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ABSTRACT 

Head and neck squamous cell carcinoma (HNSCC) is the eight most frequent cancer 

in the world, and approximately 2/3 of the patients are diagnosed at locally 

advanced stages (stage III or IV). Despite improvements in HNSCC management 

and the aggressiveness of first-line curative treatment, 65% of treated patients 

experience local recurrence or distant metastasis. Moreover, patients diagnosed 

with recurrence or distant metastasis have a poor prognosis (from 6 to 12 months) 

and 5-years survival less than 50%. From 2016 the clinical practice was 

revolutionized by the introduction of immuno-checkpoint inhibitors, approved for 

the treatment of recurrent/metastatic HNSCC patients. Nevertheless, only a small 

subset of patients respond to this therapy and currently predictive biomarkers are 

still under investigation. Herein, we investigated the tumor biology of R/M HNSCC 

patients, platinum-refractory, enrolled in the phase IIIb clinical trial Nivactor 

(EudraCT Number: 2017-000562-30), in which patients were treated with 

nivolumab. Across the study of single biomarkers and the extensive profiling 

through genomic and transcriptomic analyses, we aimed to characterize the tumor 

molecular peculiarity of patients that experienced response or those with the longer 

survival. While the prognostic/predictive role of Programmed Cell Death Ligand-1 

(PD-L1; studied by IHC), Tumor mutational burden (TMB) and microsatellite 

instability (MSI) appeared to be relatively limited for R/M HNSCC patients, 8 

expression signatures (retrieved from literature) showed up significant association 

with survival and contributed to highlight and extricate the extreme complexity of 

the tumor microenvironment of HNSCC, which appeared to be strongly 

immunosuppressive (suggesting and corroborating the activation of several 

mechanisms of immune evasion). Nevertheless, the testing of previously identified 

six HNSCC subtypes (De Cecco et al.) with specific biological and prognostic 

characteristics, indicated for two of them a strong prognostic role and a significant 

correlation with response. In conclusion, the current study demonstrated the strong 

relevance of gene expression signatures in HNSCC context (over the mere study of 

somatic mutations) to identify the biological features associated with benefits from 

immunotherapy. However, additional analyses for the validation of their 

significance are required.   
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1. INTRODUCTION 

1.1 History of cancer 

Evidence demonstrated that the history of cancer begins in ancient times, 

before the appearance of Homo sapiens: cancer was reported to be present 

in prehistoric animals by paleopathologists, studying hundred thousand 

years old fossils1. Nevertheless, cancer appeared to be closely related to 

Homo sapiens. The recent human history was described connected with 

oncologic disease in many written records during centuries, from 3000 BC 

by Egyptian and Chinese cultures, followed by Greek, Romans, till 

Contemporary Era. During the last 4000 years human begins are constantly 

trying to understand, characterize and eradicate the oncological disease23. 

Biologically speaking, cancer mostly represents the mirror of aging in all 

the living things; a reminder of oldness, an accumulation of tiredness, 

directly correlated to the rise in longevity. Nevertheless, it could be not 

only reduced to a mere representation of the time passing by. Cancer could 

mirror the results of an essential evolution condition, a consequence of the 

constant pressure at cellular and molecular level, inducing cells through 

several genomic changes, mostly influenced by the surrounding 

environment4,5. Nowadays, cancer is an urgent global issue. In 2018 cancer 

alone was responsible for nearly 10 million deaths, according to World 

Health Organization, and it is expected to be the leading cause of death in 

the world by the end of this century. The exponential growth worldwide 

could be partially explained by aging, social and economic development, 

limited access to oncology care, pollution, lifestyle choices (such as 

smoking and alcohol use). All these aspects result correlated with the 

increase in population and countries development. The biological 

contribution related to these factors is still under investigation6,7,8. The 

problems concerning this debilitating disease could not be discussed 



15 
 

examining only patient’s health status, even if it’s the imperative we must 

consider. As a matter of fact, cancer critically impacts the financial status 

of both patients and society. For instance, in 2015 in European Union more 

than €57 billion were spent for cancer-related healthcare costs9.  

1.2 Cancer origin 

When we apply the definition of cancer we usually think of a specific 

disease. However, deepening insight, cancer cannot be described as a 

single, unique entity, and its heterogeneity is mirrored in several ways. At 

date, more than 100 cancer types have been described, reflecting the 

complexity of this disease. Major cancer classification is based on the type 

of primary tissue in which the oncogenic process originates; for this 

reason, cancer can be classified in two large categories: solid tumors 

(approximately 90%) and hematologic malignancies (10%)10.  Solid 

tumors comprise:  

i) Carcinomas (90% of solid tumors) are classified the 

malignancies that arise in epithelial cells, at different layers and 

sites. When the disease starts at the basal layer, it is called basal 

cell carcinoma; while when it happens at the surface it is called 

squamous cell carcinoma (from name of the thin, flat, squamous 

cells at the top of the skin).  

ii) Sarcomas, it’s the name given to those cancers that originate in 

the bone’s cells and soft tissues, such as connective tissue, 

muscles, supportive tissue, etc. At date, more than 70 different 

types of sarcomas have been described.  
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Hematologic malignances include:   

i) Leukemia is one of the three malignancies affecting the 

hematopoiesis process and blood forming organs, including bone 

marrow; leukemia impaired the formation of healthy blood cells, 

including myeloid and lymphoid cells, resulting in a large 

accumulation of unfunctional cells in the blood circle. 

ii) Myeloma specifically involves the formation of plasma cells in 

bone marrow, consequently leading to anemia, or disease related 

to kidneys, and others.  

iii) Lymphoma is the third malignancy, and it interests blood 

forming tissues (specifically the lymphatic system and 

lymphocytes), leading to the aggregation of immature white 

blood cells and the formation of masses in the lymphatic vessels; 

it can be classified in non-Hodgkin’s lymphoma, the more 

prevalent form, or Hodgkin’s lymphoma, a more aggressive form 

of the disease.  

1.3 Types of carcinomas 

Even if the tissue, in which cancer generates, maintains specific 

characteristics in different organs, we known that each organ of origin 

represents a different oncological disease. Thus, cancers are additionally 

classified based on the organ in which the disease originates. In 2020 more 

than 19 million cases worldwide were distributed, accordingly to the site 

of origin, in 36 more frequent different cancers. According to incidence, 

the five most frequently observed cancer (independently from patients’ 

gender and country) were in order:  

1) female breast cancer, with 2,261,419 (11,7%);  

2) lung cancer, with 2,206,771 cases (11,4%);  
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3) prostate cancer, with 1,414,259 cases (7,3%);   

4) non-melanoma skin cancer, with 1,198,073 cases (6,2%);   

5) colon cancer, with 1,148,515 (6,0%)11.   

1.4 Head and nek cancer 

Head and neck cancer (HNC) are a large spectrum of malignancies that 

affect the upper aerodigestive tract, although they aggregate in a single 

classification, they not to be considered as a single entity. Cancers arising 

from different anatomic sites are considered as HNC, including cancers 

deriving from salivary gland, soft tissues, skin, mucosal membrane and 

even bones. They are frequently discovery by primary care physician, 

dentists, in routine tests12. The most common symptoms are dysphagia, 

otalgia, weight loss, oral pain, mucosal irregularity, and ulceration. 

Moreover, head and neck cancers are associated with pain, disfiguration, 

dysfunction, and psychosocial distress 13,14. In the complex heterogeneity 

of HNC, a distinct homogeneous characteristic is represented by histology: 

more than 90% of HNC are squamous cell carcinoma, cancers deriving 

from the epithelium. Head and neck squamous cell carcinomas (HNSCC) 

are the eight most common cancer in the world, accounting in 2020 for 

approximately 750,000 cases (of which 9.856 new cases in Italy, 

https://www.registri-tumori.it/) and over 400,000 deaths annually. The 

anatomical sites considered HNSCC are oral cavity (377,713 cases), 

larynx (184,615 cases), oropharynx (98,412 cases) and hypopharynx 

(84,254 cases, Figure 1)15. Therefore, even if the histology considered is 

univocal, the intricacy of HNSCC is strongly represented by the subsites 

that are considered16.  
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Figure 1. Head and neck squamous cell carcinoma subsites 

 

1.4.1 Oral squamous cell carcinoma 

Oral cavity cancer is the most frequent HNSCC, and it is defined as a 

malignant neoplasia of the oral cavity, including different subsites, such as 

floor of mouth, lips, upper alveolus and gingiva, hard palate, anterior 

tongue, and buccal mucosa. The features that can be present are exophytic 

(i.e., growing off the surface) versus ulcerative (i.e., invading below the 

surface)17. Mostly, the malignance originates from squamous tissues, and 

for this reason is known as oral cavity squamous cell carcinoma 

(OCSCC)18,19. Typically, the epithelial cells exhibit enlarged nuclei, an 

increased and abnormal mitosis, and abnormal cells. The number and the 

distribution of the atypical epithelial cells determine the degree of 

dysplasia, that can be mild, moderate, or severe17. OCSCC are mostly 

associated with the classical HNSCC risk factors, such as smoking tobacco 

and alcohol consumption, but also poor oral hygiene and diet lacking 

vegetables and fruit and rich in animal proteins and fats. In most the cases 

OSCC is diagnosed in advanced stages, leading to a shorter survival. 
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1.4.2 Laryngeal squamous cell carcinoma 

Laryngeal squamous cell carcinoma is a malignant tumor of the respiratory 

tract, and it is the second common epithelial tumor of head and neck 

cancers. It can develop from different anatomical sites, such as 

supraglottis, glottis, subglottis. As for all HNSCC patients are prevalent 

male, age ranges between 50-70 years old and risk factors are smoking and 

alcohol abuse. Frequently, these habits lead to misunderstanding of cancer-

related symptoms, inducing late diagnosis of cancer.  The overall survival 

at 5-year highly depends on the staging and anatomical site involved20. 

1.4.3 Oropharyngeal squamous cell carcinoma 

Oropharyngeal squamous cell carcinoma (OPSCC) indicates all the cancer 

that originates from epithelium of throat, tonsils, posterior tongue, soft 

palate, posterior and lateral pharyngeal walls. Major symptoms are sore 

throat, odynophagia, voice changes, weight loss and dysphagia.  It can be 

observed ulcer or red/white patch when physical examination is 

performed.  

1.4.3.1 OPSCC HPV negative 

OPSCC can be divided in two groups depending on HPV-infection: 

OPSCC Human Papilloma Virus (HPV)-related, and OPSCC not HPV-

related. For the last category the classical HNSCC risk factors (i.e., 

smoking tobacco and alcohol consumption) have been identified as major 

risk factors. Less common risk factors are poor nutrition, diet lacking 

vegetables and fruits, marijuana smoking.  

1.4.3.2 OPSCC HPV positive 

To date, more than 240 HPV types had been identified. HPV that can infect 

the human mucosal epithelia are divided in low risk (non-oncogenic) and 
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high risk (oncogenic). The most oncogenic types are HPV-16, HPV-18, 

HPV-31, and HPV-33, which are sexually transmitted and are involved in 

the malignant transformation of infected cells21. HPV-positive OPSCC 

patients differ from HPV-negative because of their age (they usually are 

younger), they do not have smoking and drinking dependency, they are 

mostly men and reported to have frequent oral sex with several partners. 

Notably, HPV-positive OPSCC patients have a better survival compared 

to HPV-negative OPSCC patients22,23.   

1.4.4 Hypopharyngeal squamous cell carcinoma 

Hypopharyngeal cancer account for 3% of all head and neck cancers, and 

the most involved anatomical sites are posterior and lateral pharyngeal 

walls. Due to its anatomy, it usually involves lymphatic and vascular 

systems, frequently leading to metastasizing process. Risk factors are the 

common risk factors for HNSCC (smoking and alcohol abuse). However, 

symptoms are uncommon, and the involved sites are difficult to be 

inspected, making identification of cancer highly challenging and mostly 

diagnosed at advanced/metastatic state.  For these reasons hypopharyngeal 

carcinoma has one of the worst prognoses of all HNSCC, with a 5-year 

overall survival rate of 30-35%24 

1.5 HNSCC Diagnosis  

When patients present suspicious lesion or symptoms, the first 

examination is performed by a surgeon or otolaryngologist and consists in 

an analysis of the upper digestive tract17 . For the complete evaluation and 

diagnosis of the case, the biopsy or fine-needle aspiration of the suspicious 

lesion and the lymph node is needed. Additionally, imaging of head and 

neck and lymph nodes is performed, to understand the spread of the 

disease. The aggressiveness of the disease is evaluated looking at cell 
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differentiation, lymphatic invasion, lymph node metastasis, extranodal 

extension through the lymph node involvement16. Moreover, because of 

the distinct biology behind the HPV-positive and HPV-negative OPSCCs 

HPV testing should be performed for OPSCC cases. After the pathological 

diagnosis, radiological imaging (including positron emission tomography 

-PET, computer tomography scan -CT, and magnetic resonance imaging -

MRI) is performed to determine the staging and the treatment approach. 

The stage of head and neck cancer (HNC) is based on the Tumor, Lymph 

node, Metastasis (TNM) system (Table 1), and for this reason HNSCC are 

included in head and neck chapter of the American Joint Committee on 

Cancer Staging (AJCC) manual, at the present at its eighth edition25. Early 

stages (stage I-II) generally include smaller tumors without the lymph 

nodes involvement. Meanwhile, later stages (stage III-IV) are 

characterized by invasion of surrounding structures, with the final stage 

characterized by distant metastasis spreading. Approximately 30-40% of 

HNSCC patients are diagnosed with stage I or stage II disease, while others 

are mostly (60-70%) diagnosed at locally advanced stages (stage III or IV) 

involving loco-regional lymph nodes. Moreover, 10% of patients with 

locally advanced disease already have distant metastases at initial 

presentation26. Despite improvements in HNSCC management and the 

aggressiveness of curative treatment, locally advanced disease carries a 

high risk of local recurrence and distant metastasis (developed in more than 

65% of HNSCC patients). Patients diagnosed with recurrence or distant 

metastasis have a poor prognosis (6 to 9 months in absence of treatment), 

with a 5-year overall survival less than 50%27.  
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T 

CATEGORY 
T CRITERIA 

Tis Carcinoma in situ 

T1 Tumor ≤ 2 cm  

T2 2 cm < Tumor ≤ 4cm 

T3 Tumor > 4 cm or extended to lingual surface of epiglottis 

T4 Moderately advanced or very advanced local disease 

T4a 
Moderately advanced local disease; tumor invades the larynx, extrinsic muscle of 

tongue, medial pterygoid, hard palate, or mandible 

T4b 
Very advanced local disease; tumor invades lateral pterygoid muscle, pterygoid 

plates, lateral nasopharynx, or skull base or encases carotid artery 

N 

CATEGORY 
N CRITERIA 

N0 No regional lymph node metastasis 

N1 Metastasis in a single ipsilateral lymph node, < 3 cm and ENE-negative 

N2 

3 cm < Metastasis in a single ipsilateral lymph node < 6 cm and ENE-negative; 

or metastases in multiple ipsilateral lymph nodes < 6 cm and ENE-negative; or 

metastasis in bilateral or contralateral lymph nodes, none larger than 6 cm in 

greatest dimension and ENE-negative 

N2a 3 cm < Metastasis in a single ipsilateral lymph node < 6 cm and ENE-negative 

N2b Metastasis in multiple ipsilateral lymph nodes < 6 cm and ENE-negative 

N2c Metastasis in bilateral or contralateral lymph nodes < 6 cm and ENE-negative 

N3 
Metastasis in a lymph node > 6 cm and ENE-negative; or metastasis in any 

lymph node(s) and clinically overt ENE-positive 

N3a Metastasis in a lymph node > 6 cm and ENE-negative 

N3b Metastasis in any node(s) and ENE-positive 

M 

CATEGORY 
M CRITERIA 

cM0 No distant metastasis 

cM1 Distant metastasis 

pM1 Distant metastasis, microscopically confirmed 

Table 1.  Staging criteria according to Tumor, Lymph node, Metastasis (TNM) 

system 

1.6 Cancer molecular profiling 

During the past decades, genome-wide technologies enabled considerably 

progresses in the molecular biology of human cancers. Omics technologies 

are designed for the comprehensive detection, as an example, of DNA 

(genomics) and mRNA (transcriptomics). The acquired capability of 

investigating the whole genomes, transcriptomes or other different aspects 

in a single experiment has allowed an increased tumor profiling and tumor-

related mechanism understanding28,29 
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1.6.1 Genomics 

For years cancer have been described as a genomic disease. The classic 

model of carcinogenesis showed the accumulation of genomic variations 

in somatic cells. Indeed, all the cancer genomes carry mutations. A 

mutation, for its definition, must affect a gene and the gene alteration 

consequently must affect, in different ways, the protein function. 

Generally, it is known that mutations can be germline (occurring in 

gametes; this kind of mutation could be inherited by progeny) or somatic 

(occurring in the other cells of the body; this kind of mutation are not 

transferable through progeny)30. Moreover, mutations can affect the 

chromosome entirely, involving the number of chromosome (increasing 

the number in case of polyploidy, or decreasing the number in case of 

haploidy) or can affect the structure of chromosome (by deletion, 

duplication, inversion, insertion, and translocation events). Mutations can 

affect DNA sequence too with indels, which are 

insertion/deletion/duplication of nucleotides. Furthermore, mutations 

could be point mutations, involving a single nucleotide of DNA, and called 

single nucleotide variants (SNVs). Point mutations could be classified in 

three categories:  

a) Missense mutation: it is a DNA alteration for a single base, and it 

has as result the substitution of one amino acid in the protein, the 

substitution in the protein sequence must affect its function; 

b) Nonsense: it is a change in DNA that end prematurely the signal of 

the end of the protein, it results in impairing the protein function; 

c) Frameshift: the addition or removal of a single DNA base alters the 

reading structure of the gene (for each base corresponds one codon 

that codification for an amino acid), and the shifts leads to the 

change of the amino acid encoded.  
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At genomic level, it is known that mostly two types of genes are 

responsible and must be involved in the malignant transformation, and they 

are called proto-oncogenes (then converted into oncogenes) and tumor-

suppressor genes. However, complex organisms possess several biological 

mechanisms for protecting cell’s health; for this reason, in order to start 

the oncogenic process, the accumulation of mutations in these two types 

of genes is required. In particular, somatic mutations in proto-oncogenes 

are effective when they make the gene constitutively active. A common 

analogy compares them to automobile’s gas pedal stuck in the acceleration 

mode. Similarly, the overactivation of oncogenes leads to the exaggeration 

in encoding proteins which function increase the proliferative ability. On 

the other hand, tumor-suppressor genes are targeted by somatic mutations 

in the opposite way, leading to the inactivation of the gene. Remaining in 

the car analogy, tumor suppressor genes are like brakes for the car. 

However, the effective result is the same: the induction of a gain for the 

cell in terms of proliferation capability30,31. Advances in next generation 

sequencing (NGS) technologies gave the opportunity to investigate the 

whole genome/whole exome of tumor and normal tissue, and to generate 

an enormous catalogue of cancer-related somatic mutations, by subtracting 

the relative normal component. It was discovered that cancer genome was 

highly different between individuals, and that each cancer possessed a 

peculiar profile32. It has been reported that HNSCC develops by a multistep 

process through well-defined histopathologic phases. However, for 

HNSCC development and progression few genetic aberrations have been 

identified, and several candidates are still under investigation, such as 

mutations on TP53 and EGFR33,34 . The difficulty to obtain a well-defined 

genomic profile of HNSCC could depends on its genomic heterogeneity, 

generated by the variety of anatomical sites involved, and by the different 

risk factors considered. Besides, the difficulty to establish a precise 
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genomic model of HNSCC, including mechanism of carcinogenesis and 

driven alteration, could be also explained by the difficulty of understand 

them based on genomic profile only. Therefore, to understand the HNSCC 

complexity additional omic areas need to be taken into consideration 35. 

1.6.2 Transcriptomics 

In multicellular organisms the same genome can be found in almost every 

cell. However, not all the genes are transcriptionally active in all the cells 

and the different gene expression patterns define the type of cell and the 

relative tissue. During the last twenty years, the introduction of concepts 

such as alternative splicing, RNA editing, alternative transcription 

initiation and termination sites and the study of their effects have 

revolutionized the concept of cancer biology. In contrast to the genome, 

which appears to be more static, transcriptome changes in response to 

various cellular stimuli. As for example, the organisms’ transcriptome 

dynamically depends on epigenetic factors and even from environmental 

conditions. During 1990s early methods to assess the gene expression were 

Northern blotting and reverse transcriptase quantitative polymerase chain 

reaction (RT-qPCR). However, these methods evaluated a small and 

limited number of transcripts. With the introduction of high-throughput 

technologies, such as microarrays and RNA sequencing, it was quickly 

possible to investigate at the same time the expression of thousands of 

genes and their transcript variations. Moreover, in contrast to genomic 

study, the transcriptome allows the inference of biological activities. 

Indeed, transcriptomics hold the promise to be an accurate tool for largely 

detecting the tumor complexity. Studies based on both genomic and 

transcriptomic provide a better understanding of the structure of cancer 

genome and the possible mechanisms behind. The introduction of 

transcriptomic in cancer profiling has the potentiality that allows the 

characterization and comprehension of different molecular subtypes and 
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the enabling patients’ stratification, crucial aspect for reaching the final 

goal of personalized medicine. Indeed, in HNSCC several gene expression 

subtypes have been identified, overtaking the rigid definitions of genomic 

only study36–39. Moreover, several studies have identified and evaluated the 

presence of biomarkers using gene expression signatures. A gene signature 

can be defined as a single or a combination of specific expression profiles, 

evaluating the association of the gene expression with cancer diagnosis, 

disease prognosis or prediction of the response to specific therapies40. A 

prognostic signature is described as a biologic tool that once measured 

provides information about outcome and course of the disease. Instead, a 

predictive signature is a biological tool that once measured provides 

information about the patient’s benefit from a therapy, independently from 

the prognosis. The accuracy of the gene signature should then be validated 

in independent cohorts, with different techniques, and by several teams. 

Gene expression signatures have been included even in clinical trials and 

preliminary results suggest that transcriptomic analysis could better define 

responding patients to specific therapies than genomic data alone. 

However, at date, only few gene expression signatures have been 

translated in clinical practice for patient management35.   

1.7 Tumor microenvironment 

For several years cancer has been described as a disease of proliferating 

and invasive cells, a mere genetic disease, caused by a graduate 

accumulation of proliferative advantageous mutations, with the final result 

of a malignant cell transformation. However, recent evidence showed that 

cancer can not be considered as autonomous cells with a hyper 

proliferative profile; rather cancer must be described as a complex disease 

involving several biological components. The first evidence of the 

presence of biological elements (not historically considered as “malignant” 



27 
 

or “cancer-related”) in tumor microenvironment (TME) was proposed 

during the 19th century, when Rudolf Virchow reported the detection of 

leucocytes in tumor tissue, opening the concept of the balance and link 

between the inflammation and the cancer development41. At date, we know 

that tumors are complex ecosystems, greatly shaped by TME, which is 

composed by several non-transformed cell types, such as immune cells 

(i.e., neutrophils, macrophages, lymphocytes), stromal cells (i.e., 

endothelial cells, pericytes, fibroblast), and non-cellular components (i.e., 

extracellular matrix as collagen, fibronectin, and others). The dynamic 

interaction and the crosstalk between cancer cells and the other cells 

present in the TME influences growth, tumor progression and invasion, 

shaping the cancer architecture. As an example, the chronic inflammation, 

induced in the context of TME, is strictly related to cancer progression and 

drug resistance and stromal cells promote the cancer invasion by inducing 

formation of new blood vessels5. For these reasons, TME investigation is 

essential to understand the mechanisms behind cancer formation, response 

to therapy, drug resistance and to develop new therapeutic strategies42–44.   

1.7.1 Immune components 

1.7.1.1 Macrophages 

These cells are considered as part of innate immune system and 

differentiate from monocytes. After their activation, macrophages could be 

referred as type M1 and type M2. Type M1 macrophages are considered 

as proinflammatory, and their activation is driven by INF-gamma. They 

are considered as “anti-tumor” and have been observed in the first stages 

of tumor progression. Nevertheless, when tumor progresses, TME 

influences macrophages differentiation in type M2, defined as “anti-

inflammatory”45. Type M2 macrophages stimulate tumor progression by 

increasing angiogenesis, proliferation, and epithelial-mesenchymal 

transition. Moreover, type M2 macrophages (in concomitance with Tregs) 
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secrete cytokines such as IL-10 and TGF-beta, both inducing potent 

immunosuppression, impairing the activities of NK, B-cells, and T-cells. 

A high level of type M2 macrophages is associated with poor prognosis in 

many oncological diseases. Macrophages, when associated to 

tumorigenesis are called tumor-associated macrophages (TAM). TAM can 

secrete chemokines and cytokines (e.g., TGF-β, IL-6, IL-10, and TNF-α), 

enhancing stemness and promoting epithelial mesenchymal transition46.   

1.7.1.2 Cytokines  

Cytokines are small, secreted proteins that, based on their function and 

structure, can be divided into different superfamilies, including interferons 

(INFs), interleukins (ILs), tumor necrosis factors (TNFs), transforming 

growth factors (TGFs), and chemotactic cytokines (chemokines). One of 

the cytokines roles is to alert of an infection and tissue damage the immune 

system; however, the signalling pathways of inflammation response are 

shared with carcinogenesis, and a persistent signalling in the TME can lead 

to chronic inflammation state, a tumor-supportive immune 

microenvironment, in which anti-tumor immunity is suppressed. In this 

state, cytokines are usually overexpressed, and they are regulated by 

transcriptional and post-transcriptional mechanisms, modified by 

oncogenic transformation, hypoxia, and other metabolic alterations. 

Moreover, cytokines impact on anti-tumor immune response, promote 

proliferation, and influence drug response43,47. As an example, interleukin-

2 has been shown to be one of the major proinflammatory cytokines 

produced by T-cells, enhancing their proliferation and cytotoxic 

response48,49.  

1.7.1.3 Neutrophils  

Neutrophils are among the first immune cells recruited during 

inflammation, and they are involved in different processes, such as 
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phagocytosis and exocytosis of protease. High levels of neutrophils and 

high ratio between neutrophil/lymphocytes in the TME of cancer patients 

have been associated with poor prognosis. Their recruitment in the TME 

and reprogramming in protumor neutrophils is mediated by TGF-beta, and 

chemokines, such as CXCL1, CXCL2, CXCL5 45. 

1.7.1.4 NK cells 

Natural killer (NK) cells play their role in the innate immune response, 

having a cytolytic activity in response to transformed cells. Their 

immunosurveillance is mediated by different stimuli, such as the inhibitory 

effects that has the major histocompatibility class I (MHC-I), a target 

receptor presents on normal cells, but a usually a deficiency for cancer 

cells. When the NK binds the MHC-I present on healthy cells, the NK is 

inhibited in its function. On contrary, when the MHC-I is missing, NK 

cells mark the cancer cell as unhealthy and induced them to programmed 

cell death45.  

1.7.1.5 T-cells  

They are part of adaptative immune system, with an inflammatory or anti-

inflammatory role. In the primary steps of cancer proliferation, naïve T-

cells migrate in TME where they eliminate cancer cells. High levels of T-

cell infiltration are associated with a favourable prognosis in several cancer 

types. Among the several T-cell types, CD8+T-cells are the most abundant 

against cancer cells, while CD4+T-cells mediate the anti-tumoral response 

through the secretion of high number of cytokines, such as IL-2, TNF-

alpha and IFN-gamma, involving a cascade that recruits NK and 

macrophages50,51.  

1.7.1.6 B-cells  

B lymphocytes are the main components of adaptive immunity response, 

and although the presence of B cells in the TME has been described in 
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different carcinomas, the role of B cells in cancer progression is far less 

investigated and understood than the role of T cells. It has been observed 

that B cells promote and as well as inhibit the anti-tumor immunity. 

However, for several different cancer types, the presence of B cells in 

tumor microenvironment have been primarily associated to a negative 

outcome, and B cells to immunosuppressive effects52–56. 

1.7.2 Stromal components 

1.7.2.1 Endothelial cells 

These cells are involved in the building of blood vessels, essential for 

tumor formation and growth. When they are involved in tumorigenesis, 

they are usually called tumor endothelial cells; their shape and phenotype 

change, becoming similar to the tumor itself. Tumor endothelial cells could 

derive directly from differentiation of cancer cells, or they can be recruited. 

The most known process in which they are involved is angiogenesis 

(strictly connected to tumor hypoxia), nevertheless they also promote 

distant metastasis and drug resistance, impairing even drug delivery. For 

all their processes they take advantage from various chemokine receptors 

(CXCR), such as atypical chemokine receptor 1 (ACKR1), ACKR2, 

CXCR7 and others44.  

1.7.2.2 Pericytes  

They are multifunctional cells, and in the context of TME, along with 

endothelial cells they are involved in angiogenesis process and 

tumorigenesis. Moreover, pericytes are strictly related to function of 

immune system, including recruitment of leucocytes from blood vessels 

and lymphocyte activation. It has been shown that greater amount of 

pericytes correspond to a better prognosis, while in some tumors it has 

been seen that pericytes production promotes the growth of cancer. To 
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date, addressing a better knowledge of pericytes subpopulations is 

necessary to understand their role in promoting tumor formation41,44.  

1.8 History of cancer therapy 

During the last century cancer therapy has evolved. Several progresses 

have been obtained from 19th century, when X-ray and radiation were 

discovered, and when in the 20th century surgery started to be studied. 

