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Abstract
Health monitoring, rehabilitation, and fitness are just a few domains where human activity recognition can be applied. In

this study, a deep learning approach has been proposed to recognise ambulation and fitness activities from data collected by

five participants using smart insoles. Smart insoles, consisting of pressure and inertial sensors, allowed for seamless data

collection while minimising user discomfort, laying the baseline for the development of a monitoring and/or rehabilitation

system for everyday life. The key objective has been to enhance the deep learning model performance through several

techniques, including data segmentation with overlapping technique (2 s with 50% overlap), signal down-sampling by

averaging contiguous samples, and a cost-sensitive re-weighting strategy for the loss function for handling the imbalanced

dataset. The proposed solution achieved an Accuracy and F1-Score of 98.56% and 98.57%, respectively. The Sitting

activities obtained the highest degree of recognition, closely followed by the Spinning Bike class, but fitness activities were

recognised at a higher rate than ambulation activities. A comparative analysis was carried out both to determine the impact

that pre-processing had on the proposed core architecture and to compare the proposed solution with existing state-of-the-

art solutions. The results, in addition to demonstrating how deep learning solutions outperformed those of shallow machine

learning, showed that in our solution the use of data pre-processing increased performance by about 2%, optimising the

handling of the imbalanced dataset and allowing a relatively simple network to outperform more complex networks,

reducing the computational impact required for such applications.

Keywords Activity recognition � Deep learning � Smart insole � Imbalance classification

1 Introduction

Human activity recognition (HAR) can be used to monitor

user’s behaviours, analyse them, and consequently assist

the user in his/her daily life or provide histories on the

activities to specialists for evaluation. The applications of

HAR include health monitoring [1, 2], rehabilitation [3],

fitness [4], home automation [5], and safety [6].

The pioneering activity recognition approach has been

based on the analysis of visual data, including both images

and videos [7]. Considering the dynamism with which a

person performs an activity during his/her daily living,

multiple challenges can be found in the use of vision-based

solutions, including viewpoint variations, occlusions,

cluttered backgrounds, different illumination conditions,

and privacy concerns [8, 9]. As a result, alternative solu-

tions have been studied in recent years, such as those based

on the use of sensors, which can be positioned in the

environment surrounding the user or directly worn by the

same [10]. Wearable-based solutions have steadily become

the centre of research due to their extensive computational

power, minimum encumbrance for the user, and low costs.

Wearable technologies include smartphones, smart

watches, smart clothes, and other specifically designed

devices. Generally, fusing multiple heterogeneous sensors,

which measure the same physical phenomenon, can
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increase the variability and the insight of the information

that can be better exploited for classification purposes [11];

nevertheless, this can cause discomfort for the user and can

increase exponentially the cost of the solutions. In this

regard, smart insoles have attracted significant attention

recently, since they can embed multiple sensors and

seamlessly integrate into users’ daily lives.

Smart insoles are specialised inserts that can be placed

inside a pair of shoes to collect and monitor various forms

of data about the user’s foot activity and movements. They

are equipped with sensors and other electronic components

that allow them to gather and transmit data wirelessly to a

smartphone or other device. Generally, pressure sensors

and inertial sensors are the smart insoles embedded sensors

preferred in literature, but not limited to. Pressure sensors

allow measuring the force exerted by the foot while car-

rying activities and can be classified into piezoresistive

sensors, capacitive sensors, and optical sensors. Inertial

sensors, also known as inertial measurement units (IMUs),

are devices that are used to measure and track the accel-

eration, orientation, and angular velocity of an object in

three-dimensional space. They typically consist of a com-

bination of accelerometers, gyroscopes, and magnetome-

ters. The sensors used in the state-of-the-art solutions vary

according to the needs of the study, e.g. Chen et al. [12]

proposed a smart insole composed of a pressure array (up

to 96 pressure sensors distributed over the insole), a triaxial

accelerometer, and a triaxial gyroscope, while Aznar-

Gimeno et al. [13] designed a smart insole composed of 16

piezoelectric sensors, a triaxial accelerometer, and a tem-

perature sensor.

Although the capabilities of such devices are improving

and their performance is rising, HAR is still a complicated

task. Each activity, by its nature, is difficult to recognise

because it can be influenced by a variety of situations, and

even the same person can execute the same activity in two

different ways depending on the circumstances [14].

Several approaches can be identified in the literature to

process and analyse the amount of data produced by the

various sensors embedded inside the smart insoles,

including threshold algorithms, and machine learning

solutions. Threshold-based algorithms allow the classifi-

cation of activities based on predefined rules determined by

experts, identifying ranges in which each activity falls.

Machine learning-based algorithms, instead, analyse a set

of data collected a priori from volunteers and attempt to

identify patterns in those data that can be used to generalise

the problem and classify the activities without human

intervention. Since threshold-based algorithms require

manual adjustments to their parameters or rules when the

data or circumstances change, which can be time-con-

suming and may require expert knowledge, machine

learning solutions are the most preferable. Independently

from the machine learning algorithm chosen, the goal of

enhancing the recognition accuracy is usually allocated to

the extraction of features from raw data, which can be

broadly classified into feature-based and feature-learning

approaches [15]. In feature-based approaches, the features

are extracted by experts using heuristic-based methods

[16], whereas, in feature-learning approaches, the salience

information is extracted automatically by the algorithm

chosen [17], which is commonly a deep learning algorithm.

Deep learning algorithms are inspired by the structure and

function of the human brain. They are composed of mul-

tiple layers of interconnected nodes, in which each layer

extracts increasingly complex features from the raw data.

These features are then used to make predictions or deci-

sions based on the data inputs. Overall, deep learning is a

powerful tool that has been used effectively in the field of

human activity recognition using wearable sensors, due to

its ability to learn and adapt to new data and its versatility

in handling a wide range of data types and structures.

Although this type of solution is very effective, it requires a

large amount of data samples for training and evaluation,

which when coupled with the challenges of obtaining

activity data results in issues like class imbalance. Due to

highly demanding training and evaluation and large

memory requirements, they are computationally intensive,

making them difficult to integrate into portable devices and

provide real-time responses. Furthermore, when using

small datasets and/or complex architecture, these systems

are vulnerable to overfitting [18].

