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Abstract

This article presents a spectrum result on maximal partial ovoids

of the generalized quadrangle Q(4, q) , q even. We prove that for

every integer k in an interval of, roughly, size [q2/10, 9q2/10] , there

exists a maximal partial ovoid of size k on Q(4, q) , q even. Since the

generalized quadrangle W (q) , q even, defined by a symplectic polarity

of PG(3, q) , is isomorphic to the generalized quadrangle Q(4, q) , q

even, the same result is obtained for maximal partial ovoids of W (q) , q

even. Since a maximal partial ovoid of W (q) , q even, is also a minimal

blocking set with respect to the planes of PG(3, q) , the same spectrum

result is obtained for minimal blocking sets with respect to planes of

PG(3, q) , q even. Finally, since minimal blocking sets with respect

to planes in PG(3, q) are tangency sets, they define partial 1-systems

on the Klein quadric Q+(5, q) , so we get the same spectrum result for

maximal partial 1-systems of lines on the Klein quadric Q+(5, q) , q

even.

Key Words: generalized quadrangles, maximal partial ovoids, minimal

blocking sets, maximal partial 1-systems.

1 Introduction

An incidence structure consisting of points and lines is called a finite gener-

alized quadrangle GQ(s, t) if the following axioms hold:

• every line is incident with s + 1 points, and every point is incident

with t + 1 lines,

• two different lines can intersect in at most one point, and two different

points can share at most one line, and

• for any non-incident point-line pair (P, l) , there exists a unique line m

and unique point Q such that P is incident with m , m is incident

with Q , and Q is incident with l .

The parameters s and t are called the order of the generalized quadran-

gle. The points and lines of a non-singular 4 -dimensional parabolic quadric

Q(4, q) are a classical example of a finite generalized quadrangle of order
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(s, t) = (q, q) . The parabolic quadric Q(4, q) of PG(4, q) is the quadric

having X2
0 + X1X2 + X3X4 = 0 as canonical equation.

The other examples of classical generalized quadrangles are: (1) the non-

singular 5 -dimensional elliptic quadrics Q−(5, q) , (2) the Hermitian vari-

eties H(3, q2) and H(4, q2) in three and four dimensions, and (3) the points

of PG(3, q) and the totally isotropic lines under the symplectic polarity ϕ .

We refer to the standard reference [12] for more information on generalized

quadrangles.

An ovoid O of a generalized quadrangle is a set of points such that every

line of the generalized quadrangle is incident with exactly one point of O .

A partial ovoid is a set of points that shares at most one point with every

line of the generalized quadrangle, and the partial ovoid is called maximal

when it is not contained in a larger partial ovoid.

Particular interest has been paid to the existence and non-existence of ovoids

in generalized quadrangles [15, 16]. The results of Ebert and Hirschfeld [7]

translate into results on the smallest maximal partial ovoids of Q−(5, q) .

The result of Aguglia, Ebert, and Luyckx [1] presents the minimal size of

a maximal partial ovoid of H(3, q2) . Recently, research has been done to

find spectra of sizes of maximal partial ovoids [3, 4], by using computer

resources. We contribute to this study with a spectrum result on maximal

partial ovoids of Q(4, q) , for q even.

As applications, we obtain similar spectrum results on: (1) maximal partial

ovoids of W (q) , q even, (2) maximal partial spreads of Q(4, q) , q even,

and W (q) , q even, (3) minimal blocking sets w.r.t. the planes of PG(3, q) ,

q even, and (4) maximal partial 1-systems on the Klein quadric Q+(5, q) ,

q even.

2 The idea

We will use the ideas for the construction of minimal blocking sets in PG(2, q2)

in the article of Szőnyi et al [14] for finding a spectrum for maximal par-

tial ovoids of Q(4, q) , q even. In particular, we will need the statement

introduced by Füredi on page 190 in the article [8]:

Corollary 2.1 For a bipartite graph with bipartition L ∪ U where the de-

gree of the elements in U is at least d , there is a set L′ ⊆ L , for which
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|L′| ≤ |L|1+log(|U |)
d

, such that any element u ∈ U is adjacent to at least one

element of L′ .

The following setting is useful for our purposes. In the next section, we will

discuss it in detail. Now, we want to focus on the application of the above

corollary in our context. We refer to Figure 1.

Figure 1: Conics of Q−(3, q) in planes through `

Consider an elliptic quadric Q−(3, q) in Q(4, q) . Then Q−(3, q) is an

ovoid of the generalized quadrangle Q(4, q) . Let ` be an external line to

Q−(3, q) , lying in the solid of Q−(3, q) , and let C∗ be one or possibly

several conics on Q−(3, q) , not lying in a plane through ` , intersected by

the same planes through ` . Among the planes containing the line ` lying

in the solid of Q−(3, q) , there are two tangent planes to points R1 and R2

of Q−(3, q) , and q − 1 planes intersecting Q−(3, q) in a conic. Some of

these planes intersect the conics C∗ .

We are interested in the planes through ` intersecting the quadric Q−(3, q)

in a conic. Among those planes, we choose s− 2 planes out of which r − 1

intersect the conics C∗ . We now choose for U all conics of the quadric

Q−(3, q) ; except for a small number of conics, in particular, those conics

that lie in a plane containing ` . We isolate a particular group of q + 1

conics passing through R1 , but not through R2 , intersected by the same

q/2 + 1 conics in planes through ` . The q/2 conics of Q−(3, q) in planes

through ` skew to this particular group of q + 1 conics are the elements of

L . An element of U is adjacent to an element of L when the two conics
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intersect in at least one point. Applying Corollary 2.1, we can reduce L to

L′ and still know that every conic in U intersects a conic of L′ .