From 1930s treating cancer became an object of research, and 90 years 

later several improvements have been introduced. Nevertheless, the history 

of cancer treatment showed several ups and downs, and still nowadays 

more than one approach involves high treatment doses to kill cancer cells 

(treatment dose that contemporary damages healthy cells). In 1950s the 

word “chemotherapy” was coined, since 1958 when the first cancer patient 

was cured with the use of a single chemotherapeutic agent. In 1960s 

surgery and radiotherapy were introduced as therapy for solid tumors, and 

promising results for curative intent were obtained in breast cancer 

patients. Moreover, in 1960s the concept of adjuvant chemotherapy was 

proposed. In 1978 the combination of cisplatin, and other agents for the 

cure of metastatic cancer was an innovation, underlying that the possibility 

to combine drugs and its importance in fighting cancer were related to the 

different phases of cellular cycle in which cancer cells were passing 

through. The acquired wisdom enlightened the concept of the essentiality 

of tumor biological characterization to treat patients as best as it could. In 

1980s drugs, specifically targeting cancer biological mechanisms, were 

tested and in 1990s targeted therapy was introduced. Since 1990, cancer 

incidence and mortality have been decreasing despite the increasing in 

population’s age. However, what highly changed the paradigm and 

contributed to cancer therapies were the genetic and molecular biological 

studies introduced and rising from 1990s. At date, the acquired knowledge 
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has allowed to understand that effectiveness of treatments highly depends 

on many individual factors, such as tumor stage, location, as well as 

patients’ overall health, and age. Several personal factors should be 

considered for selecting cancer treatment, and above all biological profile 

of the tumors. The last and the future decade of study regarding cancer 

treatment have been and are going to be dedicated to gain more and more 

knowledge towards improvements for personalized treatment57,58.  

1.9 HNSCC therapy  

For HNSCC treatment decision is based on primary site, stage, tumor 

histology, human papilloma virus status, comorbid health condition and 

patient’s performance status and a multidisciplinary team is required for 

the choice evaluation. 

1.9.1 Standard-of-Care (SoC) treatment for early stages   

For these patients, the treatment modality depends on the accessibility of 

anatomical site, with the primary aim to minimize the morbidity and 

preserve the function. Innovative techniques, including robotic surgery, 

minimally invasive microsurgery, and image-guided radiotherapy are 

utilized. Surgery and radiotherapy are preferred over other treatments, 

allowing the total resection of the disease, and reducing the function 

impairing 59. 

1.9.2 SoC treatment for locally advanced stages  

For patients with a locally advanced disease a multimodality approach is 

recommended. Treatment decision for these patients strongly depends on 

the tumor size and stage, anatomical location, patient’s age, and 

performance status. If possible, surgical resection is preferred, followed by 

radiotherapy or chemoradiotherapy. When surgery is not applicable, 

chemoradiotherapy is considered as curative standard. No matter of 
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previous curative treatment was applied, more than half of patients 

experience a relapse or a distant metastasis60,61.  

1.9.3 SoC treatment for recurrent/metastatic disease 

Patients with local recurrence or metastasis (R/M) can not be treated with 

surgery, because of the size of the disease or with radiotherapy, since re-

irradiating the normal tissue is limited by the toxicity and tolerability. Until 

recently, for years the SoC was based on platinum with or without 

cetuximab (anti-epidermal growth factor receptor -EGFR- targeted drug) 

or targeted therapies alone (cetuximab, methotrexate, and taxanes). These 

agents were used alone or in combination, depending on patient’s age, 

performance status, symptoms and co-existing condition caused by the 

prior therapy62. Anyhow, no matter which chemotherapy regiment in 

combination with cetuximab is applied, prognosis for R/M HNSCC 

remains poor (with a median overall survival after diagnosis < 1 year). 

Moreover, all these agents are associated with side effects and the response 

rate is low (from 10 to 13%). Unfortunately, the choice between these 

systemic therapies reduced the treatment as palliative therapy because 

regression (when present) was transient and failed to significantly increase 

patients’ survival. The heterogeneous phenotypes of HNSCC made the 

response to targeted therapies limited, creating an urgent demand for 

effective new therapies6364. 

1.10 Immunotherapy 

From 2016 the oncology practice was drastically transformed by the 

introduction of immune-checkpoint inhibitors (ICI), particularly regarding 

anti-programmed death protein-1 (PD-1) antibodies (nivolumab, 

pembrolizumab) for the treatment of patients with recurrent or metastatic 

HNSCC26,65,66 . These agents are now used for both first- e or second-line 

settings and promising prospects have been shown for the treatment 

https://doi.org/10.4414/smw.2018.14625
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algorithm for HNSCC. The fascinating aspect of immunotherapy relays on 

the immune system potentiality to fight cancer alone, enhancing immune 

system response by blocking suppressive signals through PD-1/PD-L1 

(Programmed death-ligand 1) pathway. Indeed, these agents do not target 

cancer cells directly, but bind receptors/ligands on immune cells, 

modulating their activity to eliminate cancer cells. Immunotherapy 

demonstrated the existence of anti-cancer immunity even in HNSCC 

patients. Undoubtedly, the curative effects obtained by immune-

checkpoint inhibitors showed a greater survival benefit than traditional 

targeted chemotherapy drugs, and ICI has transformed the lives of HNSCC 

patients. At the present, anti-PD-1 agents have become the current standard 

of care for management of HNSCC R/M67,68. 

1.11 Major clinical trials using anti-PD-1 agents for 

R/M HNSCC 

Recently, two PD-1 inhibitors (pembrolizumab and nivolumab) have been 

approved for the treatment of R/M HNSCC, both in first line and second 

line. Two trials were conducted contemporaneously, such CheckMate-141 

and KEYNOTE-012. The first was a phase III randomized trial, comparing 

nivolumab with chemotherapy (docetaxel, cetuximab or methotrexate)69. 

The study demonstrated an improved survival in patients treated with 

nivolumab compared to those treated with chemotherapy (7.5 vs 5.1 

months, Table 2). Overall, it was observed that patients responded to 

nivolumab regardless the therapy received before, but those who did not 

received cetuximab responded better to immunotherapy. Moreover, 

despite the clear benefit for some patients, the PD-L1 expression made no 

differences on survival endpoints in CheckMate-141 and the same was 

observed in KEYNOTE-012. KEYNOTE-012 was a phase Ib 

nonrandomized trial, in which patients were treated with pembrolizumab70. 
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Some of R/M HNSCC patients experienced a durable response, lasting 

more than 2 years. The study assessed the drug’s safety and clinical activity 

in treatment of R/M HNSCC. As a result, pembrolizumab and nivolumab 

were approved in 2016 for the treatment of R/M HNSCC following 

progression on platinum chemotherapy, despite the PD-L1 expression. 

KEYNOTE-040 was a trial that investigated pembrolizumab to confirm 

the previous observation of KEYNOTE-012. Also in this trial, it was 

observed that patients tended to respond better if previously they did not 

receive cetuximab. Moreover, in the trial it was observed an association 

between PD-L1 (TPS ≥ 50%) and overall survival71. More recently, in 

KEYNOTE-048 was investigate the role of pembrolizumab in first line 

therapy versus SoC in patients with platinum-sensitive, newly diagnosed 

R/M HNSCC72. KEYNOTE-048 was the only trial to date that investigated 

the treatment of platinum-sensitive R/M HNSCC: It was a phase III trial 

that randomly allocated patients with R/M HNSCC to pembrolizumab 

monotherapy (n=301), pembrolizumab plus platinum and 5-fluorrouracil 

(n=281) or cetuximab plus a platinum and 5-fluorouracil (n=300). In this 

trial patients were predominantly male (>80%) and age varies from 20 to 

94 years old. Scientists investigated the role of PD-L1 expression (CPS), 

p16 status (for HPV status), and performance status. They observed a 

correlation in the population of patients treated with pembrolizumab 

between PD-L1 (CPS ≥ 1 and CPS ≥ 20) and Overall survival (OS), but 

they did not observe a correlation of PD-L1 with Progression free survival 

(PFS). Chemoimmunotherapy OS resulted superior to standard 

chemotherapy in all the cohorts regardless CPS score, and response rate 

were higher in the chemotherapy containing arms compared to 

pembrolizumab alone. The investigators concluded that pembrolizumab 

containing arms should be considered as first-line treatments in R/M 

HNSCC. Pembrolizumab was approved as single-agent for CPS ≥ 1 or 
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chemoimmunotherapy for platinum-sensitive R/M HNSCC patients, not 

amenable to surgical salvage or radiotherapy73–75.  Meanwhile, first-line 

combination of nivolumab plus ipilimumab did not significantly improved 

OS compared to EXTREME regimen for patients with R/M HNSCC, 

according to results from the phase 3 Checkmate-651 trial76. 

Clinical 

trial 

Setting Trial 

phase 

Treat

ment 

Enrolled 

patients 

Median PFS 

(months) 

Median 

OS 

(months

) 

PD-L1 

expression 

(cut-off 

considered) 

Checkmate

-141 

Second line 

(platinum 

refractory) 

Phase 

III 

Nivolu

mab vs 

SoC 

240 and 121 

R/M HNSCC 

2.0 vs 2.3 7.5 vs 

5.1 

TPS ≥ 1% 

Keynote-

012 

Second line 

(platinum 

refractory) 

Phase 

Ib  

Pembr

olizum

ab 

60 R/M 

HNSCC  

2.0 13.0 TPS ≥ 1% 

Keynote-

040 

Second line 

(platinum 

refractory) 

Phase 

III 

Pembr

olizum

ab vs 

SoC 

247 and 248 

R/M HNSCC 

2.1 vs 2.3 8.7 vs 

7.1 

CPS ≥ 1% 

TPS ≥ 50% 

Keynote-

048 

Frontline 

(platinum 

sensitive) 

Phase 

III 

Pembr

olizum

ab vs 

Pembr

o + 

PFE 

vs 

Cetuxi

mab + 

PFE 

301 and 281 

and 300  

R/M HNSCC 

2.3 vs 4.9 vs 

5.0 

11.6 vs 

13.0 vs 

10.7   

CPS ≥ 1% 

CPS ≥ 20% 

TPS ≥ 50% 

 

Table 2. Comparison between the major clinical trials using anti-PD-1 agents for 

R/M HNSCC.   
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Legend. PD-L1, programmed cell death ligand-1; R/M, recurrent and/or metastatic; 

PFE, platinum/5-fluorouracil/cetuximab regimen according to the EXTREME trial; 

SoC, standard of care (methotrexate or docetaxel or cetuximab) 

 

Nevertheless, despite the clear progresses obtained introducing 

immunotherapy in the treatment of HNSCC patients, limitations should be 

considered. The first and major limitation is that only a small proportion 

of patients have benefited from this therapy and a low response rate is 

obtained. An estimated 82-87% of R/M HNSCC patients, platinum-

refractory treated in second line, do not have any benefit from these agents, 

or if any response is assessed, successively it is followed by disease 

progression or/and death77. A first limitation of immunotherapy is linked 

to the several side effects, comprising also autoimmune adverse events, 

that could become even life-threatening and highly challenging in clinical 

practice78. The second limitation is the absence of evident predictive tools 

to assess patients’ response, required for stem the immune-related 

toxicities and the high cost of these antibodies made. Accounting the 

HNSCC heterogeneity, identify patients that will respond to 

immunotherapy still remain a challenge. Therefore, the necessity of clear 

predictive markers is undeniable79,80. 

1.12 Association of clinical variables with ICI 

response 

In the context of HNSCC some clinicopathological variables are under 

investigation and are here detailed. 

1.12.1 HPV status for OPSCC 

Two trials, KEYNOTE-012 and Checkmate-141 investigated the possible 

role of HPV status for assessing Objective Response Rate (ORR) and OS. 

In the first trial it was observed that patients with HPV infection had an 

increase ORR compared with those without HPV infection; meanwhile, in 
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the second trial no differences in terms of response and survival were 

observed in the two categories. It is known that HPV-positive OPSCCs 

have a less suppressive tumor microenvironment compared to HPV-

negative cases. The predictive role of HPV is still debated.  

1.12.2 Smoking status 

As described in the literature, smoking is associated with specific genetic 

signatures and an immunosuppressive tumor microenvironment, and the 

efficacy of immunotherapy could be compromised by smoking habits81. 

For instance, in Checkmate-141 it was observed that patients with smoking 

habits had a decreased survival compared to non-smokers, while in other 

oncological disease, such as lung cancer, smokers were associated with 

improved response to immunotherapy82.   

1.12.3 Age  

Another aspect to consider when we investigate the response to 

immunotherapy is age, that has been underlying to be essential in 

anticancer immunity regulation83. Specifically, age has been already 

investigated in melanoma patients and it has been observed that elderly 

patients had major benefits from immunotherapy compared to younger 

patients82. However, a metanalysis published in 2020 reported the opposite 

result84. No differences in terms of effectiveness of ICIs were observed in 

Checkmate-141 between the two age groups (cut-off 65 years).   

1.13 Biomarkers of immunotherapy 

Immune-checkpoint inhibitors have shown a significant and consistent 

benefit in survival when compared to standard therapies, however the 

Overall Response Rates (ORRs) ranged from 13-18%. Currently, a solid 

immune predictive biomarker has not been identified. The finding of 

predictive biomarker is still an unmet need85–87. 
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1.13.1 Tumor-related biomarkers – Programmed death-ligand 1 

(PD-L1) 

PD-L1, a ligand expressed by various cell types (including tumor and 

immune cells), was the first biomarker examined and the most widely 

investigated. Although its expression is currently used as a guide for 

treatment decision, the expression could vary over time and across multiple 

tumor types. In some specific oncological diseases, it has been associated 

with improved response. However, ICIs have demonstrated efficiacy 

regardless PD-L1 expression. PD-L1 is commonly assessed by Immuno 

histochemistry (IHC), and various cut-off are under investigation, such as 

tumor proportion score (TPS), defined as the fraction of viable tumor cells 

showing membrane staining at any intensity, and combined positive score 

(CPS) defined as the percentage of tumor and inflammatory cells within 

and near the tumor expressing PD-L1. PD-L1 is considered as a surrogate 

biomarker of T-cell infiltration, resulted from an upregulation of INF- γ. 

In three different HNSCC trial, investigating ICI treatment, it has been 

seen that PD-L1 expressing tumors tend to have an improved response 

rates to ICI therapies in KEYNOTE-040 and KEYNOTE-048. However, 

CHECKMATE-141 failed to show a significant correlation between PD-

L1 expression and response. This last trial suggested that PD-L1 

expression may help predict the clinical benefit of the ICI treatment, 

however patients that do not express PD-L1 should not be precluded from 

the therapy. Results discordance on the relevance of PD-L1 could be 

explained by the variability of the antibody assays and cut-off levels used, 

timing of the testing, by the variability of cells that express PD-L1 (such 

as tumor or/and tumor-infiltrating immune cells) and by which scoring is 

considered for PD-L1 assessment85. Therefore, to understand the real 

contribution of PD-L1 in predicting the response, it must be aggregated 
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with additional factors that may contribute to treatment response, such as 

tumor immune infiltration and Tumor mutational burden (TMB)87,88.  

1.13.2 Tumor-related biomarkers – Tumor mutation burden 

TMB is the total number of non-synonymous somatic point mutations per 

coding area of a tumor genome (somatic mut per megabase - Mut/Mb). 

The idea behind the possible correlation between TMB and 

immunotherapy is based on the hypothesis that TMB should reflects the 

cancer mutation-derived neoantigens89,90. Consequently, neoantigens, if 

expressed and processed, may increase the formation of novel peptides, 

resulting in higher tumor immunogenicity, and activating immune cells, 

such as CD8+ T-cells. The higher the number of somatic nonsynonymous 

mutations, the higher should be the number of neoantigens generated that 

can be recognized by the immune system. Mostly, TMB have been 

evaluated by whole exome sequencing (WES) and various cut-off have 

been taken in consideration. Nowadays, several sequencing panels (>300 

genes detected) have been developed to measure TMB, limiting costs, 

required DNA input, and reducing the time consuming91,92. Thank to next 

generation sequencing techniques it has been possible to investigate TMB 

in hundreds of patients, and a significant relationship between high TMB 

and improved responsiveness to ICI has been observed in various cancers, 

such as HNSCC, melanoma and lung cancer66,93. In 2017, the US Food and 

Drug Administration (FDA) approved the use of ICI for cancer patients 

with a TMB > 10 (mutations/megabase: mut/Mb), defined as TMB-

high94,95. As for PD-L1 high TMB alone does not guarantee response to 

immunotherapy and patients with a low TMB could benefit from the 

therapy too96. Studies have shown that patients with TMB-high displayed 

also a microsatellite instability. These correlation between these two 

parameters seems to be a possible predictive factor for response to 

checkpoint inhibitors in cancer97,98. 
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1.13.3 Tumor-related biomarkers – Microsatellites instability  

Microsatellites are short DNA regions (that usually are 1-6 nucleotides 

long), which are tandemly repeated through all the genome, in both 

intronic and exonic regions. Microsatellites are frequently present also in 

promoter regions, and terminal regions. Microsatellite instability (MSI) is 

an event that usually occurs when a microsatellite site gains or loses 1 or 

more repeats. It is usually connected with issue related to the functionality 

of DNA repair gene systems. Above all, DNA mismatch repair (MMR) 

system is the most involved in repairing DNA replication errors, including 

microsatellite loci. The genes coding proteins for MMR functionality are 

MLH1, MSH2, PMS2, and MSH699. When these genes present mutations 

the direct consequence is the impairment of MMR system and, defects in 

MMR system could be observed and associated with the increased number 

of instable microsatellite regions. Tumors that present a high microsatellite 

instability are named MSI-High (MSI-H), while those that do not present 

microsatellite instability are label as MSI-Stable (MSI-S). The association 

between possible benefit from immunotherapy and DNA repair system and 

microsatellites instability is given by the observation in colorectal cancer, 

in which the deficiency in MMR system were correlated to an increased 

number of neoantigens. The increased number of neoantigens could be 

related to more immunogenic tumors, thus, to be more likely to respond to 

immunotherapy100. In routine MSI is traditionally analyzed with PCR 

(MSIPCR) and immunohistochemistry101. limited to five microsatellite 

markers recommended by National Cancer Institute102. Nevertheless, a 

greater number of microsatellite loci through DNA sequencing could allow 

a better identification of MSI profile in different cancer types.  
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1.13.4 Tumor-related biomarkers – Damage response and 

repair 

Damage response and repair (DRR) gene alterations in DNA are associated 

with higher genomic instability, that could be also inferred studying the 

MSI and TMB. Mutations in DDR genes have been proven to be associated 

with higher immunity in some cancers and with treatment benefits in 

patients treated with immune-checkpoint inhibitors103. For example, DNA 

mismatch repair (MMR) is a biological system that is used by cells for 

identifying and repairing DNA variations that occurs during replication. 

Uncorrected DNA replication can produce numerous aberrant neoantigen 

and deficient tumor cells in MMR could carry from 10 to 100 times more 

mutations than a tumor cell with a proficient MMR. Particularly, mutations 

in MMR-related genes, such as MLH1, MSH2, MSH6, and PMS2 impair 

efficacy of the system and are argument of study96,104,105.  

1.13.5 Biomarkers of the overall status of tumor 

microenvironment  

Tumor infiltrating immune cells seems to have an important role on 

treatment response to immunotherapy. For instance, T-cells significantly 

correlated with a better outcome in different cancer types and could predict 

the efficacy of immunotherapy. On the contrary, other immune cells such 

as T regulatory cells (Tregs) and tumor-associated macrophages can be an 

indicator of immunosuppressive environment and consequently be linked 

to a poor response to ICI106. Likewise, Interferon-γ (IFN-γ), a cytokine 

with antiviral, antitumor and immunomodulatory function, able to trigger 

the activation of the immune response and in the meanwhile to prevents 

the overactivation of the immune system is now considered object of study 

for biomarkers evaluation. For instance, IFN-γ plays a vital role in 

enhancing CD8+ T-cells activity against tumor cells and otherwise 
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upregulate PD-L1 expression on tumor cells, that efficiently protect them 

from immune surveillance. Several interferon-γ gene expression signatures 

(built up through the study of genes associated with T-cell activation) have 

been proposed in different cancer types107–109.  

1.13.6 Immune-related and TME-related gene expression 

signatures 

Gene expression profiling allows the assessment of various inflammatory-

related markers contemporaneously. Several studies investigated the role 

of immune-gene signatures to predict prognosis or response to 

immunotherapy in different cancer types, including for example 

Interferon-γ and T-cell gene expression signatures in HNSCC110. 

Moreover, the complexity of tumor microenvironment, which is known to 

play a critical role, was considered. However, the intricacy of biological 

mechanisms results difficult to manage by scientists. A possible way to 

reduce such methodological complexity could be offered by gene 

expression analysis. For instance, gene expression of tumor cells and 

tumor microenvironment infiltrating cells is under investigation as 

biomarker for the efficacy of immunotherapy. TME could be classified 

into three different distinct phenotypes based on immune infiltration, 

which are “inflamed”, “immune-exhausted” or “immune-desert”111. The 

large availability of multi-omics data generated by Pan-cancer studies has 

facilitated the dissection of molecular principles that made possible the 

inferring of biological characteristics. Gene expression signatures has been 

proven to be a relevant surrogate tool to interrogate the complex 

interactions and mechanisms behind the oncogenic processes, allowing the 

possibility to reduce the methodologies used for the tumor biology 

evaluation (such as IHC, FACS and other techniques). On the other hand, 

gene expression signatures gave the opportunity to interrogate an 

https://www.powerthesaurus.org/contemporaneously/synonyms
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additional manageable tool, easily translatable to clinical practice.  At date, 

several gene expression signatures are under investigation, comprising de-

regulation in immune and stromal infiltrated cells and DNA repair 

systems112,113.   
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2. AIMS 

Prognosis for R/M HNSCC patients is dismal, and second line treatment 

options are limited. Since the approval in 2016 of the use of 

immunotherapy (single agents, i.e., nivolumab, pembrolizumab) as SoC 

for these patients, the paradigm has changed. However, response rate is 

low (13-18%) and association of the outcome with clinical, demographical 

variables and predictive biomarkers are still under investigation.  

The present PhD project took advantage of the clinical trial “Nivactor”, in 

which R/M HNSCC platinum-resistant patients were treated in second line 

with nivolumab. Among the “Exploratory objectives” of the trial there was 

the identification of pre-existing biological markers associated to 

nivolumab response potentially useful as predictive surrogate markers. 

The tumor tissue of these patients was profiled, and by the analysis of gene 

expression and mutations in specific cancer-related genes, we planned to 

investigate:  

a) The differences between responding and non-responding patients;  

b) The role of specific markers (such as PD-L1, TMB and MSI) 

highlighted in other clinical trials; 

c) The association of specific gene expression signatures with response 

and survival; 

d) The contribution of specific mutation to response and survival. 

Through this extensive tumor profiling, we aimed to define specific 

molecular features able to guide the clinical practice through a more 

personalized approach.  
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3. MATERIALS AND METHODS 

3.1 Clinical trial  

The present Ph.D. project took advantage of the clinical trial “Nivactor”: a 

single-arm, open-label, multicentre Phase IIIb clinical trial, with 

NIVolumab in subjects with recurrent or metastatic (R/M) platinum-

refrACTORy squamous cell carcinoma of head and neck cancer (EudraCT 

Number: 2017-000562-30). The study was performed in compliance with 

the requirements of the AIFA. The study was full approved from Comitato 

Etico Fondazione IRCCS Istituto Nazionale dei Tumori Milano on 4 Oct 

2017 (INT 128_17). Patients were enrolled from 21 different Italian 

centres, following the inclusion and exclusion criteria. All patients 

provided written informed consent to participate in the study.   

3.2 Inclusion and exclusion criteria 

Patients were included in the study only with confirmed recurrent or 

metastatic HNSCC (oral cavity, oropharynx, hypopharynx, larynx), not 

amenable to local therapy with curative intent (surgery or radiation therapy 

with or without chemotherapy), male and female, with an age ≥ 18 years 

and an Eastern Cooperative Oncology Group (ECOG) performance status 

≤ 2. Moreover, the presence of tumor progression or recurrence must have 

occurred within 6 months of last dose of platinum therapy in the adjuvant 

(i.e., with radiation after surgery), primary (i.e., with radiation or prior to 

it or to surgery as induction chemotherapy), recurrent, or metastatic setting. 

Patients were included only if the disease could be measurable by 

Computed tomography (CT) or Magnetic resonance imaging (MRI) per 

Response Evaluation Criteria in Solid Tumor (RECIST) 1.1 criteria114 . On 

the contrary, patients were not considered for the study with histologically 

confirmed recurrent or metastatic carcinoma the nasopharynx, and salivary 

gland or non-squamous histology (e.g., mucosal melanoma) and patients 
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prior treated with anti-PD-1, anti-PD-L1, anti-PD-L2, anti-CTLA-4 

antibody, or any other antibody or drug specifically targeting T-cell co-

stimulation or immune checkpoint pathways. Moreover, patients were not 

considered for the trial if they had an active, known, or suspected 

autoimmune disease, known history of testing positive for human 

immunodeficiency virus (HIV) or known acquired immunodeficiency 

syndrome (AIDS).  

3.3 Nivolumab treatment 

Subjects received treatment with nivolumab monotherapy at 240mg flat 

dose on Day 1 of treatment cycle and every 14 days, until confirmed 

progression of disease, unacceptable toxicity, death, or withdrawal of 

consent. To monitor the disease, CT scans and/or MRI were performed. 

The treatment efficacy was assessed following RECIST 1.1, a set of 

published criteria used in the definition of tumor changes through imaging, 

allowing the definition into the category of “responder” or “partial 

responder” (when the disease reduces or disappears), “stable disease” 

(when the disease stays the same), “progress disease” (when the disease 

worsen). Clinical information and demographic data (such as age, gender, 

tumor subsite, tumor stage, treatment history, and others) were collected 

and update till the end of 2020. 

3.4 Tumor specimen collection and PD-L1 evaluation 

Tumor biopsy specimens were obtained from patients prior to treatment 

with nivolumab from:  a) metastatic or recurrence setting; b) an archived 

biopsy of the primary tumor.  All the tumor specimens were collected at 

IRCCS Istituto Nazionale dei Tumori (Milan, Italy). A minimum of 1 

formalin-fixed paraffin embedded (FFPE) tumor tissue block or a 

minimum of 10 FFPE unstained sections were required for assessment of 

PD-L1 status and other biomarker evaluation. PD-L1 IHC was performed 
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utilizing PD-L1 IHC 22C3 pharmDx kit (Dako, Carpinteria, CA) on the 

Dako ASL48 platform, according to manufacturer recommendations. The 

activity was centralized at IRCCS Istituto Nazionale dei Tumori (Milan, 

Italy). PD-L1 expression was evaluated both in tumor cells and in 

inflammatory cells. TPS was defined as the percentage of tumor cells 

presenting PD-L1 membranous immunoreactivity at any intensity. The 

CPS was defined as the number of PD-L1 staining cells (tumor cells, 

lymphocytes, macrophages) divided by the total number of viable tumor 

cells, multiplied by 100. A minimum of 100 viable tumor cells had to be 

present in the PD-L1 stained slide for the specimen to be considered 

adequate for PD-L1 evaluation. Tumor infiltrating lymphocytes (TILs) 

were assessed on hematoxiline & eosine (H&E) slides, as described in 

Salgado et al115 . Mononuclear inflammatory cells (i.e., lymphocytes and 

plasma cells) present in the stromal compartment were assessed. The 

percentage of stromal TILs was calculated as the area of stromal tissue 

(within and at the invasive edge of tumor area) occupied by inflammatory 

cells over the total stromal area.  

3.5 Nucleic acid extraction 

Pathological revision was performed to obtain adequate non- necrotic 

tumor areas free of contamination from normal tissue, and after, 

macrodissection was done on sections to obtain at least a percentage > 70% 

of tumor cells. Nucleic acid extraction on FFPE pre-immunotherapy tumor 

samples (primary or recurrence/metastasis specimens) and the following 

related activities were all centralized at IRCCS Istituto Nazionale dei 

Tumori (Milan, Italy). RNA was isolated using Qiagen RNeasy FFPE kit 

(Qiagen), in accordance with the manufacturer’s instructions. To avoid 

possible bias of lack of uniformity of nucleic acid material, RNA quality 

and quantity were assessed by 4200 TapeStation system (Agilent 
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Technologies), and Qubit 4.0 Fluorimetric RNA Broad Range or High 

Sensitivity Assay (Thermo Fisher Scientific), respectively. Samples that 

did not meet the standard criteria for quality (DV200 < 15; i.e., DV200 is 

the percentage of RNA fragments that are >200 nucleotides in size) and 

quantity (concentration < 10 ng/µL) were not considered adequate for gene 

expression profiling.  For mutational analysis, DNA were extracted using 

GeneRead FFPE kit (Qiagen), following the manufacturer’s instructions. 

After nucleic acid quality check and quantification by 4200 TapeStation 

(Agilent) and Qubit 4.0 Fluorometer (Thermo Fisher Scientific) samples. 

Samples with a poor quality (DIN < 2) nucleic acid, or a low quantity (< 7 

ng/µL) were not considered for DNA sequencing experiments. 

