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Abstract

Electronic health records contain a wealth of valuable information for improving health-
care. There are, however, challenges associated with clinical text that prevent computers
from maximising the utility of such information. While deep learning (DL) has emerged
as a practical paradigm for dealing with the complexities of natural language, applying
this class of machine learning algorithms to clinical text raises several research questions.
First, we tackled the problem of data sparsity by looking into the task of adverse event
detection. As these events are rare, examples thereof are lacking. To compensate for
data scarcity, we leveraged large pre-trained language models (LMs) in combination with
formally represented medical knowledge. We demonstrated that such a combination ex-
hibits remarkable generalisation abilities despite the low availability of data. Second,
we focused on the omnipresence of short forms in clinical texts. This typically leads
to out-of-vocabulary problems, which motivates unlocking the underlying words. The
novelty of our approach lies in its capacity to learn how to automatically expand short
forms without resorting to external resources. Third, we investigated data augmentation
to address the issue of data scarcity at its core. To the best of our knowledge, we were
one of the firsts to investigate population-based augmentation for scheduling text data
augmentation. Interestingly, little improvement was seen in fine-tuning large pre-trained
LMs with the augmented data. We suggest that, as LMs proved able to cope well with
small datasets, the need for data augmentation was made redundant. We conclude that
DL approaches to clinical text mining should be developed by fine-tuning large LMs.
One area where such models may struggle is the use of clinical short forms. Our method
to automating their expansion fixes this issue. Together, these two approaches provide
a blueprint for successfully developing DL approaches to clinical text mining in low-data
regimes.
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Chapter 1

Introduction

The deep learning (DL) revolution, which has happened in recent years (LeCun
et al., 2015, Schmidhuber, 2015), has enabled rapid advances in many
fields of computer science, especially in areas such as computer vision (Lin
et al., 2014, Russakovsky et al., 2015), audio signal processing (Lee et al.,

2009, Mohamed et al., 2011, Hinton et al., 2012) and natural language processing
(NLP) (Chen et al., 2017, Yadav & Bethard, 2018, Zhang et al., 2018, Reddy et al.,
2019). In particular, DL has proven to be a powerful modelling technique for supervised
learning (LeCun et al., 2015)—a machine learning task that involves discovering the
relationship between input and output based on a set of example pairs.

Unlike classical machine learning algorithms, which rely on a set of manually designed
features for learning a mapping (Bengio et al., 2013), DL models can directly discover
suitable representations from raw high-dimensional data. This capacity to learn implicit
features in an end-to-end fashion during training makes these models more effective
than their classical counterparts, as extracting a good set of high-level representations
by hand is not always easy (LeCun et al., 2015).

Although the theoretical backbone of DL has been around for a long time, much of
the recent breakthroughs were made possible by two essential developments (Sun et al.,
2017)—the introduction of cheaper high-speed graphics processing units (GPUs) and
the creation of large annotated datasets—which have alleviated the issues associated
with the high number of parameters in DL models. Indeed, because they are highly
parameterised, DL models are not only computationally expensive to train—lots of
operations are required to update the many parameters, but they also have to rely
on a large enough number of labelled examples to properly model the data. This
characteristic has thus led to both a computational and a performance bottleneck. The
former bottleneck has been overcome thanks to GPUs whose capacity to handle multiple
computations simultaneously was successfully re-purposed to speed up the training and
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CHAPTER 1. INTRODUCTION 2

has allowed scaling to large networks. At the same time, substantial work has been
done to collect a considerable number of samples and annotate them, resulting in large
reference datasets—such as ImageNet (Deng et al., 2009), which reduced the latter
bottleneck and fostered the development of different DL models. Overall, these two
factors have made possible the development and the training in an end-to-end fashion
of large and powerful models and thereby lie at the root of subsequent success in DL
research.

Over the past decade, the digital transformation happening in many aspects of
modern life has led to an evergrowing amount of digitised data. However, in practice,
most of these data are not readily available for training DL models (Bansal et al.,
2021). In particular, in order to train models in supervised settings, input samples
have to be explicitly labelled with the desired output, which requires added manual
effort. Unfortunately, while deep neural networks (DNNs) offer a powerful solution to
many supervised tasks, their success largely depends on the number of labelled examples
available for training (LeCun et al., 2015).