The aim of this paper was to propose a deep learning

approach for the recognition of ambulation and fitness

activities using smart insoles, which can potentially be

integrated into daily life scenarios for physical activity

monitoring and/or rehabilitation. The smart insoles consist

of eight pressure sensors and a nine-degree inertial mea-

surement unit (IMU), consisting of an accelerometer,

gyroscope and magnetometer. To facilitate and simplify

the data acquisition process, a mobile application has been

developed, which provides data collection, visualisation

and archiving functions which, combined with a cloud

server, allow recognition of the activities. A deep feed-

forward neural network (henceforth referred to as Dee-

pHAR) has been implemented for the recognition of

activities. The key objective of this work was to prove that

the performance of such an architecture, despite it being a

relatively simpler architecture, with adequate pre-process-

ing can exceed more complex solutions such as convolu-

tional neural networks (CNN), preventing the overfitting

and reducing the computation costs of the solution limiting

the number of hyperparameters and layers in the architec-

ture. To enhance the solution performance, a time-win-

dowing technique with overlap between contiguous

segments and a down-sampling technique for denoising
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raw sensor signals have been involved. Furthermore, to

solve the problem of imbalanced classes, the architecture

has been equipped with a loss function that considers the

weights calculated for each class.

The rest of the paper is organised as follows: state-of-

the-art solutions are introduced in Sect. 2, and hardware

details and the methodology are presented in Sect. 3, fol-

lowed by the findings discussed in Sect. 4. Finally, the

paper is concluded by a summary in Sect. 5 and future

work in Sect. 6.

2 Related work

Human activity recognition is one of the most important

tasks in pervasive computing. Over the years, efforts have

been made to enhance and optimise the proposed solutions,

using different technologies and devices. Adopting wear-

able devices-based solutions has made it possible to

develop seamless solutions and to reduce encumbrance for

the user.

Over the past few years, smart insoles have become

increasingly popular due to their noticeable benefits and

minimal user inconvenience. They have been acknowl-

edged as healthcare devices, and there are numerous

commercially available solutions, including the OpenGo

system from Moticon ReGo AG [19], the Smart Footwear

from IEE Luxembourg S.A. [20], and the Neurogait insoles

from Salted Ltd. [21]. The major differences between them

are the types and number of sensors used.

In terms of the HAR algorithms used, the desire for

maximum optimisation has resulted in a heterogeneous set

of algorithms. The most popular solutions are those that

require expert supervision, such as customised threshold

algorithms and machine learning algorithms, in which

feature extraction techniques are critical for performance

optimisation [22].

Moufawad el Achkar et al. [23] proposed a solution for

monitoring the risk of falls and frailty in the elderly, using

instrumented shoes. A triaxial accelerometer, triaxial

gyroscope, triaxial magnetometer, eight pressure sensors,

and a barometer sensor were included in the instrumented

shoe. The data were obtained with a sampling frequency of

200 Hz from 10 elderly people and then segmented using a

window size of 5 s with 50% overlap. The HAR algorithm

was a biomechanics-inspired expert-based decision tree,

which analysed the locomotion or not and used the values

of the sensors above thresholds to recognise the activities

carried out by the person. Nine activities were included:

level walking, downhill, downstairs, uphill, upstairs, sit-

ting, standing, elevator down, and elevator up. The overall

Accuracy of the system was 97.41%, with low sensitivity

(79%) for the elevator up and down.

De Pinho et al. [24] exhibited a six-activity classes

machine learning HAR classifier using a foot-based wear-

able device. The wearable devices consisted of two com-

ponents: a smart insole with six pressure sensors and a

microcontroller that managed an inertial measurement

system comprised of an accelerometer, gyroscope, mag-

netometer and barometer. Eleven participants were inclu-

ded in the study, which performed different activities in a

controlled environment, including walking (straight, slope

up, slope down), and ascending and descending stairs. The

sampling frequency for the data collection was set to 10

Hz, and the data were segmented using a time windowing

of 0.3 s. Initially, a set of 100 features were selected,

comprising mean, standard deviation, variance, minimum,

maximum, and average value; however, after feature

selection using Hall’s algorithm the features were reduced

to 12. The random forest was used as classified and the

training and testing phases were carried out involving a

leave-one-out cross-validation strategy. The RF reached an

overall Accuracy of 93.34%.

Sazonov et al. [25] described a shoe-based wearable

sensor solution that operates with a smartphone to recog-

nise various physical activities in real time and estimate

energy expenditure. The smart shoes presented embedded

five pressure sensors and an accelerometer. Four activities

were included in the study: sitting, standing, walking/log-

ging, and cycling, collected from 19 participants which

wore the smart shoes for almost four hours. The data were

collected using a sampling frequency of 400 Hz, but then to

remove the possible noise they opted to average the 16

consecutive samples, reducing the actual sample frequency

to 25 Hz. The data were segmented using a time win-

dowing of 2 s, and the following features were extracted

for each sensor: mean, entropy, and standard deviation.

Three algorithms were used for activity classification, the

support vector machine (SVM), the multi-layer perceptron

(MLP), and the multinomial logistic discrimination

(MLD). The SVM reached the highest performance with an

Accuracy and F1-Score of 97:9% and 98:4%; nevertheless,

the MLP and the MLD reached almost comparable results,

but reducing the running time and the memory require-

ments by a factor of 103.

These solutions were based on data processing and in

particular on the extraction of features. However, these

characteristics were heuristically chosen, which could lead

to poor results when analysing new data. Feature selection

techniques can be used to reduce irrelevant features [26],

but they still use the initially determined set of features. As

a result, algorithms that allow the processing of raw data,

such as deep learning models, have become increasingly

popular in recent years.
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Pham et al. [27] presented a convolutional neural net-

work (CNN) for identifying physical activities such as

running, walking, standing, jumping, kicking, and cycling.

A 3D accelerometer sensor built into a pair of shoes was

employed. The data were captured at a sampling rate of 50

Hz and segmented using a 2-s sliding window technique

with a 50% overlap between two consecutive windows.

The study involved ten participants who were given 10 to

30 min to complete each exercise. The CNN was built by

reserving a CNN for each sensor signal in input, and then,

the CNNs results are concatenated in a fully connected

network for the activity prediction. The CNN was tested

using a tenfold cross-validation method, which yielded an

average Precision and Recall of 93.41% and 93.16%,

respectively.