Then, in a first step, we can decrease the ovoid Q−(3, q) to a partial ovoid

by omitting conics in planes through ` , but certainly not the conics in L′ ,

replacing those omitted conics by their polar points in Q(4, q) . Recall that

q is even, thus the plane containing a conic also contains a point incident

with all tangent lines to the conic, which is the nucleus of the conic.

The conics in C∗ have to be intersected by the same planes containing ` .

The following section will give the construction of these conics and show that

we can replace them by their polar points without violating the properties

of the partial ovoid constructed in the first step above.

3 Construction of maximal partial ovoids

Remark 3.1 A conic C of Q(4, q) , q even, has either one or q + 1 polar

points on Q(4, q) , i.e., there are either one or q+1 points of Q(4, q) collinear

with all q + 1 points of C . A conic C of Q(4, q) lying in a plane through

the nucleus N of Q(4, q) has q+1 polar points, while a conic C of Q(4, q)

lying in a plane, not passing through the nucleus N , has exactly one polar

point.

A conic C contained in an elliptic quadric Q−(3, q) of Q(4, q) only has one

polar point. We want to replace a number of conics of the elliptic quadric

Q−(3, q) by their polar point in order to get partial ovoids of different sizes.

The aim is to do this in such a way that we get many different cardinalities

for the maximal partial ovoids. Thus we want to be able to replace different

numbers of conics, so we have to choose these conics in a way that their

polar points are not collinear on Q(4, q) .

Let ` be an external line to Q−(3, q) , then the polar line of ` w.r.t.

Q−(3, q) is a bisecant intersecting Q−(3, q) in two points R1 and R2 .

The planes through R1, R2 intersect Q−(3, q) in a conic. The nuclei of

these conics are the q + 1 points on ` . The planes through ` consist of

the tangent planes to Q−(3, q) in R1 and R2 , and of q − 1 planes which

intersect Q−(3, q) in a conic Ki, i = 1, . . . , q − 1 . There is one polar point

of Q(4, q) collinear with the points of such a conic Ki , i = 1, . . . , q − 1 .
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These q − 1 polar points of the conics of Q−(3, q) in the planes through `

belong to the conic C which is the intersection of Q(4, q) with the plane

incident with the nucleus N of Q(4, q) and the points R1, R2 .

Figure 2: Conic C of the polar points of the conics in planes through `

We look at the planes containing the external line ` . We can now replace

some of these conics Ki by their polar point on C . If we keep s−2 conics

Kq+2−s, . . . , Kq−1 , and replace q + 1 − s conics K1, . . . , Kq+1−s by their

polar point, we get a partial ovoid O containing R1, R2 , s − 2 conics in

planes through ` , and q +1− s points being the polar points replacing the

conics. So O is of size 2 + (s − 2)(q + 1) + q + 1 − s .

Now we need to introduce another set of conics; the conics denoted by C∗

in the above section. Out of these, we will replace some by their polar point.

Let us investigate conics of Q−(3, q) incident with R1 , but not R2 . There

are q+1 pencils with carrier R1 , each containing q conics out of which one

is incident with R2 . Thus we have (q + 1)(q − 1) conics incident with R1 ,

but not R2 . These conics intersect q/2 + 1 planes through ` , one plane

〈`, R1〉 tangent to the elliptic quadric in R1 and q/2 planes intersecting

each conic in two points. We will first show that these conics form groups

of q +1 conics which are intersected by the same q/2+1 planes containing

` . In these groups, there is exactly one conic of each pencil.

Lemma 3.2 The (q + 1)(q − 1) conics of the elliptic quadric Q−(3, q) ,

incident with R1 but not R2 , form groups of q + 1 conics which are in-

tersected by the same q/2 + 1 planes through the external line ` . Conics
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of the same group intersect in R1 , and every other point of such a conic is

the intersection point with precisely one other conic of the group.

Proof : The elliptic quadric Q−(3, q) is fixed by a 3 -transitive group. The

subgroup fixing R1 and R2 has size q − 1 . This group also fixes the polar

line of R1R2 , which is the line ` .

The elliptic quadric can be represented by the following equation: X0X1 +

f(X2, X3) = 0 , with f(X2, X3) = aX2
2 + bX2X3 + cX2

3 irreducible over Fq .

Then there is a cyclic group Cq+1 of size q + 1 fixing the quadratic form

f . This group also operates cyclicly on the points of ` . Let R1, R2 have

coordinates R1 = (1, 0, 0, 0), R2 = (0, 1, 0, 0) , then ` : X0 = X1 = 0 .

If we now fix a point on ` , for instance P = (0, 0, 0, 1) , we get the mapping

η : (x0, x1, x2, x3) 7→ (a2x0, x1, ax2, ax3) fixing Q−(3, q) .

If a is a generator of F
∗
q , then η defines a cyclic group Cq−1 of order q−1 .

Then η fixes the elliptic quadric and also the planes 〈`, R1〉 : X1 = 0 and

〈l, R2〉 : X0 = 0 , where X1 = αX0 , for some α 6= 0 , are the secant planes

to Q−(3, q) through ` .

If we consider the planes incident with the point P on ` and R1 , different

from the plane through R2 and the tangent plane in R1 , their intersection

with Q−(3, q) is a conic and there are q/2 + 1 planes through ` intersect-

ing this conic. In the quotient geometry PG(1, q) = Fq ∪ {∞} of ` , these

planes correspond to a set of q/2 + 1 points where 〈`, R1〉 corresponds to

∞ and the other q/2 planes define an additive subgroup of index 2 in

(Fq, +) , or a coset of an additive subgroup of index 2 in (Fq, +) . The

cyclic group Cq−1 maps this subgroup of index 2 onto all subgroups of

index 2 in (Fq, +) , or this coset onto all cosets of these subgroups of index

2 in (Fq, +) . Furthermore, Cq−1 maps all conics in planes through the line

〈P, R1〉 , different from 〈`, R1, R2〉 and TR1
(Q−(3, q)) , onto each other in a

way that we see every subgroup exactly once.