One of the domains which generate large amounts of data daily is healthcare. In the
United Kingdom (UK), for example, the National Health Service (NHS) has been putting
a great deal of effort in recent years to slowly abandon the use of paper-based records for
electronic ones to deliver more efficient and better healthcare (Klovig Skelton, 2022).
In 2012 already, Metzger et al. (2012) reported that proportions of electronic health
records (EHRs) compared to paper-based ones among the countries they surveyed ranged
from 37% (Canada) to 97% (New Zealand). These numbers are most likely much higher
nowadays. Such a worldwide effort has led to a high volume of digitised unstructured
texts on top of more structured data—for instance, Swedish EHRs contain about 40%
of free text (Dalianis et al., 2009). By nature, these unstructured texts contain rich
patient information whose subtleties cannot be easily captured in rigidly structured
machine-readable formats. Despite this, clinical texts remain less often exploited than
the structured data of EHRs (Wang et al., 2018d) due to a lack of appropriate data
processing tools (Dalianis, 2018). Yet the invaluable information they contain could be
leveraged for diverse high-impact applications such as improving diagnosis, treatment,
and prognostic.

This thesis focuses on DL for clinical text mining. Indeed, most of the information
extraction tasks which lie at the heart of clinical text mining are well suited for supervised
DL—whether it be information extraction within the text itself (such as named-entity
recognition (NER) and relation extraction) or directly from the text as a whole (such
as text classification) (Percha, 2021). Unfortunately, the data scarcity issue mentioned
above is exacerbated in the clinical domain. A systematic literature review has revealed
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that the size of clinical text datasets tends to be relatively small (Spasić et al., 2020).
This problem mainly stems from the annotation bottleneck, as ground-truth labels are
both time-consuming and expensive to obtain and often require the input of domain
experts. Privacy concern is another factor that limits the creation of sizeable clinical
text datasets. Since healthcare data contain sensitive information, they cannot easily be
shared with external entities; every precaution must be taken to ensure that the data are
adequately anonymised or deidentified before being used for machine learning applica-
tions. Moreover, privacy concerns have prevented the widespread use of crowdsourcing
for annotating clinical data (Spasić et al., 2020), even though a study has shown that
the annotations of untrained crowd workers—albeit less accurate than those of medical
experts—could be satisfactory enough for model development (Cocos et al., 2017b).

Aside from the data scarcity issue, clinical text data contain domain-specific language
that differs from the regular one. This means that NLP approaches developed for
ordinary text often fail when applied to the medical domain (Ferraro et al., 2013). On
the one hand, as medical notes act as a means of communication between healthcare
professionals, they contain elements that are idiosyncratic to clinicians and institutions
and are not easily accessible to other people, let alone machines (Lerner et al., 2000,
Chapman et al., 2011). On the other hand, because clinical texts are written under
considerable time pressure, they often lack clear structure. They contain incomplete
sentences that not only omit certain words but are also filled with liberal word forms
such as misspellings and non-standard abbreviations (Meystre et al., 2008, Leaman
et al., 2015, Dalianis, 2018). As a result, clinical data can be very ambiguous from
a computational point of view and difficult to process for models developed for non-
medical applications.