Wang et al. [28] proposed a one-dimensional convolu-

tional neural network (CNN) for the recognition of activ-

ities of daily living (ADLs) against falls. The ADLs used

were: laying on the bed, bowing, walking, jogging, and

laying down. Two sensors were embedded into smart

insoles, a triaxial accelerometer and a triaxial gyroscope.

To train the model, the data from 10 healthy volunteers

were collected, and to isolate each activity, the data were

segmented into six-second time windows. Falls were

recognised with an overall Accuracy of 98.61% and

exhibited high sensitivity and specificity, 97.92% and

99.58%, respectively. In addition, the results showed that

the walking and jogging activities were detected with an

Accuracy of 100%.

Paydarfar et al. [29] developed a HAR system using

piezoresistor-based instrumented shoes and a recurrent

neural network (RNN). A pair of sneakers with an inte-

grated microcontroller and three piezoresistor sensors at

the calcaneus, metatarsals, and phalanges made up the

hardware. The experiment involved 20 healthy people.

Each participant performed different activities, including

walking, standing, balancing on the left foot, balancing on

the right foot, toe-up, and ascending stairs. Each task was

performed for 45 to 120 s. The data were sampled at a

frequency of 50 Hz and successively segmented into one-

second slices, but each slice differs from the preceding by

only one time-step. The system obtained an overall Accu-

racy of 87%.

In our previous study [30], an artificial neural network

(ANN) was implemented for the recognition of ambulation

activities. Three volunteers were involved in the study and

were asked to wear a pair of smart insoles and complete a

series of activities from a predefined set, including down-

stairs, sit to stand, sitting, standing, upstairs, and walking

(slow, normal, and fast). Given the unbalanced nature of

the dataset used, a data over-sampling technique was used,

the SMOTE, which created synthetic data to level the

number of samples for each class. The ANN developed

consisted of two fully connected layers preceded by a

flattened layer to squeeze the input data. The results of this

preliminary study showed that the performance of the

classifier was mainly influenced by the over-sampling

technique, which in order to balance the number of samples

for each class created several synthetic data, with conse-

quent reduction of the variance and entropy in the data.

Considering the advances of soft-computing solutions

[31, 32] in real-life applications and the promising results

achieved by deep learning algorithms in the processing of

sensor data, this study has been established to overcome the

limitations encountered in our previous study as well as the

limitations that arose during the literature review. The main

challenge identified has been the treatment of the imbal-

anced dataset for the training of deep learning models.

Furthermore, the solution involving deep learning has

shown complex architectures and extensive hyperparame-

ters, which have significant computational time and

expensive costs when considering a real-life application.

For this reason, it has been investigated in the study how

simpler neural networks, such as a feed-forward neural

network, can achieve results comparable if not superior to

more complex networks when data from the smart insole

are used and data pre-processing techniques are applied.

The choice of architecture, associated with a search for the

minimum number of layers that can optimise the classifi-

cation, provides a reduction in computational costs, which

associated with the extension of the activities involved to

both ambulation and fitness, lays the foundations for the

use of the solution in real-time scenarios, such as moni-

toring or rehabilitation of an individual.

3 Materials and methods

In this study, a smart insole-based human activity recog-

nition (HAR) system is proposed. Figure 1 shows the

overall architecture, which consists of a pair of smart

insoles, a mobile application, called eZiGait, and a could

server.

3.1 Measurement set-up/sensing elements

In this study, the ActiSense Kit (IEE Luxembourg S.A.)

was used as the only device for the human activity

recognition (HAR) system. The ActiSense kit includes two

IEE Smart Foot Sensors and two ActiSense electronics

(ActiSense ECU), shown in Fig. 2. The IEE Smart Foot

Sensors are composed of eight individual high dynamic

pressure cells, which are located at the point where the

impact foot-to-ground is higher based on a finite element

(FE) analysis and extensive testing and validation, as

shown in Fig. 2a. The ActiSense ECU, as shown in Fig. 2b,
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is the electronic unit of the kit. It incorporates multiple

inertial measurement unit (IMU) sensors, including a tri-

axial accelerometer (range: �8 G), triaxial gyroscope

(range: �1000 DPS), and a triaxial magnetometer (range:

�4912 lT), providing the user with a nine-degree-of-

freedom (DOF) system. Furthermore, a temperature sensor

is included in the unit, but currently, it is not used in this

study. The data collected can be transferred from the

ActiSense ECU via the Bluetooth Low Energy (BLE)

protocol to a smartphone, or stored locally on flash mem-

ory. The ActiSense ECU is attached to the side of the shoe

using the hook provided, as shown in Fig. 2c.

3.2 Mobile application

The mobile application (i.e. eZiGait) has been developed

from the prototype presented by McCalmont et al. [33] for

data collection and visualisation. It is the central

Fig. 1 Overall architecture of the proposed HAR system

Fig. 2 ActiSense Kit, IEE Luxembourg S.A. a IEE Smart Foot Sensor and b IEE ActiSense ECU—front c IEE ActiSense ECU—side
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component of the proposed system architecture, as shown

in Fig. 1, as it handles the connection with the smart

insoles through BLE and gathers data. Furthermore, it is

connected to the cloud server for saving data and retrieving

activity recognition results. The app has been developed

using stackable modules, called managers, for allowing the

inclusion of new modules as the requirements change. The

management of data collection is delegated to the record

manager module which starts a data stream from the

insoles and processes it. The raw data collected are con-

verted into data ready for pre-processing. The data from the

two insoles are then synchronised with each other by

coupling the samples coming from the same timestamp.

Furthermore, during the data collection, data visualisation

functions allow the user to view the data in real time. The

last phase is to save the data, which are preserved locally,

on the smartphone itself, and on cloud storage via the HAR

manager, which, in turn, provides the user with a classifi-

cation of the activity undertaken.

3.3 Data collection

Human activities can be grouped into seven main cate-

gories: ambulation, transportation, phone usage, daily

activities, fitness, military, and upper body activities [34].

Smart insoles have been applied for the detection of

ambulation activities, daily activities, and fitness exercises;

however, it has been proven that they cannot be used alone

to detect activities that involve only the upper body

[35, 36]. For this reason, a set of activities have been

defined comprising ambulation and fitness activities. The

activities included are: Walking (Slow, Normal, Fast,

Free), Sitting, Standing, Ascending Stairs, Descending

Stairs, Cross Trainer, Sit to Stand, Spinning Bike, Stand-

ing, and Free Stretch. The descriptions of the activities and

their collection modalities used in this study are sum-

marised in Table 1.

