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ABSTRACT Proliferation of connected services in modern vehicles could make them vulnerable to a wide
range of cyber-attacks through intra-vehicle networks that connect various vehicle systems. Designers usually
equip vehicles with predesigned counter-measures, but these may not be effective against novel cyber-attacks.
Intrusion Detection Systems (IDSs) serve as an additional layer of defence when conventional measures that
are implemented by the designers fail. Several intrusion detection techniques have been proposed in the
literature but these techniques have limited capability in detecting novel cyber-attacks. This paper proposes
a new Machine Learning (ML)-based IDS for detecting novel cyber-attacks in intra-vehicle networks,
specifically in Controller Area Networks (CANs). The proposed IDS generates high-level representations
of CAN messages transmitted on the bus exploiting their temporal properties as well as the intra and inter
message dependencies through the use of Recurrence Plot (RP), which are then fed into a bespoke Neural
Network, designed and trained to detect novel intrusions. Evaluation of the performance of the proposed
IDS in comparison with that of the state-of-the-art existing IDS schemes demonstrates the superiority of the
proposed IDS.

INDEX TERMS Cybersecurity, intrusion detection, intra-vehicle networks, LSTM.

I. INTRODUCTION
The ubiquitous nature of emerging V2X connectivity systems
offers novel services and applications that enable advanced
functions and features for modern vehicles, such as Advanced
Driver Assistance Systems (ADAS), infotainment, produc-
tivity and maintenance services. For a safe, efficient, and
comfortable operation of modern vehicles, data is transmitted
through intra-vehicle and over inter-vehicle networks depend-
ing on system-level requirements [1]. This provides new
cyber-attack surfaces for potential intrusions into the vehicle
systems, which can put road users’ lives at risk if exploited by
malicious agents [2], [3].

Modern vehicles are complex cyber-physical systems that
embed different components, including Electrical Control
Units (ECUs), sensors and actuators. The Controller Area
Network (CAN) forms the communication backbone of most

vehicles over which these components exchange data. Unfor-
tunately, the CAN protocol has inherent cybersecurity vulner-
abilities due to the lack of authentication mechanisms and the
broadcasting nature of its communication method. These vul-
nerabilities can make vehicles subject to a wide range of cyber
threats (e.g., fuzzing and Denial of Service (DoS) attacks) [4].
In addition, the external V2X connectivity of vehicles could
expose their intra-vehicle networks to remote attacks, allow-
ing hackers to get access to safety-critical sub-systems of
connected vehicles (e.g., braking system). Supplementing the
functionality of conventional security measures (e.g., encryp-
tion algorithms), Intrusion Detection Systems (IDSs) serve as
real-time monitoring systems that are becoming an integral
part of the security architecture of modern vehicles to detect
cyber-attacks which may have evaded conventional counter-
measures.
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FIGURE 1. Typical CAN network with six nodes (i.e., ECUs).

Intra-vehicle IDSs can be categorised as flow-based,
payload-based or hybrid [5]. Whereas a payload-based IDS
inspects the content of messages to detect potential intrusions,
a flow-based IDS examines the transmission patterns of mes-
sages. Generally, flow-based IDSs are suitable for detecting
intrusions that affect the frequency and order of messages
(e.g., [6], [7], [8]) but their performance is inadequate when
the attack affects the content of the messages [5] while
payload-based IDSs (e.g., [9], [10], [11]) are effective to such
attacks but display weaknesses in detecting attacks that affect
the timing and sequence of messages (e.g., message injection
attack) [5]. Combining the aforementioned categories, hybrid
IDSs aim to combine the strengths of both approaches [5].

Most recently, Machine Learning (ML)-based techniques
have been studied in the literature. Unlike rule-based IDSs,
where the system designers hard-code the rules to detect intru-
sions, deep learning models are designed to learn and detect
abnormal patterns from training datasets that contain samples
of both the normal operation of the system and when under
attack. A detailed review of the existing ML-based IDSs as
well as their strengths and weaknesses are given in Section II.