1.1 Motivation

Data scarcity is one of the key obstacles to the development of DL models for clinical
text mining, especially in the supervised setting. Spasić et al. (2020) have reported that
some studies limit the amount of training data to as little as 0.002% of the available
data precisely because of the annotation bottleneck. This is a critical issue since,
as mentioned earlier, DL models rely on a large amount of training data to extract
meaningful patterns that generalise well to unseen data. Indeed, as DNNs are highly
parameterised, they sometimes manage to learn underlying noise patterns in the training
data. As a result, they might achieve high performance on the training data, but that
performance might drop when processing new examples. This effect is called overfitting
and will be discussed more in Section 2.5.2.
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Nevertheless, the annotation bottleneck and the privacy issues mentioned above
are not the only factors preventing the creation of large clinical text datasets. Indeed,
clinical applications are often concerned with rare occurrences, which means that the
number of existing data related to the target of interest is by nature lower than those
that are not. This characteristic further exacerbates the issue of small datasets. For
example, when the goal of a task is to detect patients with a given condition, it can be
expected that there exist fewer records of people diagnosed with this condition than the
opposite. Similarly, when identifying rare events such as medication errors in clinical
reports, there are likely fewer samples containing medication errors available than the
other way around. This problem is not uncommon in the context of classification tasks,
where a large fraction of instances might belong to a small subset of classes; it is
referred to as the class imbalance problem (Rahman & Davis, 2013) and is typically
addressed with re-sampling techniques—namely undersampling or oversampling—which
rebalance the data distribution (Branco et al., 2016). However, these approaches are
not always suitable for small datasets. In its simplest form, undersampling consists in
removing samples from the majority class to match the number of examples of the
minority class (He & Ma, 2013). If the size of the training dataset is small, this further
reduces the number of training examples and makes it even harder for DL models
to learn complex patterns. In contrast, oversampling—in its naive form—duplicates
examples from the minority class (Yap et al., 2014), which, in the clinical setting, is
often the class of interest. Yet, when the dataset is already small to begin with, the
minority class does not only contain fewer samples by nature but also contains a small
number of examples in absolute. As a result, oversampling often leads to overfitting
since the model is likely to learn the specifics of the oversampled samples rather than
the underlying patterns (Kotsiantis et al., 2006).

In addition to the smallness of clinical datasets, another element to consider is the
clinical sublanguage, whose characteristics differ substantially from those of general
English (Shao et al., 2020). In fact, the language used in clinical narratives is thought
to constitute a distinct sublanguage with specific linguistic properties (Friedman et al.,
2002), as based on the theory of sublanguages introduced by Harris (1991). Even within
the clinical field, there exist different sublanguages depending on the medical discipline
and the nature of the text (Patterson & Hurdle, 2011). One of the clinical sublanguage’s
specific properties is that it often omits information that can be easily inferred from
the context (Shao et al., 2020). Overall, unlike ordinary texts, clinical texts tend to
condense high-value information into a small number of characters (Leaman et al.,
2015). This can be explained by the time constraints placed on healthcare professionals
and the repetitive nature of the reporting task. For instance, the mention no new lesion
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noted in a chest radiology report does not include the information that this observation
was made by the radiologist nor that it was made about lung lesions. Thus, some
information might not be explicitly contained within the text and must be unlocked by
NLP approaches. In addition, omissions can lead to sentences that are grammatically
incorrect as they are missing basic elements. For example, the subject the patient and
the verb has can be left out of the sentence The patient has lower back pain without
any loss of information as these two elements can easily be deduced from context. Allvin
et al. (2011) noted that, in Finnish and Swedish clinical narratives, almost no sentence
contained a subject and the verb was missing in about half of the sentences. This lack
of grammatical structure can be an obstacle to the development of NLP algorithms,
which are trained on and optimised for general language (e.g. (Mehrabi et al., 2015)).
Similarly, characters are also often omitted from words to form abbreviations which are
frequently used in clinical notes. The problem is that these abbreviations are often
created ad hoc without following strict rules and, although their full form can often be
inferred from the context, they are difficult to interpret without additional processing
by NLP algorithms. In addition, abbreviations can be highly ambiguous (Holper et al.,
2020): Liu et al. (2001) reported that about a third of the abbreviations in English
clinical text could refer to multiple full forms. This means that short forms cannot
be easily resolved to their full form with a simple mapping and that more elaborate
strategies are needed to unlock the meaning hidden behind them.

Another feature of the clinical sublanguage is the idiosyncratic terminology it often
adopts (Shao et al., 2020). Clinical text data contain many domain-specific terms,
with each clinical subdomain using its own jargon (Patterson & Hurdle, 2011, Dalianis,
2018). In addition, there can exist different written forms for a unique medical notion (Lu
et al., 2019). For instance, the terms ”myocardial infarction”, ”heart attack” and
”cardiovascular stroke” all refer to the same concept. This characteristic increases the
difficulty of developing machine learning approaches for clinical text mining, as a concept
could appear in a different form in the training examples than in the unseen data. In
contrast, some words can mean other things when appearing in the general domain
versus the clinical one. For example, the term tab has different meanings in ordinary
English—such as a small object that is attached to something or a bill—than in the
clinical setting, where it generally refers to the word tablet and is used to indicate
medication dosage.