Five participants (age: 25–55 years, weight:

48.0�75.0 kg, and height: 165.0�180.0 cm), comprising

European and Asian people, with no reported lower limb

injuries were recruited for this study. All the participants

were provided with an ActiSense Kit according to their

shoe size. All the data were collected using the eZiGait

App, using a sampling frequency of 200 Hz.

Each participant had the freedom to choose which

activity to perform among those designated. In total,

178 min of recordings were collected.

3.4 Data pre-processing

The raw data collected by the sensors can have imperfec-

tions which can in turn affect the performance of the

solution. Hence, enhancing the representation of the input

can improve the final prediction outcome. Recently, mul-

tiple data pre-processing techniques have been adopted in

the literature to enhance the accuracy outcome of solutions

in several scopes [37–39]. The data collected from the

smart insoles combined multi-modal data information,

since they combined pressure and inertial data, which are

all in the form of continuous data. In this study, in addition

to the normalisation technique, which converts the input

data into a range between 0 and 1, other techniques were

introduced to improve data representation, including the

interpolation technique for handling missing data, down-

sampling technique by averaging contiguous samples for

noise reduction, and time-windowing data segmentation.

Furthermore, the weight associated with each class

according to the number of samples is calculated to avoid

training bias towards the majority classes.

3.4.1 Handling missing data

Generally, statistical models are designed with the

assumption that no observations are missing when pro-

cessing the data. For this reason, dealing with missing data

is crucial to prevent failure and unexpected model out-

comes. Three basic categories of missingness may be

identified: missing completely at random (MCAR), missing

at random (MAR), and missing not at random (MNAR).

MCAR occurs when missing observations are dependent

on both observed and unobserved measurements. MAR

occurs when the likelihood of missing observations is only

connected to observable data. MNAR occurs when missing

observations are not reliant on either observed values or

unseen values [40]. In the literature, there are multiple

approaches for solving this problem, including deleting

incomplete observations and replacing the missing values

with an estimate based on other available information, also

known as imputation [41]. Although the deletion of miss-

ing data is the most common, it has significant drawbacks,

including decreasing statistical power due to the smaller

number of samples and the potential to change the repre-

sentation of the population by favouring one subgroup over

another. The imputation, on the other way, substitutes

missing values by using statistical measurements, such as

mean or median, interpolation using existing information,

or using a model-based approach such as linear regression

or stochastic regression. Statistical approaches, however,

reduce variability and the correlation within and between

variables, whereas model-based solutions can create better

estimations than the true values or their performance can be

poor due to the non-relationship between missing and

observed values.

In this study, the type of missingness identified is of the

MCAR type, as the missing observations are mainly due to

random faults in the data transmission from the device. For
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this reason, the approach chosen to deal with this problem

is data interpolation using the polynomial function which

lends itself particularly well to use with time series [42].

This method takes into consideration adjacent data

belonging to a single time series and creates a polynomial

function, which passes through the existing points and

recreates the missing points within the time series.

3.4.2 Noise reduction

The sensors’ error could increase exponentially over time,

resulting in a signal completely buried in a respective noise

signal. Reducing such noise is important to provide the

algorithm with a clear signal for processing, as the signal

can interfere with the accuracy and reliability of the same.

There are several techniques that can be used to denoise

sensor signals, including low-pass filters, median filters,

Kalman filters, and wavelets denoising. By attenuating

components above a specific cutoff frequency, low-pass

filters can be used to remove high-frequency from a signal.

If the cutoff frequency is not selected carefully, however,

they can also remove important information from the signal

and introduce delay, which can be problematic in real-time

systems. By substituting each sample in the signal with the

median value of a group of nearby samples, the median

filter is used to eliminate outliers from the signals; how-

ever, it can introduce delay, as it has to compute the mean

values for all the samples. The Kalman filter is a type of

recursive filter that can be used to estimate the state of a

system in the presence of noise; however, it requires a good

estimate of the system’s initial state and it can be com-

putationally expensive when large or complex systems are

involved. Wavelet denoising is a technique that uses

wavelets to decompose the signal into different frequency

components and removes noise from the low-frequency

components while leaving the high-frequency components

intact. However, the wavelet denoising is sensitive to the

choice of wavelet basis and the level of decomposition

used, and it can be computationally expensive, particularly

for signals with a high sampling rate.

In this study, since the sampling frequency is high (200

Hz) during the data collection, the median filter has been

involved to reduce noise and remove outliers from the

signal. However, instead of processing all samples, the

averages of 10 contiguous samples were calculated,

effectively applying a down-sampling method that reduces

the number of samples per activity. Down-sampling tech-

niques through the averaging of contiguous samples have

been applied widely in the literature for activity recogni-

tion. Sazonov et al. [25] and Hedge et al. [43] applied a

down-sampling method that reduced the sampling fre-

quency from 400 to 25 Hz by averaging 16 contiguous

frames, as well as Merry et al. [44], which averaged five

contiguous samples, hence reducing the sampling fre-

quency from 75 to 15 Hz. In this study, 10 contiguous

samples have been averaged, reducing the sampling fre-

quency from 200 to 20 Hz. Figure 3 illustrates an example

of applying the down-sampling technique on the sensor

signals for noise reduction.

3.4.3 Data segmentation

Activity data collected by participants involved in this

study presented different lengths, which make it difficult to

analyse and classify. Therefore, determining homogeneous

segments among those data is crucial, as the classification

task becomes easier and more accurate, as the model can

focus on a reduced amount of data and on specific aspects.