3.6 Gene expression experiments 

Gene expression experiments were performed accordingly to GeneChip 

WT Pico standard protocols (Affymetrix, Thermo Fisher Scientific). For 

the protocol execution, 100 ng of RNA was used as starting input; RNA 

was retrotranscribed with “First-Strand Master Mix” and incubated in a 

thermal cycler for 1 hour at 25°C, then for 1 hour at 42°C, then for at least 

2 minutes at 4°C. To clean up the reagents from the previous reaction, the 

samples were incubated for 30 min at 37°C, for 10 minutes at 80°C and 

then for at least 2 min at 4°C with “WT Pico Cleanup Reagent” in the 

thermal cycler. To the single-stranded cDNA 3’ adaptors were added, 

utilizing the “Adaptor Master Mix” (thermal cycler program: 2 min at 

95°C, 9 cycle of 30 sec at 94°C and 5 min at 70°C and then for at last 2 

min at 4°C).  Second strand cDNA was synthetized using “Second-Strand 

Master Mix”, following the incubation for 1 hour at 16°C, then for 10 

minutes at 65°C, then for at least 2 minutes at 4°C. Antisense RNA 

(complimentary RNA or cRNA) was synthesized and amplified by in 

vitro transcription (IVT) of the second-stranded cDNA template using T7 
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RNA polymerase (thermal cycler incubation at 40°C for 14 hours). The 

purification of cRNA was performed utilizing “Purification Beads” and 

washed three times with EtOH 80%. Samples were eluted in 27 µL of 

nuclease free water, previously heated at 65°C. For the synthesis of the 

sense-strand cDNA 833 ng/µL of cRNA (in a final volume of 24 µL) were 

utilized, following the incubation reaction in the thermal cycler (10 min 

at 25°C, 90 min at 42°C, 10 min at 70°C and then for at least 2 min at 

4°C). RNase H was then utilized to remove the residual cRNA template 

incubating the samples for 45 min at 37°C, 5 min at 95°C and then for at 

least 2 min at 4°C. The RNase H activity was stopped adding 11 µL of 

nuclease free water. The purification of cDNA was performed utilizing 

“Purification Beads” and washed three times with EtOH 80%. Pre-heated 

water (65°C) was utilized for elution. Samples with a concentration > 120 

ng/µL were used for the fragmentation step. It was utilized 120 ng/µL of 

ss-cNDA, equal to 5.5 ug in 46 µL. Sense-strand cDNA was fragmented 

by uracil-DNA glycosylase and apurinic/apyramidinic endonuclease 1 at 

the unnatural dUTP residues and breaks the DNA strands. Moreover, the 

fragmented cDNA is labeled by terminal deoxynucleotidyl transferase 

using “DNA labeling reagent” that was covalently linked to biotin. Probes 

were hybridized on human Clariom D chips for 16 hours at 45°C; after 

chips washing and staining, the chips were scanned with Affymetrix Gene 

Chip Scanner 3000 7G. The Affymetrix system was designed to detect 

genes, exons, and alternative splicing events from >540,000 transcripts. 

Primary data were acquired using the Affymetrix GeneChip Command 

Scan Control version 4.0 (developed by Thermo Fisher Scientific). The 

generated CEL files were analyzed for an additional quality check using 

Affymetrix Expression Console Software (version 1.4), which 

normalized array signals using Signal Space Transformation (SST) and a 

robust multiarray averaging (RMA) algorithm.  
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3.7 TSO500 NGS library preparation 

The experiments for the target sequencing were performed using Illumina 

TruSight Oncology 500 protocol (Illumina, UK). The Illumina TruSight 

Oncology 500 panel (TSO500) allows the detection of somatic variants in 

523 cancer related genes; moreover, it generates a score for TMB and MSI 

calculation. Before library preparation, DNA was evaluated and restored 

using Infinium FFPE QC and DNA restoration kit (Illumina), following 

the manufacturer’s instructions. FFPE samples are known to generally 

yield highly degraded DNA, they typically perform poorly in whole-

genome genotyping. For this reason, after DNA extraction, we used the 

Illumina FFPE QC Kit, that through real-time PCR assessed the quality 

and the integrity of DNA for each samples. Each FFPE samples that pass 

the QC test was eligible for restoration, using the Infinium HD FFPE 

restore kit, following the manufacturer’ instructions, which is able to repair 

the degraded DNA samples. 

For library preparation, 80 ng in 12 µL of DNA were used as starting 

material from each sample. The library preparation was performed 

manually according to manufacturer’s instructions. The very first step of 

the protocol is based on mechanical fragmentation (Covaris 

E220evolution) of the genomicDNA (gDNA). After the fragmentation the 

generated dsDNA were checked in size (90-250 bp) using the Tapestation 

2200 (Agilent Technologies, UK). Then, the ends are repaired using A-

tailing master mix. Unique molecular identifiers (UMIs) adapters are 

ligated to the fragments, and then a clean-up is performed. UMI are 

complex indexes added to the fragments before the amplification to reduce 

the number of false positive calls, to have a more accurate result during the 

sequencing process (Figure 2).  
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Figure 2. Functional mechanism of UMIs 

 

Library fragments were amplified, and index sequences are added, to allow 

the multiplexing of samples. This step was fundamental for cluster 

generation during sequencing. Libraries were then hybridized overnight 

with a pool of oligo specific to the 523 targeted genes. Probes were 

captures and cleaned-up with streptavidin magnetic beads. Library quality 

and quantity were checked before the creation of the pool, using qubit 

Fluorometer (Thermo Fisher Scientific) and Tapestation 2200 (Agilent 

Technologies). Only library with the specific peak were considered 

[240bp-290bp], and library with a concentration < 1 ng/μL were excluded. 

Library nano molarity was calculated using the following formula:  

 

nM = ( [qubit] / 660*size bp ) *106 

 

At the end of the process the pools are created and sequenced. Pools were 

run on NextSeq 550 instrument (Illumina). Libraries were multiplexed for 

sequencing with up to 8 DNA libraries for each run. The Sequencing 
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results were analyzed using TSO500 Docker pipeline. Possible sequencing 

PCR bias were removed thanks to the use of UMIs. 

 

3.8 TSO500 NGS library analysis 

The sequence alignment to the human genome (hg19) was completed using 

SOPHiA DDM™ for TSO500 pipeline. Moreover, for the analysis the 

following threshold were considered:  

i) “Variant reads” is the number of independent sequence reads 

supporting the presence of a variant. Due to the high error rate of 

NGS at the per-base call level, calls supported by less than 5 

variant reads are typically considered to be likely false positive 

calls. We considered as minimum variant reads = 10; 

ii) “Variant allele frequency (VAF)” is the percentage of sequence 

reads observed carrying a specific DNA variation divided by the 

overall coverage obtained at that precise locus. Thus, VAF is a 

surrogate measure of the proportion of DNA molecules in the 

original specimen. The number ranges between 0.0 to 100.0. 

VAF could be interpreted as measure of diploid zygosity in 

germline DNA sequencing, in which heterozygous loci have a 

VAF = ~50% VAF and homozygous loci a VAF = ~100%. 

However, for somatic testing in clinical setting, in which even 

variants with low VAF could have an important role (and high 

level of sensitivity is required) the combination of normal and 

tumoral DNA in the sample causes heterogeneous VAFs. In 

cancer context, VAF analysis could not be considered accurate 

because intratumoral heterogeneity and impurity of tumor DNA 

cause confusing deviations from expected VAFs. Moreover, 

polymerase and sequencing errors make it difficult to robustly 

detect low-frequency mutations <5% VAF. For this reason, 
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UMIs were developed to suppress the errors to detect mutations 

even below 1% VAF. Nonetheless, accurate detection using 

UMIs with a low VAF (< 1%) is possible only with large amount 

of total DNA (> 250 ng) and they were not considered for the 

present analysis116. On the other hand, high VAF percentages (> 

50%) were included, because even if it could indicate that the 

variant is germline or in a region of loss of heterozygosity, the 

pairing with normal tissue was not performed to confirm the 

assessment. Also, even if the tumor percentage in our tissue 

sample was selected > 70%, it is important to underly that since 

percent tumor cell is a prediction performed by 

pathological/histological analysis, and it is never intended to be 

an accurate measurement. Additional, even the VAF in the 

“grey” zone were included in the analysis, because it is common 

observing true cancer mutation in this range117. To conclude, for 

all these reasons, with considered all the VAF > 2 %. 

iii) Coverage, usually indicated with a number followed by "×", is 

the number of independent reads with overlapping alignment at 

a locus of interest. This is often expressed as an average or 

percentage exceeding a cutoff over a set of intervals (such as 

exons, genes, or panels). To assess proper parameters the 

SOPHiA DDM™ for TSO500 pipeline generated a specific 

output, allowing the elimination of all those variants with low 

coverage or high background noise.  

Moreover, only INDELS and SNPs were included, filtering all the 

variations that were nonsynonymous, and so including only the 

“missense”, “nonsense”, “frameshift” annotations. The allele frequencies 

in control populations could be useful for assessing clinical significances 

of somatic variants118. For this reason, we excluded all the variants with a 
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prediction of frequency > 3% in the population using the control 

population of 1000 Genome Project119. The distinction between somatic 

and germline alterations with the somatic only next-generation sequencing 

panel was not addressable120. For the assessment of somatic prediction for 

specific considered mutations, the Catalog of Somatic Mutations in Cancer 

(http://cancer.sanger.ac.uk/cosmic) was utilized, where are annotated 

millions of somatic alterations across different tumor types. For the 

germline prediction of the DNA variations instead ClinVar database 

(http://www.ncbi.nlm.nih.gov/clinvar) was utilized. ClinVar database 

contains only germline variants, both pathogenic and benign, providing in 

addition clinical evidence when available121. Data were visualized by 

Maftools, a R package developed to analyze and visualize NGS data122. 

 

3.9 Tumor mutational burden 

Tumor mutational burden (TMB) is defined as the number of non-

synonymous (missense, nonsense, frameshift) mutations within 1 Mb 

(mut/Mb) of coding region on tumor genome. TMB score was generated 

using SOPHiA DDM™ for TSO500 pipeline. For the evaluation of TMB 

in the present analysis, either single-nucleotide variants and small 

insertion/deletions in coding regions with a minimum coverage of 50X and 

5% ≤ variant allele frequency ≤ 90% were considered. Contrary, multi-

nucleotide variants (MNVs) were excluded. Only eligible somatic 

mutations per Megabase (Mb) were considered, after filtering germline 

variants (in-house SOPHiA GENETICS database). Even if TMB is 

historically assessed in whole exome sequencing studies, Illumina 

demonstrated that TMB can be effectively estimated using targeted 

sequencing panels covering at least 1.1 Mb of genomic content. The 

TruSight Oncology 500 panel covers 1.94 Mb genomic content and take 

advantages of UMIs, which reduce the sequencing noise during the initial 

http://cancer.sanger.ac.uk/cosmic
http://www.ncbi.nlm.nih.gov/clinvar
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steps. This addition of UMIs is a fundamental step, which strengthens the 

measurement of TMB. Tumor samples were classified as TMB-high or 

TMB-low using 10 mut/Mb as cut-off value, as suggested by Illumina 

Pipeline. 

3.10 Microsatellite instability 

Next generation sequencing (NGS) of 175 noncoding homopolymer 

regions was performed for assessing the microsatellite instability. MSI 

calculation was performed by SOPHiA DDM™ for TSO500 pipeline. 

Regions with low sequencing coverage (minimum coverage > 50X) were 

not considered in the MSI status calculation, and at least 20 well-

sequenced sites were required to be assessed to determine the MSI score.  

Samples were divided in: a) microsatellite stable (MSS) if the score is less 

than 0.013; b) For scores above 0.018, the sample is considered as 

”unstable” with high confidence and marked as ”MSI-H” (MSI-High); c) 

“reject” if the percentage of homopolymer loci used is less than 70% of the 

loci sequenced.  

3.11 Differentially expressed genes (DEGs) 

The investigation of differential expressed genes between the responders 

versus non responders, clinical benefit versus non-clinical benefits 

categories was performed using limma R package123 . Only genes with the 

absolute value of log2FoldChange > 1and adjusted p < 0.05 were 

considered as significantly deregulated transcripts. The p values were 

adjusted on the false discovery rate (FDR) according to the Benjamin-

Hochberg method.  Volcano plot was utilized for visualizing the results, 

using R software ggplot2124. 
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3.12 Functional enrichment analysis 

To explore the de-regulated biological pathways, the gene-set enrichment 

analysis (GSEA) Hallmark pathways125 was applied. The hallmark gene 

sets (n=50) represent coherently expressed signatures derived by 

aggregating many MSigDB (i.e. Molecular Signature Data Base, 

https://www.gsea-msigdb.org/gsea/msigdb/) gene sets to represent well-

defined biological states or processes. Genes were ranked using the t-

statistic, the number of permutations was set to 10,000 and gene sets with 

fewer than 15 or more than 500 genes were filtered out.  The comparison 

was performed using two categories or using scores in continuum. We 

distinguished significantly enriched biological pathways setting as 

screening criteria a false discovery rate (FDR, correction for multiple 

comparisons) q-value < 0.05 and normalized enrichment score (NES) > 

|1.5|. GSEA was run using the Java desktop application and GSEA v4.2.2 

for Windows. Text files with the following specific formats were uploaded 

for the analyses: i) GCT format for the gene-expression matrix; ii) CLS 

file format to define phenotype labels (classes or continuous traits). The 

differential pathways analysis was calculated by limma package123.  

 

3.13 Tumor microenvironment composition 

For the evaluation tumor microenvironment components, we used on gene 

expression normalized data the xCell method126, a deconvolution 

algorithm that is based on gene expression, and allows through an 

extensive in silico analysis, the inference of 64 immune and stromal cell 

types and 3 summary scores (i.e., immune, stroma and microenvironment 

scores). The 64 cell types were categorized into: lymphoid, myeloid, 

stromal, and others. The comparison was performed using two categories 

or, when available, using scores in continuum. 
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3.14 Statistical analysis 

Clinical endpoints were Overall Survival (OS) and Progression Free 

Survival (PFS). OS was defined as the time interval between the date of 

the first diagnosis and date of death from any cause or the date of the last 

follow-up. PFS was defined as defined as the time between date of 

randomization and the date of radiological evidence of progression or 

significant clinical symptomatic progression or of death without evidence 

of progression, whichever occurred first, or the date of the last follow-up. 

Objective response rate (ORR) was assessed according to Response 

Evaluation Criteria In Solid Tumors (RECIST criteria, Version 1.1). Last 

follow-up data were updated in 2020. Survival curves were estimated using 

Kaplan-Meier method and statistical differences between categories were 

assessed by log-rank test, using R packages “survival” 127, “survminer”128 

or by the use of the online tool “Statistic Kingdom” 

(https://www.statskingdom.com/kaplan-meier.html).   

Patients were divided in two groups by specific parameters, explained in 

the reference or calculated (see M&M chapter 3.16). The Fisher’s test or 

chi-square statistic test was used for comparing categorical data of two or 

more groups, respectively. T-test or one-way analysis of variance 

(ANOVA) for quantitative (numerical or continuous) data comparing two 

or more groups (online tool “Aatbio” https://www.aatbio.com/tools/). The 

statistical significance level was set for all the comparisons at adjusted p < 

0.05. 

 

3.15 Gene expression and mutational signatures 

For the catalogue of gene expression and mutational signatures literature 

research was conducted on Embase and PubMed, using the key words 

(“head and neck cancer” OR “head and neck squamous cell carcinoma” 

OR “HNSCC”) AND (“gene signature” OR “gene list” OR “mutational 

https://www.statskingdom.com/kaplan-meier.html
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signature” OR “gene expression signature” OR “signature” OR 

“mutational profile” OR “gene expression profile”) AND 

(“immunotherapy” OR “nivolumab” OR “pembrolizumab” OR “ICI” OR 

“ICIs” OR “immune checkpoint inhibitor”). Publications unavailable in 

English were excluded. The signatures were tested following the methods 

of each specific publication (see Results for the list of signatures). When 

gene weight was not available, we used the ssGSEA score for each gene 

in the gene list. The gene lists related to signatures/pathways were 

retrieved from primary literature sources (i.e. tab delimited text files, 

microsoft word tables or pdf files). Gene ID were reannotated to include 

the official HUGO Gene Nomenclature and EntrezID/RefSeq from NCBI 

Gene (https://www.ncbi.nlm.nih.gov/gene). When the method for testing 

the gene expression signatures was not available the publication was 

excluded from the analysis. For dichotomizing the gene expression score 

in order to perform the survival analyses, we utilized for each signature the 

Cutoff Finder R package method129, which allow the biomarker cut-off 

determination. The present method allows to optimize the cut-off point 

taking into account the presence of a complex distributions of data. The 

biology behind the gene expression was instead performed using the score 

in continuum, correlating the biological marker evaluated. For the 

evaluation of mutations in repair systems related genes we followed the 

mutated gene lists published by Hsiehchen et al.130. 

 

 

 

  

https://www.ncbi.nlm.nih.gov/gene
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4. RESULTS 

4.1 Nivactor study population 

The first evaluation was made considering the complete picture of 

Nivactor, in order to corroborate the clinical validity of the trial and then 

proceeding with translational analyses. From November 2017 to July 2018 

a total of 127 R/M HNSCC patients with platinum-refractory unresectable 

R/M HNSCC were enrolled in Nivactor phase IIIb trial. The enrolment 

closed at the end of March 2019 and the follow-up phase was concluded 

in March 2020. However, out of the 127 patients enrolled, 124 R/M 

HNSCC patients were treated with anti-PD-1 antibody (nivolumab) and 3 

were excluded for screening failure. Of the 124 treated patients we 

observed that patients were balanced for age groups at the first nivolumab 

dose (patients with age ≥ 65 years were 61/124 patients, corresponding to 

49%; patients with age < 65 years were 63/124 patients, corresponding to 

51%. The median age was 64 years [31-84] Table 3). A prevalence of male 

(N=101; 81%) than female (N=23; 19%) was found in the total cohort, 

prevalence already exhaustively reported in literature for HNSCC. The 

subsite of the primary disease in the total cohort was oral cavity for 43/124 

patients; oropharynx for 28/124; larynx for 30/124; hypopharynx for 

18/124; not annotated for 5/124. For oropharyngeal cases, HPV status was 

tested in 18/32 cases. The response was assessed by RECIST v1.1 and it 

was available for 122/124 the patients: 2 complete responders (CR, 1.6%); 

17 partial responders (PR, 13.78%); 22 patients with stable disease (SD, 

17.7%); 81 patients with progressive disease (PD, 65.3%). For 2 patients 

the response was not available (N.A., 1,6%). Objective response rate 

resulted in line with the literature.  

Successively we compared the characteristics of responders versus non-

responders. First, we did not observe differences in terms of median age 
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(Table 3). Smoking status was annotated for all the patients excepting 6 

(for 1/6 patient response was not available). Notably, a significant 

prevalence of present smokers was observed in non-responders, while past 

smokers were significantly more abundant in responders (p=0.012, Chi-

square test). Moreover, in responders we observed a significant increase in 

oropharyngeal cancers (specifically HPV-positive) as primary site of 

disease, and a decrease in the other subsites (except hypopharynx). In non-

responding patients an abundance of oral cavity cancer was observed. The 

other clinical-pathological characteristics resulted balanced between the 

categories of responders and non-responders. The median overall survival 

(months) observed for the total cohort of 124 patients was 5.77 [0.03 – 

25.72], while for responders was 19.97 [8.78 – 25.72] and for non-

responders was 4.30 [0.03 – 25.36]. The median progression free survival 

(months) for the total cohort was 2.23 [0.01 – 25.63], for responders was 

15.56 [2.73 – 25.62], while for non-responders was 2.03 [0.01 – 25.36]. 

 

Clinical-pathological 

characteristics 

Treated 

patients 

(N=124) 

Responders 

(CR+PR) 

(N=19) 

Non-

responders 

(SD+PD) 

(N=103) 

p value 

Age, years median 

[range] 

64 

[31-84] 

63 

[47-78] 

64 

[31-84] 

NA 

Gender male 101 14 (73%) 85 (82%) .1602  

female 23 5 (26%) 18 (18%)  

Smoking 

status 

present 22 1 (5%) 21 (21%) .0012  

past 76 15 (79%) 60 (58%) 

 never 20 3 (16%) 17 (16%) 

N.A. 6* 0 (0%) 5 (5%) 

Site of 

primary 

disease 

Oral cavity 43 4 (21%) 39 (38%) .0424  

Oropharynx  

HPV positive 

Oropharynx  

10 

 

8* 

4 (21%) 

 

0 (0%) 

6 (6%) 

 

7 (7%)  
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HPV negative 

Oropharynx  

N.A. 

 

10 

 

3 (16%) 

 

7 (7%) 

Larynx 30 3 (16%) 26 (25%) 

Hypopharynx 18 3 (16%) 15 (14%) 

N.A. 5 2 (10%) 3 (3%) 

Performance 

status 

0 

1 

2 

42 

78 

4 

9 (47,5%) 

9 (47,5%) 

1 (5%) 

33 (32%) 

67 (65%) 

 3 (3%) 

.0521  

Table 3. Clinical and pathological characteristics of 124 patients enrolled in trial 

Nivactor. Differences were evaluated between responders and non-responders; *for 2 

patients the response was not assessed. P-value were calculated with Chi-square test. 

Significance was set at p < .05 

Following the data published in literature, we evaluated differences in 

response comparing patients with age lower or higher than 65 years old, 

instead the median age (Figure 3). However, even evaluating the age with 

a specific cut-off, no significant differences were recorded between the two 

response categories (p=0.589268, Chi-square test). 

 

Figure 3. Pie charts of patients with age higher or lower than 65 years old 

associated with response. 63 patients with age < 65: 2 CR (3%), 8 PR (13%), 9 SD 

(14%), 43 PD (68%), 1 NA (2%); 61 patients with age ≥ 65: 0 CR (0%), 9 PR (15%), 

13 SD (21%), 38 PD (62%), 1 NA (2%) 
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Deepening the result of differences in primary disease, we decided to 

compare patients that experienced an oropharyngeal cancer versus patients 

with cancer in other subsites. Notably, we observed a significant increase 

in oropharyngeal cancer (N=7, 37%) in patients that experienced a 

response compared to those who did not (N=20, 20%; Figure 4, 

p=0.007747, Chi-Square test).  

 

Figure 4. Pie chart of site of primary disease of responders vs non-responders 

Furthermore, we interrogated the role of RECIST in assessing the effective 

response and the correlation with the related survival for patients treated 

with immunotherapy. Patients with an objective response (CR+PR) had a 

longer OS and PFS than non-responders (respectively p=5.5452e-8; 

p=0.00000016, Figure 5). 
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Figure 5. Kaplan-Meier curves (response).  

A) OS comparing responders vs non-responders (red and blue curves, respectively); 

B) PFS comparing responders vs non responders (red and blue curves, respectively); 

the analyses were performed on 122/124 patients; for 2 patients the response status 

was not annotated. P-values were calculated using Log-rank test 

Similarly, patients achieving a disease control rate (CR+PR+SD) had a 

longer OS and PFS than those with PD as best response (respectively, 

p=3.35369e-9; p=2.03848e-12, Log-rank test, Figure 6). 

 

Figure 6. Kaplan-Meier curves (disease control rate) A) OS comparing DCR 

patients vs non-DCR patients (red and blue curves, respectively); B) PFS comparing 

DCR vs non-DCR patients (red and blue curves, respectively); the analyses were 

performed on 122/124 patients; for 2 patients the response status was not annotated. 

P-values were calculated using Log-rank test 
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In the Nivactor trial two patients experienced the complete response: both 

both male (age 55-63 years old). One patient was current smoker and the 

other past smokers. The primary disease for one patient was oral cavity 

and for the other HPV-positive oropharyngeal cancer. The performance 

status was PS=1 in both.  

4.2 Tumor specimens 

In the trial Nivactor the translational analyses focused on biomarker 

investigation, profiling the patients’ tumor tissue. Specifically, tumor 

specimens from all the institutions were collected during 2019 and 2020, 

and at the end of the collection, we obtained the FFPE samples of 110 

patients, while for 14 patients the tumor tissue was not available (Figure 

7). The 110 collected tumor tissues were classified based on the type of 

specimen: 71 were from the primary tumors, 36 from recurrences or 

metastases, and 17 were unknowns. Notably, all the tumor samples were 

collected before the immunotherapy. For omics analyses, the pathologists 

performed the specific revision (details in Material and Methods) and after 

the revision 94 FFPE samples (56 primary diseases; 4 recurrences; 27 

metastases; 7 unknown) were considered adequate for the extraction of 

both nucleic acids. However, no one of those 94 tumor specimens 

(available for the experiments of gene expression and DNA sequencing) 

derived from a complete responder.  
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Figure 7. Tumor specimens collected in Nivactor trial 

 

4.3 PD-L1 status 

The first biomarker investigated was the expression of the PD-L1 protein 

by IHC. As described in Figure 7, the tumor samples available for PD-L1 

examination were 110. However, for 6 samples the material was scant, 

while for additional 4 samples (considering TPS analysis) and for 5 

samples (considering CPS analysis), the scores were not methodologically 

evaluable (Figure 8). The measurement of PD-L1 was possible for 94 

samples analyzing TPS and for 93 samples analyzing CPS score (Figure 

8). The two scores were considered in a separate manner, and R/M HNSCC 

ICI trials cut-offs were investigated (see Introduction, 1.11 Major clinical 

trial using anti-PD-1 agents for R/M HNSCC for details). Considering 

TPS, we observed 6 samples which resulted ≥ 50 (2 PR; 1 SD; 3 PD), while 

33 samples were CPS ≥ 20 (1 CR; 6 PR; 8 SD; 18 PD). The two patients 

with a complete response resulted with TPS < 50 and CP ≥ 1.  
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Figure 8. PD-L1 IHC evaluation 

  

To understand if any difference in PD-L1 expression could be observed 

between primary tumor and R/M, we compare TPS and CPS score in the 

samples. Evaluating the TPS in only primary tissues we observed that for 

55 primary tissue cases the median value was 1 (ranging from 0 to 100) 

and the same TPS median value was observed in the 31 cases of 

recurrence/metastasis (ranging from 0 to 80). While, for CPS the median 

value in primary tissue was 9 (ranging from 0 to 100), while in R/M the 

CPS score was 5 (ranging from 0.5 to 100). No significant differences in 

terms of PD-L1 expression were observed comparing primary and R/M 

tumor tissue (considering both scores, Table 4).  
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 Primary tumor 

tissue 

(N=55 for TPS) 

(N=54 for CPS) 

Recurrence/Metastasis 

Tumor tissue 

(N=31) 

p-value 

TPS % score, 

median [range] 

1 [0-100] 1 [0-80] 0.69627 

CPS score, median 

[range] 

9 [0-100] 5 [0.5-100] 

Table 4. Comparison of PD-L1 expression in primary and recurrence/metastasis 

samples. For 8 samples details about tumor tissue were not available. Significance 

was set at p ≤ 0.05 and it was calculated by Chi-Square test 

After the comparison between samples, we aimed to explore the 

correlation between TPS score and response (CR+PR vs SD+PS) or 

disease response rate (CR+PR+SD vs PS, Figure 9). Indeed, we correlated 

TPS and CPS with RECIST, and we observed a significant association 

between TPS and response (Figure 9A, p=0.0121, Wilcoxon test), but not 

between TPS and disease response rate (Figure 9B, p=0.0527, Wilcoxon 

test).    

Figure 9. Response and TPS % score A) Boxplots showing the correlation between 

TPS score and response (15 patients CR+PR vs 79 patients SD+PD). B) Boxplots 

showing the correlation between TPS score and disease control rate (30 CR+PR+SD 

vs 64 PD). P-values were calculated using Wilcoxon test, significance was set at p ≤ 

0.05 
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The same was applied for CPS score, and we did not observe a significant 

correlation between response and CPS score (Figure 10A). However, 

contrary on what observed for TPS score, we observed a significant 

difference in CPS score between patients that experienced a disease control 

rate versus those who did not (Figure 10B, p=0.0287, Wilcoxon test).  

 

Figure 10. Response and CPS score. A) Boxplots showing the correlation between 

CPS score and response (15 patients CR+PR vs 78 patients SD+PD). B) Boxplots 

showing the correlation between CPS score and disease control rate (30 CR+PR+SD 

vs 63 PD). P-values were calculated using Wilcoxon test, significance was set at p ≤ 

0.05 

Moreover, we considered TPS and CPS scores for the survival analyses, 

evaluating both OS and PFS. These explorative analyses considered the 

cut-off already utilized in different trials in which R/M HNSCC patients 

were treated with anti PD-1 agents. The first score investigated was TPS, 

and we interrogated about the possible difference in terms of survival of 

patients with TPS ≥ 1% than those with TPS < 1% (Figure 11).  
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Figure 11. Kaplan Meier curves (N=94) TPS % score≥1 A) OS analysis 

considering the score TPS using the cut-off=1; B) PFS analysis considering the score 

TPS using the cut-off=1%. TPS<1% curve was coloured in red while TPS≥1% was in 

blue. P-values were calculated using Log-rank test, significance was set at p ≤ 0.05. 

However, observing the curves no differences could be seen in both OS 

and PFS analyses (Figure 11 A and Figure 11 B, respectively). Proceeding 

with TPS score, we utilized also 50% as cut-off. 

 

Figure 12. Kaplan Meier curves (N=94) TPS score≥50%. A) OS analysis 

considering the score TPS using the cut-off=50; B) PFS analysis considering the 

score TPS using the cut-off=50. TPS<50 curve was coloured in red (N=88) while 

TPS≥50 was in blue (N=6). P-values were calculated using Log-rank test, 

significance was set at p ≤ 0.05. 
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Nevertheless, interrogating TPS score and its prognostic role with another 

cut-off we did not observed differences in survival for both OS and PFS 

using 50 as cut-off (Figure 12). Moreover, we investigated the prognostic 

role of CPS score.  

 

Figure 13. Kaplan Meier curves (N=93) CPS score≥1 A) OS analysis considering 

the score CPS using the cut-off=1; B) PFS analysis considering the score CPS using 

the cut-off=1. CPS<1 curve was coloured in red while CPS≥1 was in blue. P-values 

were calculated using Log-rank test, significance was set at p ≤ 0.05. 

Studying the differences in survival utilizing different CPS cut-off, what 

we observed was that patients with CPS≥1 had benefits in terms of OS, but 

not studying PFS (Figure 13). Considering CPS≥20 as cut-off we did not 

observed any survival benefit (Figure 14). 
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Figure 14. Kaplan Meier curves (N=93) CPS score≥20. A) OS analysis considering 

the score CPS using the cut-off=20; B) PFS analysis considering the score CPS using 

the cut-off=20. CPS<20 curve was coloured in red while CPS≥20 was in blue. P-

values were calculated using Log-rank test, significance was set at p ≤ 0.05. 