Further, the clinical sublanguage features the prevalence of compositionality, namely
multi-word phrases that refer to domain-specific concepts such as blood glucose (Fried-
man et al., 2002). Because multi-word expressions are commonly used to express medical
notions (He, 2016), they often end up being replaced by acronyms in written reports
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(Friedman et al., 2002). However, when used, acronyms (e.g. ‘HIV’) obscure the
corresponding multi-word phrase (e.g. ‘human immunodeficiency virus’) preventing in-
dividual words (e.g. ‘virus’) from being retrieved (Filimonov et al., 2022). As a result,
NLP algorithms must be able to correctly interpret multi-word terms and harness the
information hidden behind the corresponding acronym.

1.2 Research Hypothesis, Questions and Objectives

The main hypothesis of this thesis is that DL can successfully be applied for clinical
text mining. As indicated earlier, some of the issues that make this problem challenging
are (1) medical concept heterogeneity, (2) short-form expressions such as abbreviations
and acronyms, and (3) small datasets and limited annotations. To tackle these issues,
we suggest multiple strategies. The first strategy is to interpret data using a general
language model (LM) pre-trained on a large dataset. The second strategy consists of
interpreting data using domain-specific knowledge such as ontologies. The third strategy
is to normalise data, that is to disambiguate short forms to unlock the meaning hidden
behind them. Lastly, the fourth strategy consists of augmenting data with synthetic
samples.

Our hypothesis along with the issues highlighted above naturally leads us to the
three different research questions (RQs), one for each issue named above, which are
detailed in the three subsections below.

1.2.1 Identification of Rare Events

The first RQ is the following:

RQ1. Can an effective DL strategy be developed to recognise references to
rare clinical events?

Rare events are defined as events that occur much less frequently than non-event
ones (King & Zeng, 2001). As mentioned earlier, a problem that is inherent to rare
events is the lack of training data as, per definition, data that contain rare events are
much less frequent than those that do not. To answer this question, we establish the
following research objective (RO):

RO1/a. Using serious adverse events (SAEs) as a case study for rare events, com-
bine the implicit semantic knowledge captured by pre-trained LMs with explicit domain
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knowledge represented by an ontology to compensate for the lack of training data of
sufficient size and diversity and map different expressions to single concepts.

An adverse event is defined by the United States (US) Food and Drug Administration
(FDA) as ”any undesirable experience associated with the use of a medical product in a
patient” (US Food and Drug Administration, 2016). It is further qualified as ”serious” if
it results in a grave outcome such as death, hospitalisation or disability. By nature, SAEs
are quintessential rare events in the medical domain but identifying them in clinical texts
can be challenging. Indeed, adverse events cannot easily be extracted from text without
taking the context into account to determine whether the event is caused by a medical
product or is the consequence of an underlying condition for which the medical product
was taken. Obviously, given the nature of SAEs, there is always a limited number of
samples that contain such events, making this problem even more difficult for machine
learning approaches. Moreover, adverse events—just like other medical terms—can be
expressed in different ways. This means that additional consideration is needed to map
every expression to unique concepts for large-scale analysis.

To tackle the detection of SAEs in clinical trial narratives, we choose to combine the
first two strategies suggested above, namely to interpret data using both the implicit
knowledge of a pre-trained LM and the explicit medical knowledge formally modelled
by an ontology. We know that through the actions of pre-training and fine-tuning, it is
possible to transfer knowledge from a large corpus to a downstream task for which the
available data are limited (Vrbančič & Podgorelec, 2020). In particular, a pre-trained
LM (i.e. a model that has been pre-trained on a LMling task) can provide an under-
standing of language (e.g. hierarchical relations, long-term dependencies or sentiment)
which has been captured during pre-training (Howard & Ruder, 2018). To comple-
ment the implicit semantics contained in the continuous vector space and encapsulated
by pre-trained LMs, we propose incorporating explicit semantics (through relationships
between concepts) in a graph representation of a domain using the Unified Medical
Language System (UMLS).

1.2.2 Short Forms: Abbreviations and Acronyms

The second RQ that arises from our main hypothesis and the issues identified above is
as follows:

RQ2. Can an effective DL strategy be developed to normalise clinical text
by automatically expanding short forms?
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The use of abbreviations and acronyms is frequent in clinical text data and helps
healthcare professionals cut down on time and ease a sometimes repetitive task. How-
ever, as mentioned earlier, acronyms hide the compositional meaning of multi-word
expressions from NLP algorithms (Spasić, 2018) and abbreviations occlude the signifi-
cation of the words they replace.