This paper presents a novel ML-based hybrid IDS for de-
tecting novel attacks in intra-vehicle networks (i.e., CAN)
with a typical deployment such as in Fig. 1. The proposed IDS
extracts representative features from the data by looking at
the relative local context of a subject message by generating a
2D representation based on the Recurrence Plot (RP) concept.
The content of the subject message together with its relative
time, with respect to the previous message, are then fed into
a Long-Short Term Memory (LSTM) neural network while
the generated 2D representation is fed into a Convolutional-
LSTM. The main advantage of the proposed technique stems
from its ability to combine the learning of the intra-message
data dependencies and inter-messages temporo-contextual de-
pendencies, thus, enhancing the learning of the detection
model as demonstrated by the improved Key Performance
Indicators (KPIs), such as detection accuracy, compared to
the state-of-the-art ML models. Our performance evaluation
results demonstrate that the proposed IDS outperforms the
state-of-the-art ML techniques, in terms of its ability to detect
novel cyber-attacks.

The main contributions of this work can be laid out as
follows:
� The design of a new ML-based IDS for detecting novel

cyber-attacks in intra-vehicle networks, specifically in
the CAN of modern vehicles.

� A method to generate inter-messages representative fea-
tures based on RPs to capture the required temporo-
contextual dependencies of messages.

� An evaluation of the performance of the proposed IDS
in comparison with state-of-the-art IDSs, showing the
superiority of the proposed method.

The rest of the paper is structured as follows: Section II
provides a comprehensive review of the state-of-the-art of the
related ML-based IDSs. After a short overview of LSTM-
based neural networks and RP, Section III details the proposed
detection model and positions it within the current landscape
of IDSs. Section IV compares and discusses the performance
of the proposed technique against the state-of-the-art solu-
tions. To conclude, Section V summarises the findings of this
paper and indicates potential future research directions.

II. RELATED WORK
In this section, we discuss related studies, provide an overview
of their approaches, as well as their advantages and limita-
tions. Finally, we articulate how the proposed work in this
paper fits into the current landscape.

The concept of intrusion detection in intra-vehicle networks
was first coined by Hoppe et al. [12]. Since then, a tremen-
dous effort has been carried out to improve IDS KPIs with a
notable shift towards ML approaches enabled by the increase
of available processing power and promising initial results.
Current ML techniques are used at various levels or interfaces
to leverage and learn semantic representations of data to detect
anomalies. At the data link layer, two natural directions of
research were taken based on the payload and flow of data.

Several researchers have developed IDSs for intra-vehicle
networks. Levi et al. [13] described a Hidden Markov Model
(HMM)-based detection system trained on data collected
from vehicles. The trained HMM together with a regression
model are used to detect anomalies from the normal expected
operation. Their approach monitors different interfaces (com-
munication, CAN and operating system interfaces) across the
system, extracts relevant pieces of information based on con-
figurable rules and sends them to a trained model to detect
anomalies. A configurable data collector provides a higher
level of data abstraction (i.e., events), by modelling the time
series data to states, which has an inherent noise-filtering
effect and eliminates the need to retrain the model. The ob-
jective of the regression model is to calibrate the likelihood
threshold for detecting anomalies. Choi et al. [14] went into
a different direction and proposed VoltageIDS, an automotive
IDS, leveraging the fact that electrical signals used to trans-
mit CAN messages depend on the physical configuration of
the network such as cables length, true value of termination
resistors, true voltage values of bit zero and one, for example.
The operation of VoltageIDS in a CAN is constituted of three
phases, namely, the feature extraction, the feature selection,
and the intrusion detection phase. In the feature extraction
phase, the VoltageIDS extracts 60 features from the electrical
signal of normal CAN messages which are then filtered out
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by the feature selection phase, selecting only the most signifi-
cant features. In the intrusion detection phase, the VoltageIDS
builds a supervised ML multi-class classifier (e.g., Support
Vector Machine) using attack-free CAN data. When deployed,
the multi-class classifier predicts the class label (i.e., normal
or intrusion) of messages.