 

4.4 Gene expression experiments 

After pathologists’ revision, 94 samples were considered adequate for 

omics analyses (Figure 7). Therefore, the RNA extraction was carried out, 

and consequently nucleic acids quality and quantity check were performed. 

For quality and quantity 5 and 4 samples were excluded, respectively.  

Following the gene expression experiments, 2 samples did not well-

performed the cDNA reverse transcription and they were not considered 

for the protocol next steps. After the chip hybridization, the primary 

images were examined, and 3 samples were excluded for poorly 

hybridization. The Clariom-D assay contains probes designed on intron 

(i.e. negative controls) and exon (i.e. positive controls) regions of 

housekeeping genes. Negative controls are a measure of false positive 

signals and, in theory, no signal should be detected in the negative controls; 

to evaluate how well the probe set summary for a specific gene separates 

the positive controls from the negative controls the area under the curve 
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(AUC) for a receiver operator curve (ROC) comparing the intron controls 

to the exon controls was assessed. An AUC of 1 reflects perfect separation 

whereas as an AUC value of 0.5 would reflect no separation (Figure 15A). 

The Positive vs Negative AUC controls is visualized as a bar graph to 

monitor assay quality across samples. 

 

Figure 15 Quality control of the gene expression profiling. A) AUC of the positive 

and negative controls; B) PCA of the NIVACTOR samples based on samples centre 

of origin 

To check the quality of the gene-expression profiling, we performed an 

exploratory grouping analysis. This approach highlights the presence and 

relationships among groups of samples, proving to be a helpful way to 

discover the underlying clusters within an experiment. Moreover, the 

analysis is usually applied to discover possible batch effects (i.e, patterns 

due to technical issues) that can be removed in later analysis. To visualize 

the results, the large number of probe set signals per sample was reduced 

to three for viewing, using Principal Component Analysis (PCA). The plot 

shows the data distribution by PCA of the NIVACTOR samples and the 

different colors show the different centers where the patients were 

enrolled. No significant association can be detected in the PCA (Figure 

15B). The final dataset cohort for gene expression was composed by 80 
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cases (Figure 16). Of the 80 samples, 52 profiled samples derived from the 

primary tissue, while 19 from metastasis, 3 from recurrence, and 6 from 

unknown source. The 80 patients were divided for response status, 

according to the RECIST in: 12 partial response (PR, 15%); 14 stable 

disease (SD, 18%); 53 with progressive disease (PD, 66%); 1 without 

assessed response (N.A., 1%). However, we did not dispose of the tumor 

material of the two complete responding patients in order to obtain their 

biological profile. 

 

Figure 16 Consort diagram of gene expression dataset 

Comparing the treated patients dataset (N=124) and the gene expression 

dataset (N=80) we observed no differences between all the clinical-

pathological characteristics (Table 5). The median overall survival for the 

gene expression cohort was 6.72 months [0.03 – 25.72], while the median 
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progression free survival was 2.20 months [0.01 – 25.62]. For this reason, 

we considered the gene expression dataset (N=80) representative of the 

entire cohort (N=124). We proceed with the evaluation of biological 

characteristics of the 80 patients.  

Clinical-pathological 

characteristics 

Treated patients 

(N=124) 

GE dataset  

(N=80) 

p value 

Age, years median 

[range] 

64 

[31-84] 

65.5 

[33-84] 

NA 

Gender male 101 (81%) 65 (81%) 1  

female 23 (19%) 15 (19%) 

Smoking 

status 

present 22 (18%) 16 (20%) .86335  

past 76 (61%) 50 (62%) 

never 20 (16%) 11 (14%) 

N.A. 6 (5%) 3 (4%) 

Site of 

primary 

disease 

Oral cavity 43 (35%) 30 (37%) .934331  

Oropharynx  

HPV positive 

Oropharynx  

HPV negative 

Oropharynx  

N.A. 

10 (8%) 

 

8 (6%) 

 

10 (8%)  

7 (9%) 

 

5 (6%) 

 

7 (9%) 

  
Larynx 30 (24%) 18 (22%) 

Hypopharynx 18 (15%) 11 (14%) 

N.A. 5 (4%) 2 (3%) 

Performance 

status 

0 

1 

2 

       42 (34%) 

78 (63%) 

4 (3%) 

27 (34%) 

50 (62%) 

3 (4%) 

.927346  

Response CR 

PR 

SD 

PD 

NA 

2 (1.5%) 

17 (14%) 

22 (18%) 

81 (65%) 

2 (1.5%) 

0 (0%) 

12 (15%) 

14 (18%) 

53 (66%) 

1 (1%) 

.984821  

Table 5. Clinical and pathological characteristics of gene expression dataset 

(N=80) compared to the total cohort (N=124). For 3/124 and 1/80 patients the 

response was not assessed. P-values were calculated with Chi-square test. Tests 

significance was set at p < .05 
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Notably, in the cohort of gene expression database (N=80) two patients 

experienced an OS and PFS > 25 months. The two patients were both male 

and they were 62 and 63 years old, respectively. One was a past smoker, 

while the other never smoked. The primary site of oncologic disease was 

oropharynx and they both resulted HPV-positive. TPS was equal to 10 for 

the first patient and 100 for the second, while CPS was 11 and 100. They 

both experienced a partial response to nivolumab. From this paragraph to 

the end, we will refer to analyses on the gene expression database cohort 

or DNA sequencing cohort, and not to the total cohort of 124 patients. 

4.5 Immunotherapy response 

4.5.1 Responders vs non-responders (RECIST v1.1) 

To confirm the results observed in the total cohort (N=124), we evaluated 

the correlation between response status and survival by the Kaplan-Meier 

analyses. Specifically, we investigated the OS and PFS of partial 

responders (PR, N=12) versus not responders (SD+PD, N=67). For 1/80 

patient the response was not annotated.  

 

Figure 17 Kaplan Meier curves (response; N=79). A) OS analysis of partial 

responders (PR, red curve) vs non-responders (Stable Disease and Progressive Disease, 

SD+PD; blue curve); B) PFS analysis of partial responders vs non-responders. P-values 

were calculated using Log-rank test, significance was set at p ≤ 0.05. 
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The survival analyses, for both OS and PFS probabilities, revealed a strong 

significance (Figure 17), confirming the results observed in the total 

cohort. Proving the differences in survival between the two categories of 

patients that experienced a response or did not (assessed by RECIST), we 

explored the biological differences of the two groups. Analyzing the gene 

expression of the 79 patients with response annotated, we did not observe 

any de-regulated gene (significance set at adjusted p-value ≤0.05). 

Investigating differences in terms of microenvironment composition, no 

one of the cell population resulted de-regulated in one of the two 

categories, performing both xCell (64 cell types + 3 summary scores) and 

TIMER methods (six cell types: B-cells, Dendridic cells, Macrophages, 

Neutrophils, CD4 T-cells, CD8 T-cells). Furthermore, no differences were 

observed comparing the de-regulated pathways in the two categories, 

evaluating both Hallmark GSEA and KEGG pathways.  
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4.5.2 Disease control rate (RECIST v1.1) 

Then, we evaluated the disease control rate, exploring the differences 

between patients who experienced a benefit from immunotherapy 

(PR+SD) who does not (PD). In the survival analyses, we observed a 

significant difference considering both in OS and PFS curves (Figure 18), 

confirming what observed in the total cohort.  

 

Figure 18 Kaplan-Meier curves (disease control rate; N=79). Survival of disease 

control rate patients’ categories (Partial Response and Stable Disease, PR+SD vs 

Progressive Disease, PD) 

Analyzing the differentially expressed genes no gene resulted significantly 

de-regulated comparing the two categories (significance set at adjusted p-

value ≤0.05). For the assessment of tumor microenvironment components, 

xCell and TIMER were interrogated. In both xCell and TIMER analyses 

no one of the cell resulted differently enriched in one the two categories. 

Moreover, investigated the de-regulated biological pathways by Hallmark 

GSEA and KEGG methods, we did not observe any significant difference 

between patients with a disease control rate and patients that experienced 

progression. Through the gene expression we were not able to discern 

biological differences between responders vs not responders or patients 

with a treatment benefit vs patients without. At this point, we decided to 
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assess if any biological difference was present in the clinical-

epidemiological groups that resulted significantly different between 

responders and non-responders in the cohort of 124 patients (Table 3). 

Investigating the smoking status, we did not observe any differences in 

terms of gene expression, evaluating de-regulated genes, 

microenvironment composition and de-regulated pathways. On the 

contrary, the anatomical site was not investigated for the biological 

characteristics, being the biological differences between the four classical 

HNSCC subsites extensively narrated in literature. Specific molecular 

features of patients that experienced a response or a benefit from ICI 

therapy were not addressed. For this reason, we proceed in evaluating 

additional biological markers.  

4.5.3 PD-L1 

After observing significant association between PD-L1 expression and 

response and differences in terms of survival for using TPS and CPS score 

with different cut-off, we aimed to understand if a biological background 

could resonate with these results. Indeed, biological differences between 

the TPS and CPS categories were investigated in the 80 cases having both 

gene expression and PD-L1 analyses. We characterized the tumor 

microenvironment composition (xCell and TIMER) and the de-regulated 

pathways (GSEA Hallmark and KEGG). However, no significant 

differences were observed between the different cut-off categories. Neither 

using the continuous scores of TPS and CPS a significant correlation was 

observed between specific biological characteristic and PD-L1 scores. 
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4.6 Gene expression signatures 

4.6.1 Literature research 

To investigate TME and its potential implication as biomarker, immune-

related gene expression signatures were retrieved from literature, and 

specifically 27 gene signatures had been selected, published from 2015 to 

2021 (Table 6). However, for 14/27 signature the methods were lacking or 

partially explained, and it was impossible to test the gene signatures. As 

final result, it was possible to test 13/27 signatures.  

Name 

Type fo 

tumor: 

HNSCC

? 

HNSCC 

site 

specific? 

Dataset Validation Reference Year DOI 
Possible to be 

tested? 

Cytolitic activity 

Yes, with 
other solid 

cancer 

types 

No TCGA No Rooney, Cell 2015 

https://doi.or
g/10.1016/j.c

ell.2014.12.0

33 

Applicable, 

methods available 

IFN-γ gene 

signature 

Yes, with 
other 8 

cancer 

types 

No Not deposited 

Yes, KEYNOTE-

001 (n=62 
additional metastitc 

melanoma pts), 

KEYNOTE-012 
(n=40 HNSCC pts; 

n=33 gastric cancer 

pts) and all the 
patients from 

KEYNOTE-012 

and KEYNOTE-
028 (not deposited) 

Ayers, J Clin 

Invest 
2017 

 DOI: 

10.1172/JCI
91190  

Applicable, 

methods available 

Expanded immune 
gene signature 

Yes, with 

other 8 
cancer 

types 

No Not deposited 

Yes, KEYNOTE-

001 (n=62 

additional metastitc 
melanoma pts), 

KEYNOTE-012 

(n=40 HNSCC pts; 
n=33 gastric cancer 

pts) and all the 

patients from 
KEYNOTE-012 

and KEYNOTE-

028 (not deposited) 

Ayers, J Clin 
Invest 

2017 

 DOI: 

10.1172/JCI

91190  

Applicable, 

methods available 

Immunophenoscore 

(IPS)  

Yes, with 

20 solid 
tumors   

No TCGA 
37 microarray 

deposited dataset 

Charoentong, 

Cell Rep 
2017 

doi: 
10.1016/j.cel

rep.2016.12.

019. 

Applicable, 

methods available 

https://doi.org/10.1016/j.cell.2014.12.033
https://doi.org/10.1016/j.cell.2014.12.033
https://doi.org/10.1016/j.cell.2014.12.033
https://doi.org/10.1016/j.cell.2014.12.033
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Immunogenomics 
pipeline 

Pancancer No TCGA No Thorsson, 
Immunity 

 

 
 

 

 
  

2018 

 

 
 

 

 
  

doi: 10.1016

/j.immuni.20

18.03.023 

Not applicable, 

methods not 

explained 

Immune-related 
clusters 

Yes, only No TCGA No 
Chen, Annals of 

Oncology 
2019 

https://doi.or

g/10.1093/an
nonc/mdy47

0 

Not applicable 

(immune classes 

are not defined) 

six-gene prognostic 

signature for OSCC 
Yes, only 

Yes, 

OSCC 

GSE85195, 

GSE23558, 
and GSE10121 

TCGA (331 

patients) + 28 
OSCC/normal 

patients tissues to 

further validate the 
signature 

Jiaying Wang  2019 

DOI: 

10.1002/jcp.
29210 

Not applicable, 

methods not 

explained 

Immune/Inflammat
ory-Related Risk 

Signature 

Yes, only 
Yes, 

OSCC 

A cohort of 

314 OC-SCC 

samples 

possessing 
whole genome 

expression data 

that were 
sourced from 

The Cancer 

Genome Atlas 
(TCGA) 

database 

GSE41613 
Shuang Bai, 
Journal of 

Oncology 

2019 
DOI: 10.115
5/2019/3865

279 

Applicable, 

methods available 

Hypoxia and 

Immune Prognostic 

Classifier 

Yes, only No TCGA TCGA Jill M Brooks 2019 

https://doi.or
g/10.1158/10

78-

0432.CCR-
18-3314 

Not applicable, 

methods not 

explained 

TMEscore Yes, only No TCGA Yes, GSE65858 Huo, Sci Rep 2020 

https://doi.or

g/10.1038/s4

1598-020-

68074-3 

Not applicable 

(genes list and 

weithgs are 

missing) 

Immune-related 
signature 

Yes, only No TCGA 
Yes, not deposited 

(n=115) 

Yao, Journal for 

Immunotherapy 

for cancer 

2020 

http://dx.doi.

org/10.1136/
jitc-2019-

000444 

Not applicable 

(genes list and 

weithgs are 

missing) 

EMT gene 

signature 
Yes, only No TCGA 

GSE65858, 

GSE41613, 
GSE42743 

Jung, Scientific 

report 
2020 

https://doi.or
g/10.1038/s4

1598-020-

60707-x 

Not applicable 

(genes weithgs are 

missing) 

Immune Risk 

Model 
Yes, only No TCGA No 

Liu, Cancer 

genetics 
2020 

https://doi.or
g/10.3389/fg

ene.2020.57

6566 

Applicable, 

methods available 

tumor immune cell 
infiltration (ICI) 

Yes, only No 

GSE41613, 

GSE42743, E-

MTAB-1328 
and 

GSE65858; 

TCGA  

No 

Zhang, 

Molecular 
therapy acid 

nucleici 

2020 

https://doi.or

g/10.1016/j.
omtn.2020.0

8.030 

Not applicable, 

methods not 

explained 

https://pubmed.ncbi.nlm.nih.gov/?term=Thorsson%20V%5BAuthor%5D
https://dx.doi.org/10.1016%2Fj.immuni.2018.03.023
https://dx.doi.org/10.1016%2Fj.immuni.2018.03.023
https://dx.doi.org/10.1016%2Fj.immuni.2018.03.023
https://doi.org/10.1093/annonc/mdy470
https://doi.org/10.1093/annonc/mdy470
https://doi.org/10.1093/annonc/mdy470
https://doi.org/10.1093/annonc/mdy470
https://doi.org/10.1002/jcp.29210
https://doi.org/10.1002/jcp.29210
https://doi.org/10.1002/jcp.29210
https://doi.org/10.1158/1078-0432.CCR-18-3314
https://doi.org/10.1158/1078-0432.CCR-18-3314
https://doi.org/10.1158/1078-0432.CCR-18-3314
https://doi.org/10.1158/1078-0432.CCR-18-3314
https://doi.org/10.1158/1078-0432.CCR-18-3314
https://doi.org/10.1038/s41598-020-68074-3
https://doi.org/10.1038/s41598-020-68074-3
https://doi.org/10.1038/s41598-020-68074-3
https://doi.org/10.1038/s41598-020-68074-3
http://dx.doi.org/10.1136/jitc-2019-000444
http://dx.doi.org/10.1136/jitc-2019-000444
http://dx.doi.org/10.1136/jitc-2019-000444
http://dx.doi.org/10.1136/jitc-2019-000444
https://doi.org/10.1038/s41598-020-60707-x
https://doi.org/10.1038/s41598-020-60707-x
https://doi.org/10.1038/s41598-020-60707-x
https://doi.org/10.1038/s41598-020-60707-x
https://doi.org/10.3389/fgene.2020.576566
https://doi.org/10.3389/fgene.2020.576566
https://doi.org/10.3389/fgene.2020.576566
https://doi.org/10.3389/fgene.2020.576566
https://doi.org/10.1016/j.omtn.2020.08.030
https://doi.org/10.1016/j.omtn.2020.08.030
https://doi.org/10.1016/j.omtn.2020.08.030
https://doi.org/10.1016/j.omtn.2020.08.030
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27 prognostic IRGs 

genes signature 
Yes, only No TCGA GSE65858 Yangyang She 2020 

DOI: 

10.1186/s12

935-020-
1104-7 

Applicable, 

methods available 

Immune-related 

gene prognostic 
index 

Yes, only No TCGA GSE65858 
Chen, Clinical 

Cancer Research 
2020 

DOI: 

10.1158/107

8-
0432.CCR-

20-2166 

Not applicable, 

methods not 

explained 

Immune related 

signature 
Yes, only No TCGA GSE41613 Fang, Aging 2021 

DOI: 
10.18632/agi

ng.202842  

Applicable, 

methods available 

Immune signature Yes, only No TCGA GSE65858 

Qiang, 

Computational 
and Structural 

Biotechnology 

Journal 

2021 

https://doi.or

g/10.1016/j.c

sbj.2021.01.
046 

Applicable, 

methods available 

Microenvironment 

subtypes 
Pancancer No 

TCGA, ICGC, 

GTEx 
No 

Bagaev A, 

Cancer Cell 
2021 

https://doi.or

g/10.1016/j.c

cell.2021.04.
014 

Not applicable, 

methods not 

explained 

Tumor 

immunological 

phenotypes 

Pancancer No TCGA No Wang 2021 

DOI: 

10.1126/scia

dv.abd7851  

Not applicable, 

methods not 

explained 

Subtyping based on 

immune signatures 
Yes, only No TCGA 

GSE65858, 
GSE30784, 

GSE39366 

Song, Int 
Immunopharmac

ol 

2021 

https://doi.or

g/10.1016/j.i

ntimp.2021.
108007 

Not applicable, 

methods not 

explained 

Invasiveness score Pancancer No TCGA 7 GEO database 
Bi Ji, J Transl 

Med 

2021 

https://doi.or

g/10.1186/s1
2967-021-

02773-x 

Applicable, 

methods available 

quanTIseq 

deconvolution 

algorithm 

Pancancer No TCGA No 
Finotello, 

Genome Med 

2021 

https://doi.or

g/10.1186/s1
3073-019-

0638-6 

Not applicable, 

methods not 

explained 

Immune exhaustion 

gene signature 

No, 

Thyroid 
cancer 

No Not deposited 
TCGA, GSE29265, 

GSE33630 

Li, The Journal 
of Clinical 

Endocrinology & 

Metabolism 

2021 

https://doi.or
g/10.1210/cli

nem/dgab13

2 

Applicable, 

methods available 

myeloid signature Yes, only No TCGA GSE65858 
Liu, Frontiers in 

Immunology 
2021 

https://doi.or
g/10.3389/fi

mmu.2021.6

59184 

Applicable, 

methods available 

RNA-binding 
protein (RBPs) 

trascription level 

Yes, only No TCGA GSE65858 
Hu, Frontiers in 

Genetics 
2021 

https://doi.or

g/10.3389/fg

ene.2020.57
1403 

Applicable, 

methods available 

IRGPs signature Yes, only No TCGA GSE41613 
Jiang, 

Translational 

Oncology 

2021 

https://doi.or

g/10.1016/j.t

ranon.2020.1
00924 

Not applicable, 

methods not 

explained 

Table 6. Gene expression signatures retrieved from literature 

 

4.6.2 Gene expression signatures from literature 

4.6.2.1 Gene expression signature non significantly associated with 

survival 

For the 13 gene expression signatures, which methods were available, the 

score was calculated, and their association with survival was evaluated by 

Kaplan-Meier curves. Five of the thirteen gene expression signature 

resulted non-significantly associated with both to OS and PFS. 

https://doi.org/10.18632/aging.202842
https://doi.org/10.18632/aging.202842
https://doi.org/10.18632/aging.202842
https://doi.org/10.1016/j.csbj.2021.01.046
https://doi.org/10.1016/j.csbj.2021.01.046
https://doi.org/10.1016/j.csbj.2021.01.046
https://doi.org/10.1016/j.csbj.2021.01.046
https://doi.org/10.1016/j.ccell.2021.04.014
https://doi.org/10.1016/j.ccell.2021.04.014
https://doi.org/10.1016/j.ccell.2021.04.014
https://doi.org/10.1016/j.ccell.2021.04.014
https://doi.org/10.1016/j.intimp.2021.108007
https://doi.org/10.1016/j.intimp.2021.108007
https://doi.org/10.1016/j.intimp.2021.108007
https://doi.org/10.1016/j.intimp.2021.108007
https://doi.org/10.1186/s12967-021-02773-x
https://doi.org/10.1186/s12967-021-02773-x
https://doi.org/10.1186/s12967-021-02773-x
https://doi.org/10.1186/s12967-021-02773-x
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1210/clinem/dgab132
https://doi.org/10.1210/clinem/dgab132
https://doi.org/10.1210/clinem/dgab132
https://doi.org/10.1210/clinem/dgab132
https://doi.org/10.3389/fimmu.2021.659184
https://doi.org/10.3389/fimmu.2021.659184
https://doi.org/10.3389/fimmu.2021.659184
https://doi.org/10.3389/fimmu.2021.659184
https://doi.org/10.3389/fgene.2020.571403
https://doi.org/10.3389/fgene.2020.571403
https://doi.org/10.3389/fgene.2020.571403
https://doi.org/10.3389/fgene.2020.571403
https://doi.org/10.1016/j.tranon.2020.100924
https://doi.org/10.1016/j.tranon.2020.100924
https://doi.org/10.1016/j.tranon.2020.100924
https://doi.org/10.1016/j.tranon.2020.100924
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Specifically, statistical results for Bi et al were p=0.400404 for OS and 

p=0.114788 for PFS (Log-rank test); for She et al p=0.195569 and 

p=0.225746 (OS and PFS, respectively); for Qiang et al were p=0.189808 

and p=0.0846285 (OS and PFS, respectively); for Ayers et al (immune 

expanded) p=0.392714 for OS and p=0.175512 for PFS. More details of 

the gene signature were descripted in Table 7.  

GE name Genes Details doi 

Invasiveness-

related molecular 

features (Bi et al.) 

4-gene expression signature 

(COL11A1, POSTN, EPYC, ASPN, 

COL10A1, THBS2, FAP, LOX, 

SFRP4, INHBA, MFAP5, GREM1, 

COMP, VCAN, COL5A2, 

COL5A1, TIMP3, GAS1, 

TNFAIP6, ADAM12, FBN1, 

SULF1, COL1A1, and DCN) 

Positive correlation between 

invasiveness score and immune-

associated biomarkers across multiple 

cancer types; potential application of 

the score in the identification of tumor 

patients who are more likely to benefit 

from immunotherapy.  

https://doi.or

g/10.1186/ 

s12967-021-

02773-x 

(131) 

Prognostic 

immune-related 

gene signature 

(IRGS) 

(She et al.) 

27-gene expression signature 

(RFXAP, ULBP1, TMSB4Y, RBP4, 

LCNL1, CCR6, KLRK1, PTX3, 

MASP1, HRG, CCL22, OLR1, 

ROBO1, BTC, CHGB, DKK1, 

HBEGF, INHBB, PDGFA, 

AVPR2, IL20RA, RORB, 

TNFRSF18, TNFRSF25, 

TNFRSF4, SH3BP2, ICOS)  

IRGS signatures revealed that a higher 

score of immune cell infiltration was 

present in the low-risk group, and 

immunosuppression is an indispensable 

factor of carcinogenic progression in 

HNSCC. 

https://doi.or

g/10.1186/ 

s12935-020-

1104-7 

(132) 

 

Prognostic 

immune-related 

genes (IRGs) 

signature (Qiang 

et al.) 

13-gene expression signature 

(PLAU, IRF9, CCL26, BLNK, 

SEMA3G, FPR2, GAST, IL34, 

SLURP1, STC1, STC2, 

TNFRSF12A and TNFRSF25) 

IRG-based prognostic signature for 

HNSC and proved its predictive 

capability in multiple datasets; the 

signature could potentially provide a 

foundation for individualized cancer 

immunotherapy. 

10.1016/j.cs

bj.2021.01.0

46 

 

(133) 

 

Expanded 

immune gene 

signature (Ayers 

et al.) 

18-gene expression signature 

(CD3D, IDO1, CIITA, CD3E, 

CCL5, GZMK, CD2, HLA-DRA, 

CXCL13, IL2RG, NKG7, HLA-E, 

CXCR6, LAG3, TAGAP, STAT1, 

GZMB) 

T cell–inflamed phenotype necessary 

for the clinical activity of PD-1–/PD-

L1–directed monoclonal antibodies; the 

signature was prospectively validated in 

a large, independent cohort of PD-L1–

unselected patients with HNSCC. 

https://doi.or

g/10.1172/ 

JCI91190 

(107) 

 

Table 7. Detail of the 4 gene expression signature not significantly associated 

with survival 

https://doi/
https://doi/
https://doi.org/10.1016%2Fj.csbj.2021.01.046
https://doi.org/10.1016%2Fj.csbj.2021.01.046
https://doi.org/10.1016%2Fj.csbj.2021.01.046
https://doi.org/10.1172/JCI91190
https://doi.org/10.1172/JCI91190
https://doi.org/10.1172/JCI91190
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In addition, the 4 signatures did not correlate with response or disease 

response rate neither. We decided to additionally test the 

Immunophenoscore (IPS), a pancancer-algorithm134. Authors 

characterized the intratumoral immune landascape of 20 solid cancers, and 

they observed a correlation between the response to immunotherapy. 

However, in Nivactor cohort we did not observe a correlation between the 

score and the response (Figure 19). Moreover, it was not possible to divide 

patients in two group based on immunophenoscore and consequently, it 

was not possible to investigate the IPS prognostic role. 

 

Figure 19 Boxplots of Immunophenoscore (IPS). Red: responding patients (PR); 

blue: non-responding patients (SD+PD). Significance was calculated by Wilcoxon 

test 

4.6.2.2 Gene expression signature significantly associated with survival 

On the other hand, 8/13 literature signatures resulted significantly 

associated with survival (OS or PFS).   

1.Bai et al. The first was the prognostic immune/inflammatory signature 

of Bai et al.135, comprising 18 genes (CD27, CD79B, CMA1, CCR4, 

CCR7, CNR2, CTLA4, CTSG, GZMM, IL16, MASP1, SAA1, CCL11, 

TNFAIP3, BATF, IL19, PGLYRP4, and TREML1) and specifically 

designed for OSCC. In their work, based on the median cut-off value of 

the risk, they divided patients into high (worse prognosis) and low (better 
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prognosis) risk group. Their results showed that the lower risk score was 

correlated with inflammatory response and the higher risk score with cell-

cycle related process. Testing the signature in the Nivactor cohort (N=80) 

we observed that the signature resulted associated with PFS (p=0.0455087, 

Log-rank test, Figure 20), but not with OS, however confirming the high-

risk score group (red curves) with a poorer prognosis. 

 

Figure 20 Kaplan-Meier analyses for OS (A) and PFS (B) testing Bai et al. 

immune-inflammatory signature on Nivactor cohort (N=80) 

 

Investigating the biological differences between the two risk groups, we 

observed different de-regulated Hallmark GSEA pathways in the high 

group (worse prognosis), showed in Table 8. As observed in the original 

work of Bai et al. we evidenced an up-regulation of pathways related to 

signaling and proliferation. Moreover, we observed an enrichment in 

pathway related to DNA repair and those correlated with a more aggressive 

disease and worse prognosis, such as Epithelial mesenchymal transition 

and hypoxia pathways. Moreover, the high-risk group resulted similar in 4 

Hallmark GSEA pathways comparing to the profile of “Immune exhausted 

HNSCC” described by Chen et al136 .   
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Group 

enriched 

Hallmark GSEA 

pathway 

p-value FDR Process 

category (31) 

Common with 

“Immune 

Exhausted” 

(Chen et al.)? 

Common 

with 

“Immune 

Active” 

(Chen et 

al.)? 

High group 

(Bai et al.) 

MYC_TARGETS_V1 0.00000368 0.000184 Proliferation No No 

High group 

(Bai et al.) 

TGF_BETA_SIGNALING 0.0000115 0.000565 Signaling Yes No 

High group 

(Bai et al.) 

G2M_CHECKPOINT 0.0000255 0.00122 Proliferation No No 

High group 

(Bai et al.) 

PROTEIN_SECRETION 0.0000309 0.00145 Pathway No No 

High group 

(Bai et al.) 

EPITHELIAL_ 

MESENCHYMAL_ 

TRANSITION 

0.000035 0.00161 Development Yes No 

High group 

(Bai et al.) 

MTORC1_ 

SIGNALING 

0.0000361 0.00163 Signaling No No 

High group 

(Bai et al.) 

OXIDATIVE_ 

PHOSPHORYLATION 

0.0000407 0.00179 Metabolic No No 

High group 

(Bai et al.) 

ANDROGEN_ 

RESPONSE 

0.0000619 0.00266 Signaling No No 

High group 

(Bai et al.) 