Table 1 Description of the set of activities and their collection modalities involved in this study

Name Definition

Cross trainer Activity carried out on gym equipment, on which the person can exercise his arms and legs by simulating the activity

of walking, running or climbing stairs. The speed can vary from 50 to 70 rpm

Downstairs Descend the stairs, placing one foot on the step and the other on the next

Free walking Locomotion in a free environment. Walking can occur in all directions and along curved lines

Sit to stand Transition activity between sitting and standing. It starts when the person’s buttocks leave the seat of the chair or bed,

and it end’s when the person’s feet support the person’s body weight without any other movements in the legs

Sitting Person’s buttocks are on the seat of the chair or bed. Sitting can include movements in the upper body

Spinning bike Activity carried out on a stationary bike. The speed can vary from 50 to 100 rpm

Standing Both feet supporting the person’s body weight, with no feet movement. Standing can include movements in the upper

body

Stretch Activity in which a specific muscle or tendon is deliberately flexed or stretched in order to improve the muscle’s felt

elasticity and achieve comfortable muscle tone

Upstairs Ascending the stairs, placing one foot on the step and the other on the next

Walking (Slow, Normal,

Fast)

Locomotion on a treadmill with different speeds. Slow, Normal and Fast have a speed of 3.6, 4.7, and 5.8 km/h,

respectively
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Multiple techniques can be used for the definition of the

sizes of the segments and can be classified into time-based

windowing, event-based windowing and dynamic win-

dowing [45]. Time-based windowing allows data collected

to be divided into fixed segments of equal size. Event-

based windowing allows dividing the data according to a

specific sensor or user events. Dynamic windowing is used

when the data do not have a fixed structure and determines

the segments using thresholds and rules. In both event-

based and dynamic windowing, the segments can result in

different sizes. Moreover, it is worth mentioning that data

segmentation can be applied multiple times to create finer

granularity in the data segments.

In this study, time-based windowing has been applied to

segment the data collected. In the literature, multiple

studies can be found on the definition of the optimal win-

dow size in time-based windowing, also known as the

sliding window. Banos et al. [46] after analysing multiple

window sizes determined that the window size between 1

and 2 s are those that better manage the trade-off between

recognition speed and accuracy. Putra et al. [47] analysed

multiple types of sliding windows with multiple datasets,

recommending the 2 s window as optimal. Lee et al. [48]

analysed the impact that multiple window sizes had on a

CNN-based human activity recognition algorithm, deter-

mining the 2 s the size that allowed it to achieve the

highest F1-Score.

Aware of the advances in the literature, in this study, the

sliding window has been developed to segment the data

into a 2 s window. However, considering that in time-based

segmentation a major drawback can be the possibility of

leaving important events outside the window, or on the

border of the window, to enhance the capability and the

performance of the solution and to account for activities

that may occur between two segments, an overlapping of

50% between contiguous windows has been introduced.

3.5 Deep neural network HAR algorithm

In this study, a deep feed-forward neural network-based

HAR algorithm (DeepHAR), was proposed and imple-

mented. A feed-forward neural network maps an input x to

a target category y by finding a mapping f ðxkHÞ such that

it can approximate the classifier f �ðxÞ. It is composed of

three or more layers that are interconnected, and the

information x flows from the input through these layers and

finally to the output y. Each layer has its own function and

they are connected to each other in a chain (e.g. f ðxÞ ¼
f ð3Þðf ð2Þðf ð1ÞðxÞÞÞ when it is constructed of three layers).

Each layer is composed of nodes that try to mimic the

human brain neurons’ behaviour, by learning information

from data. The nodes in consecutive layers form a bipartite

graph. A node combines the elements of the input linearly

with various weights (wi) and passes the value obtained

through an activation function. Hence, an arbitrary hidden

layer can be represented as:

hðkþ1Þ ¼ a bðkÞ þW ðkÞhðkÞ
� �

; ð1Þ

where W ðkÞ 2 RðNðkþ1Þ�NkÞ contains all the weights, bðkÞ

consists of all bias terms, and hðkÞ is the values of the

previous layer. For the input layer, hð0Þ ¼ x.

The DeepHAR architecture proposed in this study is

presented in Fig. 4, highlighting the input’s size, the

number of layers, and the activity labels used for predic-

tion. It is composed of eight layers including input and

output layers. The number of hidden layers was determined

as optimal as a result of several experiments and kept to a

minimum to reduce computational costs and the risk of a

vanishing gradient problem [49].

The input layer is a flatten layer, which allows con-

verting the input matrix (x 2 Rð40�34Þ) into a column-wise

shape to feed into the next layers. Hidden layers consist of

Fig. 3 Example of the down-

sampling technique for

denoising sensor signals,

averaging ten contiguous

samples in the walking activity:

a accelerometer axis-x and

b gyroscope axis-x
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three pairs of fully connected layers and dropout layers.

The fully connected layers (dense layer) consist of neurons

with respective weights and biases and all the inputs are

connected to every activation unit of the next layer, as

presented in Eq. (1). The fully connected layers have 512

neurons each and include a batch normalisation, which re-

centres and re-scales the data making the neurons’ output

(z) follow a standard normal distribution across the batch

before applying the activation function. For each fully

connected layer, the rectified linear unit (ReLU) activation

function has been used. It decides whether or to what

extent the input signal should pass, applying the following

equation:

ReLUðzÞ ¼ maxf0; zg: ð2Þ

ReLU(z) is linear for all positive input values and 0 for all

negative values. The Dropout layers were introduced to

prevent overfitting by dropping out units in the DeepHAR.

Dropout layers are needed because neighbouring neurons

begin to rely on some specialisation overtraining and if

carried too far, it can result in a weak model that is overly

specialised to the training data [50]. The probability of a

neuron being dropped was set to 0.5.

During data pre-processing, the ground-truth labels were

denoted as integers between 0 and C � 1, where C is the

number of activities in the dataset. To allow the DeepHAR

to predict a categorical output, the labels were converted to

a one-hot vector y 2 f0; 1gC to indicate the label where

yi ¼ 1. Hence, the output layer consisted of two functions:

a linear function and a softmax function. The linear func-

tion transformed the input x into a n-dimensional vector

z 2 Rn as:

z ¼ Wxþ b ð3Þ

where W 2 Rn�din and b 2 Rn. The softmax function,

instead, normalised z into a discrete probability distribution

over the classes as:

ŷi ¼ softmaxðzÞi ¼
expðziÞP
j expðzjÞ

; i ¼ 1; . . .; n ð4Þ

where zi denotes the ith element of the vector z, while ŷi is

the ith element of the output of the softmax function.