Indeed, the way most NLP models process text is by first mapping every input
token to a representation that depends on a pre-defined vocabulary. For example,
for traditional word embeddings, this vocabulary is comprised of every token in the
training data, whereas for contextual word embeddings vocabularies are fixed and do
not generally depend on the available data. Relying on a vocabulary to build word
representation mainly helps avoid the curse of dimensionality that results from using
very high dimensional representations.

However, this means that sometimes models will encounter words that are not con-
tained in the vocabulary and therefore do not have a straightforward representation;
such words are referred to as out-of-vocabulary (OOV) words. Most abbreviations, be-
cause they are often created ad hoc to save time and can vary depending on the person
using them, are treated as OOV. Similarly, only frequent acronyms—such as DNA
for example—can be considered as part of general English—acronyms in some cases
have superseded their multi-word term counterpart—and could potentially be part of
pre-defined vocabularies. In most cases, however, acronyms are also considered OOV
words.

There exist multiple strategies to deal with OOV words. The most straightforward
one consists in simply ignoring these words. Although this is a plausible solution in
some cases—if the word is not common enough to be in the vocabulary, then it is less
likely to be relevant to the model, in the case of clinical abbreviations and acronyms,
we know that these words are most likely carrying important information as we know
that unimportant words are often omitted in the clinical sublanguage. Another simple
strategy is to add an extra word to the vocabulary and use that exact word to represent
all OOV words, but, once again, this results in the loss of the information that is behind
the short form. Alternatively, a separate word—with a random representation—can be
attributed to each new OOV word. Even though this allows for representations that
can be interpreted by the model differently for each word, it is unlikely to reflect the
underlying meaning. All these approaches are commonly used with non-contextualised
embeddings.

More recent models, such as BERT, rely on a vocabulary that contains both frequent
words, subwords and individual characters and try to overcome that problem by breaking
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OOV words into subwords or characters that are part of the vocabulary. This strategy can
be very powerful; for example, if the form reading is not present in the BERT vocabulary
but both the word read and suffix ##ing are, the BERT tokenizer will separate it into
the subwords read and ##ing. This can help the model interpret this form as a
variant of read that might be related to other forms that end with -ing. However, since
abbreviations and acronyms are formed in a completely different way than full words,
subwords can often not capture their full form and unlock their meaning. Alternatively,
since LMs are pre-trained on the masked language modelling task, abbreviations could
be replaced by a [MASK] token, and the model could be tasked with predicting its full
form. However, this approach is impractical for the clinical sublanguage since many
words are OOV and less essential words are omitted. In addition, this cannot be used
to find the full form of acronyms, as the model only predicts a token for each [MASK],
whereas acronyms typically refer to multi-word expressions. Indeed, masked LMs learn
to reconstruct a masked input sequence during pre-training and can rely on the full
input to do so. As a result, they excel at classification tasks and are not well-suited for
generating texts. In contrast, autoregressive LMs, which are pre-trained differently—
namely in predicting the next token in a sequence (i.e. the classic language modelling
task)—perform well on text generation tasks because of this very difference.

Another issue inherent to short forms is that they can be extremely ambiguous Liu
et al. (2001), Li et al. (2015). For example, the abbreviation cl is used to refer to either
the word chlorine or clearance, whereas the acronym ms is common for replacing the
expressions multiple sclerosis, mitral stenosis or myasthenic syndrome. Consequently,
by treating each short form as a separate word, we lose the rich information that is
hidden behind it. That is why we suggest disambiguating abbreviations and acronyms
and retrieving their full form prior to applying any DL algorithms.

This discussion highlights the need for a new approach to deal with this particular
kind of OOV words and the ambiguity problem. However, as abbreviations and acronyms
are almost never used with their definition in clinical text data and new abbreviations
or acronyms can be coined at any time, there is a lack of annotated data to tackle that
problem.

As a result, we identify two ROs to tackle this question:

RO2/a. Develop an approach to automatically expand abbreviations (i.e. short forms
that expand to a one-word full form) to their full form.