HYPOXIA 0.0000835 0.00351 Pathway Yes No 

High group 

(Bai et al.) 

UV_RESPONSE_DN 0.0001 0.00412 DNA damage Yes No 

Table 8. Hallmark GSEA pathways de-regulated in the high group of Bai et al. 

 

Using xCell for the investigation of the microenvironment composition, 

we observed that the high group was enriched in lymphoid (CD8+ naive 

T-cells) and stromal cells (Table 9), while low group resulted enriched in 

Immune score (p=0.00000183, FDR= 0.000115), and specifically in 

different lymphoid cell population such as CD4+ Tem (p=5.82e-9, 

FDR=3.9e7), CD4+ Tcm (p=0.00000115, FDR= 0.0000746), 

Immunoscore (p=0.00000183, FDR= 0.000115), and myeloid cells, such 
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as Basophils (p=0.0000202, FDR= 0.00119) and Eosinophils 

(p=0.0000318; FDR= 0.00181).   

 

Group enriched Cell type pvalue FDR xCELL CATEGORY 

Low group (Bai et al.) CD4+ Tem 5.82e-9 3.9e-7 lymphoids 

Low group (Bai et al.) Platelets 1.75e-8 0.00000115 Stem cells 

Low group (Bai et al.) CD4+ Tcm 0.00000115 0.0000746 lymphoids 

High group (Bai et al.) Smooth muscle 0.00000159 0.000102 Stromal 

Low group (Bai et al.) ImmuneScore 0.00000183 0.000115 Not applicable 

Low group (Bai et al.) Hepatocytes 0.00000229 0.000142 Others 

Low group (Bai et al.) Neurons 0.00000434 0.000265 Others 

Low group (Bai et al.) Melanocytes 0.00000445 0.000267 Others 

Low group (Bai et al.) Basophils 0.0000202 0.00119 Myeloids 

High group (Bai et al.) CD8+ naive T-cells 0.0000241 0.0014 Lymphoids 

Low group (Bai et al.) Eosinophils 0.0000318 0.00181 Myeloids 

Low group (Bai et al.) MicroenvironmentScore 0.0000845 0.00473 Not applicable 

Table 9. Microenviroment composition (xCell) of high and low groups of Bai et 

al. signature 

 

Investigating KEGG pathways, the already observed characteristics in 

Hallmark GSEA were confirmed, or rather that the high-risk group resulted 

associated with cell cycle, proliferation, and DNA repair pathways (Table 

10). Nevertheless, no one of the KEGG pathways resulted associated with 

the immune profiles described by Chen et al.  
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Group enriched Geneset KEGG p-value FDR Common 

with 

“Immune 

Exhausted” 

(Chen et 

al.)? 

Common 

with 

“Immune 

Active” 

(Chen et 

al.)? 

Low group (Bai et al.) RETINOL_METABOLISM 9.23e-9 0.00000114 No No 

High group (Bai et al.) RIBOSOME 1.72e-7 0.000021 No No 

Low group (Bai et al.) LINOLEIC_ACID_METABOLISM 7.45e-7 0.0000901 No No 

High group (Bai et al.) GLYOXYLATE_AND_ 

DICARBOXYLATE_METABOLISM 

0.00000281 0.000337 No No 

Low group (Bai et al.) DRUG_METABOLISM_ 

CYTOCHROME_P450 

0.0000119 0.00141 No No 

High group (Bai et al.) PROTEIN_EXPORT 0.0000252 0.00297 No No 

High group (Bai et al.) NUCLEOTIDE_EXCISION_REPAIR 0.0000328 0.00384 No No 

High group (Bai et al.) ADHERENS_JUNCTION 0.0000755 0.00876 No No 

High group (Bai et al.) OXIDATIVE_PHOSPHORYLATION 0.000079 0.00909 No No 

High group (Bai et al.) SPLICEOSOME 0.0000821 0.00936 No No 

High group (Bai et al.) UBIQUITIN_MEDIATED_ 

PROTEOLYSIS 

0.000108 0.0122 No No 

High group (Bai et al.) MISMATCH_REPAIR 0.000136 0.0152 No No 

High group (Bai et al.) CELL_CYCLE 0.00014 0.0156 No No 

Low group (Bai et al.) STEROID_HORMONE_BIOSYNTHESIS 0.000174 0.0191 No No 

Table 10. KEGG pathways de-regulated in high and low risk groups of Bai et al. 

2. Fang et al. Testing the literature immune signature in Nivactor cohort, 

we found another signature correlated with PFS. It was the prognostic 

immune-related HNSCC gene signature of Fang et al. (Figure 21), 

composed by 10 immune-related genes (DEFB1, EDNRB, ADM, BTC, 

DKK1, FAM3D, GNRH1, STC2, TNFRSF12A, CTLA4)137. Authors 

claimed that the prognostic value of the signatures was superior to TNM 

and, the prognostic model divided patients in two groups based on risk 

scores. Moreover, they observed that the low-risk group showed a higher 

immune checkpoint expression (observing CTLA-4 and PD-1). In 

Nivactor cohort the prognostic value was not confirmed in OS analyses 
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and investigating the biological composition no one of the Hallmark GSEA 

and KEGG pathways and xCell population resulted significantly de-

regulated between the two categories. 

 

Figure 21 Kaplan-Meier analyses for OS (A) and PFS (B) testing Fang et al. 

immune-related gene signature on Nivactor cohort (N=80) 

 

3. Hu et al. The third signature tested was the prognostic HNSCC RNA-

binding proteins (RBPs) gene expression signature by Hu et al138.  (Figure 

22), composed by six RBPs-related genes, including NCBP2, MKRN3, 

MRPL47, AZGP1, IGF2BP2, and EZH2. In their paper patients were 

stratified into two risk group, in which high-risk had the poorer prognosis. 

Authors individuated a correlation between the RBPs gene expression 

signatures and the function regulation of immune cells. They observed that 

the low-risk group was enriched in immune, inflammatory response, fatty 

acid metabolism, B cell receptor signalling pathway and T cell receptor 

signalling pathway. Meanwhile high-risk score resulted associated with 

different signals that reconducted to immunosuppression. In the Nivactor 

cohort the signatures resulted significantly associated with survival 

considering PFS analysis (p=0.0378015, Log-rank test), but the same 
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result was not observed for OS (Figure 21). Moreover, even in the Nivactor 

cohort, the high-risk group was confirmed to have the poorer prognosis.  

 

Figure 22. Kaplan-Meier analyses for OS (A) and PFS (B) testing Hu et al. 

immune-related gene signature on Nivactor cohort (N=80) 

In addition, investigating the biological differences of the two-risk group 

we observed that different Hallmark GSEA pathways resulted enriched in 

low-risk group of Hu et al, but no one of the pathways resulted enriched in 

the high-risk group (Table 11). The low risk enriched pathways were 

related to proliferation, and development. Moreover, 4/10 enriched 

pathways resulted similar to the “Immune exhausted” HNSCC profile 

detailed by Chen et al.  
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Group 

enriched 

Hallmark GSEA pathway p-value FDR Process 

category (31) 

Common 

with 

“Immune 

Exhausted” 

(Chen et 

al.)? 

Common 

with 

“Immune 

Active” 

(Chen et 

al.)? 
Low 

group (Hu 

et al.) 

G2M_CHECKPOINT 0.00000265 0.000132 proliferation No No 

Low 

group (Hu 

et al.) 

REACTIVE_OXYGEN 

_SPECIES_PATHWAY 

0.0000114 0.000558 pathway No Yes 

Low 
group (Hu 

et al.) 

E2F_TARGETS 0.0000156 0.000749 proliferation No No 

Low 
group (Hu 

et al.) 

MYC_TARGETS_V1 0.0000197 0.000926 proliferation No No 

Low 

group (Hu 
et al.) 

OXIDATIVE_PHOSPHORYLATION 0.0000202 0.000928 metabolic No No 

Low 

group (Hu 
et al.) 

MITOTIC_SPINDLE 0.0000735 0.00331 proliferation No No 

Low 

group (Hu 
et al.) 

CHOLESTEROL 

_HOMEOSTASIS 

0.0000754 0.00332 metabolic No No 

Low 

group (Hu 

et al.) 

MTORC1_SIGNALING 0.000108 0.00465 signaling No No 

Low 

group (Hu 

et al.) 

DNA_REPAIR 0.000171 0.00717 DNA damage No No 

Low 
group (Hu 

et al.) 

UNFOLDED_PROTEIN 
_RESPONSE 

0.000176 0.00721 pathway No No 

Low 
group (Hu 

et al.) 

ANDROGEN_RESPONSE 0.000225 0.00902 signaling No No 

Low 

group (Hu 
et al.) 

ESTROGEN_RESPONSE 

_LATE 

0.000367 0.0143 signaling No No 

Low 

group (Hu 
et al.) 

MYC_TARGETS_V2 0.000407 0.0155 proliferation No No 

Low 

group (Hu 

et al.) 

PROTEIN_SECRETION 0.000508 0.0188 pathway No No 

Low 

group (Hu 

et al.) 

PI3K_AKT_MTOR_SIGNALING 0.000579 0.0208 signaling No Yes 

Low 

group (Hu 

et al.) 

HEME_METABOLISM 0.000759 0.0266 metabolic No No 

Low 
group (Hu 

et al.) 

NOTCH_SIGNALING 0.000829 0.0282 signaling No No 

Table 11. Hallmark GSEA pathways de-regulated in the low group of Hu et al. 

The microenvironment between the two groups resulted differently de-

regulated, the high-risk group (worse PFS) resulted enriched in 

eosinophils, endothelial cells, neurons, hepatocytes, NKT and platelets, 

while the low-risk group (better PFS) was enriched in CLP, Tgd cells, 

smooth cells (Table 12). Therefore, stromal and lymphoid components 

were present in both risk categories. 
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Group enriched Cell type (xCell) p-value FDR xCell category 

High group (Hu et al.) Eosinophils 0.00000104 0.0000695 Myeloids 

High group (Hu et al.) Neurons 0.00000221 0.000146 Others 

High group (Hu et al.) Endothelial cells 0.00000313 0.000204 Stromal cells 

Low group (Hu et al.) Common Lymphoid progenitor (CLP) 0.00000389 0.000249 Lymphoids 

Low group (Hu et al.) T gamma delta (gd) cells 0.0000141 0.000888 Lymphoids 

High group (Hu et al.) Hepatocytes 0.0000264 0.00164 Others 

High group (Hu et al.) Granulocyte Macrophage progenitor (GMP) 0.000117 0.00715 Stem cells 

Low group (Hu et al.) Smooth muscle 0.000125 0.00751 Stromal cells 

High group (Hu et al.) Natural killer T-cells (NKT) 0.000384 0.0227 Lymphoids 

High group (Hu et al.) Platelets 0.000715 0.0414 Stem cells 

Table 12. Microenviroment composition (xCell) of high and low groups of Hu et 

al. signature 

As obtained in the GSEA hallmark analysis, the KEGG pathways resulted 

enriched in the low-risk group only (Table 13). Even here, the up-regulated 

pathways were connected to cell cycle and proliferation. Indeed, the profile 

of low-risk group in the Nivactor cohort resulted more similar to an 

immune exhaustion than immune activation, and its phenotype 

reassimilate peculiarity of a more aggressive disease, despite those related 

to a the better survival. Eventually, the discerned characteristics strongly 

differed from those described in the original paper of Hu et al. 



93 
 

Table 13. KEGG pathways enriched in low group of Hu et al. signature 

4. Liu et al (myeloid). Even the fourth gene expression signature resulted 

associated with PFS in the Nivactor cohort, but not with OS (Figure 23). It 

was the prognostic HNSCC myeloid gene expression signature of Liu et 

al.139. The risk score was based on the expression of 6 genes (CCL13, 

CCR7, CD276, IL1B, LYVE1, VEGFC), and the high-risk group presented 

the worse prognosis. The high score of myeloid signatures was associated 

by authors to an immunosuppressive status, while the group with the lower 

expression and lower risk exhibited enrichment in fatty acid metabolism 

and immune-related pathways. Indeed, in the Nivactor cohort (N=80) we 

observed an enrichment in the low-risk group of naïve B-cells (p=3.29e-9, 

FDR=2.2e-7), B-cells (p=0.0000047, FDR=0.00031), Memory B-cells 

(p=0.0000108, FDR=0.0007), Class-switched memory B-cells 

Group enriched Geneset KEGG p-value FDR Common with 

“Immune 

Exhausted” 

(Chen et al.)? 

Common 

with 

“Immune 

Active” 

(Chen et al.)? 

Low group (Hu et al.) RIBOSOME 1.96e-7 0.0000241 No No 

Low group (Hu et al.) OXIDATIVE_PHOSPHORYLATION 0.00000673 0.000821 No No 

Low group (Hu et al.) BASE_EXCISION_REPAIR 0.0000103 0.00124 No No 

Low group (Hu et al.) MISMATCH_REPAIR 0.0000422 0.00506 No No 

Low group (Hu et al.) CELL_CYCLE 0.0000501 0.00596 No No 

Low group (Hu et al.) GLYOXYLATE_AND 

_DICARBOXYLATE_METABOLISM 

0.0000861 0.0102 No No 

Low group (Hu et al.) NUCLEOTIDE_EXCISION_REPAIR 0.0000975 0.0114 No No 

Low group (Hu et al.) UBIQUITIN_MEDIATED 

_PROTEOLYSIS 

0.0000984 0.0114 No No 

Low group (Hu et al.) SPLICEOSOME 0.000107 0.0123 No No 

Low group (Hu et al.) PROTEIN_EXPORT 0.000121 0.0138 No No 

Low group (Hu et al.) DNA_REPLICATION 0.000143 0.0162 No No 

Low group (Hu et al.) N_GLYCAN_BIOSYNTHESIS 0.000186 0.0208 No No 

Low group (Hu et al.) GLUTATHIONE_METABOLISM 0.00041 0.0456 No No 

Low group (Hu et al.) PYRIMIDINE_METABOLISM 0.000411 0.0456 No No 

Low group (Hu et al.) RNA_POLYMERASE 0.000416 0.0456 No No 
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(p=0.0000542; FDR=0.00347) and CD4+ Tem (p=0.000317; FDR= 0.02). 

Meanwhile, no Hallmark GSEA and KEGG resulted de-regulated in one 

of the two groups.   

 

Figure 23 Kaplan-Meier analyses for OS (A) and PFS (B) testing Liu et al. 

prognostic myeloid immune signature on Nivactor cohort (N=80) 

5. Li et al. Moreover, we observed a significant association between PFS 

and a four gene (PRKCQ, PLAUR, PSMD2, and BMP7) immune 

signature designed by Li et al.140 (Figure 24). The signature was designed 

to predict immune exhaustion in thyroid cancer, and patients were 

stratified into two different risk groups. The low-risk group (with the better 

prognosis) was related to immune pathways, while the high-risk group was 

enriched in some signaling pathways indicative of aggressive malignant 

behavior.  
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Figure 24 Kaplan-Meier analyses for OS (A) and PFS (B) testing 4-gene immune 

exhaustion signature of Li et al. 

In the high-risk group (worse PFS) 39/50 GSEA Hallmark pathways were 

up-regulated, as listed in Table 14. Mostly were categorized in 

proliferation, signaling and pathway. Moreover, 15/39 pathways were 

common to the profile of “Immune exhausted” described by Chen et al, 

and 9/39 with the “Immune active” profile.  
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Group 

enriched 

Hallmark GSEA pathway p-value FDR Process 

category 

Common with 

“Immune 

Exhausted” 

(Chen et al.)? 

Common 

with 

“Immune 

Active” 

(Chen et 

al.)? 

High group 

(Li et al.) 

ANDROGEN_RESPONSE 0.00000426 0.000213 Signaling No No 

High group 

(Li et al.) 

PROTEIN_SECRETION 0.00000647 0.000317 Pathway No No 

High group 

(Li et al.) 

TGF_BETA 

_SIGNALING 

0.0000136 0.000651 Signaling Yes No 

High group 

(Li et al.) 

MYC_TARGETS_V1 0.0000143 0.000673 proliferation No No 

High group 

(Li et al.) 

UNFOLDED_PROTEIN 

_RESPONSE 

0.0000246 0.00113 pathway No No 

High group 

(Li et al.) 

G2M_CHECKPOINT 0.0000383 0.00172 proliferation No No 

High group 

(Li et al.) 

OXIDATIVE_ 

PHOSPHORYLATION 

0.0000554 0.00244 metabolic No No 

High group 

(Li et al.) 

MITOTIC_SPINDLE 0.00009 0.00387 Proliferation No No 

High group 

(Li et al.) 

EPITHELIAL_MESENCHYMAL 

_TRANSITION 

0.0000987 0.00414 development Yes No 

High group 

(Li et al.) 

TNFA_SIGNALING 

_VIA_NFKB 

0.000115 0.00473 signaling Yes No 

High group 

(Li et al.) 

MTORC1_SIGNALING 0.000125 0.00501 signaling No No 

High group 

(Li et al.) 

APOPTOSIS 0.000127 0.00501 pathway No Yes 

High group 

(Li et al.) 

UV_RESPONSE_DN 0.000141 0.00537 DNA 

damage 

Yes No 

High group 

(Li et al.) 

DNA_REPAIR 0.000223 0.00826 DNA 

damage 

No No 

High group 

(Li et al.) 

CHOLESTEROL 

_HOMEOSTASIS 

0.000226 0.00826 metabolic No No 

High group 

(Li et al.) 

HYPOXIA 0.00024 0.0084 pathway Yes No 

High group 

(Li et al.) 

GLYCOLYSIS 0.000276 0.00937 Metabolic No No 

High group 

(Li et al.) 

PI3K_AKT_MTOR 

_SIGNALING 

0.000311 0.0103 signaling No Yes 
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High group 

(Li et al.) 

P53_PATHWAY 0.000361 0.0115 proliferation No No 

High group 

(Li et al.) 

WNT_BETA_CATENIN 

_SIGNALING 

0.000426 0.0132 Signaling No No 

High group 

(Li et al.) 

MYC_TARGETS_V2 0.0005 0.015 Proliferation No No 

High group 

(Li et al.) 

IL2_STAT5_SIGNALING 0.000548 0.0159 signaling Yes Yes 

High group 

(Li et al.) 

ADIPOGENESIS 0.000607 0.017 development Yes No 

High group 

(Li et al.) 

HEDGEHOG_SIGNALING 0.000664 0.0179 Signaling No No 

High group 

(Li et al.) 

INFLAMMATORY 

_RESPONSE 

0.000742 0.0193 Immune Yes Yes 

High group 

(Li et al.) 

NOTCH_SIGNALING 0.000748 0.0193 Signaling No No 

High group 

(Li et al.) 

COMPLEMENT 0.000762 0.0193 Immune Yes Yes 

High group 

(Li et al.) 

ANGIOGENESIS 0.00077 0.0193 Development Yes No 

High group 

(Li et al.) 

REACTIVE_OXYGEN 

_SPECIES_PATHWAY 

0.000902 0.0198 Pathway No Yes 

High group 

(Li et al.) 

UV_RESPONSE_UP 0.000909 0.0198 DNA 

damage 

No Yes 

High group 

(Li et al.) 

HEME_METABOLISM 0.00109 0.0217 Metabolic No No 

High group 

(Li et al.) 

E2F_TARGETS 0.00121 0.023 Proliferation No No 

High group 

(Li et al.) 

APICAL_JUNCTION 0.00129 0.0232 Cellular 

component 

Yes Yes 

High group 

(Li et al.) 

IL6_JAK_STAT3_SIGNALING 0.0015 0.0255 Immune Yes Yes 

High group 

(Li et al.) 

INTERFERON_GAMMA 

_RESPONSE 

0.00192 0.0307 Immune No No 

High group 

(Li et al.) 

ESTROGEN_RESPONSE 

_LATE 

0.00199 0.0307 signaling No No 

Table 14. Enriched Hallmark GSEA pathways (Li et al.) 
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The evaluation of the microenvironment composition evidenced an 

abundance of lymphoids, myeloids and stem cells in the low-risk group, 

result confirmed also by the xCell cumulative ImmunoScore. Therefore, 

the profile of the low-risk group observed in the original paper was 

confirmed by xCell analyses. Meanwhile, the high-risk group was 

characterized by stromal and stem cells (Table 15).  

Group enriched Cell type (xCell) p-value FDR xCell category 

Low group (Li et al.) CD4+ Tem 5.82e-9 3.9e-7 Lymphoids 

Low group (Li et al.) Platelets 1.75e-8 0.00000115 Stem cells 

Low group (Li et al.) CD4+ Tcm 0.00000115 0.0000746 Lymphoids 

High group (Li et al.) Smooth muscle 0.00000159 0.000102 Stromal 

Low group (Li et al.) ImmuneScore 0.00000183 0.000115 NA 

Low group (Li et al.) Hepatocytes 0.00000229 0.000142 Others 

Low group (Li et al.) Neurons 0.00000434 0.000265 Others 

Low group (Li et al.) Melanocytes 0.00000445 0.000267 Others 

Low group (Li et al.) Basophils 0.0000202 0.00119 Myeloids 

Low group (Li et al.) CD8+ naive T-cells 0.0000241 0.0014 Lymphoids 

Low group (Li et al.) Eosinophils 0.0000318 0.00181 Myeloids 

Low group (Li et al.) MicroenvironmentScore 0.0000845 0.00473 NA 

Low group (Li et al.) MPP 0.000106 0.0058 Stem cells 

Low group (Li et al.) CMP 0.000113 0.0061 Stem cells 

High group (Li et al.) CLP 0.000191 0.0101 Stem cells 

Low group (Li et al.) CD4+ T-cells 0.000269 0.014 Lymphoids 

Table 15. Microenviroment composition of the groups (Li et al.) 

The numerous KEGG pathways, that were all significantly enriched in 

Low-risk group, evidenced an upregulation in cell cycle, proliferation, and 

metabolism (Table 16). Seven KEGG pathways were in common with the 

profile of immune exhaustion defined by Chen et al, and two KEGG 

pathways with the profile of “Immune active”.  
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Group 

enriched 

Geneset KEGG p-value FDR Common 

with 

“Immune 

Exhausted” 

(Chen et al.)? 

Common with 

“Immune 

Active” (Chen 

et al.)? 

Low group 

(Li et al.) 

GLYOXYLATE_AND_DICARBOXYLATE 

_METABOLISM 

0.00000166 0.000204 No No 

Low group 

(Li et al.) 

RIBOSOME 0.00000209 0.000255 No No 

Low group 

(Li et al.) 

N_GLYCAN_BIOSYNTHESIS 0.0000116 0.0014 No No 

Low group 

(Li et al.) 

NUCLEOTIDE_EXCISION 

_REPAIR 

0.0000125 0.0015 No No 

Low group 

(Li et al.) 

TGF_BETA_SIGNALING 

_PATHWAY 

0.0000184 0.0022 Yes No 

Low group 

(Li et al.) 

CELL_ADHESION_MOLECULES 

_CAMS 

0.0000321 0.00379 No No 

Low group 

(Li et al.) 

MISMATCH_REPAIR 0.0000373 0.00436 No No 

Low group 

(Li et al.) 

CELL_CYCLE 0.0000557 0.00646 No No 

Low group 

(Li et al.) 

UBIQUITIN_MEDIATED 

_PROTEOLYSIS 

0.0000658 0.00757 No No 

Low group 

(Li et al.) 

ALLOGRAFT_REJECTION 0.0000686 0.00782 No No 

Low group 

(Li et al.) 

PATHWAYS_IN_CANCER 0.0000799 0.00903 Yes No 

Low group 

(Li et al.) 

P53_SIGNALING_PATHWAY 0.000111 0.0124 No No 

Low group 

(Li et al.) 

PROTEIN_EXPORT 0.000113 0.0125 No No 

Low group 

(Li et al.) 

WNT_SIGNALING_PATHWAY 0.000141 0.0155 Yes No 

Low group 

(Li et al.) 

ANTIGEN_PROCESSING 

_AND_PRESENTATION 

0.000145 0.0159 No No 

Low group 

(Li et al.) 

SPLICEOSOME 0.00016 0.0173 No No 

Low group 

(Li et al.) 

NOTCH_SIGNALING_PATHWAY 0.000162 0.0173 No No 

Low group 

(Li et al.) 

ECM_RECEPTOR_INTERACTION 0.000164 0.0174 Yes No 
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Low group 

(Li et al.) 

LYSOSOME 0.00019 0.02 No No 

Low group 

(Li et al.) 

ADHERENS_JUNCTION 0.000191 0.02 No No 

Low group 

(Li et al.) 

BASE_EXCISION_REPAIR 0.000192 0.02 No No 

Low group 

(Li et al.) 

DNA_REPLICATION 0.000225 0.0229 No No 

Low group 

(Li et al.) 

FOCAL_ADHESION 0.000228 0.0231 No No 

Low group 

(Li et al.) 

TOLL_LIKE_RECEPTOR 

_SIGNALING_PATHWAY 

0.000252 0.0252 No Yes 

Low group 

(Li et al.) 

RNA_POLYMERASE 0.000272 0.027 No No 

Low group 

(Li et al.) 

MTOR_SIGNALING_PATHWAY 0.000284 0.0278 No No 

Low group 

(Li et al.) 

BASAL_CELL_CARCINOMA 0.000324 0.0315 Yes No 

Low group 

(Li et al.) 

OXIDATIVE_PHOSPHORYLATION 0.00033 0.0316 No No 

Low group 

(Li et al.) 

GLYCOSAMINOGLYCAN 

_BIOSYNTHESIS_KERATAN_SULFATE 

0.000393 0.0373 Yes No 

Low group 

(Li et al.) 

MAPK_SIGNALING_PATHWAY 0.000409 0.0384 No No 

Low group 

(Li et al.) 

PYRIMIDINE_METABOLISM 0.000435 0.0404 No No 

Low group 

(Li et al.) 

APOPTOSIS 0.000436 0.0404 No Yes 

Low group 

(Li et al.) 

GLYCOSPHINGOLIPID 

_BIOSYNTHESIS_GLOBO_SERIES 

0.000469 0.0427 No No 

Table 16. KEGG pathways de-regulated in high and low risk groups of Li et al. 

6. Rooney et al. The sixth signature significantly associated survival was 

the cytolytic immune signature of Rooney et al. (Figure 25)141. The 

signature was designed to quantify the effective and natural anti-tumor 

immunity, which requires a cytolytic immune response. The more the 

cytolytic activity (high expression of the signature) the less was the 

immune response. In the original paper the investigation was biology-

based, and the association with the prognosis was not performed. However, 
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in Nivactor cohort we interrogated whether the signatures could be 

translated to survival data for R/M HNSCC patients. Specifically, in 

Nivactor cohort the signature resulted significantly correlated to PFS 

(Figure 24), and high expression of the signature was correlated to a worse 

survival. 

 

Figure 25 Kaplan-Meier analyses for OS (A) and PFS (B) testing signature of 

Rooney et al. 

Several Hallmark GSEA pathways characterized the High group of the 

gene expression signature of Rooney et al. (Table 17). 

Group 

enriched 

Hallmark GSEA pathway p-value FDR Process 

category 

Common 

with 

“Immune 

Exhausted” 

(Chen et al.)? 

Common 

with 

“Immune 

Active” 

(Chen et 

al.)? 

High group 
(Rooney et al.) 

INTERFERON_ALPHA_RESPONSE 3.11e-11 1.56e-9 immune No No 

High group 

(Rooney et al.) 

INTERFERON_GAMMA_RESPONSE 4.88e-11 2.39e-9 immune No No 

High group 
(Rooney et al.) 

ALLOGRAFT_REJECTION 5.63e-10 2.7e-8 immune Yes Yes 

High group 

(Rooney et al.) 

COMPLEMENT 1.3e-7 0.00000612 immune Yes Yes 

High group 
(Rooney et al.) 

IL6_JAK_STAT3_SIGNALING 2.85e-7 0.0000131 immune Yes Yes 

High group 

(Rooney et al.) 

INFLAMMATORY_RESPONSE 8.96e-7 0.0000403 immune Yes Yes 

High group 
(Rooney et al.) 

IL2_STAT5_SIGNALING 0.0000084 0.00037 signaling Yes Yes 

High group 

(Rooney et al.) 

KRAS_SIGNALING_UP 0.0000108 0.000466 signaling No Yes 

High group 
(Rooney et al.) 

OXIDATIVE_PHOSPHORYLATION 0.0000242 0.00102 metabolic No No 

High group 

(Rooney et al.) 

DNA_REPAIR 0.000046 0.00188 DNA damage No No 
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High group 
(Rooney et al.) 

PI3K_AKT_MTOR_SIGNALING 0.0000657 0.00263 signaling No Yes 

High group 

(Rooney et al.) 

APOPTOSIS 0.000087 0.00339 pathway No Yes 

High group 
(Rooney et al.) 

TNFA_SIGNALING_VIA_NFKB 0.000112 0.00425 signaling Yes No 

High group 

(Rooney et al.) 

COAGULATION 0.000141 0.00521 immune Yes No 

High group 
(Rooney et al.) 

ADIPOGENESIS 0.000159 0.00571 development Yes No 

High group 

(Rooney et al.) 

PROTEIN_SECRETION 0.000173 0.00605 pathway No No 

High group 
(Rooney et al.) 

UV_RESPONSE_DN 0.000183 0.00621 DNA damage Yes No 

High group 

(Rooney et al.) 

TGF_BETA_SIGNALING 0.000191 0.00629 signaling Yes No 

High group 
(Rooney et al.) 

APICAL_JUNCTION 0.000241 0.00773 Cellular 
component 

Yes Yes 

High group 

(Rooney et al.) 

ANDROGEN_RESPONSE 0.000255 0.00791 signaling No No 

High group 
(Rooney et al.) 

MITOTIC_SPINDLE 0.000259 0.00791 proliferation No No 

High group 

(Rooney et al.) 