Basically, ŷi denotes the likelihood that the input sample

will be predicted with label i. Furthermore, the cross-en-

tropy loss function has been employed to measure the

difference between the ground truth and the prediction as

follows:

Fig. 4 Deep feed-forward neural network architecture (DeepHAR) proposed in this study for activity recognition
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Lðy; ŷÞ ¼ �
Xn�1

i¼0

yi logðŷiÞ: ð5Þ

3.5.1 Handling class imbalance

Machine learning algorithms assume that the data are

evenly distributed across classes and no bias is present. The

dataset created, however, had an uneven distribution within

classes, as shown in Fig. 5. During the model training, it

could occur that the predictions could have been skewed

towards the majority classes. In general, two strategies

could be applied [51]: re-sampling [52, 53] and cost-sen-

sitive re-weighting [54, 55]. The re-sampling includes

over-sampling (adding repetitive data) and under-sampling

(removing data), and both may introduce further issues,

such as the introduction of large amounts of duplicated

samples making the model susceptible to overfitting in

over-sampling, or the discarding of valuable samples that

are important for feature learning in under-sampling. In this

study, the cost-sensitive re-weighting approach was cho-

sen, which influences the loss function by assigning higher

costs to samples from the minority classes. Defined the

total number of samples in the dataset as N and the number

of classes in the dataset as C, the class weights must ensure

that the total number of effective samples is equal to the

total number of samples (N), also written as:

w1 � N1 þ w2 � N2 þ � � � þ wC � NC ¼ N ð6Þ

where wi is the weight for the class i, N is the total number

of samples, C is the number of unique classes, and Ni is the

total number of samples in the class i with i ¼ 1; 2; :::;C.

Moreover, each class should have an equal number of

effective samples, which can be presented as follows:

w1 � N1 ¼ w2 � N2 ¼ � � � ¼ wC � NC: ð7Þ

From Eqs. (6) and (7), the class weight (wi) for the class i

can be calculated as follows:

wi ¼
N

C � Ni
: ð8Þ

During the training phase, the weight differences will

influence the classification of the classes. The goal is to

penalise the majority class by giving them a lower class

weight while giving the minority class a greater weight.

The results of the computed class weight are presented

in Fig. 5, with the class Spinning Bike having the highest

number of samples (1481) and the smallest weight (0.40)

assigned, and the class Free Walking having the lowest

number of samples (90) and the highest weight (6.58).

Determined the weights that each class has on the

classification, the loss function has been modified, inte-

grating the class weights calculated using Eq. (8) into

Eq. (5). Hence, the class-balanced (CB) loss function used

can be written as follows:

CBðy; ŷÞ ¼ WCLðy; ŷÞ ¼ �
Xn�1

i¼0

wiyilogðŷiÞ ð9Þ

where WC is the vector containing all the class weights

calculated and wi is the calculated weight for the class i.

3.6 Performance assessment

To evaluate the performance of the proposed solution, the

neural network was trained and tested using a cross-vali-

dation approach, which divides the dataset into equal

portions and trains the model using all but one that is uti-

lised for testing. Since the dataset used in this study is

imbalanced, the validation used is a stratified cross-vali-

dation, which maintains unaltered the ratio between the

Fig. 5 Distribution of samples

with relative class weights in a

training set during cross-

validation
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number of samples per class in the different portions. The

number of portions and the number of repetitions of the

evaluation were set to 10. Alternatives solutions for eval-

uating the model’s performance are the plain k-fold cross-

validation, the manual splitting in training and test sets and

the leave-one-subject-out cross-validation; however, they

were not considered in this study because they can be

affected by the samples balance and the size of the dataset

used.

The outcomes of the evaluation were utilised to create a

confusion matrix, which is an error matrix that contrasts

the observations estimated by the solution with the ground

truth, the observations of reference. The confusion matrix

was used to extract four key evaluation metrics, including

Accuracy, Precision, Sensitivity, and F1-Score.

Accuracy is the measure of how often an algorithm

correctly classifies data points. However, it can be affected

by the balance of the dataset used and should therefore be

accompanied by other metrics for a more robust evaluation.

Precision is the number of true-positive predictions divided

by the total number of positive predictions made by the

algorithm. Sensitivity, also known as recall, is the pro-

portion of true-positive predictions to the total number of

actual positive samples. The F1-Score, which is the har-

monic mean of precision and recall, provides a balance

between these two metrics, giving an overall measure of

the precision and robustness of the classifier. Except for

accuracy, all metrics listed were calculated for each class

separately and then merged using a weighted approach that

took into account the number of samples for each class.

In addition, the area under the receiver operating char-

acteristic (AUROC or AUC) has been included to evaluate

the model performance, as it is more reliable in cases of an

imbalanced dataset. It identifies the ability of the model to

discriminate between positive and negative cases. The

AUC can be calculated as the area under the ROC curve,

which is, in turn, calculated as the trade-off between the

true-positive rate and false-positive rate across different

decision thresholds.

4 Results and discussion

The aim of this work was to develop a human activity

recognition algorithm that can take advantage of the

information collected by smart insoles. In this section, the

results obtained will be discussed and reasonable consid-

erations will be addressed.

The proposed algorithm, DeepHAR, was trained and

tested on data collected by five participants using a strati-

fied tenfold cross-validation, to ensure that the performance

is constant across multiple experiments. An early stop

technique was used for training the model, i.e. once the

model’s performance was stable, the training was ended. A

grid search investigation was defined for the identification

of the DeepHAR’s hyperparameters, which ended with the

model being trained for a total of 31 epochs with a batch

size of 32 samples and a learning rate of 10�3.

The proposed solution has demonstrated exceptional

performance, as evidenced by the outstanding results

achieved. It exhibits an overall high level of Accuracy in

recognising the different activities of 98:56%. The solution

effectively showcases its ability to process and identify the

different activities patterns in the data provided by the

smart insoles and to deal effectively with the class imbal-

ance issue as proven by the overall F1-Score and area

under the curve (AUC) values, of 98:57% and 99:25%,

respectively, which cannot be biased by definition by the

number of samples for each class used during the testing.

The cumulative confusion matrix, given in Table 2,

given by the use of stratified tenfold cross-validation

allows for analysing and comprehending in detail the per-

formance of the proposed solution in the recognition of

each activity. The Sitting class achieved the highest level

of performance, with 100% Precision and Sensitivity,

closely followed by the Spinning Bike class, which

achieved a Precision and Sensitivity of 99:82% and 100%,

respectively. The worst performing classes were Down-

stairs (90:19% Precision and 87:92% Sensitivity) and Free

Walking (92; 74% Precision and 93; 08% Sensitivity). The

major misclassifications of the Downstairs activities are

related to Upstairs activities. The two activities can result

in the same pressure and acceleration patterns depending

on the user who performs the activity as in both cases the

foot could rest completely on the ground and the swing

between one step and another is almost similar. Further-

more, the misclassification reasons can be traced back to

the lack of altitude information that did not allow the

algorithm to understand the direction in which the users

were walking, even if a variation of that was identified.