The cyclic group Cq+1 acts transitively on ` , so transitively on the possible

lines PR1 , with P ∈ ` . If Cq+1 maps P ∈ ` onto P ′ ∈ ` , the intersection

conic between a plane through the line PR1 and Q−(3, q) is mapped onto

a conic in a plane through P ′R1 which is intersected by the same q/2 + 1

planes through ` , since Cq+1 fixes the line R1R2 point by point. So for
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every point on ` , there is a unique conic intersected by the same q/2 + 1

planes through ` .

Definition 3.3 A group of conics of Q−(3, q) is a set C∗ of q + 1 conics

C0, . . . , Cq , through R1 , but not through R2 , intersected by the same

q/2 + 1 planes through ` .

All the conics of a group must intersect in R1 and in another point as their

planes intersect in a line incident with R1 which cannot be in the tangent

plane 〈`, R1〉 to Q−(3, q) in R1 .

We now show that these other intersection points are all different, thus that

every point different from R1 of every conic of a group is an intersection

point with exactly one other conic of the group. The cyclic group Cq+1

maps a conic C0 onto conics C1, . . . , Cq which are intersected by the same

q/2+1 planes through ` . One of these planes is the tangent plane 〈`, R1〉 ;

the other q/2 of those planes through ` are secant planes to Q−(3, q) .

We consider one such plane through ` and the intersection conic Ki with

Q−(3, q) . Let R′
0, . . . , R

′
q be the points of Ki and let γ be the generator

of the group Cq+1 . Thus γ(R′
i) = R′

i+1 (mod q) . This conic Ki shares

two points with C0 , let us say R′
0, R

′
j , then γj(C0) contains R′

j and

γq+1−j(C0) contains R′
0 .

We discuss in this way all points of C0 \ {R1} , as there are q/2 planes

through ` intersecting such a conic C0 of a given group in two points, and

q/2 · 2 = q is the number of points of the conic of the given group, besides

R1 . 2

The idea is to replace some of these conics of a given group C∗ by their

polar point. As this new configuration is supposed to be a maximal partial

ovoid, we have to know the incidences of these polar points. The following

lemma shows that these polar points of the q+1 conics of a group C∗ form

a conic C ′ contained in the tangent cone TR1
(Q(4, q)) .

Lemma 3.4 Consider a set C∗ of q + 1 conics C0, . . . , Cq incident with

the point R1 of the elliptic quadric Q−(3, q) , but not incident with R2 ,

intersected by the same q/2 + 1 planes through the external line ` . The

polar points of these conics form themselves a conic C ′ which lies in the
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tangent hyperplane of Q(4, q) in R1 .

Proof : All these polar points lie in the tangent hyperplane TR1
(Q(4, q)) ,

since they are all incident with a line of Q(4, q) through R1 .

We found the conics C0, . . . , Cq of Q−(3, q) in the foregoing corollary using

the irreducible quadratic form f(X2, X3) = aX2
2 + bX2X3 + cX2

3 . Embed-

ding the elliptic quadric in Q(4, q) , we get X0X1 + aX2
2 + bX2X3 + cX2

3 +

X2
4 = 0 . The cyclic group Cq+1 from the proof of Corollary 3.2 can be

rescaled and extended to a mapping η′

η′ :
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x1

x2

x3

x4















7→















1 0 0 0 0

0 1 0 0 0

0 0 a′ b′ 0

0 0 c′ d′ 0

0 0 0 0 1





























x0

x1

x2

x3

x4















fixing Q(4, q) , where the matrix

A =

(

a′ b′

c′ d′

)

fixes the quadratic form aX2
2 +bX2X3+cX2

3 . The hyperplane TR1
(Q(4, q)) :

X1 = 0 is fixed by η′ , thus by Cq+1 . Furthermore, the hyperplanes X0 = 0

and X4 = 0 are fixed as well.

If U = (u0, 0, 0, 0, u4) belongs to TR1
(Q(4, q)) : X1 = 0 , then U = R1 , so

we can assume that (u2, u3) 6= (0, 0) . If U = (u0, . . . , u4) , (u2, u3) 6= (0, 0) ,

U ∈ TR1
(Q(4, q)) , then the images of U under Cq+1 have coordinates

(u0, u1, A
j

(

u2

u3

)

, u4).

An easy check shows that the images of U form a conic C ′ contained in

TR1
(Q(4, q))∩Q(4, q) . The cyclic group Cq+1 acts in one orbit on the q+1

conics of a group; so we have proven that the polar points of the conics of a

group form a conic C ′ in TR1
(Q(4, q)) ∩ Q(4, q) . 2

The conic C ′ in TR1
(Q(4, q))∩Q(4, q) of the preceding corollary is skew to

the conic 〈`, N〉∩Q(4, q) , since this conic consists of the polar points of the

conics in the planes through R1R2 . Thus we can replace conics of Q−(3, q)
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in planes through ` and conics in a given group by their polar points,