Kang and Kang [15] built a Deep Neural Network (DNN)-
based IDS trained on high-dimensional features extracted
from bit streams of CAN messages. Song et al. [16]
adopted Inception Resnet to develop an IDS for CAN.
A dataset composed of CAN messages transmitted on a
CAN bus of a real vehicle was used to evaluate the pro-
posed system with results outperforming conventional ML
methods. Lin et al. [17] developed an IDS based on the
Visual Geometry Group (VGG)-DNN. Taylor et al. [18] pro-
posed a LSTM neural network for detecting cyber-attacks
in intra-vehicle network, including interleave, drop, dis-
continuity, unusual and reverse attacks. In the same vein,
Loukas et al. [19] presented an LSTM-based IDS but it fo-
cused on attacks that are particularly meaningful for robot
vehicles.

Martinelli et al. [20] used four Fuzzy algorithms applied to
eight features (the eight data bytes of the data field in a CAN
message) to detect cyber-attacks. The authors showed that the
fuzzy classification algorithms can achieve high performance
in detecting three types of attack, namely, Denial of Service
(DoS), Fuzzy and message injection.

In [21], Zhu et al. proposed a literal multi-dimensional
anomaly detection approach using a distributed LSTM frame-
work. The proposed model uses both time and data di-
mensions of CAN messages to detect cyber-attacks. The
experimental results showed that the proposed model could
accomplish a detection accuracy of ∼ 90%.

Derhab et al. [2] proposed a Histogram-based Intrusion
Detection and Filtering (H-IDFS) framework. The proposed
framework, first, groups CAN frames into windows and cal-
culates their histograms which are, then, fed into a multi-class
classifier to identify windows containing malicious CAN
frames. Thereafter, a one-class SVM filters out malicious
CAN frames from each malicious window.

Basavaraj and Tayeb [22] designed a DNN-based IDS and
evaluated its performance on two real datasets where they
achieved a detection accuracy of 98.67% on known attacks.

He et al. [23] proposed Hybrid Similar Neighbourhood Ro-
bust Factorisation Machine Model (HSNRFM) for detecting
anomalies in the in-vehicle network. Firstly, the HSNRFM
performs a dimensionality reduction of the original data, to
enhance its robustness. Then, it combines the information of
the target message as well as neighbour messages to form the
final input features vector of a factorisation ML model used to
derive the final prediction value.

Generally, existing studies for intrusion detection in intra-
vehicle networks
� Focus on detecting specific types of cyber-attacks, ignor-

ing novel cyber-attacks [5].

� Neglect the context of messages whereby a message
that appears as normal in a given context (i.e., message
sequence) may appear as abnormal in another one.

� Do not discriminate between malicious and normal
frames within a malicious window, which could cause
the system to drop all the frames within the window,
causing potentially undesirable effects with an impact on
the overall safety of the vehicle.

Diverging from existing works, we propose an IDS for
intra-vehicle networks that generates two independent views
of the CAN traffic to detect different types of cyber-
attacks, augmenting the overall detection capability for both
known and novel cyber-attacks. This approach incorporates
intra-message features and features derived from the inter-
dependencies among CAN messages captured through RPs.

There are several ways in which the proposed IDS differs
from the state-of-the-art:
� Use of machine learning: We adopt a ML-based ap-

proach to identify potential intrusions, rather than re-
lying on predefined rules or patterns. This allows the
system to adapt to changing patterns of normal and
anomalous behaviour, and to potentially identify novel
attacks that may not have been anticipated by the design-
ers of the system.

� High-level representations of CAN messages: The model
generates high-level representations of CAN messages
using RP, which captures the complex relationships and
temporal dependencies among the messages. These rep-
resentations provide a more detailed and nuanced view
of the data than some other methods, which may allow
the system to more accurately identify potential intru-
sions.