This issue could potentially be addressed in future work by

incorporating a barometer, which reports altitude data.

Overall, the misclassification rate between Downstairs and

Upstairs is about 7% of the samples, which requires further

investigation of their purity. Moreover, Downstairs activi-

ties were wrongly classified as Sit to Stand or Walking

activities. The incorrect classification of the Sit to Stand in

the Downstairs estimates can be associated with the change

in pressure when there is a phase of oscillation between one

step and another followed by a strong pressure of the foot

that first touches the ground, which is similar to the change

in pressure made in the action of getting up. Furthermore,

the misclassification between Downstairs and some

Walking activities can be explained by the nature of the

dataset, which included subjects collecting data in the wild
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and recording session of Downstairs activities by ascending

several stairs while walking on landings between floors.

For Free Walking activities, there was a high rate of mis-

classification with other Walking activities. Although the

Free Walking activities have been collected by the user

with the freedom to walk in any direction without con-

straints, they necessarily combine the different walking

speeds by creating an overlap between them. However,

different walking activities have been included in the study

for scenarios where the solution wants to be used for the

rehabilitation of patients, where ambulation capabilities

have to be analysed. Overall, fitness activities were

recognised at a higher rate than ambulation activities;

however, treating walking activities as the only activity

may improve the prediction.

To evaluate the impact of data pre-processing on the

performance of the proposed solution, a comparison was

made between its performance with and without pre-pro-

cessing. Additionally, to validate the proposed architecture,

it was compared against a multi-layer perceptron (MLP),

which is considered a basic feed-forward neural network

composed of only input, output, and one hidden layer. As

shown in Fig. 6, the proposed solution’s core architecture

outperforms the MLP solution, with an Accuracy of

96:89% compared to 91:99% for the MLP. However, by

incorporating data pre-processing techniques, an even

greater improvement in performance can be observed, with

the Accuracy reaching 98:56%. This comparison demon-

strates that the use of pre-processing techniques not only

improves the performance of the proposed solution but also

enables a simpler architecture such as the feed-forward

network to compete with state-of-the-art solutions that

utilise more complex architectures.

4.1 Comparison with state-of-the-art solutions

Considering the advances achieved in the literature, four

studies [24, 25, 27, 28] have been selected, which provided

enough information to be retrained on the available dataset,

Table 2 Cumulative confusion matrix of the DeepHAR against the testing dataset using a stratified tenfold cross-validation strategy

Predicted

!
Cross

trainer

Downstairs Fast

walking

Free

walking

Normal

walking

Sit to

stand

Sitting Slow

walking

Spinning

bike

Standing Stretch Upstairs

Reference

#

Cross

trainer

724 0 0 0 0 0 0 0 3 0 1 1

Downstairs 0 311 0 4 1 12 0 1 0 0 1 24

Fast

walking

0 7 1849 0 6 2 0 0 0 0 0 3

Free

walking

0 0 0 121 0 0 0 1 0 0 0 8

Normal

walking

0 4 9 2 1809 0 0 7 0 1 0 4

Sit to stand 0 0 0 0 0 293 0 0 0 2 0 1

Sitting 0 0 0 0 0 0 248 0 0 0 0 0

Slow

walking

0 3 2 2 2 1 0 1856 0 0 0 3

Spinning

bike

0 0 0 0 0 0 0 0 2199 0 0 0

Standing 0 0 0 0 0 2 0 0 0 438 0 1

Stretch 0 3 0 1 0 0 0 0 0 0 204 1

Upstairs 0 19 0 2 0 4 0 1 1 0 0 406

Bold values refers the principal diagonal of the confusion matrix

Fig. 6 Comparison of the precision performance of feed-forward

neural networks. By core architecture, it is meant the neural network

architecture proposed in this study without any optimisation
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for comparison with the proposed DeepHAR solution.

Deep learning and shallow machine learning were both

covered in the studies that were chosen. Studies on

machine learning were chosen because they contributed to

the development of popular models like random forests

[24] and SVM [25], while studies on deep learning inclu-

ded CNN networks, which are currently the most popular

despite their complexity. Particularly in this latter instance,

the two CNNs differ in how the data are handled since in

one research, the data are processed by a different network

for each modality before being combined [27], but in the

other, they are processed simultaneously [28].

These algorithms have been trained using our dataset,

however, remaining invariant with the number of sensors

included, but applying the settings defined in the related

papers. The settings involved for each experiment are

reported in Table 3.

The results obtained from the comparative analysis are

presented in Table 4. The solution proposed in this paper

outperformed the other solutions analysed. Overall, the

solutions based on deep learning outperformed those based

on shallow machine learning, even if in the latter an

engineering of the features has been employed, highlight-

ing the effectiveness of using deep learning for the analysis

of raw sensor data. The solution proposed by Wang et al.

[28] exhibited performance that is comparable to that of the

proposed solution, but with a higher standard deviation,

indicating that its results were more heavily dependent on

the samples included in the test set during cross-validation.

By contrast, the proposed solution’s use of a loss function

that penalises the majority class during training allows it to

handle the imbalanced dataset. Moreover, the importance

of data pre-processing can be further identified by this

comparison, because, under equal settings conditions, such

as the work proposed by Pham et al. [27], in which an

identical time window was used, our solution manages to

obtain better performance even if the neural network used

is simpler.

4.2 Study limitations identified

While the results are promising for real-life scenario

applications, the following limitations have been identified

for further work. The proposed architecture, comprised of

smart insoles, mobile application, and cloud server, is in a

prototype state and is currently focused on data collection

and data storage. The use of cloud storage made it possible

to collect data from study participants in an agile way and

to periodically update the data with which the model was

trained, obtaining better performance. Alternatives solu-

tions to the cloud, such as the embedding of the activity

recognition algorithm directly on the edge device (e.g. the

smartphone) can be adopted. However, it has a number of

drawbacks, including the need for larger memory capacity

and increases computational costs on the edge device, a

decrease in algorithm performance, and the inability to

update the model as new data are gathered. Furthermore,

the connection between smart insoles and the smartphone

has been provided by Bluetooth Low Energy; nevertheless,

in a future study, additional transmission technologies will

be explored such as Wi-Fi and ZigBee, which could pro-

vide additional benefits in indoor environments.