CHOLESTEROL_HOMEOSTASIS 0.00027 0.00791 metabolic No No 

High group 
(Rooney et al.) 

MYC_TARGETS_V1 0.000277 0.00791 proliferation No No 

High group 

(Rooney et al.) 

UNFOLDED_PROTEIN_RESPONSE 0.000311 0.00841 pathway No No 

High group 

(Rooney et al.) 

REACTIVE_OXYGEN 

_SPECIES_PATHWAY 

0.000342 0.00889 pathway No Yes 

High group 

(Rooney et al.) 

APICAL_SURFACE 0.000407 0.0102 Cellular 

component 

No Yes 

High group 

(Rooney et al.) 

MTORC1_SIGNALING 0.000467 0.0112 signaling No No 

High group 

(Rooney et al.) 

XENOBIOTIC_METABOLISM 0.000472 0.0112 metabolic No Yes 

High group 

(Rooney et al.) 

HEME_METABOLISM 0.000511 0.0112 metabolic No No 

High group 

(Rooney et al.) 

WNT_BETA_CATENIN_SIGNALING 0.00052 0.0112 signaling No No 

High group 

(Rooney et al.) 

GLYCOLYSIS 0.000622 0.0124 metabolic No No 

High group 

(Rooney et al.) 

PEROXISOME 0.000674 0.0128 Cellular 

component 

No No 

High group 

(Rooney et al.) 

P53_PATHWAY 0.000687 0.0128 proliferation No No 

High group 

(Rooney et al.) 

EPITHELIAL 

_MESENCHYMAL_TRANSITION 

0.000723 0.0128 development Yes No 

High group 

(Rooney et al.) 

FATTY_ACID_METABOLISM 0.000748 0.0128 metabolic No No 

High group 
(Rooney et al.) 

G2M_CHECKPOINT 0.00078 0.0128 proliferation No No 

High group 

(Rooney et al.) 

E2F_TARGETS 0.00108 0.0152 proliferation No No 

High group 
(Rooney et al.) 

HEDGEHOG_SIGNALING 0.00115 0.0152 signaling No No 

High group 

(Rooney et al.) 

UV_RESPONSE_UP 0.00117 0.0152 DNA damage No Yes 

High group 
(Rooney et al.) 

ESTROGEN_RESPONSE_EARLY 0.00132 0.0152 signaling No No 

High group 

(Rooney et al.) 

NOTCH_SIGNALING 0.0015 0.0152 signaling No No 

High group 
(Rooney et al.) 

ESTROGEN_RESPONSE_LATE 0.00231 0.0208 signaling No No 

High group 

(Rooney et al.) 

MYC_TARGETS_V2 0.00242 0.0208 proliferation No No 

High group 
(Rooney et al.) 

HYPOXIA 0.0037 0.0259 pathway Yes No 

Table 17. Enriched Hallmark GSEA pathways (Rooney et al.) 
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While low expression group was distinguished by an enrichment in 

Neurons, pDC, Hepatocytes, Megakaryocytes, and ly Endothelial cells 

(Table 18).  

Group enriched Cell type (xCell) p-value FDR xCell category 

High group (Rooney et al.) Macrophages 3.44e-10 2.3e-8 Myeloids 

High group (Rooney et al.) Macrophages M1 2.44e-7 0.0000161 Myeloids 

Low group (Rooney et al.) Neurons 0.00000795 0.000517 Others 

High group (Rooney et al.) CD4+ memory T-cells 0.00000837 0.000536 Lymphoids 

Low group (Rooney et al.) pDC 0.0000297 0.00187 Myeloids 

Low group (Rooney et al.) Hepatocytes 0.0000698 0.00433 Others 

High group (Rooney et al.) CLP 0.000079 0.00482 Stem cells 

High group (Rooney et al.) Plasma cells 0.000147 0.0088 Lymphoids 

Low group (Rooney et al.) Megakaryocytes 0.000152 0.00897 Stem cells 

High group (Rooney et al.) CD8+ Tcm 0.000334 0.0194 Lymphoids 

High group (Rooney et al.) Tgd cells 0.000399 0.0227 Lymphoids 

High group (Rooney et al.) CD8+ T-cells 0.00065 0.0364 Lymphoids 

Low group (Rooney et al.) ly Endothelial cells 0.000747 0.0411 Stromal cells 

Table 18. Microenviroment composition of the groups (Rooney et al.) 

The signature evidenced a strong deregulation also in several KEGG 

pathways for the high group, the one with the worse prognosis (Table 19).  

 

Group 

enriched 

Geneset KEGG p-value FDR Common 

with 

“Immune 

Exhausted” 

(Chen et 

al.)? 

Common 

with 

“Immune 

Active” 

(Chen et 

al.)? 

High group 

(Rooney et al.) 

ALLOGRAFT_REJECTION 7.07e-12 8.7e-10 No Yes 

High group 

(Rooney et al.) 

ANTIGEN_PROCESSING 

_AND_PRESENTATION 

1.06e-8 0.00000129 No Yes 

High group 

(Rooney et al.) 

CELL_ADHESION 

_MOLECULES_CAMS 

5.26e-7 0.0000637 No No 

High group 

(Rooney et al.) 

LYSOSOME 0.00000209 0.000251 No No 

High group 

(Rooney et al.) 

N_GLYCAN 

_BIOSYNTHESIS 

0.00000293 0.000348 No Yes 

High group 
(Rooney et al.) 

CYTOKINE_CYTOKINE 
_RECEPTOR_INTERACTION 

0.00000302 0.000357 No Yes 

High group 

(Rooney et al.) 

PRIMARY_IMMUNODEFICIENCY 0.00000355 0.000416 No Yes 

High group 
(Rooney et al.) 

PROTEASOME 0.00000486 0.000564 No No 

High group 

(Rooney et al.) 

CHEMOKINE_SIGNALING 

_PATHWAY 

0.00000839 0.000965 No Yes 

High group 
(Rooney et al.) 

JAK_STAT_ 
SIGNALING_PATHWAY 

0.00000854 0.000974 No Yes 

High group 

(Rooney et al.) 

NATURAL_KILLER_CELL 

_MEDIATED_CYTOTOXICITY 

0.0000125 0.00141 No Yes 

High group 
(Rooney et al.) 

TOLL_LIKE_RECEPTOR 
_SIGNALING_PATHWAY 

0.0000126 0.00141 No Yes 
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High group 
(Rooney et al.) 

NICOTINATE_AND 
_NICOTINAMIDE_METABOLISM 

0.0000182 0.00202 No No 

High group 

(Rooney et al.) 

NOD_LIKE_RECEPTOR 

_SIGNALING_PATHWAY 

0.0000207 0.00228 No No 

High group 
(Rooney et al.) 

T_CELL_RECEPTOR 
_SIGNALING_PATHWAY 

0.000021 0.00229 No Yes 

High group 

(Rooney et al.) 

OTHER_GLYCAN 

_DEGRADATION 

0.0000213 0.0023 No No 

High group 
(Rooney et al.) 

OXIDATIVE_PHOSPHORYLATION 0.0000216 0.00231 No No 

High group 

(Rooney et al.) 

LYSINE_DEGRADATION 0.0000288 0.00305 No No 

High group 
(Rooney et al.) 

B_CELL_RECEPTOR 
_SIGNALING_PATHWAY 

0.0000443 0.00466 No Yes 

High group 

(Rooney et al.) 

UBIQUITIN_MEDIATED 

_PROTEOLYSIS 

0.0000533 0.00554 No No 

High group 
(Rooney et al.) 

ETHER_LIPID 
_METABOLISM 

0.0000568 0.00585 No No 

High group 

(Rooney et al.) 

VEGF_SIGNALING_PATHWAY 0.000068 0.00694 No No 

High group 
(Rooney et al.) 

PROTEIN_EXPORT 0.0000724 0.00731 No No 

High group 

(Rooney et al.) 

RIBOSOME 0.000101 0.0101 No No 

High group 
(Rooney et al.) 

GLYCOSAMINOGLYCAN 
_BIOSYNTHESIS_KERATAN_SULFATE 

0.000106 0.0105 No No 

High group 

(Rooney et al.) 

APOPTOSIS 0.000108 0.0106 No Yes 

High group 

(Rooney et al.) 

P53_SIGNALING_PATHWAY 0.000121 0.0118 No No 

High group 

(Rooney et al.) 

PANTOTHENATE_AND_COA_BIOSYNTHESIS 0.000126 0.0121 No No 

High group 

(Rooney et al.) 

PYRIMIDINE_METABOLISM 0.00013 0.0123 No No 

High group 

(Rooney et al.) 

CITRATE_CYCLE 

_TCA_CYCLE 

0.000147 0.0138 No No 

High group 

(Rooney et al.) 

BETA_ALANINE_METABOLISM 0.000166 0.0155 No Yes 

High group 

(Rooney et al.) 

GLYCOSAMINOGLYCAN 

_DEGRADATION 

0.000167 0.0155 No No 

High group 

(Rooney et al.) 

SPLICEOSOME 0.000168 0.0155 No No 

High group 

(Rooney et al.) 

GLYCEROPHOSPHOLIPID 

_METABOLISM 

0.000172 0.0155 No No 

High group 

(Rooney et al.) 

ENDOCYTOSIS 0.000173 0.0155 No No 

High group 

(Rooney et al.) 

CELL_CYCLE 0.00018 0.0158 No No 

High group 

(Rooney et al.) 

PATHWAYS_IN_CANCER 0.000248 0.0216 Yes No 

High group 
(Rooney et al.) 

GLYOXYLATE_AND 
_DICARBOXYLATE_METABOLISM 

0.000253 0.0218 No No 

High group 

(Rooney et al.) 

RNA_DEGRADATION 0.000256 0.0218 No No 

High group 
(Rooney et al.) 

ADHERENS_JUNCTION 0.000263 0.0221 No No 

High group 

(Rooney et al.) 

COMPLEMENT_AND 

_COAGULATION_CASCADES 

0.000293 0.0243 No No 

High group 
(Rooney et al.) 

GNRH_SIGNALING_PATHWAY 0.000303 0.0249 No No 

High group 

(Rooney et al.) 

REGULATION_OF_AUTOPHAGY 0.000325 0.0264 No No 

High group 
(Rooney et al.) 

REGULATION_OF 
_ACTIN_CYTOSKELETON 

0.000421 0.0337 No No 

High group 

(Rooney et al.) 

MAPK_SIGNALING_PATHWAY 0.000459 0.0363 No No 

High group 
(Rooney et al.) 

MTOR_SIGNALING_PATHWAY 0.000481 0.0375 No No 

High group 

(Rooney et al.) 

RNA_POLYMERASE 0.000539 0.0415 No No 

High group 

(Rooney et al.) 

RIG_I_LIKE_RECEPTOR 

_SIGNALING_PATHWAY 

0.000542 0.0415 No No 

High group 

(Rooney et al.) 

NUCLEOTIDE_EXCISION_REPAIR 0.000564 0.0423 No No 
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High group 
(Rooney et al.) 

GLYCOSAMINOGLYCAN 
_BIOSYNTHESIS_CHONDROITIN_SULFATE 

0.00061 0.0451 No No 

High group 

(Rooney et al.) 

AMINO_SUGAR_AND 

_NUCLEOTIDE_SUGAR_METABOLISM 

0.000664 0.0485 No No 

High group 
(Rooney et al.) 

TGF_BETA_SIGNALING_PATHWAY 0.00068 0.0489 Yes No 

High group 

(Rooney et al.) 

PHOSPHATIDYLINOSITOL 

_SIGNALING_SYSTEM 

0.000691 0.0491 No Yes 

Table 19. KEGG pathways de-regulated in the high-risk groups of Rooney et al. 

7. Ayers et al. The seventh and last gene expression signature associated 

with PFS in Nivactor cohort was the signature of Ayers et al. The signature 

was named “IFN-γ signature” and it was composed by 6 genes (IDO1, 

CXCL10, CXCL9, HLA-DRA, STA1, IFNG). Differently from the other 

signatures, the signature of Ayers et al. was built on clinical trials 

(KEYNOTE-001, KEYNOTE-012, and KEYNOTE-028) of oncologic 

patients treated with immunotherapy, also including R/M HNSCC 

patients. In the three trials the signature demonstrated to be associated with 

response (the patients with the higher expression were those that 

experienced more response); nevertheless, its prognostic value was not 

investigated. Testing the signature in the Nivactor cohort we observed a 

correlation with survival (Figure 26). However, the correlation between 

the signature and survival evidence that patients with a higher expression 

of the IFN-γ signature was prognostic to a worse prognosis. 
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Figure 26 Kaplan-Meier analyses for OS (A) and PFS (B) testing 6-gene 

signature of Ayers et al. 

Even if the statistic power of the signature in the survival analysis was 

limited, and the high expression group evidenced a worse prognosis, we 

observed a strong enrichment in biology characteristics. Notably, all the 

gene-set hallmark were significantly enriched in the high group, except for 

KRAS_SIGNALING_DN and PANCREAS_BETA_CELLS pathways, 

and 103 KEGG resulted de-regulated. Moreover, the low and high group 

were characterized by several cell populations, both comprising lymphoid, 

myeloid, stromal and other cell types (Table 20). 

Group enriched Cell type (xCell) p-value FDR xCell category 

High group (Ayers et al.) Macrophages 1.76e-16 1.18e-14 Myeloids 

High group (Ayers et al.) Macrophages M1 1.07e-10 7.03e-9 Myeloids 

High group (Ayers et al.) CD4+ memory T-cells 3.52e-9 2.29e-7 Lymphoids 

Low group (Ayers et al.) Neurons 7.34e-9 4.7e-7 Others 

High group (Ayers et al.) CLP 1.68e-8 0.00000106 Lymphoids 

High group (Ayers et al.) CD8+ T-cells 5.43e-8 0.00000337 Lymphoids 

Low group (Ayers et al.) Hepatocytes 1.61e-7 0.0000098 Others 

Low group (Ayers et al.) Eosinophils 0.00000177 0.000106 Myeloids 

High group (Ayers et al.) aDC 0.00000428 0.000253 Myeloids 
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High group (Ayers et al.) pDC 0.00000471 0.000273 Myeloids 

Low group (Ayers et al.) pro B-cells 0.00000597 0.000341 Lymphoids 

High group (Ayers et al.) Plasma cells 0.0000194 0.00109 Lymphoids 

High group (Ayers et al.) Tregs 0.0000222 0.00122 Lymphoids 

Low group (Ayers et al.) ly Endothelial cells 0.0000226 0.00122 Stromal 

High group (Ayers et al.) Smooth muscle 0.0000541 0.00287 Stromal 

Low group (Ayers et al.) CMP 0.0000631 0.00328 Stem cells 

High group (Ayers et al.) CD4+ T-cells 0.000153 0.0078 Lymphoids 

Low group (Ayers et al.) Basophils 0.000188 0.0094 Myeloids 

Low group (Ayers et al.) Megakaryocytes 0.000548 0.0268 Stem cells 

High group (Ayers et al.) B-cells 0.000757 0.0363 Lymphoids 

Low group (Ayers et al.) Melanocytes 0.000969 0.0455 Others 

High group (Ayers et al.) Class-switched 

memory B-cells 

0.00102 0.0468 Lymphoids 

Table 20. Microenviroment composition of the groups (Ayers et al.) 

 

8. Liu et al. (immune) Contrary to the other signatures, the eighth and last 

signature resulted associated to OS in Nivactor cohort (p=0.00988619, 

Log-rank test Figure 26). The signature was a prognostic six-gene 

immune-risk model constructed on HNSCC databases by Liu et al.142 and 

it was composed by DKK1, HBEGF, RNASE7, TNFRSF12A, INHBA 

and PIK3R3 genes. The signatures stratified patients into two risk group: 

high with the worse prognosis, and low with the better prognosis. The 

stratification was confirmed in Nivactor cohort; however, the biology 

discerned in Nivactor was discordant from the one published by Liu et al 

in the original paper. 
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Figure 27. Kaplan-Meier analyses for OS (A) and PFS (B) testing Liu et al. 

prognostic immune-risk model on Nivactor cohort (N=80) 

In the Nivactor cohort (N=80) the high-risk group was enriched in different 

pathways related to proliferation, development, and signalling, while no 

Hallmark GSEA resulted de-regulated in the low-risk group (Table 21).  

This profile resulted in line with a more aggressive phenotype and a worse 

prognosis. 

Group 

enriched 

Hallmark GSEA pathway p-value FDR Process 

category 

Common with 

“Immune 

Exhausted” 

(Chen et al.)? 

Common with 

“Immune 

Active” (Chen 

et al.)? 

High group 

(Liu et al.) 

ANDROGEN_RESPONSE 0.00000426 0.000213 signaling No No 

High group 

(Liu et al.) 

PROTEIN_SECRETION 0.00000647 0.000317 pathways No No 

High group 

(Liu et al.) 

TGF_BETA_SIGNALING 0.0000136 0.000651 signaling Yes No 

High group 

(Liu et al.) 

MYC_TARGETS_V1 0.0000143 0.000673 proliferation No No 

High group 

(Liu et al.) 

UNFOLDED_PROTEIN 

_RESPONSE 

0.0000246 0.00113 pathways No No 

High group 

(Liu et al.) 

G2M_CHECKPOINT 0.0000383 0.00172 proliferation No No 

High group 

(Liu et al.) 

OXIDATIVE 

_PHOSPHORYLATION 

0.0000554 0.00244 metabolic No No 
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High group 

(Liu et al.) 

MITOTIC_SPINDLE 0.00009 0.00387 proliferation No No 

High group 

(Liu et al.) 

EPITHELIAL_MESENCHYMAL 

_TRANSITION 

0.0000987 0.00414 development Yes No 

High group 

(Liu et al.) 

TNFA_SIGNALING_VIA_NFKB 0.000115 0.00473 signaling Yes No 

Table 21. Hallmark GSEA pathways de-regulated in the high group of Liu et al. 

Meanwhile, in the low-risk group we observed a significant enrichment of 

platelets, hepatocytes, adipocytes, pro B-cells and neurons and the high-

risk group was characterized by an enrichment in Smooth muscle and 

Common Lymphoid progenitor (CLP), while the low group by (Table 22). 

The enrichment in lymphoid components observed by Liu et al was not 

confirmed in Nivactor cohort.  

Group enriched Cell type (xCell) p-value FDR XCELL CATEGORY 

Low group (Liu et al.) Platelets 8.6e-11 5.76e-9 Stem cells 

Low group (Liu et al.) Hepatocytes 0.00000124 0.0000816 Others 

High group (Liu et al.) Smooth muscle 0.00000154 0.0000998 Stromal 

Low group (Liu et al.) Adipocytes 0.00000313 0.0002 Stromal 

Low group (Liu et al.) pro B-cells 0.0000126 0.000795 Lymphoids 

Low group (Liu et al.) Neurons 0.0000296 0.00184 Others 

High group (Liu et al.) Common Lymphoid 

progenitor (CLP) 

0.0000305 0.00186 Stem cells 

Table 22. Microenvironment composition of the groups of Liu et al. 

Few KEGG pathways resulted enriched in low-risk group, and the 

pathways were associated with metabolism, cell cycle, DNA repair and 

immune response (Table 23). 

 

Group enriched Geneset KEGG p-value FDR Common with 

“Immune 

Exhausted” 

(Chen et al.)? 

Common with 

“Immune Active” 

(Chen et al.)? 

Low group 

(Liu et al.) 

GLYOXYLATE_AND 

_DICARBOXYLATE_METABOLISM 

0.00000166 0.000204 No No 



110 
 

Low group 

(Liu et al.) 

RIBOSOME 0.00000209 0.000255 No No 

Low group 

(Liu et al.) 

N_GLYCAN_BIOSYNTHESIS 0.0000116 0.0014 No Yes 

Low group 

(Liu et al.) 

NUCLEOTIDE_EXCISION_REPAIR 0.0000125 0.0015 No No 

Low group 

(Liu et al.) 

TGF_BETA_SIGNALING_PATHWAY 0.0000184 0.0022 No No 

Low group 

(Liu et al.) 

CELL_ADHESION_MOLECULES_CAMS 0.0000321 0.00379 No No 

Low group 

(Liu et al.) 

MISMATCH_REPAIR 0.0000373 0.00436 No No 

Table 23. KEGG pathways de-regulated in high and low risk groups of Liu et al. 

Despite the correlation of survival (either PFS or OS) and the 8 gene 

expression signatures, we did not observe any significant association 

between response or disease control rate and all the signatures, with the 

only exception of the signature of Hu et al. that resulted significantly 

associated with DCR (p=0.012, Wilcoxon test). 

4.6.3 Head and neck cancer subtypes (De Cecco, Oncotarget 

2015) 

To understand the molecular HNSCC heterogeneity, in 2015 De Cecco et 

al. established a large meta-analysis of a multitude of publicly available 

gene expression datasets (used as training and testing set). By a consensus 

unsupervised clustering proposed six different and well-defined HNSCC 

subtypes. The subtypes were strongly investigated by the biological point 

of view, and they summarized the aberrant alterations occurring during 

HNSCC progression (in terms of de-regulated pathways and tumor 

microenvironment composition). Clusters were named based on their 

biological features, and specifically were defined as: 

Cl-1 “HPV-like” (features related to HPV infection; highly proliferative; 

enriched by patients with oropharyngeal cancer); Cl-2 “Mesenchymal” 

(enriched in EMT, angiogenesis WNT NOTCH signaling, tumor growth 
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factor β (TGFβ) and rat sarcoma (RAS) related pathways); Cl-3 “Hypoxia” 

(enrichment in hypoxia features, and drug metabolism-related pathways, 

TGFβ pathways); Cl-4 “defense-response” (enriched in interferon and 

immune response)”; Cl-5 “Classical/Smoking” (characterized by up-

regulation of genes related to smoking and xenobiotic metabolism; 

characterized by a large number of smoker patients); Cl-6 

“Immunoreactive” (up-regulation of all the immune system related 

pathways and cellular homeostasis). The robustness of this classification 

was based on a precise analysis that correlated the 6 subtypes to the normal 

state, and what was observed was a continuous progression from subtypes 

closer to the normal state (Cl-6 and Cl-4) and subtypes more distant from 

the normal state (Cl3 and Cl2). However, authors declared that the 

subtypes, biologically well-defined, should be corroborated by further 

analyses to understand the relationship with clinical outcomes.   

Testing the six HNSCC subtypes, 3 resulted associated with survival our 

gene expression cohort: Cluster-4 “Defense response” (43 low group; 37 

high group, Figure 28A), Cluster-5 “Classical” (12 low group; 68 high 

group, Figure 28B) and Cluster-6 “Immunoreactive” (65 low group; 15 

high group, Figure 29). The Cluster-4 “Defense response” subtype showed 

a significance in PFS analysis (p=0.036, Log-rank test), but not in OS 

(p=0.14, Log-rank test).  

 

Figure 28 Kaplan-Meier of PFS and OS showing the prognostic role of 2/3 de-

regulated De Cecco HNSCC subtypes; A. Cluster-4 “Defense response” B. Cluster-

5 “Classical” 
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Meanwhile, Cluster-5 “Classical” subtype and Cluster-6 

“Immunoreactive” subtype were the only two signatures (including both 

literature and 6 HNSCC subtypes signatures) that resulted significantly 

associated with both OS and PFS (Figure 28).  

 

Figure 29 Kaplan-Meier of PFS and OS showing the prognostic role of Cluster-6 

“Immunoreactive” HNSCC subtype 

Investigating the correlation between the two signatures and response, a 

strong correlation between DCR and Cluster-5 (p=0.000043, Wilcoxon 

test, Figure 30 A) was found, meanwhile we did not observe a significant 

correlation between response and Cluster-5 (p=0.077, Wilcoxon test, 

Figure 30 B). Nevertheless, we seen a strong correlation between disease 

control rate and response with Cluster-6 (Figure 29 C and Figure 30 D).  

  



113 
 

 

Figure 30 Violin plot showing the association of RECIST and De Cecco 

signatures scores in continuum. A) Association between Cl-5 score and disease 

control rate (PR+SD vs PD); B) Association between Cl-5 score and response (PR vs 

SD+PD); C) Association between Cl-6 score and disease control rate (PR+SD vs 

PD); D) Association between Cl-5 score and response (PR vs SD+PD). No 

association between the source of tumor tissue (primary, recurrence, metastasis, 

unknown and signatures score was observed). 

4.6.4 Signature correlations 

We investigated the potentially correlation between the signatures (we 

selected only those significantly associated with survival: 8 literature 

signatures and 3 HNSCC subtypes) and clinical-pathological parameters, 

such as age, gender, smoking status, and tumor subsite. We did not observe 

a correlation between the signatures and age (in continuum or using the 

cut-off of 65 years old), gender, tumor subsite and smoking status. 

Biological parameters, such as PD-L1, using in continuum CPS and TPS 

score, associated with two signatures: Rooney et al with TPS and CPS 

score used in continuum, while Ayers et al with TPS and CPS using the 

cut-off of 1. Moreover, we investigated the correlation within the all the 

15 signatures (including 12 literature signatures and 3 HNSCC subtypes, 

Figure 31). Among the 8 significant prognostic signatures from literature 

and the three HNSCC subtypes, we observed: a direct correlation between 

the signatures of Rooney et al and Ayers et al (IFN-gamma); an inverse 

correlation between the signatures of Bai et al and Liu et al (immune) and 

Bai et al and Hu et al; a direct correlation between Bai et al and Liu et al 

(myeloid) and Bai et al and Li et al; an inverse correlation between the 

signatures of Hu et al and Cluster-5 and Cluster-6 subtypes. Notably, 
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among signatures significantly associated with survival one of the 

strongest correlations was observed between Cluster-6 and Cluster-5, that 

were directly correlated (Figure 30, p=2.7e-13, Pearson's chi-squared test) 

 

Figure 31 Correlation between gene expression signatures 

 

4.6.5 Biological characteristics of Cluster-5 and Cluster-6 

subtypes 

We focus our attention on the two signatures that well-performed for both 

OS and PFS analyses, and that well-correlated together: Cluster-5 

“Classical” and Cluster-6 “Immunoreactive”. Biological investigation of 

de-regulated pathways (Hallmark GSEA, KEGG pathways) and 

microenvironment composition (xCell and TIMER) was performed. We 

observed a strong de-regulation of several biological Hallmark GSEA 

pathways and for patients in the group of high expression of Cluster-5 (Cl-

5 High, Table 24).  Specifically, the patients with the high score of Cluster-

5 (better prognosis) were confirmed to be related to xenobiotic metabolism 
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(and consequently to reactive oxygen species) and WNT beta catenin 

signaling, as described by De Cecco et al (Table 24). Moreover, they 

expressed new features, such as an up-regulation in pathways related to 

proliferation (i.e., G2M checkpoint, P53 pathway and E2F targets), and 

up-regulation of metabolic pathways (i.e., oxidative phosphorylation). 

Group 

enriched 

Hallmark GSEA pathway p-value FDR Process 

category 

High Cl-5 REACTIVE_OXYGEN_SPECIES_PATHWAY 0.00000117 0.0000585 pathway 

High Cl-5 G2M_CHECKPOINT 0.00000133 0.0000652 proliferation 

High Cl-5 E2F_TARGETS 0.00000138 0.0000663 proliferation 

High Cl-5 MTORC1_SIGNALING 0.00000343 0.000161 signaling 

High Cl-5 MYC_TARGETS_V1 0.00000542 0.000249 proliferation 

High Cl-5 MYC_TARGETS_V2 0.00000584 0.000263 proliferation 

High Cl-5 CHOLESTEROL_HOMEOSTASIS 0.00000633 0.000279 metabolic 

High Cl-5 DNA_REPAIR 0.0000505 0.00217 DNA damage 

High Cl-5 UNFOLDED_PROTEIN_RESPONSE 0.0000516 0.00217 pathway 

High Cl-5 OXIDATIVE_PHOSPHORYLATION 0.0000575 0.00236 metabolic 

High Cl-5 GLYCOLYSIS 0.000067 0.00268 metabolic 

High Cl-5 MITOTIC_SPINDLE 0.0000771 0.00301 proliferation 

High Cl-5 WNT_BETA_CATENIN_SIGNALING 0.000162 0.00616 signaling 

High Cl-5 PEROXISOME 0.000208 0.0077 Cellular 
component 

High Cl-5 ESTROGEN_RESPONSE_LATE 0.000299 0.0108 signaling 

High Cl-5 NOTCH_SIGNALING 0.000303 0.0108 signaling 

High Cl-5 XENOBIOTIC_METABOLISM 0.000314 0.0108 metabolic 

High Cl-5 FATTY_ACID_METABOLISM 0.000347 0.0114 metabolic 

High Cl-5 PROTEIN_SECRETION 0.000398 0.0127 pathway 

High Cl-5 ANDROGEN_RESPONSE 0.000402 0.0127 signaling 

High Cl-5 ADIPOGENESIS 0.00042 0.0127 development 

High Cl-5 HEDGEHOG_SIGNALING 0.000498 0.0144 signaling 

High Cl-5 P53_PATHWAY 0.000544 0.0152 proliferation 

High Cl-5 PI3K_AKT_MTOR_SIGNALING 0.000584 0.0158 signaling 

High Cl-5 UV_RESPONSE_UP 0.000632 0.0164 DNA damage 

High Cl-5 HEME_METABOLISM 0.000974 0.0244 metabolic 

Table 24. Enriched Hallmark GSEA pathways (Cluster-5) 

Summarizing, the Cluster-5 high group (better prognosis) resulted 

enriched in 1/6 development pathways, 2/3 DNA damage, 0/7 immune-

related, 6/7 metabolic pathways, 6/6 proliferation-related pathways and 

11/13 signalling-related pathways. While patients with low-expression of 

Cluster-5 (worse prognosis) exhibited an enriched immune 
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microenvironment, evidenced by Microenvironment Score (which is the 

sum score of ImmuneScore+StromaScore) and Immune Score. Specific 

lymphoid populations were enriched, such as NKT and CD4+ Tem (Table 

25).  