� Analysis of individual messages: Unlike some IDS ap-
proaches, the operational granularity of the proposed
system is at the message level. It is designed to label each
individual message as either normal or anomalous, rather
than labeling an entire window of messages as a whole.
This allows the system to more accurately identify poten-
tial intrusions in individual messages, rather than relying
on the presence of a pattern of anomalies within a group
of messages.

III. PROPOSED APPROACH
In this section, we give some background on CAN, Recurrent
Neural Networks (RNNs), with a focus on LSTM, and RP. We
also describe in detail the proposed model.

A. BACKGROUND
CAN plays a preponderant role in the communication archi-
tecture of modern vehicles. Messages transmitted over a CAN
exhibit temporal relationships. For example, stepping on the
accelerator pedal allows more air into the engine. The engine
control unit senses the increased airflow and acts accordingly
by pumping more fuel into the engine. As a result, the vehi-
cle accelerates, and the rotation-per-minute increases. These
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FIGURE 2. Principal fields of the CAN frame.

actions happen in a certain sequence and translate into well-
structured time-series traffic under usual driving conditions.
However, the temporal relationships observed between mes-
sages in intra-vehicle networks can deviate from these typical
patterns when the vehicle is under abnormal conditions, such
as cyber-attacks or faults.

Conventional intrusion detection techniques in intra-
vehicle networks are prominently based on the temporal
relationships between messages and their content [21]. From
a timing perspective, many messages in the CAN are periodic,
meaning that they normally appear at a regular frequency and
show a sequential pattern [24]. From a data perspective, the
data content transported by CAN frames, with the same CAN
ID, also exhibits certain patterns and trends under normal con-
ditions. However, the characteristics of these patterns change
when the vehicle is under cyber-attack. On the one hand, a
DoS attack, where the attacker injects malicious messages
into the network at high rates, affects the frequency of the
messages and their sequence. On the other hand, an integrity
attack, where the malicious agent tampers the data content,
affects the data pattern observed within a CAN frame, despite
the fact that it might appear to be valid from a timing perspec-
tive.

B. DESCRIPTION OF THE PROPOSED MODEL
Based on these established insights, we propose a ML-based
IDS to detect cyber-attacks in CAN by looking at both the
content transported by a message and its relative context. For
this, two views are generated from the received CAN data.
The first view is generated from the intra dependencies of one
CAN message and the other from its context. Concatenated,
these two views form the input feature vector of a dense neural
network to classify each message as normal or as an intrusion.

Messages received by a CAN node are timestamped either
in hardware or software. This information is not, per se, part of
the CAN protocol but it might be deemed important by upper
layer protocols if the sequentiality and order of messages ar-
rival is required. In our model, this piece of information proves
to be vital as it gives a temporal context to CAN messages.
A typical CAN frame is described in Fig. 2 where the most
salient features are the arbitration and data fields. In particular,
the arbitration field contains an 11-bit or 29-bit subfield, called
message ID, identifying and describing uniquely the data field
of each CAN message whose maximum length is 8 bytes.

In our model, we call an ordered set of messages a message
window and the last message in this sequence the subject
message of the message window. To capture the temporal
relationship in a message window, the relative-time stamp

(RTS) between a message and its predecessor is calculated,
and together with the message ID (ID), Data Length (DL) and
data fields (D1,..., D8) form the input feature vector (Input
1) of a RNN to generate the first view; thus, capturing the
intra-message dependencies, as in Fig. 3.

RNNs are a type of neural networks with the ability to
learn temporal relationships in a data sequence. They can be
thought of as a sequence of fully connected neural networks
where the state at time t of an RNN, a<t>, is updated based on
the current input, x<t>, and previous state, a<t−1>, through
weight matrices Waa and Wax. The output ŷ<t>, at time t ,
follows a standard calculation and is based on the value of
the current state, a<t>, and weight matrix Wya. These weight
matrices are shared through the sequence as shown in Fig. 4.