under certain restrictions. Assume again that we replace q + 1 − s conics

K1, . . . , Kq+1−s being the intersection of planes containing the external line

` with the quadric Q−(3, q) . Now we replace also t conics C1, . . . , Ct out of

{C0, . . . , Cq} by their polar points to get more sizes for the maximal partial

ovoids of Q(4, q) . Some of the points on the conics C1, . . . , Ct were already

cancelled when we replaced the conics K1, . . . , Kq+1−s by their polar points,

so we have to know how many conics of {K1, . . . , Kq+1−s} intersect the t

conics C1, . . . , Ct in order to determine exactly the cardinality of the newly

constructed maximal partial ovoids. Assume that we kept r of the conics in

the planes through ` that intersect the t conics C1, . . . , Ct , including the

tangent plane incident with R1 . The cardinality M of the partial ovoid O

is then depending on how the r−1 conics out of Kq+2−s, . . . , Kq−1 intersect

C1, . . . , Ct . We have 2t(r−1)−u points of intersection between C1, . . . , Ct

and Kq+2−s, . . . , Kq−1 , where u is the number of intersection points of

C1, . . . , Ct and Kq+2−s, . . . , Kq−1 lying in two of the conics C1, . . . , Ct .

In the next section, we will investigate the incidences between the intersec-

tion points among the conics C1, . . . , Ct and the conics Kq+2−s, . . . , Kq−1 ;

now we say that there are u points of intersection. Then we get partial

ovoids of size

M = 2 + (s − 2)(q + 1) + q + 1 − s − 1 − 2t(r − 1) + t + u,

= (s − 1)q − 2tr + 3t + u,

where certain constraints apply for s and r , and where the term −1 comes

from the fact that R1 is also cancelled from C1, . . . , Ct , and the term +t

comes from the fact that C1, . . . , Ct are replaced by their polar points.

Furthermore, we have to determine the bound on the cardinality of L′ from

Corollary 2.1, because s − r ≥ |L′| . Now |L′| ≤ |L|1+log(|U |)
d

where the

elements of U are the conics of Q−(3, q) besides

1. the q − 1 conics lying in a plane containing the line ` ,

2. the q + 1 conics in a plane through R1R2 , and

3. the conics of the selected group C∗ = {C0, . . . , Cq} of conics through
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R1 , but not through R2 , intersected by the same q/2 + 1 planes

through ` .

Note that |U | ≤ q3 + q2 < (q + 1)3 . These q/2 conics in planes through

` skew to the conics of the group {C0, . . . , Cq} form the set L . A lower

bound on the degree is given in [13, Lemma 2.12 ]; d ≥ 1
4(q − 1 − 6

√
q) .

Together we get:

|L′| ≤ q

2
· 1 + log((q + 1)3)

1
4(q − 1 − 6

√
q)

≤ 2 · (1 + 3 log(q + 1)) · q

q − 1 − 6
√

q
.

For q ≥ 50 , q/(q − 1 − 6
√

q) ≤ 8 and we get |L′| ≤ 16(1 + 3 log(q + 1)) .

Hence, the preceding results show that there exists, within the set of q/2

planes of L , a set L′ of at most 16(1+3 log(q +1)) planes such that every

conic of Q−(3, q) in U , intersects at least one of the planes of L′ . One of

these planes could be the tangent plane 〈`, R2〉 . The symbol s in Step 4

of the summary of the construction stands for the planes 〈`, R1〉 , 〈`, R2〉 ,

and for the s − 2 non-replaced conics in planes through ` . To make sure

that also the plane 〈`, R2〉 is counted within the symbol s , and since R2

does not belong to the conics C0, . . . , Cq , we increase the upper bound on

the size of L′ to 17 + 48 log(q + 1) .

To be sure that every conic in U intersects at least one conic of L′ , we

do not replace the conics in L′ by their polar points, and we impose the

constraint s − r ≥ 17 + 48 log(q + 1) .

The following check also needs to be made. We are replacing conics in

planes through ` by their polar points, which belong to the conic C , and

we are also replacing conics in a selected group C∗ of conics through R1 by

their polar points, which belong to the conic C ′ . We must verify whether a

selected polar point on C ′ can be collinear on Q(4, q) with a selected polar

point on C .

It is impossible that a point on C ′ is collinear on Q(4, q) with all the points

of C . For the points of Q(4, q) collinear with all the points of C are the

polar points of the conics through R1R2 , and they do not belong to C ′ .

The points of C ′ form an orbit under the cyclic group Cq+1 , which fixes

the conic C point by point. Hence, if the points of C ′ are collinear on
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Q(4, q) with points of C , then they are collinear with the same points of

C . They certainly are collinear with R1 since all the conics of a group C∗

pass through R1 . Assume that the points of C ′ still are collinear with a

second point R of C . Then R is the polar point of a conic D through ` .

We prove that this conic D is skew to all the conics of the selected group

C∗ of conics through R1 .

Lemma 3.5 Assume that the points of the conic C ′ are collinear on Q(4, q)

with a point R , different from R1 , of the conic C . Assume that R is the

polar point of the conic D through ` , then D is skew to all the conics of

the selected group C∗ of conics through R1 .

Proof : Suppose that D has an intersection point with such a conic. Then

there are two intersection points T1 and T2 since the only plane through `

that intersects a conic of a group in one point, is the plane 〈`, R1〉 .

Assume that T1 and T2 belong to the conic of the selected group through

R1 with polar point T on C ′ . We are assuming that this point T of C ′

is collinear with the point R of C ; at most one of the points T1 or T2 can

belong to the line TR . Assume that T2 6∈ TR , then T2 is collinear with

R since it belongs to the conic D which has R as its polar point, and T2

is also collinear with T , but then there is a triangle of lines contained in

Q(4, q) . This is impossible. 2

Since we will be selecting points of C ′ and of C to belong to the newly con-

structed partial ovoid O , we need to avoid that these points are collinear.