The activities involved in this study comprised ambu-

lation and fitness activities. Although their classification

has been adequately achieved by the proposed solution,

considering the walking activities at different speeds has

affected the final performance of the solution; hence,

combining them into a single activity can improve the

performance. Enhancing the set of activities with further

fitness activities, such as running or jogging, and daily

living activities can provide a way to develop a thorough

monitoring system for the subject’s daily life. Moreover,

transitioning between activities and interleaving between

them have not been entirely addressed, and while the

overlapping windows have lessened these two concerns,

they still require additional examination. The dataset used

is characterised by data collected from only five partici-

pants, so there is the risk of misclassification when using

this solution with data obtained from people who have no

resemblance to those analysed. The next stage, therefore,

Table 3 Settings used in the selected studies for the state-of-the-art performance comparison

Study Algorithm Sampling frequency (Hz) Window size

Presented work Feed-forward NN 200 downsampled to 20 by averaging 10 contiguous samples 2 s, 50% overlap

Pham et al. [27] Multi-input CNN 20 2 s, 50% overlap

Wang et al. [28] 1D-CNN 50 6 s

De Pinho et al. [24] RF 10 0.3 s

Sazonov et al. [25] SVM 400 downsampled to 25 by averaging 16 contiguous samples 2 s
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will be to collect more data from heterogeneous people,

including various ages and ethnicities, in order to promote

subject-independent learning and determine whether there

is a relation between participants’ characteristics and the

way the activities are carried out. Additionally, the

expansion of the dataset may favour the implementation of

a leave-one-subject-out cross-validation technique to assess

the model’s performance. This strategy enables testing the

solution on data from a subject that was not utilised during

training, demonstrating the solution’s generalisation. Since

the suggested algorithm is based on data collected by smart

insoles worn on both legs, the results may be unreliable if

the user of the system is unable to wear both, such as in the

case of a lower-limb amputee. Therefore, additional anal-

ysis will be performed to categorise those activities

involving only one leg.

5 Conclusion

In this paper, a smart insole-based human activity recog-

nition solution for ambulation and fitness activities has

been presented. The smart insole, comprised of pressure

and inertial sensors, has been used as the only device to

make the solution non-invasive for the user. Without using

any heuristic feature extraction techniques, a deep feed-

forward neural network method has been proposed for

processing directly the raw data and forecasting the activ-

ities. The proposed solution achieved an Accuracy and F1-

Score of 98.56% and 98.57%, respectively. The Sitting

activities obtained the highest degree of recognition, with

100% Precision and Sensitivity, closely followed by the

Spinning Bike class, which achieved a Precision and Sen-

sitivity of 99.82% and 100%, respectively. Overall, fitness

activities were recognised at a higher rate than ambulation

activities, which were affected by multiple misclassifica-

tions due to the stairs activities and overlap between the

various walking activities. Although there are some issues

in differentiating Downstairs from Upstairs activities, the

model has a high generalisation rate between classes as

demonstrated by the overall AUC value which is 99.25%.

Even though the integration of both free walking and

walking at various speeds led to overlaps that had an

impact on the classifier’s performance, it should be noted

that these activities are fundamental for rehabilitation

monitoring because they allow for the estimation of a

patient’s degree of ambulation. The deep feed-forward

neural network proposed in this study has been enhanced

by data pre-processing techniques, including data interpo-

lation for handling missing data, data segmentation of 2 s

with overlapping of 50%, and signal down-sampling by use

of the averaging technique for noise reduction. Moreover,

to handle the imbalanced dataset, a cost-sensitive re-

weighting approach has been involved to update the loss

function of the proposed model, penalising the majority

classes by using small weights and favouring the minority

classes by greater weights. To evaluate the effect of pre-

processing on the performance of the proposed deep

learning solution, a comparative analysis has been carried

out with and without pre-processing. The solution has been

compared further with a multi-layer perceptron (MLP) as a

basic feed-forward neural network. The results showed that

the proposed solution’s core architecture outperformed the

MLP, with an Accuracy of 96.89% compared to 91.99%

for the MLP. However, by incorporating pre-processing

techniques, the accuracy improved even further to 98.56%.

Furthermore, to better ascertain the capabilities of the

proposed solution, the results were compared with state-of-

the-art solutions trained with the same dataset, outper-

forming them. This comparison demonstrates that using

pre-processing not only improves performance but also

allows for a simpler architecture to compete with more

advanced solutions, making the solution feasible for health

monitoring and/or rehabilitation applications while reduc-

ing computational costs.

6 Future work

One of the key issues encountered in this study has been

the lack of individuals available to gather the data, which

made it difficult to examine how demographics and other

personal traits might affect the performance of the model.

Although in the literature multiple analysis has been

Table 4 Results of the state-of-

the-art performance

comparison. For all

experiments, a stratified tenfold

cross-validation was used

Study Accuracy (%) F1-Score (%) AUC score (%)

Presented work 98.56 (�0:44) 98.57 (�0:46) 99.25 (�0:23)

Pham et al. [27] 97.47 (�0:48) 97.41 (�0:55) 96.37 (�0:89)

Wang et al. [28] 98.34 (�1:18) 98.33 (�1:22) 97.20 (�1:82)

De Pinho et al. [24] 96.71 (�0:40) 96.70 (�0:43) 98.09 (�0:25)

Sazonov et al. [25] 94.98 (�0:48) 94.62 (�0:51) 97.26 (�0:27)

Bold values refers the best-performing model
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carried out in determining the effects of genetics, cultural

practices, and demography on the gait [56, 57], there is no

analysis in determining the impact that those factors have

during carrying out different activities. Furthermore, con-

sidering that even the same individual can perform the

same activity in different ways and that the proposed

solution is a data-driven solution, that relies mainly on the

data analysed, the first step in future research will be to

broaden the participant cohort, accounting for greater dif-

ferentiation and more age groups and diverse cultures.

With the aim of providing a system that can be used on a

daily basis, future research will include additional activi-

ties, such as running or jogging as well as daily activities.

Having multiple sensors available within the smart insoles

results in high energy expenditure, therefore, a future study

will focus on analysing the importance that each sensor has

on the classification and a minimum configuration will be

sought to reduce such consumption. Furthermore, given the

misclassifications in stair-related activities, the impact of

introducing a barometer into the proposed system for

evaluating altitude changes will be analysed.
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