RNNs can be used to detect intrusions or cyber-attacks in
CAN. For example, it is possible to consider CAN messages
in a message window as a data sequence. The likelihood of
classifying a subject message, as intrusive or normal, de-
pends on the information collected from previous messages
(i.e., prior states) and the subject message (i.e., the current
input). Generally speaking, conventional RNNs have limited
capabilities in capturing long-term temporal-dependencies in
long data sequences due to the vanishing gradient problem,
which refers to the exponential decrease in the gradient when
updating the weight matrices through back-propagation [19].
An LSTM can address the vanishing gradient problem by
introducing gates to control the flow of information shared
within an LSTM unit [25]. Traditionally, three gates are in use:
the forget gate, the input gate and the output gate, activated by
ft , it and ot respectively as in Fig. 5. Of particular importance
is the forget gate as it controls how much information from
the previous state is passed to the current state.

The proposed model generates the second view by taking
a message window as input to create a 2D texture using the
notion of RP. Eckmann et al. [26] proposed RP as a method
to visualise recurrent states of dynamical systems [27]. Often,
the current state of a dynamical system, represented by a geo-
metrical manifold in the appropriate space, is followed by one
future state governed by some transition rule that describes
the evolution of the states of the dynamical system over
time [28].

This evolutionary concept seems to be typical to vehicles
where the communication system exhibits recurring patterns.
This implies the presence of an internal mechanism that gener-
ates regular and recurrent behaviours/patterns in the data [29].
In this context, we adopt RP to provide high-level explicit
representations/features capturing the periodicity of the data,
which can hypothetically lead to an improved detection rate.
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FIGURE 3. System model of the proposed IDS.

FIGURE 4. Architecture of a conventional RNN with one layer and Tx

states. x<t> denotes the input at time t , Tx the number of inputs in a data
sequence and Waa,Wax,Wya weight matrices.

FIGURE 5. An LSTM unit.

The RP is defined as follows [29]:

Ri, j = H
(
ε − ‖xi − x j‖

)
, i, j ∈ {1, . . ., n}, (1)

where xi, x j are the states of length d (i.e., CAN messages)
observed at position/time i and j, respectively. ‖.‖ denotes a
norm between the observations, ε a threshold for closeness,

n the number of states (i.e., number of messages) and H the
Heaviside function defined as [29]:

H (z) =
{

0, if z < 0
1, otherwise

(2)

The calculation of RP requires setting the value of the close-
ness threshold ε, but determining its value is not intuitive.
Heuristics such as setting the threshold to 10% of the largest
observed distance or a certain percentage of black points can
be used. However, these do not generalise well to multiple RPs
and can make it difficult to determine the similarity between
two RPs [29]. Following [29], we eliminate the closeness
threshold, and also the Heaviside function to keep the granu-
larity provided by the norm function. RP is now a n × n square
matrix whose entries Ri, j are given by:

Ri, j = ‖xi − x j‖, i, j ∈ {1, . . ., n}. (3)

The output represents the distance between different messages
in a sequence, and can be viewed as a coloured map. As such,
the RP is no longer a tool to analyse recurrence considering
neighbourhoods but it quantifies how close each pair of mes-
sages in a sequence is. This is known as unthresholded RP,
distance plot, or self-similarity matrix [29].

The norm ‖.‖, and its induced distance, should be carefully
chosen. A simple and widely used distance measure is the
Euclidean distance. However, the Euclidean distance does not
look at the neighbourhood of each entry as the calculation
is performed coordinate-wise. This way, the context of each
data field is not captured. We need a distance function that
looks not only at the neighbouring context but also at the
individual fields. Dynamic Time Warping (DTW) is able to
measure the similarity between two data sequences while also
considering the neighbourhood of each data field, i.e., its
context. However, the complexity of the DTW algorithm is
quadratic. In order to reduce the time and memory needed to
calculate RPs, we used FastDTW [30], which approximates
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Algorithm 1: RP Generation Using DTW Distance.

the DTW algorithm with the added advantage to only be of
linear complexity.