They can be collinear with only one point R of C , different from R1 ,

which is the polar point of a conic D skew to the selected group of conics

through R1 . For this reason, we increase the upper bound on the size of

L′ by a unit to also include the conic D in L′ . This gives the constraint

s − r ≥ 18 + 48 log(q + 1) .

We now summarize the construction and prove that the newly constructed

partial ovoids O are complete, under certain constraints.

Summary of the construction

1. Select an elliptic quadric Q−(3, q) contained in Q(4, q) , select an
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external line ` to Q−(3, q) in the solid of Q−(3, q) , and let R1R2 be

the polar line of ` with respect to Q−(3, q) , where R1, R2 ∈ Q−(3, q) .

Let C be the conic of Q(4, q) in the plane 〈R1, R2, N〉 containing

the q − 1 polar points of the q − 1 conics K1, . . . , Kq−1 to Q−(3, q)

in planes through ` .

2. Select a group C∗ of q+1 conics C0, . . . , Cq through R1 , intersected

by the same q/2 + 1 planes through ` . Let C ′ be the conic in

TR1
(Q(4, q)) consisting of the polar points of the conics C0, . . . , Cq .

3. Let L′ be the set of conics in planes through ` , skew to the given

set of conics C0, . . . , Cq , whose existence is guaranteed by Corollary

2.1. Note that we increased the upper bound on the size of L′ to

18+48 log(q +1) to guarantee that L′ also includes the plane 〈`, R2〉
and the conic D .

The crucial property of the conics in the set L′ is that every conic of

Q−(3, q) , not lying in a plane through ` or R1R2 , and different from

C0, . . . , Cq , intersects at least one of these conics in L′ in at least one

point.

4. We construct a new partial ovoid by selecting q + 1 − s conics of

Q−(3, q) in planes through ` , and by replacing them by their polar

points on C . This gives a new partial ovoid of size 2 + (s − 2)(q +

1)+ q +1− s . Note that we do not replace the conics in L′ , including

the conic D , by their polar points.

5. We now select t conics C1, . . . , Ct out of C0, . . . , Cq , and replace

them by their polar points on C ′ .

Assume that exactly r − 1 out of the s − 2 non-replaced conics

Kq+2−s, . . . , Kq−1 through ` intersect the conics C1, . . . , Ct ; assume

that they intersect in total in 2t(r − 1) − u points.

Then the newly constructed partial ovoid O has size

M = (s − 1)q − 2tr + 3t + u.

It remains to be shown that such a partial ovoid O is complete. We know

that a point in Q−(3, q) \ O must lie on a conic which was replaced by

its polar point. Thus this point is collinear with this polar point. So let
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us consider a point P ∈ Q(4, q) , but P /∈ Q−(3, q) and P /∈ O , where

we assume that P extends O to a larger partial ovoid. The tangent cone

to Q(4, q) in P intersects Q−(3, q) in a conic ϕ(P ) . The plane of ϕ(P )

cannot contain the external line ` , for since P 6∈ O , this conic in this plane

of ϕ(P ) through ` would not have been cancelled from Q−(3, q) ; so this

conic contains points of O ; hence P does not extend O . So ϕ(P ) can

either pass through R1 and R2 , or be a conic of the selected group C∗ of

conics C0, . . . , Cq which are intersected by the same q/2 + 1 planes con-

taining ` , or be a conic not intersected by the same q/2+1 planes through

` as C0, . . . , Cq . If R1, R2 ∈ ϕ(P ) , the nucleus of ϕ(P ) lies on ` . Thus

every plane containing ` intersects ϕ(P ) in one point. But there are s− 2

conics in planes through ` in O , thus ϕ(P ) contains points of the partial

ovoid O , so P cannot extend O to a larger partial ovoid. If ϕ(P ) is

intersected by q/2 + 1 planes through ` different from those intersecting

C1, . . . , Ct , then ϕ(P ) intersects one of the conics in L′ and P cannot

extend O . Otherwise, ϕ(P ) belongs to the group of conics {C0, . . . , Cq} ,

thus it intersects each of these conics C1, . . . , Ct in R1 and in one other

point. Now ϕ(P ) has 2(r − 1) points, different from R1 , in common with

the r− 1 non-cancelled conics in planes through ` which intersect the con-

ics C0, . . . , Cq . So if 2(r − 1) > t , then ϕ(P ) contains at least one point

of O , thus P cannot extend O to a larger partial ovoid. Thus O is a

maximal partial ovoid, if we impose the condition r > (t + 2)/2 .

We summarize the preceding results for future references.

Corollary 3.6 The maximal partial ovoid O of Q(4, q) has cardinality

M = (s − 1)q − 2tr + 3t + u , where the following constraints apply:

1. 2 ≤ s ≤ q + 1 ,

2. t+2
2 < r ≤ q/2 + 1 ,

3. if s ≥ q/2 , then r ≥ s − q/2 ,

4. s − r ≥ 18 + 48 log(q + 1) .

The restrictions follow from the construction above and the application of

Corollary 2.1 in the construction.
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4 Selecting five conics

We wish to obtain maximal partial ovoids of different sizes, preferably the

sizes should fill up an interval. The cardinality of the maximal partial ovoids

we just constructed, is M = (s−1)q−2tr+3t+u , where we can let vary the

parameters s , r , and u . From the previous section, we know that there

are
(

t
2

)

points, where the conics C1, . . . , Ct intersect in a point different

from R1 , out of which u are incident with a conic of {Kq+2−s, . . . , Kq−1} .