Group enriched Cell type (xCell) p-value FDR XCELL 

CATEGORY 

Cl-5 low MicroenvironmentScore 0.000000392 0.0000262 NA 

Cl-5 low ImmuneScore 0.00000755 0.000498 NA 

High Cl-5 Smooth muscle 0.0000283 0.00184 Stromal cells 

Cl-5 low Eosinophils 0.0000775 0.00496 Myeloids 

Cl-5 low NKT 0.000136 0.00857 Lymphoids 

Cl-5 low CD4+ Tem 0.000328 0.0203 Lymphoids 

Cl-5 low Adipocytes 0.000354 0.0216 Stromal cells 

Cl-5 low Platelets 0.000425 0.0255 Stem cells 

Cl-5 low Neurons 0.000598 0.0353 Others 

Cl-5 low ly Endothelial cells 0.000636 0.0369 Stromal cells 

High Cl-5 CLP 0.000671 0.0383 Stem cells 

High Cl-5 Tgd cells 0.000689 0.0386 Lymphoids 

Table 25. Microenviroment composition of the groups (Cluster-5) 

KEGG pathways were de-regulated only in High group Cl-5, and showed 

similar results compared to GSEA Hallmarks: a metabolic reprogramming 

and a high proliferative activity (Table 26).  

Group enriched Geneset KEGG p-value FDR 

High Cl-5 
GLUTATHIONE_METABOLISM 1.77E-08 0.00000217 

High Cl-5 
STEROID_BIOSYNTHESIS 0.00000133 0.000162 

High Cl-5 GLYCOSYLPHOSPHATIDYLINOSITOL 

_GPI_ANCHOR_BIOSYNTHESIS 0.00000381 0.000461 

High Cl-5 
CELL_CYCLE 0.00000998 0.0012 

High Cl-5 
BASE_EXCISION_REPAIR 0.0000228 0.00271 

High Cl-5 
GLYOXYLATE_AND_DICARBOXYLATE_METABOLISM 0.0000281 0.00332 

High Cl-5 
DNA_REPLICATION 0.0000307 0.00359 

High Cl-5 
MISMATCH_REPAIR 0.0000346 0.00401 

High Cl-5 
SPLICEOSOME 0.0000385 0.00442 

High Cl-5 
BASAL_CELL_CARCINOMA 0.0000456 0.0052 

High Cl-5 
NUCLEOTIDE_EXCISION_REPAIR 0.0000552 0.00623 

High Cl-5 
RNA_POLYMERASE 0.0000611 0.00684 

High Cl-5 
GLYCEROPHOSPHOLIPID_METABOLISM 0.0000759 0.00842 

High Cl-5 
BASAL_TRANSCRIPTION_FACTORS 0.0000829 0.00912 

High Cl-5 
OXIDATIVE_PHOSPHORYLATION 0.0000847 0.00924 

High Cl-5 
PYRIMIDINE_METABOLISM 0.0000865 0.00934 
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Table 26. KEGG pathways de-regulated in the high Cluster-5 

Meanwhile, few differences were observed comparing the two expression 

groups of Cl-6. In detail, the Cluster-6 high (better prognosis) was enriched 

in Hallmark GSEA “Cholesterol_Homeostasis” (p=0.000441; 

FDR=0.0221) and KEGG pathway “Glutathione_metabolism” 

(p=0.0000509; FDR=0.00626). Instead, the microenvironment 

composition characterized the Cluster-6 low group (patients with the 

worse prognosis), that was significantly enriched in NKT (p=0.0000108, 

FDR= 0.000727, Figure 32) and Myocytes (p=0.000463, FDR= 0.0306). 

 

 

Figure 32 Scatterplot of NKT score (y-axis) correlated with Cluster-6 score (x-

axis). P-value was 0.0000108 and FDR= 0.000727 

 

High Cl-5 
UBIQUITIN_MEDIATED_PROTEOLYSIS 0.000119 0.0128 

High Cl-5 
NOTCH_SIGNALING_PATHWAY 0.000125 0.0132 

High Cl-5 
BIOSYNTHESIS_OF_UNSATURATED_FATTY_ACIDS 0.000144 0.0151 

High Cl-5 
LYSINE_DEGRADATION 0.000165 0.0171 

High Cl-5 
RNA_DEGRADATION 0.000193 0.0199 

High Cl-5 
PROTEIN_EXPORT 0.00022 0.0225 

High Cl-5 
VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION 0.000232 0.0234 

High Cl-5 
RIBOSOME 0.000244 0.0244 

High Cl-5 
WNT_SIGNALING_PATHWAY 0.000315 0.0312 

High Cl-5 
FRUCTOSE_AND_MANNOSE_METABOLISM 0.000332 0.0326 
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4.6.6 Immuno-related genes 

To discern the immune factors that could had influenced the relation with 

response to therapy/survival and Cluster-5 or Cluster-6, we investigated 

the differences in expression of specific immune-related genes, that 

indicate an immune activation in TME (i.e., CD274 also known as PD-L1; 

Interleukin-2 (IL-2); Interleukin-4 (IL-4)) or a negative regulation of 

immune populations (i.e., Beta-2-Microglobulin (B2M); Epidermal 

growth Factor Receptor (EGFR); Programmed cell death protein 1 

(PDCD1); Tumor Necrosis Factor alpha (TNF). Their specific roles are 

indicated in Table 27.     

Gene Immune-related function 

Beta-2-

microglobulin 

(B2M)  

 

It encodes a protein found in association with the major 

histocompatibility complex (MHC) class I. Evidence showed that 

alterations of B2M gene and B2M proteins contribute to poor reaction 

to cancer immunotherapies 143.  

CD274 

(commonly 

referred to as 

PD-L1) 

It is a ligand that binds with the receptor PD1, commonly found on T-

cells, and acts to block T-cell activation. Its expression has been 

observed in a variety of cancers. High levels of PD-L1 have been 

associated to an active immune system and a better response to 

immunotherapy. 

Epidermal 

Growth Factor 

Receptor 

(EGFR) 

It has been observed that tumours overexpressing EGFR grow 

autonomously and become “addicted” 

to growth factor signalling. Moreover, it has been seen that the 

overexpression, specifically of mutant forms of the EGFR, 

may create an immune-suppressive and lymphocyte depleted 

microenvironment within tumour. Such a microenvironment may 

explain the resistance of EGFR overexpressing cancers to tumour 

therapies, particularly to check-point inhibitor treatment 144 

Interleukin 2 

(IL-2) 

IL-2 has an immunoregulatory role, promoting the growth and 

development of peripheral immune cells in the initiation of the 

(defensive) immune response, and keeping them alive as effector cells. 

It has been showed to be correlated to durable response in patients 

treated with immunotherapy145.  
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Interleukin 4 

(IL-4) 

In addition, the effect of IL-4 in stimulating both transcription factors, 

increased by T cell activation, is also involved with its ability to promote 

the cytotoxic activity of CD8+ T cells146  

Programmed 

cell death 

protein 1 

(PDCD1), also 

known as PD-1 

It is an immune-inhibitory receptor expressed in activated T-cells, B-

cells and macrophages; it is involved in the negative regulation of their 

functions, including those of effector CD8+ T cells. High levels of PD-

1 could mediate resistance to immunotherapy147.  

 

Tumor 

Necrosis 

Factor alpha 

(TNF)    

 

This gene encodes a multifunctional proinflammatory cytokine, which 

is mainly secreted by macrophages. Tumor necrosis factor alpha (TNF)-

dependent modulation of immune responses and cell death processes has 

long been the subject of intense research. It is paradoxically involved in 

both pro-inflammatory mechanism and anti-immunomodulatory effects. 

For this reason, its role in cancer progression and its influence in the 

response to immunotherapy is still a matter of debate148,149 

Table 27.  Immune-related genes and their function 

Observing the expression of these specific genes, comparing the high and 

low groups of Cluster-5 we did not detect any significant differences in 

terms of expression for all the genes, except for EGFR (p=0.000436; 

FDR=0.00349, Figure 33), which expression resulted higher in the Cl-5 

high (better prognosis). 

 

Figure 33 immune-related genes in Cluster-5 groups 

While by the comparison of the Cluster-6 groups we did not obtain any 

significant result, and the genes resulted equally expressed in both high 

and low groups (Figure 34), indicating that some other factors were 
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contributing to the functionality of the relation between survival of 

Cluster-6. 

 

Figure 34 Expression of the immune-related genes in Cluster-6 groups 

 

4.7 DNA sequencing experiments 

DNA was extracted and nucleic acids were checked. In detail, 7 and 13 

samples were excluded for quality and quantity. Performing library 

construction 7 libraries resulted inadequate for quality or quantity. 

Moreover, after the alignment pipeline and the applying of specific filters, 

4 libraries did not have any specific mutation and they were not considered. 

A total of 63 libraries were produced with annotated mutations, and of 

them 59 had informative gene expression (Figure 35). After the alignment 

of the 63 libraries, a total of 1260 variant calls were available for the 

analyses. The 63 DNA sequencing cohort was composed of 41 samples 

deriving from primary tumor, 17 samples deriving from 

recurrence/metastasis, and 5 without the specific definition. The 63 

patients experienced different responses: 8 were partial responders (PR), 

13 with stable disease (SD) and 41 with progressive disease (PD). For 1 

patient the response was not annotated.  
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Figure 35 Consort diagram of DNA sequenced samples 

 

Comparing the clinical-pathological characteristics of the two cohorts (i.e., 

gene expression dataset, DNA sequencing dataset) we did not observe any 

significant difference (Table 28). The median overall-survival seen for the 

gene expression dataset was 6.72 months [0.03-25.72], while was 7.43 

months [0.26-25.62] for the mutation dataset. The median progression free 

survival was 2.20 months [0.01-25.62] for the gene expression database, 

and 2.23 months [0.01-25.62] for the mutation dataset.  

Clinical-pathological characteristics GE dataset  

(N=80) 

Mutation 

dataset 

(=63) 

p value 

Age, years median 

[range] 

65.5 

[33-84] 

65 

[33-84] 

NA 

Gender male 65 (81%) 51 (81%) 1 

female 15 (19%) 12 (19%) 

Smoking status present 16 (20%) 13 (21%) .975582 

past 50 (62%) 40 (63%) 

never 11 (14%) 8 (13%) 
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N.A. 3 (4%) 2 (3%) 

Site of primary 

disease 

Oral cavity 30 (37%) 26 (41%) .949895 

Oropharynx  

HPV positive 

Oropharynx  

HPV negative 

Oropharynx  

N.A. 

7 (9%) 

 

5 (6%) 

 

7 (9%) 

  

6 (9%) 

 

3 (5%) 

 

5 (8%) 

Larynx 18 (22%) 13 (21%) 

Hypopharynx 11 (14%) 8 (13%) 

N.A. 2 (3%) 2 (3%) 

Performance status 0 

1 

2 

27 (34%) 

50 (62%) 

3 (4%) 

26 (41%) 

36 (57%) 

1 (2%) 

.465314 

Response CR 

PR 

SD 

PD 

NA 

0 (0%) 

12 (15%) 

14 (18%) 

53 (66%) 

1 (1%) 

0 (0%) 

8 (12%) 

13 (21%) 

41 (65%) 

1 (2%) 

.824204 

Table 28. Clinical and pathological characteristic of the 63 patients with 

annotated DNA mutation. P-values were tested using Chi-square 

 

4.8 Targeted sequencing 

The totality of 1260 mutations, observed in the 63 samples, were mostly 

missense mutation (Figure 36 A). The most observed event was C>T 

transition, followed by T>C transition, and C>A transversion and C>G 

transversion (Figure 36 B). Every sample had a median of 20 mutations, 

with a range of 40 mutations in one sample, and 13 mutations for those 

samples with less mutations (Figure 36 C). The most 10 mutated genes 

were MDC1 (57% of the cohort, mutated in 36 samples and with 72 

mutations), followed by PLCG2 (mutated in the 40% of samples) and 

LRP1B (mutated in the 37% of the cohort, Figure 36 D). The most 

observed event was transversion (Figure 36 E). Comparing responders vs 

non responders or patients with DCR vs patients without DCR, we were 

not able to observe any mutually exclusive mutation.  
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Figure 36 Most frequent characteristics of annotated somatic mutations A) 1260 

variant were annotated and classified; B) Type of single nucleotide variant 

classification; C) number of variants for each sample; D) List of the 10 mutated 

genes; E) Boxplot showing the comprehensive % of transition (Ti) vs tranversion 

(Tv) events 
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The function of the 10 most mutated genes was investigated and 

summarized in the Table 29. 

Gene (%) Function doi 

MDC1, 

mutated in 

52% of the 

63/124 

Nivactor 

patients 

Mediator of DNA damage checkpoint  1 

(MDC1) is a gene that encodes for a protein 

essential for the correct functionality of  

DNA damage response (DDR) system, which 

repairs DNA double-strand break. 

Consequently, MDC1 is vital for the maintain 

of genomic stability.  

It has been found mutated in HNSCC from 4-

15% (COSMIC, TCGA, ICGD databases); 

However, mutations involving MDC1 gene 

have been observed elevated in OSCC and in 

R/M cancers.  

Associated to unfavourable prognosis is 

OSCC 

https://doi.org/10.1016/   

j.dnarep.2022.103330 150 

https://doi.org/10.1111/ 

eos.12662 151 

doi:10.1111/jop.12558 152 

LRP1B, 

mutated in 

37% of the 

63/124 

Nivactor 

patients 

Low-density lipoprotein receptor-related 

protein 1B (LRP1B) is one of the most altered 

genes in human cancers. It has been found 

frequently inactivated by several genetic and 

epigenetic mechanisms, and it is involved in 

several biological processes (such as cell 

migration, tumorigenesis and tumor 

progression, and DNA damage response).  

LRP1B is also described as a common target 

gene for viral integration for human 

papillomavirus (HPV). 

https://doi.org/10.3390/ 

ph14090836 153 

PLCG2, 

mutated in 

40% of the 

63/124 

Nivactor 

patients 

Phospholipase C, gamma 2 

(phosphatidylinositol-specific) (PLCG2) is a 

gene that encodes a protein that functions as 

a transmembrane signaling enzyme.  

The dysfunction of the protein is associated 

with a variety of diseases including cancer, 

neurodegeneration, and immune disorders.  

Its involvement in immunotherapy response 

is under evaluation.  

https://doi.org/10.1016/ 

j.jbc.2021.100905 154 

 

https://doi.org/10.3390/ 

curroncol28050347155 

 

doi:10.1097/ 

MD.0000000000025008 156 

 

https://doi.org/10.1016/ 

j.ccell.2021.09.008 157 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/dna-damage-checkpoint
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/synapsin-i
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/dna-damage-response
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/genome-instability
https://doi.org/10.1016/
https://doi.org/10.1016/
https://doi.org/10.1111/eos.12662
https://doi.org/10.3390/ph14090836
https://doi.org/10.1016/j.jbc.2021.100905
https://doi.org/10.3390/curroncol28050347
https://doi.org/10.3390/curroncol28050347
https://doi.org/10.1016/j.ccell.2021.09.008
https://doi.org/10.1016/j.ccell.2021.09.008
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ZFHX3 Zinc finger homeobox 3 (ZFHX3) encodes 

for a large transcription factor, involved in 

proliferation, tumor growth and angiogenesis 

in different cancer types.  

Its role and involvement in immunotherapy 

response is studying in NSCLC. 

doi: 10.3390/cancers12113415 
158 

https://doi.org/10.1074/ 

jbc.RA119.012131 159 

https://doi.org/10.1007/ 

s00262-020-02668-8 160 

SPTA1 Nonerythroid spectrin αII (SPTAN1) is 

involved in cell adhesion, cell-cell contact, 

and apoptosis. SPTAN1 was shown to 

interact with different proteins involved in 

DNA repair, chromatin remodeling, and 

fanconi anemiax. 

doi:10.1155/2019/7079604 161 

doi:10.1177/1535370216662714 
162 

FAT1 mutated 

in 30% of the 

63/124 

Nivactor 

patients 

FAT atypical cadherin 1 (FAT1) is one of the 

most frequently mutated genes in many type 

of cancers. Its highest mutation rate is found 

in HNSCC (29.8%). In many cancers 

mutations in FAT1 promote EMT, cancer 

progression and increase the functionality of 

immune infiltrating cells. 

https://doi.org/10.1186/s13046-

022-02461-8 163 

TET2 Tet methylcytosine dioxygenase 2 (TET2) is 

frequently mutated in several solid and 

hematopoietic cancers. The protein Tet2 is 

essential for the development, differentiation, 

function of several lymphoid cells (i.e., B-

cell, CD8+T-cell memory etc). Protein loss of 

function reduces anticancer immune 

response. 

https://doi.org/10.1038/s42003-

020-01391-5 164 

EPHA5 EPH Receptor A5 (EPHA5) mutations have 

been annotated in different cancer types, 

suggesting an important role in 

tumorigenesis. Moreover, EphA5 protein 

have been associated (in lung cancer cells) to 

defects in G1/S cell cycle checkpoint, making 

the cell unable to resolve DNA damage. The 

gene mutation has additionally been 

associated to immunosuppressive TME and 

worse survival for NSCLC. 

https://doi.org/10.3892/ 

ol.2019.10167 165 

https://doi.org/10.3389/ 

fonc.2021.619949 166 

doi:10.1074/jbc.M114.630525 
167 

https://doi.org/10.1016/ 

j.lungcan.2020.11.006 168 

PRKDC The PRKDC gene encodes the DNA-

dependent protein kinase catalytic subunit 

(DNA-PKcs) protein. The protein plays an 

important role in DNA repair, and it is strictly 

related to immune tolerance and the 

https://doi.org/10.1186/ 

s12935-021-02229-8 169 

doi:10.1177/0300891 

620950472 170 

https://doi.org/10.3390%2Fcancers12113415
https://doi.org/10.1074/jbc.RA119.012131
https://doi.org/10.1074/jbc.RA119.012131
https://doi.org/10.1155%2F2019%2F7079604
https://doi.org/10.1186/s13046-022-02461-8
https://doi.org/10.1186/s13046-022-02461-8
https://doi.org/10.1038/s42003-020-01391-5
https://doi.org/10.1038/s42003-020-01391-5
https://doi.org/10.3892/ol.2019.10167
https://doi.org/10.3892/ol.2019.10167
https://doi.org/10.3389/fonc.2021.619949
https://doi.org/10.3389/fonc.2021.619949
https://doi.org/10.1016/j.lungcan.2020.11.006
https://doi.org/10.1016/j.lungcan.2020.11.006
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maintenance of chromosome stability. The 

impairment of the protein is correlated with 

tumor initiation and progression.  

ERCC4 Excision repair cross-complementation 

group 4 (ERCC4) encodes for a protein 

involved in DNA repair. Mutations in this 

gene have been widely observed in cancer 

and they are associated with an increased risk 

of tumorigenesis.  

doi: 10.3389/fonc.2022.951193 
171 

Table 29. Functions of the most 10 mutated genes 

In literature, specific mutations have been associated to immunotherapy 

response or resistance in different cancer types (Table 30). We investigated 

their presence in the cohort of 63 patients, and if possible, their 

representation in the groups of responders vs non responders. 

Gene Function Cancer type doi 

BRAF, KRAS, 

and TP53 

Response Melanoma, 

Bladder, Non-

small Cell Lung 

Cancer 

https://doi.org/10.1038/ 

s41467-022-31055-3 172 

EGFR Resistance Non-Small Cell 

Lung Cancer 

https://doi.org/10.3389/ 

fonc.2021.635007 173 

Beta-2-

microglobulin 

(B2M) and JAK1 

Resistance Melanoma 10.1056/NEJMoa1604958 174 

Phosphatase and 

tensin homolog 

on chromosome 

10 (PTEN) 

Resistance Glioblastoma 10.1038/s41591-019-0349-y 
175 

Table 30. Mutations associated to immunotherapy resistance.  

It was possible to consider only mutations in genes sequenced using the TSO500 

panel (Illumina) 

Notably, no point mutations in BRAF, KRAS, EGFR were annotated in 

our database, while no differences between responders vs non responders 

were observed in the frequency of mutations in specific genes, such as 

TP53, B2M and PTEN (Figure 37).  

https://doi.org/10.3389/fonc.2021.635007
https://doi.org/10.3389/fonc.2021.635007
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Figure 37 Waterfall plot comparing the most frequent mutations between 

Partial Responders (blue bar) vs Stable disease and Progressive disease (red bar) 

Moreover, the integrative analysis of mutational status and the two De 

Cecco subtypes, revealed no differences in the top 50 mutations between 

high and low groups of Cluster-5 and Cluster-6. Indeed, we did not observe 

a specific pattern of mutations for each of the categories (Figure 38).  
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Figure 38 Waterfall plots of the most frequent somatic mutations in (A) Cluster-5 

high (blue bar) vs low (red bar) and (B) Cluster-6 high (blue bar) vs low (red bar) 

4.8.1 TMB and MSI 

The evaluation of the TMB was possible in 63 samples. The median TMB 

was 5 [0-29.16]. Using TMB=10 as the cut-off, 56 samples resulted “TMB 

low” and 7 samples “TMB high”. For 48 samples it was possible to assess 

the MSI, divided in 46 samples “MSI stable” and 2 “MSI high”, while for 

15 samples not enough microsatellites loci were sequenced to allow the 

evaluation of instability. For all the 48 samples with MSI score also TMB 

was available. However, we observed no correlation between the MSI and 

TMB scores (Figure 39). Four samples (with MSI available) resulted TMB 

high (≥ 10) and of them, two samples were classified also as “MSI high”. 

The two patients with both TMB and MSI classified as “high” were both 

male, past smokers and the primary disease was oral cavity cancer. One of 

the two patients was 66 years old, with stable disease (SD) assessed as 

response to ICI, CPS=20 and TPS=0.5. The FFPE tissue profiled for this 

patient was the primary tumor. The other patient was 64 years old, with a 

progressive disease (PD) after immunotherapy, and CPS=100 and 

TPS=80. The available FFPE of the tumor for this patient was the tissue of 

the metastasis.  
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Figure 39 Correlation of MSI and TMB scores; MSI is expressed as mean score 

and TMB comprised only the non-synonymous mutations (NS); in the image are 

shown 48 samples with both values available 

 

The survival analyses revealed no differences between patients with TMB 

< 10 or patients with TMB ≥ 10 (Figure 40).  
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Figure 40 Kaplan Meier curves considering TMB ≥ 10 (N=63). A) OS analysis of 

patients with TMB < 10 (N=66, red curve) vs patients with TMB ≥ 10 (N=7, blue 

curve); B) PFS analysis of patients with TMB < 10 (N=66, red curve) vs patients with 

TMB ≥ 10 (N=7, blue curve). P-values were calculated using Log-rank test, 

significance was set at p ≤ 0.05. 

Due to the scarcity of patients in the group of “MSI-high” survival analyses 

were not investigated. Furthermore, we explored a possible correlation 

between TMB and MSI score, using the scores in continuum. However, 

we did not observe a correlation between the two scores and response to 

therapy (Figure 41).  

 

Figure 41 Violin plots of the correlation between TMB and MSI scores in 

continuum with response (classified in responders CR+PR vs non-responders 

SD+PD) 
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Moreover, we did not observe a correlation between TMB and MSI score 

and disease control rate (Figure 41).  

 

Figure 42 Violin plots investigating the correlation between TMB and MSI in 

continuum with disease control rate categories 

 

Investigating the correlation between the 8 significantly observed 

signatures and 3 HNSCC subtypes with TMB and MSI, we observed the 

correlation between the signature of Bai et al. and TMB (score used in 

continuum, p=0.037).  

4.8.2 Mutations in repair systems’ related genes 

In the cohort of 63 patients with annotated DNA mutations, we 

investigated the mutations present in genes related to repair systems in the 

two categories of responders (PR, N=8) and non-responders (SD+PD, 

N=53), while 2 patients were excluded because of lack of information 

about response status. The mutations investigated comprised several repair 

systems, such as Base excision repair system, DNA checkpoint, 

Homologous recombination, Fanconi anemia, Mismatch repair system, 

and nucleotide excision repair system (Table 31). 
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Type of repair 

system 

Total 

number of 

mutations 

PR 

(N=8) 

Frequency 

In 

responders 

SD+PD 

(N=53) 

Frequency 

In non-

responders 

p-value 

Base excision 

repair system 

(total number of 

mutations) 

7 hits in 7 

pts 

2 hits in 2 

pts 

2/8 (25%) 5 hits in 5 pts 5/53 (9%) .000192 

MUTYH 6 2 4  

PARP1 1 0 1 

DNA checkpoint 

(total number of 

mutations) 

57 hits in 

48 pts 

9 hits in 8 

pts 

8/8 (100%) 48 hits in 40 pts 40/53 

(75%) 

MDC1 33 7 26 

BRCA1 13 1 12 

ATR 7 1 6 

ATM 4 0 4 

Homologous 

recombination 

(total number of 

mutations) 

 

16 hits in 

16 pts 

4 hits in 4 

pts 

4/8 (50%) 12 hits in 12 pts 12/53 

(23%) 

RAD51B 7 3 4 

MRE11 3 1 2 

RAD52 3 0 3 

RAD54L 2 0 2 

RAD50 1 0 1 

Fanconi Anemia 

(total number of 

mutations)  

45 hits in 

38 pts 

10 hits in 

8 pts 

8/8 (100%) 35 hits in 30 pts 30/53 

(57%) 

FANCA 14 4 10 

PALB2 8 2 6 

BRCA2 7 1 6  

SLX4 6 1 5 

RAD51C 4 1 3 

BRIP1 3 0 3 

FANCC 3 1 2 

Mismatch repair 

system (total 

number of 

mutations) 

18 hits in 

15 pts 

6 hits in 3 

pts 

3/8 (38%) 12 hits in 12 pts 12/53 

(23%) 

MSH2 7 3 4 

PMS1 4 2 2 

MSH5 3 0 3 

MLH1 3 0 3 

MSH3 1 1 0 

Nucleotide 

excision repair 

system 

(total number of 

mutations) 

17 hit in 17 

pts 

1 hit in 1 

pt 

1/8 (13%) 16 hit in 16 pts 16/53 

(30%) 

ERCC4 17 1 16 

Table 31. Specific DNA mutation annotated for each of the genes considered. 

patients were divided in base of response; NB: the same patient could have more than 

one gene mutated in the same repair system. P-value was calculated comparing the 

two groups (percentage of patients having mutations in all the repair systems) with 

Chi-Square test. The significance was set at p < .05. 
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Analyzing the same result through a graphical and more intuitive 

representation, it could be observed a specific and significant trend for 

which patients that experienced partial response had more mutations in 

Base excision, DNA checkpoint, Homologous recombination, Fanconi 

anemia and mismatch repair systems (all together, Figure 43). 

 

Figure 43 Bar plots showing the percentage of somatic mutations annotated for 

each repair system 
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4.9 Case report – The peripheral blood profile of a 

complete responder  
 

Noteworthy, one of the two patients who obtained a complete response in 

Nivactor trial presented an interesting and peculiar clinical history, and for 

this reason we published the case report on Frontiers in Oncology in 

January 2022176. The patient (HPV-positive OPSCC), after a first-line 

treatment and a complete remission, experienced a Human Polyomavirus 

(JCV) infection in the brain, experiencing a progressive multifocal 

leukoencephalopathy, that was resolved in few months. However, blood 

test revealed a boost in lymphoid components during and at the resolution 

of JCV infection (even if cells count remained largely under the normal 

threshold). Subsequently, the patient metastasized, and he was enrolled in 

the clinical trial Nivactor. During the immunotherapy treatment, brain 

MRI evidenced the presence of small punctuate areas of contrast 

enhancement, reflecting a mild immune response in perivascular spaces. 

Nivolumab treatment was withdrawn after 10 infusions, G2 diarrhea and a 

syndrome of inappropriate antidiuretic hormone secretion (probably drug-

related events). However, a complete and durable response (more 3 years) 

was observed. No tumor tissue could be retrieved for gene expression 

analysis. Recognizing the importance of profiling the immunological 

characteristics of this patient, blood samples collected before, during and 

after the single agent nivolumab treatment were employed to investigate, 

through a de-convolution gene expression method (xCell), the immune 

cells populations present in the peripheral blood. Lymphoid cells 

underwent through evident changes during and after nivolumab. Before 

the treatment, lymphoid cells (with exclusion of NKT and CD8+ Tem), 

exhibited a lower or absent expression compared to controls, while during 

the treatment a decrease for CD8+ Tem and NKT was recorded, and an 
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increase for Memory B-cells CD4+ T cells, CD4+ memory T cells, CD8+ 

T cells were seen. Interestingly, the immunological boost observed after 

JCV infection, and moreover, during the nivolumab treatment was 

maintained during time, suggesting the possible role of viral infection 

(JCV and HPV together, or alone) in the achievement of the complete 

response obtained by this specific patient. 
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5. DISCUSSION 
 

The concept behind the immunotherapy is based on the belief that the 

immune system alone possesses the potential ability to fight cancer. In 

many tumor types it has been observed that therapies based on immune 

checkpoint inhibitors could result in durable tumor regression. Indeed, 

immunotherapy has transformed the treatment for R/M HNSCC patients, 

and for some patients had led to long-lasting response, never observed with 

other treatments. However, its anti-cancer ability was observed in only a 

small subset of patients and predictive biomarkers are still needed for a 

more precise and personalized therapy. The molecular determinants 

driving the response remained still a critical open question. To address this 

issue, we performed a throughout analysis, including well-annotated 

clinical-pathological data and omic profiling of tumor tissues, 

investigating a cohort of R/M HNSCC patients prospectically enrolled in 

a phase IIIb trial, and treated with nivolumab. 