Algorithm 1 shows the implementation of RP using DTW
and Algorithm 2 the DTW calculation adopted in this paper. In
Algorithm 2, |xi[k] − x j[z]| denotes the cost of matching the
two entries xi[k] and x j[z] at indices k and z of CAN messages
xi and x j , respectively. Each CAN message is captured in our
implementation with 11 entries/fields (e.g., time-stamp, ID,
etc.).

The generated 2D texture form the input feature vector
(Input 2) of a ConvLSTM layer which extracts high-level
features of the message window. This captures different
data representations taking advantages of the properties of
Convolutional Neural Networks (CNNs) [31]. The model con-
catenates view 1 and 2 together, where both the intra and
inter message dependencies are encoded. The output of the
“concatenate“ layer is then fed to a dense layer to predict
whether the subject message is a normal message or an attack,
as in Fig. 3.

Algorithm 2: DTW Calculation.

TABLE 1. Statistics of CAN-Intrusion-Dataset

IV. EXPERIMENTS AND ANALYSIS
In this section, we describe the initial dataset used and the
required preprocessing needed to generate the inputs of our
model. We also give the complete setup, including the method
employed to tune hyper-parameters. We complete the section
by a comparative performance evaluation between our model
and the state-of-the-art ML IDS solutions.

A. DATASET
To evaluate the performance of our model, we used the “CAN-
intrusion-dataset“ presented in [32]. The dataset contains four
types of attacks:
� DoS attack: high priority CAN messages (e.g., messages

with ID ‘0x000’) injected to the CAN bus with a short
time cycle (every 0.3 milliseconds).

� RPM/Gear attack: CAN messages with specific message
IDs related to RPM/Gear messages injected to the CAN
bus with a time cycle of 1 ms.

� Fuzzy attack: CAN messages with spoofed random mes-
sage IDs and data injected to the CAN bus with a time
cycle of 0.5 milliseconds.

Table 1 shows the statistics of the dataset used in this work.
We considered the DoS, Gear, and RPM as our training dataset
and the Fuzzy dataset as testing dataset. To evaluate and com-
pare the performance of IDSs, it is essential that the testing
dataset contains CAN IDs that are not specific to only DoS,
Gear or RPM attacks but to more generic attacks. This justifies
why the Fuzzy dataset is selected to model novel attacks and
serves as a benchmark to measuring performance metrics of
the different models used in this study.

B. PREPROCESSING AND GENERATING OF INPUTS
Let D = {(x1, y1), . . ., (xN , yN )} be the initial dataset, with
xt = {xt [1], . . ., xt [11]}, yt ∈ {normal, attack}, where N de-
notes the number of messages in the dataset, xt the message
at position/time t and yt the class label of xt . To prepare the
data for training and testing, we have performed the following
steps:
� Data conversion and padding: Initially, we converted the

content of all messages in D to a decimal data represen-
tation. The input feature vector, Input 1, has to be of fixed
length but the data length of CAN messages varies from
0 to 8 bytes. Hence, to guarantee that all messages have
the same length, we padded messages with DL < 8 with
extra bytes with a value of ‘-1’. This value has to be fixed
and chosen so as to never occur in the original dataset.
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FIGURE 6. Visualisation of RPs.

� Relative-time derivation: We replaced the time stamp of
the messages in D with the relative-time between con-
secutive messages in the dataset as follows:

xt [1] =
{

0, if t = 0
xt [1] − xt−1[1], otherwise

(4)

The preprocessed dataset D serves as the first input (i.e.,
Input 1) of the proposed detection model. In order to generate
the second input (i.e., Input 2), we normalised the data and
adopted a sliding window of size 11 moving one message at a
time.

The choice of the window size in an IDS is an important de-
sign decision that can affect its performance. A large window
size can provide a wide context for analysing messages, which
may be beneficial for detecting certain types of anomalies
or attacks. However, a large window size can also increase
the complexity of the IDS, which can lead to longer training
times and possibly lower performance if the IDS becomes too
complex to effectively learn from the data.