We will now show that if we choose for C1, . . . , Ct five conics, thus t = 5 ,

we get 10 points of intersection which can be made to belong/not belong

to Kq+2−s, . . . , Kq−1 in such a way that we can construct maximal partial

ovoids of sizes M = (s− 1)q − 10r + 15, . . . , M = (s− 1)q − 10r + 25 . This

way we can let vary s and r , and still get a continuous interval for the

cardinalities.

Consider the q +1 conics C0, . . . , Cq of the selected group. It follows from

the proof of Corollary 3.2 that there is a cyclic group Cq+1 , with generator

α , acting transitively on these q + 1 conics, and fixing all conics Ki in the

planes through ` . Assume that α(Ci) = Ci+1 (mod q+1) . We select the

five conics C1, . . . , C5 from the group of conics. Note that t = 5 implies

r ≥ 4 (Corollary 3.6 (2)).

Then 4 points of intersection are in one plane: C1 ∩ C2, C2 ∩ C3, C3 ∩
C4, C4 ∩ C5 ∈ K1 .

Since the two points of C2 in K1 lie already in a second conic, the inter-

section point C2 ∩ C4 lies in another conic K2 . Then, by using α and

α−1 , the intersection points C1 ∩C3, C2 ∩C4, C3 ∩C5 are in fact incident

with K2 .

We still need to determine in which conics Ki the intersection points C1 ∩
C4, C2 ∩ C5 , and C1 ∩ C5 lie. Again, by using α , the first two of those

three intersection points lie in the same conic Ki .

To simplify notations, we denote the intersection point of the conics Ci and

Cj , different from R1 , by ij .

Lemma 4.1 The points 14 and 25 lie in a conic K3 , different from K1

and K2 .

Proof : The point 25 does not lie in K1 , since the two points of C2 in K1
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already lie on C1 and C3 .

Suppose that 14 and 25 lie in K2 . Then the intersection points 24, 13, 35, 14, 25

all lie in K2 . The conic K2 is also stabilized by the cyclic group Cq+1 gen-

erated by α . So these intersection points can be mapped onto each other

by an appropriate power αm of α . For instance, αm(14) = 24 , then

{

1 + m ≡ 4 (mod q + 1),

4 + m ≡ 2 (mod q + 1).

This implies that m ≡ 3 (mod q +1) and that m = −2 (mod q +1) . So

5 ≡ 0 (mod q + 1) . This is impossible, if q ≥ 64 . 2

Lemma 4.2 The point 15 lies in a conic K4 , different from K1, K2, K3 .

Proof : The point 15 does not lie in K1 since the two points of C1 in K1

already lie on the conics C0 and C2 .

Suppose that 15 ∈ K2 , then K2 contains the points 24, 13, 35, 15 . Again,

there must be a power αm of α mapping one of these intersection points on

another intersection point lying in K2 . Assume that αm(13) = 15 . Then

{

1 + m ≡ 5 (mod q + 1),

3 + m ≡ 1 (mod q + 1).

This implies that 6 ≡ 0 (mod q + 1) . This is impossible if q ≥ 64 .

Suppose that 15 lies in K3 . Then K3 contains the intersection points

14, 25, 15 . Assume that αm(25) = 15 . Then

{

2 + m ≡ 5 (mod q + 1),

5 + m ≡ 1 (mod q + 1).

This implies that 7 ≡ 0 (mod q + 1) . This is impossible if q ≥ 64 . 2

We conclude that the 10 intersection points of the conics C1, . . . , C5 lie in

four conics K1, K2, K3, K4 , containing respectively 4, 3, 2, 1 intersection

points.

With sums of the numbers 1, 2, 3, 4 , it is possible to form all numbers from

0 to 10, so we can get all possibilities (mod 10) . We now show how we

will apply this to get a sequence for the cardinalities for the maximal partial

ovoids.
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◦ u = 0 : M = (s − 1)q − 10r + 15.

We select none of the planes through ` with points of intersection.

Then 1 ≤ r ≤ q/2 − 3 . The lower bound follows from the fact that

the number r also includes the plane 〈`, R1〉 intersecting C1, . . . , C5 ,

and the upper bound from the fact that we need to avoid the four

planes containing the intersection points.

◦ u = 1 : M = (s − 1)q − 10r + 16 .

We select the plane K4 with one point of intersection, but none of the

other planes with intersection points, thus 2 ≤ r ≤ q/2−2 . The lower

bound follows from the fact that the number r also includes the plane

〈`, R1〉 intersecting C1, . . . , C5 , while the upper bound q/2−2 comes

from the fact that we need to avoid the three other planes containing

intersection points.

◦ u = 2 : M = (s − 1)q − 10r + 17 .

We select the plane K3 with two points of intersection, but none of

the other planes with intersection points, thus 2 ≤ r ≤ q/2 − 2 .

◦ u = 3 : M = (s − 1)q − 10r + 18 .

We select the plane K2 with three points of intersection, but none of

the other planes with intersection points, thus 2 ≤ r ≤ q/2 − 2 .

◦ u = 4 : M = (s − 1)q − 10r + 19 .

We select the plane K1 with four points of intersection, but none of

the other planes with intersection points, thus 2 ≤ r ≤ q/2 − 2 .

◦ u = 5 : M = (s − 1)q − 10r + 20 .

We select the planes K1 and K4 with respectively four and one points

of intersection, but none of the other planes with intersection points,

thus 3 ≤ r ≤ q/2 − 1 .

◦ u = 6 : M = (s − 1)q − 10r + 21 .

We select the planes K1 and K3 with respectively four and two points

of intersection, but none of the other planes with intersection points,

thus 3 ≤ r ≤ q/2 − 1 .
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◦ u = 7 : M = (s − 1)q − 10r + 22 .

