ≤ m and k ≥ 2,

Zs
k = (xx∗)Hs

k−2 ⊕ (x∗x)Hs
k−2.

Moreover, it is easy to see that

r2pUs
k = (xx∗)pxHs−1

k−1 , r2pV s
k = (x∗x)px∗Hs+1

k−1 and

r2pZs
k = (xx∗)p+1Hs

k−2 ⊕ (x∗x)p+1Hs
k−2.

Now to complete the proof it suffices to use the decompositions (9) and (13).

At the end of this section we collect the well-known relations we need later
on. Put, for linear operators T1 and T2 on P∗, {T1, T2} = T1T2 + T2T1 and
[T1, T2] = T1T2 − T2T1. Then we have that (see e.g. [31] or [6])

Lemma 2. Let E be the Euler operator and Ê be the skew Euler operator, i.e.

E =

m
∑

j=1

xj∂xj
and Ê =

m
∑

j=1

(dxj ∧)(dxj ⌋).

Then we have that EP = kP and ÊP = sP for each P ∈ Ps
k.

Furthermore, the following relations hold:

{x, x} = 0, {x∗, x∗} = 0, {x, x∗} = −r2,

{d, d} = 0, {d∗, d∗} = 0, {d, d∗} = −∆,

{x∗, d} = E + Ê, {x, d∗} = E − Ê +m, {x∗, d∗} = 0 = {x, d}.

Using Lemma 2, we may give, for example, an explicit description of the
projections of the space Kersk ∆ onto the pieces Hs

k, U
s
k , V

s
k and W s

k .

Proposition 1. Given 0 ≤ s ≤ m and k ∈ N0, put c1 = k − 2 + s and
c2 = k − 2 + m − s. Furthermore, let π1, π2, π3 and π4 be the projections of

7



the space Kersk ∆ onto the subspaces Hs
k, U

s
k , V

s
k and W s

k , respectively. Then we
have that

π4 =

{

c2xx
∗−c1x

∗x
c1c2(c1+c2+2) dd

∗ for 1 ≤ s ≤ m− 1 and k ≥ 2,

0, otherwise.

Moreover, denoting π = 1− π4, we have that

π2 =

{

1
c2+2 xd∗π for 1 ≤ s ≤ m and k ≥ 1,

0, otherwise;

π3 =

{

1
c1+2 x∗dπ for 0 ≤ s ≤ m− 1 and k ≥ 1,

0, otherwise;

π1 = 1− π2 − π3 − π4.

Proof. Let P ∈ Kersk ∆ be given. Then, by Lemma 1, there are uniquely deter-
mined P1 ∈ Hs

k, P2 ∈ Hs−1
k−1, P3 ∈ Hs+1

k−1 and P4 ∈ Hs
k−2 such that

P = P1 + xP2 + x∗P3 + (c2xx
∗ − c1x

∗x)P4.

By Lemma 2, it is easy to see that

dd∗P = c1c2(c1 + c2 + 2)P4 = −d∗dP,

which easily implies the formula for π4.

Moreover, π(P ) = P1 + xP2 + x∗P3. By Lemma 2, we have that

d∗π(P ) = d∗xP2 = (c2 + 2)P2 and dπ(P ) = dx∗P3 = (c1 + 2)P3,

from which the formulae for the projections π2 and π3 may be derived.

3 Decomposition of monogenic polynomial forms

In this section, we give a proof of Theorem 2 stated in Introduction. To prove
Theorem 2 we need some lemmas.

Lemma 3. For 1 ≤ s ≤ m− 1 and k ≥ 1, we have that
(

xHs
k−1 ⊕ x∗Hs

k−1

)

∩Mk = Ms,k.

Here Ms,k = [(k − 1 +m− s)x∗ − (k − 1 + s)x]Hs
k−1.

Proof. Let P1, P2 ∈ Hs
k−1 and put P = xP1 + x∗P2. It suffices to show that

(d+ d∗)P = 0 if and only if

P1 = −
k − 1 + s

k − 1 +m− s
P2.

By virtue of Lemma 2, it is easy to see that

(d+ d∗)P = (E +m− Ê)P1 + (E + Ê)P2 = (k − 1 +m− s)P1 + (k − 1 + s)P2,

which completes the proof.
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Lemma 4. For 1 ≤ s ≤ m− 1 and k ≥ 1, we have that

xHs
k−1 ⊕ x∗Hs

k−1 = (x+ x∗)Hs
k−1 ⊕Ms,k.

Proof. Obvious.

Proof of Theorem 2. Put

M̃k =

(

m
⊕

s=0

Hs
k

)

⊕

(

m−1
⊕

s=1

Ms,k

)

.

Then, by Lemma 3, it is easy to see that M̃k ⊂ Mk. Moreover, by Lemma 1,
W s

k = (x+ x∗)Ms,k−1. Finally, using Lemma 4 and Lemma 1, we obtain that

Kerk ∆ = M̃k ⊕ (x + x∗)M̃k−1 ⊂ Mk ⊕ (x+ x∗)Mk−1 = Kerk ∆,

which completes the proof.
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[33] R. Lávička, The Fischer Decomposition for the H-action and Its Applications,
arXiv:1002.0527v1 [math.CV], 2010, to appear.
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[35] R. Lávička, On the Structure of Monogenic Multi-Vector Valued Polynomials,
In: ICNAAM 2009, Rethymno, Crete, Greece, 18-22 September 2009 (eds. T. E.
simos, G. Psihoyios and Ch. Tsitouras), AIP Conf. Proc. 1168 (2009)(793), pp.
793-796.
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sschrift. Pädagogische Hochschule Halle, 1987.

[39] H.R. Malonek, D. Peña Peña and F. Sommen, Fischer decomposition by infra-
monogenic functions, arXiv:0911.0070 [math.CV], 2009 (to appear in CUBO).

[40] H.R. Malonek and G. Ren, Almansi-type theorems in Clifford analysis, Math.
Meth. Appl. Sci. 25 (2002), 1541-1552.

[41] I. M. Mitelman and M. V. Shapiro, Differentiation of the Martinelli–Bochner
integrals and the notion of hyperderivability. Math. Nachr. 172: (1995), 211–238.

[42] J. Morais, Approximation by homogeneous polynomial solutions of the Riesz
system in R

3, PhD thesis, Bauhaus-Univ., Weimar, 2009.

[43] J. Ryan, Iterated Dirac operators in C
n, Z. Anal. Anwendungen 9 (1990), 385-401.

[44] F. Sommen, Spingroups and spherical means III, Rend. Circ. Mat. Palermo (2)
Suppl. No 1 (1989), 295-323.

11

http://arxiv.org/abs/1002.0527
http://arxiv.org/abs/1003.5587
http://arxiv.org/abs/0911.0070
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