Comparing responding and non-responding patients in the entire cohort of 

124 treated patients, we observed specific differences. Among all, smoking 

status. Although smoking rates continue to decrease, smokers are 

particularly high among HNSCC patients. We know that tobacco smoking 

is a major cause of HNSCC, remaining a significant cause of morbidity, 

and it is well established that HNSCC patients with a significant tobacco 

smoking history have a poorer prognosis compared to never-smokers, and 

an increased risk for second primary cancers in other sites (such as lung or 

esophagus). Tobacco consumption is also associated with inferior 

treatment-related outcomes, including radiation efficacy177. In Nivactor 

cohort we observed an abundance of non-smokers and past smokers in 

responders compared to non-responders, that were instead characterized 

by an increased number of current smokers. Similar data had already been 
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reported in literature, and smoker patients were classified as patients with 

less probability to benefit from anti-PD-1 inhibitors 69,178 . The possibility 

to understand the complexity behind the correlation between smoking and 

non-response was limited in our trial, given by no differences observed in 

de-regulated pathways and tumor microenvironment composition between 

the two categories of non-smokers (never-smokers and past smokers) 

versus smokers. Moreover, no one of the GE signatures tested resulted 

associated with smoking habits, and particular DNA mutations associated 

with smoking status were not recorded. Nevertheless, de la Iglesia et al 

performed an exhaustive report in 2019, underlying the importance of 

understanding the interaction between smoking status and TME 179.  Even 

if it is known that carcinogens in tobacco smoke are expected to cause 

permanent DNA damage and that result should be reflected in TMB value, 

they did not observe an association between smoking status and TMB 

status. Moreover, they did not find any significant differences in the 

mutational profile based on smoking status. Based on their finding, the 

authors stated that the biological differences between smokers and non-

smokers could not be driven by simply smoking-related genomic changes, 

instead by a more complex TME interaction, driven by gene or protein 

expression modulated by tobacco exposure. Indeed, they described a clear 

picture of immunosuppression in active tobacco users with HNSCC, that 

could explain the difficulty in obtaining a satisficing ICI treatment 

response for patients with smoking habits.   

Considering the subsite of the primary disease, we observed higher 

percentage of oropharyngeal cancer in responding patients and in oral 

cavity cancer for non-responding patients. The hypothesis behind this 

correlation could be partially explained by HPV-infection. It is known that 

HPV-infection is mostly associated to OPSCC, and that HPV-positive 

OPSCC represents a specific and distinct disease with its own molecular, 
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pathological, and clinical features. Moreover, HPV-positive OPSCCs have 

an improved prognosis compared to HPV-negative OPSCCs 180.  

Unfortunately, in Nivactor study data about HPV status were limited, 

precluding a comparison between HPV-positive OPSCC patients and 

HPV-negative OPSCC patients (only 28 OPSCC patients were enrolled in 

Nivactor cohort and data about HPV-infection were not available for 10/28 

patients with OPSCC disease). Nevertheless, in Checkmate-141 sustained 

benefit in long-term (OS=2 years) were observed irrespective of HPV 

status, and similar results were observed in KEYNOTE-040 and 

KEYNOTE-04869,71,72. However, literature extensively indicates that 

patients with HPV-positive OPSCC has various mechanisms that 

contribute to a unique TME, with an increased CD8+ T-cell activation and 

larger markers of immune infiltration, describing a strong and active 

immune response. HPV positive and HPV negative OPSCC strongly differ 

by their strategies to evade the immune recognition, by qualitative and 

quantitative composition of immune cells, microenvironment composition 

as well peripheral blood cells136,181–183. In Nivactor trial we had the 

possibility to profile the peripheral blood cells (estimated by xCell method) 

of a complete responder (it is to note that only 2/ of the 124 treated patients 

experienced complete response and for both no FFPE material was 

available) before, during and after nivolumab treatment. The patient had a 

primary disease in oropharynx and the tumor tested positive to HPV 

infection. Moreover, patient experienced a JCV infection in the brain, and 

we hypothesised that the concomitant infections might have a possible role 

as immune boosters to immunotherapy176. Nevertheless, this preliminary 

hypothesis requires further investigations. Recently, specific clinical trials, 

focused on HPV-positive patients only, are emerging investigating the role 

of immunotherapies in this subset of patients. To date, the contribution of 

HPV infection for the response to immunotherapy remains controversial 
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142,184. After epidemiological-clinical variables, we focused our attention 

on biological and tumor-related biomarkers. The first biomarker that we 

investigated was PD-L1, which is the only biomarker validated in 

prospective trials and approved by FDA. Currently, expression of PD-L1 

is assessed by IHC; however, a multitude of IHC antibodies and different 

score are currently utilized in literature. At present, the dominant scores 

are TPS (percentage that quantifies the stain of PD-L1 in tumor cells) and 

CPS (score that quantifies PD-L1 expression in tumor cells, lymphoid 

cells, and macrophages). Nevertheless, these two scoring methos are not 

directly comparable and a univocal cut-off level has not been yet 

established185. The lack of a clear definition of what a “positive” PD-L1 

tumor is, and the various cut-off considered (ranging from 1 to 50) 

mirrored the existence of an extreme heterogeneity of PD-L1 in the tumor 

microenvironment. Various cut-off levels have been proposed for R/M 

HNSCC, such as CPS ≥ 1 or CPS ≥ 20 in KEYNOTE-048, in which was 

observed a substantial survival advantage in patients with both CPS ≥ 1 or 

CPS ≥ 20 (in the arm of patients treated with pembrolizumab 

monotherapy). However, responders were observed even in the categories 

of patients with CPS < 1 or CPS < 20. In KEYNOTE-040 the patients that 

experienced response to pembrolizumab was higher in patients with CPS 

≥ 1, and survival longer in patients with TPS≥50%. However, in 

Checkmate-141, (the most similar trial to Nivactor, to be compared) 

patients treated with nivolumab appeared to have a longer survival to those 

treated with SoC, regardless of PD-L1 expression.  In Nivactor cohort, a 

clear correlation between the TPS (% considered in continuum) and 

response, and CPS (considered in continuum) and disease control rate was 

observed. However, deepening insight using various and extremely 

variables cut-offs in the survival analysis, we observed as only significant 

result when we used CPS ≥ 1. The exploration of novel cut-offs, and cut-
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offs higher than those proposed in the present work was limited, due to the 

median observed and the restricted sample size. Moreover, the inter-

samples wide variability of PD-L1 scores reported in Nivactor and the 

inter-tumors and inter-histologies variability observed in literature 

(ranging from 14% to 100% even in the same histology type) additionally 

highlighted the issue with PD-L1 as single predictive biomarker of 

immunotherapy. This extreme variability made problematic the use of PD-

L1 both for determining the responsiveness by for example histology type 

or for each individual patient. Moreover, despite the broad utility of this 

biomarker, it is important to underlying that PD-L1 should be considered 

an imperfect tool: patients with a negative baseline PD-L1 might respond 

to ICI, while tumors with high PD-L1 expression could be resistant to the 

therapy186. The extreme heterogeneity in PD-L1 expression could indicate 

that this biomarker has certain limitation and should not be considered as 

the sole determinant to understand the response to immunotherapy 187. 

Therefore, other, and various biomarkers must be considered to understand 

the ICI efficacy. In Nivactor we investigated another tumor strictly related 

biomarker: TMB. In the last years, TMB generated by non-synonymous 

mutations had been proposed as predictive biomarker for immunotherapy 

in different tumor types and a relationship between high TMB and 

response to ICI was observed 188. However, different concerns were raised, 

such as the demonstration that even patients with TMB < 10 obtained 

benefits from ICI treatments 189 , or the challenge to reproduce the data and 

the difficulty in migrating TMB into clinical decision making, due to the 

numerous procedures and bioinformatic pipelines used in literature. 

However, concerns were particularly focused on cut-offs used (especially 

10 mut/Mb) for defining the patients with “TMB-high” across different 

tumor types, taking in mind the extremely variability of TMB among 

cancers, which ranges from 0.01 mut/Mb to more than 4000 mut/Mb190 . 
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In literature, other generic cut-offs were proposed95,191, and among various 

cut-offs for “high TMB”, no one has been reported and so far we lack of 

standardisation in several cancers. Although, considering the HNSCC 

reality, it was already indicated that the median number of coding somatic 

mutations per MB in HNSCC was around 8179,192, making impossible the 

evaluation of alternative cut-offs. In Nivactor cohort we confirmed what 

already found in literature, or rather that is extremely infrequent found out 

HNSCC patients with TMB-high, and consequently correlations between 

TMB and response or TMB and survival are difficult to make. A similar 

discussion could be faced considering microsatellites, that have been 

observed instable in only 5% of cancer types193, and which instability is 

rarely present in HNSCC98. Moreover, both the accumulation of point 

somatic mutations, mirrored by TMB, and instability of microsatellites 

mostly relied on impairment on mismatch repair system. Wang et al. in 

2018 were among the firsts to propose the investigation of a more complex 

picture of the DNA damage, comprising 8 different repair systems194, 

suggesting that co-mutations in different repair pathways could be a 

predictor of clinical benefit to ICIs, rather than the use of a single 

biomarker. Even considering the small sample size of Nivactor patients 

with available DNA sequencing (63/124 patients), we observed a specific 

and significant trend correlating the response and a more comprehensive 

picture of mutations in DNA repair systems. Similar remarks could be 

addressed considering the utility of single point mutations, such as 

mutations in TP53, KRAS, EGFR and others. Even if associations with 

response have been proposed and observed, it seems unreliable and 

vulnerable to translate the result based on a single gene to clinical practice. 

Indeed, scientists are mostly investigating the possibility to understand 

mechanisms of resistance through point mutations, instead to highlight a 

precise predictive biomarker195. Because of the intricacy of tumor 
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biological behavior and immune response, at date, it is unrealistic 

considering to apply only one single biomarker to fully depict and clarify 

the prognosis and prediction to immune-therapeutic response. 

Accordingly, we aimed to investigate the potential role of a multi-

biomaker, that could stratify patients into at least two groups, in order to 

identify those patients that might achieve clinical benefits or response to 

immunotherapy. Gene expression signatures have rapidly expanded and 

are considered a more comprehensive tool in order to evaluate the 

biological contribution of the tumor and its TME and its correlation to 

response to ICI. Different trials evaluated the expression patterns of 

immune components and observed a correlation between the signature and 

response/survival196. Among literature all GE signatures, in the present 

analysis the priority was given to those signatures that was immune-

related, such as IFN-γ signature, and those signatures that were centred on 

HNSCC disease. However, for a multitude of signatures retrieving the 

methods was problematic, which made us unable to understand their 

potentiality in our study. Furthermore, the thirteen accessible and tested 

literature signatures revealed weaknesses in being significantly associated 

with survival. The eight signatures significantly correlated with PFS or OS 

(any of those resulted associated with both survivals) were all constructed 

and (when) validated on TCGA or few public dataset (mainly GSE65858 

and GSE41613), with the only exception of Ayers et al’s signatures, which 

instead were based on immunotherapy trials, involving patients with 

different cancer types, and a scarce HNSCC cohort.  Even if we support 

the use of TCGA database (the largest database published since nowadays, 

containing the genomic, epigenomic, transcriptomic and proteomic data of 

cancer patients), the recent excessive usage of this rich (but single) and 

well-annotated resource could provide redundant and unnecessary results, 

leading to confusion more than understanding. This becomes reality even 
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more when the achievements are not followed and validated in appropriate 

prospective/retrospective cohorts, specifically design for the proposed 

biomarker(s). In the present study, the scarcity of HNSCC recent and 

public databases challenged us to understand the depth of our results and 

their predictive validity, for a future and possible clinical application. The 

selected immune-related signatures were a fundamental tool to understand, 

more than the translation to their clinical application, the biological 

characteristic of Nivator patients. All the eight gene expression signatures 

stratify patients in two different categories, and they especially 

individuated those patients that did not experience benefits in terms of 

survival. As an example, six of the eight signatures were de-regulated 

when we observed the GSEA hallmark pathways, and five (Bai, Li, 

Rooney, Ayers IFN-gamma, Liu immune) of them were associated with a 

worse survival. All the patients with worse survival of these five signatures 

were enriched in 5 GSEA Hallmark pathways (“Androgen_response”; 

“G2M_Checkpoint”; “MYC_targets_V1”; “Protein secretion”; 

“TGF_Beta_Signaling”). Four signatures were enriched in 10 GSEA 

Hallmark pathways (“Apical_Junction”; 

“Epithelial_Mesenchymal_Transition”; “Estrogen_response_early”; 

“Hypoxia”; “Interferon_Alpha_response”; “Mitotitc_spindle”; 

“MTORC1_signaling”). Also, other enriched pathways evidenced 

metabolic re-programming (such as “Adipogenesis”; 

“Cholesterol_Homeostasis”; “Glycolysis”). It has already been observed 

tumor shapes mirroring TME and TME adapts itself to tumor biology 197. 

A highly diverse spectrum of mechanism, involving TME, have been 

described and involved in immune escape of HNSCC. For example, TME 

is influenced by tumor cells and increased hypoxia has been observed. 

Nevertheless, hypoxic conditions influence tumor cells as well infiltrating 

immune cells. In reaction to hypoxia (fueled by oxidative phosphorylation 
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and the crosstalk with WNT beta catenin signaling pathways 198 ) HNSCC 

switches to glycolysis, which leads to the production of lactic acid and 

further reduce pH. Consequently, the pH alterations influence the 

repertoire and the activity of immune modulator molecules and cells 

functionality. As an example, T-cells activation, proliferation, and 

cytotoxicity is reduced, macrophages and regulatory T-cells (Tregs) are 

accumulated and create an immune suppressive environment. Expression 

of tumor necrosis factor (TNF) receptor family members is increased, and 

IFN-gamma pathways related are downregulated. Additionally, hypoxic 

conditions induce the accumulation of TAMs, which are responsible for 

epithelial mesenchymal transition and angiogenesis. Angiogenesis is 

moreover correlated with MYC pathways, that are described as key factors 

for cell de-differentiation and for immune suppression in the 

microenvironment199. All these pathways additionally contribute to lower 

the pH197. Moreover, another example includes the alteration in cholesterol 

homeostasis, which is frequently observed in cancer. Cholesterol has 

immunomodulatory properties (for both innate and adaptive immunity), 

and its accumulation in TME has been associated (among others) with 

CD8+ T-cell exhaustion200. Additionally, we observed different 

proliferation and DNA damage related pathways enriched in patients with 

the worse prognosis, such as “G2M_Checkpoint”, “E2F_targets”, “P53 

pathway”, “PI3K_AKT_MTOR_signaling”, “DNA_repair”, “UV 

response”. These pathways clearly indicated a perturbation of response 

mechanisms (intrinsic of healthy cells) to stressful conditions (such as 

hypoxia and oxygen deprivation). The de-regulation of proliferative 

pathways is typically described in cancer, and it is usually correlated with 

a more aggressive phenotype. These results were moreover confirmed 

observing the function of the 10 most mutated genes in all the subgroup of 

patients with the availability DNA annotations.  
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Interestingly, Chen et al. described136 three immune conditions (non-

immune; active immune; exhausted immune) in the TME of HNSCC 

patients. Among the mechanisms identified in poor survival patients 

according to the 5 signatures tested, several pathways were related to 

immune-exhaustion by Chen et al., such as WNT and TGF-beta signalling 

pathways. Moreover, they individuated a situation in which an immune 

phenotype did not absolutely predict activity of the immune cells and 

consequently immunotherapy response. For instance, they observed that 

Hallmark gene-sets enriched in patients with worse survival 

(Bai, Li, Rooney, Ayers IFN-gamma, Liu immune) 

Enriched in 5/5  Enriched in 4/5 Enriched in 3/5 

ANDROGEN_RESPONSE APICAL_JUNCTION ADIPOGENESIS 

G2M_CHECKPOINT EMT APOPTOSIS 

MYC_TARGETS_V1 ESTROGEN_RESPONSE_EARLY CHOLESTEROL_HOMEOSTASIS 

PROTEIN_SECRETION HYPOXIA COMPLEMENT 

TGF_BETA_SIGNALING INTERFERON_ALPHA_RESPONSE DNA_REPAIR 

 
MITOTIC_SPINDLE E2F_TARGETS 

 
MTORC1_SIGNALING GLYCOLYSIS 

 
OXIDATIVE PHOSPHORILATION HEDGEHOG_SIGNALING 

 
TNFA_SIGNALING_VIA_NFKB HEME_METABOLISM 

 
UNFOLDED_PROTEIN_RESPONSE IL2_STAT5_SIGNALING 

 
UV_RESPONSE_DN IL6_JAK_STAT3_SIGNALING 

  
INFLAMMATORY_RESPONSE 

  
MYC_TARGETS_V2 

  
NOTCH_SIGNALING 

  
P53_PATHWAY 

  
PI3K_AKT_MTOR_SIGNALING 

  
REACTIVE_OXYGEN_SPECIES_PATHWAY 

  
UV_RESPONSE_UP 

  
WNT_BETA_CATENIN_SIGNALING 



146 
 

IFN signaling, T-cell-related signatures, high immune cell infiltration, 

enhanced cytolysis did not contribute to understand the differences 

between an active immune system and an exhausted immune system. 

Indeed, in Nivactor we observed an enrichment in several lymphoid 

populations for groups with the worse survival (5 literature signatures: Liu 

myeloid, IFN-gamma, Rooney, Hu, Li): B-cells (2/5), CD4+ Tem, CD4+ 

T-cells and CD4+ memory T-cells (3/5), CD8+ T-cells and CD8+ Tcm 

(2/5), Class-switched memory B-Cells (2/5), Common Lymphoid 

progenitor (CLP, 4/5). These immune cells usually play an important role 

in promoting anti-tumor immune response. Nevertheless, TME of the 

groups with the worse prognosis was also enriched in myeloid-derived 

suppressor cells, cuch as Tregs (2/5), Macrophages (4/5) and stromal 

components, confirming the hypothesis of an immune exhaustion in this 

subset of patients. When we used cluster subtypes, already associated to 

biology and prognosis of HNSCC, asimilar biological profile (observed for 

GSEA Hallmark, KEGG and xCell) was observed with Cluster-5 subtype 

(De Cecco et al.39). Differently from the immune signatures the Cluster-5 

resulted significant in survival analysis and presented a significant 

correlation with response. Specifically, Cluster-5 seemed to strongly 

identify those patients that did not obtain any benefit from immunotherapy. 

The two De Cecco et al (Cluster-5 and Cluster-6) subtypes appeared to be 

more reliable tool with a strong prognostic significance and a correlation 

with response. The possible explanation could be based on the enormous 

amount of gene expression data considered for the subtype construction in 

the original paper (11 public datasets were used) and a specific method 

used for the parallelism and subtraction of normal tissue features. 

However, the two clusters, biologically well characterized in 2015, 

struggled to maintain their identity in the Nivactor analysis. While the 

Cluster-5 acquired new traits (highly similar to traits of the literature 



147 
 

signatures), the Cluster-6 did not evidence any specific biological 

characteristics, with the exception of NKT (highly represented in the 

Cluster-6 low group, the one with the worse prognosis). The up-regulation 

of NKT was moreover confirmed in the poorer prognosis evidenced by 

Cluster-5 low.  It is already known that NKT cells are among of the most 

highly infiltrated cells in HNSCC TME. However, at date, the role of NKT 

for HNSCC is still debatable in literature, and their role seems to be 

various. Moreover, the debate is accentuated when NKT abundance and 

function are studied in peripheral blood instead in the TME 201. While some 

authors declared that these immune cells are a critical component in the 

early phase of immune response against tumor in the TME, and they are 

associated with better prognosis202, other authors individuated a correlation 

of NK cells and worse prognosis and tumor progression203, due to the NK 

role that negatively regulates T-cell activity, leading to 

immunosuppression 204. Moreover, the two signatures did not express their 

potentiality investigating some key points of immune-related genes, 

interrogating whether their capability was associated to the mere immune 

cell infiltration or rather to the complexity of the TME. The biological 

characterization of Cluster-6 in the original paper, highlighted that this 

subtype was the closest to the normal state, expressing similarity with the 

airway epithelium and the one maintaining active cellular homeostasis. 

The possible explanation behind the performance of Cluster-6 in Nivactor 

(small group of patients with better PSF and OS survival), might be 

associated to the mirroring of several characteristics of normal state, thus 

enabling to identify the patients more prone to respond to immunotherapy. 

However, this preliminary hypothesis needs to be validated in a larger 

prospective cohort of R/M HNSCC patients treated with immunotherapy 

or in a selected population with extremized long and short survival 

patients.   
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An important limitation of the present study was the lack of a public 

available dataset focused on immunotherapy real life data. Nevertheless, 

the only use of Nivactor dataset generated promising results. The two De 

Cecco et al. subtypes identified two small subsets of patients that could 

have beneficial results in terms of survival: 15 patients were classified as 

Cluster-6 high (associated to better survival) and 12 patients were 

classified as Cluster-5 low (associated to worse survival). The two 

signatures highly and directly correlated together, suggesting the 

interesting prospective of their integration. However, despite the possible 

and speculative interpretation of biological results, several open questions 

about the biological contribution of the two subtypes remained 

unanswered and further investigations to individuate the biological 

contribution of each of the two clusters are required. 

5.1 Strengths, limitations, and future directions 

The unsatisfactory results obtained by DNA profiling (even when 

integrated with gene expression results) and the promising results observed 

only by the gene expression analyses are concordant to the emerging 

evidence that described epigenetic events highly important in HNSCC, 

probably even more than the mere genetic alterations205,206. DNA 

methylation (hypo- and hyper-), histone modifications (acetylation, 

methylation, phosphorylation, etc), non-coding RNAs (microRNAs, 

lncRNAs, etc) are all epigenomic mechanisms that are highly involved in 

carcinogenesis, tumor progression (and consequently in patients’ 

prognosis), and TME regulation in HNSCC (i.e., immunosuppression 

mediated by myeloid-derived cells and CAFs). Future studies involving 

the profiling of epigenomic characteristics, to understand the 

modifications and the crosstalk between tumor and TME could provide 

answers to specific open questions related to the functionality of 
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immunotherapy in HNSCC, aimed to a more personalized medicine207. 

Moreover, the complex immune composition of tissue from HNSCC 

patients could be better discerned by additional analyses through single 

cell approaches (i.e., single cell RNA sequencing). This high-resolution 

transcriptomic analysis will give the opportunity to characterize the spatial 

localization of immune cells and the other cellular component of TME, 

their crosstalk and transcriptional spatial states. The deep understanding 

will allow the characterization the intra-tumoral heterogeneity, and to build 

a specific molecular model of exhaustion208 to correlate with HNSCC 

subtypes. We should consider that the characterization of biology of the 

tumor sample is currently achieved through the only profiling of biopsy 

(mostly FFPE > fresh/frozen; mostly biopsy > surgery). Thus,  the use of 

these specific materials could be associated to several  problems, such as: 

i) the invasive nature of the biopsy; ii) the small size of the tissue and 

therefore, the limited amount of nucleic acid for omic profiling; iii) the 

lack of the tissue due to precedent use for the diagnostic testing; iv) bias 

due to intrinsic tumor heterogeneity (that, using a small biopsy, risks to be 

missed or misunderstood, ) that means tissue from a certain area may have 

different mutations and gene expression than other areas (providing 

inaccurate information); v) preservation methods such as formalin 

fixation, that cause C > T transition through deamination of cytosine and 

could lead to false positive to DNA profiling; vi) heterogeneity of tumor 

tissue samples collected (frequently derived from or primary tumor or 

recurrence or metastasis); vii) biopsy allows the detection of a dominant 

biological pattern at a precise time point (usually before treatment) and do 

not concede to observe the high dynamism of tumors (which is also caused 

by selective pressure during drug treatment)209. Nevertheless, the reality of 

translational studies based on clinical trials for HNSCC allows the 

possibility to usually retrieve formalin fixed tumor tissue (instead of 
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fresh/frozen tissue; range of collection years goes from 1 year from the 

first diagnosis to 10 years from the first diagnosis) from various stages of 

disease (mostly before treatment; however, only one sample for patient 

usually is available, not allowing the paired comparison between primary 

and metastasis or primary and normal tissue) and small biopsies (due to 

the anatomical sites considered). In Nivactor cohort we had the possibility 

to collect the tumor tissue from 75% of the patients (94/124) and the right 

amount of nucleic acid for omic profiling from 65% (80/124, gene 

expression) and 51% (63/124, DNA sequencing) of the samples. 

Unfortunately, we did not dispose of the FFPE tumor tissue of two 

complete responders, losing a relevant piece of the puzzle. However, data 

about the observed dropouts are in line with the ones reported in literature 

in general cancer studies210. Additionally, the lack of tumor material is 

even increased when the profiling includes tumor tissue of R/M patients 

treated in second line, according to what we already observed in other 

HNSCC studies211 . The Nivactor study was an academic study, that 

demonstrated solidity and strength (the clinical-pathological data resulted 

in line with previous clinical trial published) and allowed the discerning of 

several biological features. The biological dataset of the current study will 

be deposited and published, to allow the utilize of these important data to 

the academic community. Even if we were able and proud to obtain 

satisfactory results in the Nivactor trial, we aim to improve these 

limitations. For instance, recent technological improvements had been 

achieved for the accurate and highly sensitive profiling of liquid biopsy 

(i.e., blood, urine, stool, and saliva samples). In oncology, the use of liquid 

biopsy is currently allowing patient screening, prognostic stratification, 

monitoring treatment response (before, during and after the therapy) and 

detection of minimal residual disease after surgery/recurrence. The use of 

liquid biopsies is growing in relevance, mostly because it is a non-invasive 
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method, which allows overcoming the traditional tissue-based bias. 

Moreover, the use of liquid biopsy permits longitudinal monitoring of 

patients’ disease (gaining a richer molecular understanding of the specific 

cancer considered). Even if in liquid biopsy the relative amount of nucleic 

acids and cells (small RNAs, mRNAs, lncRNAs, cfDNA, exosomes and 

others) derived from a tumor (against the background) is low, in the 

majority of cases the amount of material collected is adequate to extract 

the nucleic acids for the molecular profiling. Even if tissue biopsies are 

irreplaceable for identify the specific genes’ expression and mutations of 

the tumor, the liquid biopsy could be a good candidate to understand the 

mechanisms at the base of tumor relapse- metastatization, resistance to 

therapy or for early detection of cancer. Moreover, they relevance as 

predictive factor for immunotherapy is growing212,213. Specifically, for a 

cohort of patients in the Nivactor trial we collected the blood samples 

before and during therapy. The collection permitted us to acquire important 

knowledge about specific and peculiar characteristics of a responding 

patient during a follow-up of more than 3 years176. As a future direction 

we aim to profile for a subset of Nivactor patients, some of the known 

circulating biomarkers, such as cfDNA (for detecting its abundance and 

specific mutations), DNA (for T-cell receptors sequencing), mRNAs 

(allowing the inference of peripheral immune-cell population), miRNAs 

(and other epigenomic regulators) to better comprehend the longitudinal 

biology during the nivolumab treatment. Moreover, the peripheral immune 

profiling will allow to correlate the profile of the tumor biology and the 

molecular features observed in liquid biopsy. Consequently, the liquid 

biopsy could function as well as surrogate for depict the profile of those 

patients for which we lacked the FFPE material.  Another important aspect 

that needs to be underlying is the background of HNSCC patients. Head 

and neck cancers have been exhaustively described as an immune 
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suppressed tumor, in which from the very first steps different escaping 

mechanisms are activated by cancer cells. Moreover, increasing evidence 

are suggesting that HNSCC TME is immunosuppressive, and play a vital 

role in ICI resistance214–216. The study of a cohort of patients with rare 

disease with a strong immunosuppression that hardly responds to 

immunotherapy had generated several challenges, firstly due to the 

impossibility to profile the tumor of only two complete responders. Also, 

reasoning in numbers, the profiling of the partial responding patients 

resulted reduced if compared to patients with a stable disease or for which 

a progression was observed.  However, the overall numbers, even if in line 

with other studies in literature, strongly reduced the power of our analyses 

and the exhaustive biological deepening. Nevertheless, the suggested 

picture underlies that cancer immunotherapy strongly differs from other 

therapy approaches, such as chemotherapy or targeted therapies, in which 

cancer is flighted by a single (or more than one) targeted oncogenic 

feature(s). Cancer immunotherapy involves several, dynamic and 

simultaneous biological targets indicating that immune-cell infiltration is 

necessary to induce a response to treatment, but it is not sufficient alone. 

Different preclinical studies are now evaluating the possibility to combine 

immunotherapy with other drugs, such as those that inhibits oxidative 

phosphorylation (to alleviate hypoxia condition)217 or WNT-signaling 

pathways, that regulates above all cell proliferation and tissue homeostasis, 

with indirect effects on T-cell functionality218. 
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6. CONCLUSIONS 
 

The present translational work, built up on a solid phase IIIb Italian clinical 

trial, corroborated the intrinsic and complex TME heterogeneity in R/M 

HNSCC patients. Thanks to these efforts, several features of 

immunosuppression have been identified. These results allowed the 

possible speculation of the TME correlation with low response rate to 

immunotherapy for these patients and a possible prospective of new 

biological targets for the treatment of R/M HNSCC patients.  

Although the use of a single predictive biomarker for individuate the 

response to immunotherapy seems unrealistic, a more complex tool, such 

gene expression signatures, appeared to be more reliable for this hard task. 

Future analyses and datasets are required to validate the 

prognostic/predictive role of Cluster-5 and Cluster-6 (integrated or 

considered as alone). Additional biological exploration and functional 

analyses will allow to untangle the complexity of HNSCC biology, to 

create a specific and detailed picture of the intrinsic TME heterogeneity. 
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