We select the planes K1 and K2 with respectively four and three

points of intersection, but none of the other planes with intersection

points, thus 3 ≤ r ≤ q/2 − 1 .

◦ u = 8 : M = (s − 1)q − 10r + 23 .

We select the planes K1 , K2 , and K4 with respectively four, three,

and one points of intersection, but not the plane K3 with two inter-

section points, thus 4 ≤ r ≤ q/2 .

◦ u = 9 : M = (s − 1)q − 10r + 24 .

We select the planes K1 , K2 , and K3 with respectively four, three,

and two points of intersection, but not the plane K4 with one inter-

section point, thus 4 ≤ r ≤ q/2 .

◦ u = 10 : M = (s − 1)q − 10r + 25 .

We select the planes K1 , K2 , K3 , and K4 with respectively four,

three, two, and one points of intersection, thus 5 ≤ r ≤ q/2 + 1 .

5 Calculation of the interval

For the spectrum, we do not wish to distinguish between the different cases

for r from the above section. We impose 5 ≤ r ≤ q/2 − 3 and get the

interval M = (s − 1)q − 10r + 15, . . . , M = (s − 1)q − 10r + 25 , for a given

pair (s, r) . Together with the prior conditions from Corollary 3.6, we derive

the following relevant constraints for s, r :

1. r + 18 + b48 log(q + 1)c ≤ s ,

2. 5 ≤ r ≤ q/2 − 3 ,

3. if s ≥ q/2 , then r ≥ s − q/2 .

We proceed as follows to find a non-interrupted interval of values of M for

which a maximal partial ovoid of size M exists in Q(4, q) , q even. We

explain the construction for q = 24h+1 , so q ≡ 2 (mod 5) .

We know that 5 ≤ r ≤ q/2 − 3 . We first discuss the case s ≤ q/2 + 5 . For

s ≤ q/2 + 5 , we can let start r with 5.
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For a selected pair (s, r) = (s, 5) , we find the sizes

M = (s − 1)q − 25,

...

M = (s − 1)q − 35.

Now consider the value s′ = s + 1 . We let vary r from 5 to (q + 48)/10 .

This gives all values for M from

m = sq − 25 for r = 5,
...

M = (s − 1)q − 23 for r = (q + 48)/10,

...

M = (s − 1)q − 33 for r = (q + 48)/10.

So all these values for s′ fixed and r ∈ [5, (q+48)/10] give a non-interrupted

sequence of values which ends with the lower bound M = (s−1)q−33 . But

then (s, r) = (s, 5) gives the values M = (s−1)q−34 and M = (s−1)q−35 .

So we see that the fixed value s and the value r = 5 give the next smaller

values. This enables us to get a large non-interrupted interval of integer

values M for the size of maximal partial ovoids of Q(4, q) , q even.

We now discuss the case s = q/2 + u , with u ≥ 6 , so from the imposed

conditions, r ≥ u .

For s = q/2 + u and r = u , we get the sizes

M = q2/2 + (u − 1)q − 10u + 25,

...

M = q2/2 + (u − 1)q − 10u + 15.

For s = q/2 + u + 1 and r = (q − 2)/10 + u , we get the sizes

M = q2/2 + (u − 1)q − 10u + 27,

...

M = q2/2 + (u − 1)q − 10u + 17.
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So for s = q/2 + u + 1 and r ∈ [u + 1, (q − 2)/10 + u] , the smallest size

that is obtained, is equal to M = q2/2 + (u − 1)q − 10u + 17 . Then, the

values (s, r) = (q/2 + u, u) give the next smaller values M = q2/2 + (u −
1)q − 10u + 16 and M = q2/2 + (u − 1)q − 10u + 15 .

So, also here, it is possible to find a large non-interrupted sequence of integer

values M for the size of maximal partial ovoids of Q(4, q) , q even.

We now determine the smallest and the largest value of this non-interrupted

sequence.

To determine the largest value, we note that we have to impose the upper

bound r = (q − 2)/10 + u ≤ q/2 − 3 , since we need to use the value

r = (q − 2)/10 + u for s = q/2 + u + 1 . So u ≤ (4q − 28)/10 , and so

s = q/2 + u + 1 ≤ (9q − 18)/10 .

For (s, r) = ((9q − 18)/10, (4q − 18)/10) , the largest size is M = (s− 1)q −
10r + 25 = (9q2 − 68q + 430)/10 .

To determine the smallest value, we note that for s = 18 + 48blog(q +

1)c + (q + 48)/10 , it is possible to let vary r in r ∈ [5, (q + 48)/10] . For

(s, r) = (18 + b48 log(q + 1)c+ (q + 48)/10, (q + 48)/10) , the smallest value

for M = (10qb48 log(q + 1)c + q2 + 208q)/10 − 33 .

For (s, r) = (17 + b48 log(q + 1)c + (q + 48)/10, 5) , we get the sizes

M = (10qb48 log(q + 1)c + q2 + 208q)/10 − 25,

...

M = (10qb48 log(q + 1)c + q2 + 208q)/10 − 35.

So this interval gives values smaller than M = (10qb48 log(q + 1)c + q2 +

208q)/10 − 33 ; we still have a non-interrupted sequence of values for M .

For s = 17 + b48 log(q + 1)c + (q + 48)/10 , necessarily, r ≤ (q + 38)/10 .

For (s, r) = (17 + b48 log(q + 1)c + (q + 48)/10, (q + 38)/10) , this gives the

values

M = (10qb48 log(q + 1)c + q2 + 198q)/10 − 13,

...