The setting of the window size depends on the specific
requirements and constraints of the IDS. Some factors to con-
sider may include the types of attacks or anomalies the IDS
is designed to detect, the amount of available training data,
and the resources available for training the IDS (e.g., time,
computational power).

One approach to finding an optimal window size is to per-
form experiments with different window sizes and evaluate
the IDS’s performance using metrics such as accuracy, pre-
cision, and recall. This can allow identifying a window size
that strikes a good balance between detecting anomalies and
maintaining reasonable training and runtime complexity.

In our case, the number of feature vector elements is 11.
Therefore, the minimum number of independent parameters
required for linear correlation is 11. Additional parameters
may be added to include nonlinear relationships. As such, the
output of this process is a dataset D′ where each data point in
D′ is an 11 × 11 array. A new dataset D′′ is created, whose
elements are RPs generated for each data point in D′, which
constitutes the second input of the proposed detection model.
Fig. 6 gives an example of a normal RP vs. an intrusive RP.

C. EXPERIMENT SETTINGS AND HYPER-PARAMETERS
TUNING
The proposed IDS has been implemented using Keras1 deep
learning library with TensorFlow2 as back-end. The fine tun-
ing of the hyper-parameters of both our proposed models and
ML state-of-the-art models was performed using Autonomio
Talos.3 The dataset employed for this purpose is a subset
of the concatenation of the DoS, Gear, and RPM datasets.
The hyper-parameters of the DT and RF models were tuned
using a grid search method.4 To evaluate the generalisation
capability of the proposed model to novel attacks, we con-
sidered the Fuzzy dataset as testing dataset. The selected
hyper-parameters are given in Table 2.

D. PERFORMANCE EVALUATION
State-of-the-art metrics are used to measure and compare
the performance of the proposed model against well-known
IDSs: Accuracy (Acc), Detection Rate (DR), False Positive
Rate (FPR), Precision, F1 score and Matthew’s Correlation
Coefficient (Mcc). The positive class is composed of intrusive
messages and the negative class of normal or non-intrusive
messages.

Each metric plays a specific role where some are crucial in
the case of imbalanced classes. Acc indicates the ability of a
binary classifier to correctly classify messages as being intru-
sive or normal [5]. DR measures the capability of a system
to detect intrusive messages. In our scenario, the DR value
can be interpreted as the probability of an actual intrusive
message classified as intrusive. For example, a DR value of 0.5
would mean that half of the intrusive messages are detected as
intrusive. Similarly, it is also important to class non-intrusive
messages correctly and not detect them as intrusive. The FPR
indicator helps measuring this unwanted behaviour by looking
at the number of actual non-intrusive message classified as
intrusive, the closer FPR is to zero the better. It is critical
for IDSs if a fail-safe policy is adopted. In such a scenario, a

1[Online]. Available: https://keras.io/
2[Online]. Available: https://www.tensorflow.org/
3[Online]. Available: https://github.com/autonomio/talos
4[Online]. Available: sklearn.model_selection.GridSearchCV
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TABLE 2. Summary of models performance

FIGURE 7. Extracted features of different layers.

high FPR would distract the system from its normal operation
mode and require the need to investigate the incident by an
expert to determine if a genuine intrusion was present or not,
hence, increasing costs. Precision is the percentage of actual
intrusions amongst all predicted intrusions classified by the
classifier. It gives us the confidence of an intrusion being an
actual intrusion. For imbalanced data sets, two further per-
formance measures are selected, namely, F1 and Mcc. F1
is the harmonic mean of DR and Precision, thus, giving no
precedence of one over the other. As to Mcc, it takes into
account the ratios of the four classes in the confusion matrix
and provides a correlation coefficient between the result of
the classifier and the actual data. The range of values that
Mcc takes is between −1 and +1. A perfect classification
results in an Mcc value of 1 whereas a −1 value indicates
a total disagreement between the decision of the classifier
and the actual data. A zero score indicates that the classifier
is not better than a random classifier [33]. Formulas of the
performance measures used to evaluate the performance of
different models can be found in [5].

We evaluated and compared the performance of our model
with ML algorithms proposed in the literature for intrusion
detection tasks, namely, DT used in [34] and RF, as well as
the state-of-the-art deep learning approach presented in [19].
Delgado et al. [35] have shown that RF is the best perform-
ing classifier among 179 tested methods across 121 different
classification tasks. Also, Belavagi and Muniyal [36] have
shown that RF outperforms other ML algorithms (e.g., SVM

and logistic regression) for intrusion detection tasks. We also
evaluated the performance of the proposed IDS when the
detection model is built using a single input (e.g., Input 1)
or both inputs (Input 1&2). Table 2 gives the performance of
all models.

Table 2 shows that DT and RF, as well as the deep learning
model presented in [19], have a limited capability in detecting
novel cyber-attacks denoted by their low Acc, DR, F1 score,
and Mcc value. These models classify most of the instances
in the testing data as normal messages, which also indicates a
low generalisation ability.

As seen in Table 2, the proposed model (using View
1&2) achieves the highest Acc (95.10476%), with a six-fold
improvement in the DR (61.79610%), a marginal drop in
Precision (99.99473%) by 0.00517 compared with the Deep
Learning model ([19]) and an increase by more than four-fold
of F1 (0.76240). A similar trend is observed with Mcc which
increases by slightly less than three-fold whilst keeping a very
low FPR. It is worth noting that the proposed model using
only View 2 has a lower performance than both the proposed
model using only View 1 and the concatenated views. The low
performance of View 2 indicates that using only the context
into which a message appears is not sufficient to distinguish
between normal and intrusive messages. The exploration of
the content of each message given by View 1 shows already
excellent results on its own. However, providing a context
in which the message occurs, provided by View 2, enhances
significantly the overall performance for each measure.
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To visualise the distinctive features that View 1, View 2,
and both combined bring to separate intrusive messages from
regular traffic, we have employed a data reduction and vi-
sualisation technique, namely t-SNE [37], results of which
are depicted in Fig. 7, with a reduction of the dimensions
to three, where blue points represent regular messages and
red points intrusive messages. As can be seen in Fig. 7(a),
features provided by View 1 allow a separation of both classes
with a separability that can be improved further. In Fig. 7(b),
we have a cloud of points where points in both classes are
intermingled. It indicates that View 2 alone cannot lead to
obtaining a good-performance classifier, however, when con-
catenating it with View 1 as in Fig. 7(c), we can notice
an increase of the separability of points belonging to both
classes with a reduction of the scattering compared to Fig.
7(a). These constitute strong visual indicators for achieving
better performances as evidenced by the results presented in
Table 2.

V. CONCLUSION
This paper proposed an ML-based approach for intrusion
detection in intra-vehicle networks. The proposed approach
generates two representations/views of the CAN data lever-
aged by machine learning techniques. The views provide
high-level features capturing the time and intra-message de-
pendencies of the CAN messages as well as their context.
These views are concatenated and used to predict the class
label of each message. The performance of the proposed ap-
proach was evaluated and compared with the state-of-the-art
detection techniques. The results demonstrated that com-
bining both views lead to better performance compared to
a single view. The results also demonstrated that the pro-
posed approach outperforms other state-of-the-art methods
in detecting novel intrusions as it achieved the highest ac-
curacy (95.10476%), detection rate (61.79610%), F1-score
(0.76240), and Matthew’s correlation coefficient (0.76427),
with a low false positive rate (4.82023 × 10−6).

Although the proposed approach outperformed other tech-
niques and achieved promising results, it was not able to
perfectly detect all novel cyber-attacks. The possibility of
improving the detection capability of the proposed approach
could be investigated further. Despite that our method relies
on the structure of CAN messages, we believe it could be
easily extended for typical message addressing protocols, like
CAN FD, and potentially, FlexRay. In addition, it could be
worthwhile to investigate how the current work can be ex-
tended to inter-vehicle networks.
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