M = (10qb48 log(q + 1)c + q2 + 198q)/10 − 23.
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For (s, r) = (16 + b48 log(q + 1)c + (q + 48)/10, 5) , we get the sizes

M = (10qb48 log(q + 1)c + q2 + 198q)/10 − 25,

...

M = (10qb48 log(q + 1)c + q2 + 198q)/10 − 35.

When comparing the last two sequences, we see that the value M = (10qb48 log(q+

1)c + q2 + 198q)/10 − 24 is missing.

So the value where the non-interrupted sequence ends, is equal to (10qb48 log(q+

1)c + q2 + 198q)/10 − 23 .

We have determined the smallest and the largest value of the interval; we

now state this in the following theorem, where we also give the intervals for

the other values of q .

Theorem 5.1 For q = 2t , t ≥ 6 , the parabolic quadric Q(4, q) , q even,

and the symplectic space W (q) , q even, have maximal partial ovoids for

every value M in the interval

• q = 24h :

M ∈ [
q2 + 194q + 10qb48 log(q + 1)c − 190

10
,
9q2 − 69q + 440

10
],

• q = 24h+1 :

M ∈ [
q2 + 198q + 10qb48 log(q + 1)c − 230

10
,
9q2 − 68q + 430

10
],

• M = 24h+2 :

M ∈ [
q2 + 196q + 10qb48 log(q + 1)c − 210

10
,
9q2 − 66q + 410

10
],

• M = 24h+3 :

M ∈ [
q2 + 192q + 10qb48 log(q + 1)c − 170

10
,
9q2 − 67q + 420

10
].
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Moreover, for every integer M in such an interval, there exists a minimal

blocking set of size M , w.r.t. the planes, of PG(3, q) .

Proof : It is proven in [4] that a maximal partial ovoid of W (q) , q even,

defines a minimal blocking set w.r.t. the planes of PG(3, q) . 2

Another application of our spectrum result is a spectrum result on maximal

partial 1-systems of the Klein quadric Q+(5, q) [9, Section 15.4].

Definition 5.2 A 1-system M on Q+(5, q) is a set of q2+1 lines `1, . . . , `q2+1

on Q+(5, q) such that `⊥i ∩ `j = ∅ , for all i, j ∈ {1, . . . , q2 + 1} , i 6= j .

A partial 1-system M on Q+(5, q) is a set of s ≤ q2 + 1 lines `1, . . . , `s

on Q+(5, q) such that `⊥i ∩ `j = ∅ , for all i, j ∈ {1, . . . , s} , i 6= j .

A line of the Klein quadric lies in two planes of the Klein quadric. The

above definition of 1-system is equivalent to the definition that a 1-system

M on Q+(5, q) is a set of q2 +1 lines `1, . . . , `q2+1 on Q+(5, q) such that

every line `j is skew to the two planes of the Klein quadric through any

line `i , for all i, j ∈ {1, . . . , q2 + 1} , i 6= j . A similar observation can be

made regarding the definition of a partial 1-system.

Via the Klein correspondence, points of the Klein quadric correspond to lines

of PG(3, q) , and lines of the Klein quadric correspond to planar pencils of

PG(3, q) , i.e., they correspond to the lines of PG(3, q) through a point R

in a plane Π passing through R .

A tangency set T of PG(3, q) is a set of points of PG(3, q) , such that for

every point R ∈ T , there is a plane ΠR intersecting T only in R . It

is proven in [11] that a tangency set in PG(3, q) is equivalent to a partial

1-system on the Klein quadric.

A minimal blocking set B w.r.t. the planes of PG(3, q) is an example of a

tangency set; thus we can apply the results of Theorem 5.1.

Corollary 5.3 For every value M belonging to one of the intervals of The-

orem 5.1, there exists a maximal partial 1-system of size M on the Klein

quadric Q+(5, q) .

We now present the other known results on the size of maximal partial

ovoids of Q(4, q) , q even. The theoretical results of [2, 4], together with

23



the computer-aided results of [4], indicate that for the smallest possible sizes

(approximately q +1 ) and the largest possible sizes (approximately q2 +1 )

of maximal partial ovoids on Q(4, q) , q even, there exist integer values

for M for which there do not exist maximal partial ovoids of Q(4, q) , q

even. We refer to [4] for the computer-aided data; here we present the main

theoretical results.

We first present the results on large maximal partial ovoids.

Theorem 5.4 (Brown, De Beule, and Storme [2]) (1) The maximal size of

a partial ovoid of Q(4, q) , q even, is q2 + 1 , which is the size of an ovoid

of Q(4, q) .

(2) The size of the largest maximal partial ovoid of Q(4, q) , q even, different

from an ovoid, is q2 − q + 1 , so there do not exist maximal partial ovoids

of Q(4, q) , q even, with size in [q2 − q + 2, q2] .

Theorem 5.5 (Cimráková, De Winter, Fack, and Storme [4]) The gen-

eralized quadrangle Q(4, q) , q even, has maximal partial ovoids of size

q2 − 2q + 3 .

We now present the results on small maximal partial ovoids.

Theorem 5.6 (Cimrákova, De Winter, Fack, and Storme [4]) (1) The small-

est maximal partial ovoids of Q(4, q) , q even, have size q+1 , and are equal

to conics, lying in a plane not containing the nucleus N of Q(4, q) .

(2) The generalized quadrangle Q(4, q) , q even, has maximal partial ovoids

of size 2q + 1 , and of size 3q − 1 if q ≥ 4 .

For results regarding the exclusion of some values k , with k ∈ [q + 2, 2q] ,

for the size of maximal partial ovoids of Q(4, q) , q even, we refer to [4].
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