RO2/b. Develop an approach to disambiguate acronyms automatically, that is, map
them to the corresponding full form, which is a multi-word term.
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1.2.3 Small Datasets and Limited Annotations

Up to this point, we have suggested combining pre-trained LMs—which capture lan-
guage semantics—with explicit domain knowledge to help models interpret clinical text
data when available data are limited. Similarly, we have given motivation for unlocking
the evidence hidden behind short forms through disambiguation. We believe that these
two elements can contribute to overcoming some of the challenges associated with ap-
plying DL to clinical text data. Nevertheless, it has been shown that, up to a certain
point, the performance of DL models increases with the number of samples (Sun et al.,
2017). Therefore we identify the following RQ:

RQ3. Can a label-preserving transformation of existing data improve the per-
formance of DL approaches to text mining that are based on pre-trained LMs?

Applying label-preserving transformations to training data is a practical way of creat-
ing synthetic samples from real ones, a process called data augmentation. This approach
has been very successful in the field of computer vision but has failed so far to become
popular in NLP. In particular, very little research has been carried out to evaluate the
effect of text data augmentation in conjunction with pre-trained LMs. Yet, when the
amount of available data is limited, data augmentation helps increase the number of
samples and can enable the use of more complex models, such as DL models, that must
be trained on large datasets. As the data augmentation transforms that help at the
beginning of training might be different than those that boost performance towards the
end of the learning process, it is important to look at schedules of data augmentation
operations (i.e. sequences of transformations applied at each epoch) rather than reyling
on a fixed set of transforms throughout training.

To respond to this third RQ we define the two following objectives:

RO3/a. Develop a set of label-preserving transformations for text data.

RO3/b. Develop an approach that automatically chooses the best schedule of trans-
formations for a given task and dataset.
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1.3 Research Contributions

One of the challenges of clinical text data that we have identified is the lack of large
annotated datasets. This issue is exacerbated in the context of rare events since these
are, by nature infrequent. In addition, medical concepts can be expressed in different
forms, which adds to the complexity of detecting patterns. Using the identification
of SAEs as a case study for rare events, we propose combining the implicit semantic
knowledge captured by the pre-trained LM BERT with the explicit domain knowledge
of the UMLS to compensate for the lack of training data of sufficient size and diversity
and the heterogeneity of medical concepts (Chopard et al., 2021a). This approach is
presented in Chapter 3. Recent works view SAE detection as an NER task and tackle it
using BERT. While this approach achieves an F1-score of 78.35% on our dataset, this
performance drops to 63.35% when trying to map the detected events to unique concepts
using the UMLS. In contrast, we are the first to introduce a method that directly uses
the explicit knowledge domain to interpret the data by first extracting UMLS concepts
with MetaMap before classifying them with BERT. Our approach reaches an F1-score
of 80.80%. Note that this score is limited by the performance of MetaMap, which
sometimes fails to identify all UMLS concepts. These results confirm that automated
coding of adverse events described in the narrative section of SAE reports is feasible.

Another challenge of clinical text data—which can be traced back to the nature
of the clinical sublanguage—is the prevalence of short forms which are often treated
as OOV words by default resulting in the loss of important information that is hidden
behind. However, because these short forms can be highly ambiguous, unlocking that
information is not easy. Because abbreviations are often created ad hoc and can vary
from the person using them, it is not suitable relying on a fixed abbreviation dictionary for
disambiguation. Instead, we introduce a novel approach which first uses DL to model
the structure of abbreviations and automatically find full-form candidates (Chopard
& Spasić, 2019). Then, we propose using the Word Mover’s Distance (WMD) to
disambiguate between all candidates. This is, to the best of our knowledge, the first time
WMD is used to that effect. The whole method is explained in detail in Chapter 4. The
Siamese neural network (NN) developed as a novel way to extract full-form candidates
achieves an F1-score of 78.57%, which is 3.36% more than the rule-based method
against which it is compared. However, it offers a much higher recall (84.04% instead
of 64.53%), meaning that the true full form is more likely to be extracted as a candidate
when using our approach. Our suggestion to use the WMD to disambiguate between
abbreviation candidates leads to F1-scores as high as 96.36%, corresponding to an
improvement of between 4.3% and 57.4% in all metrics compared to the best of the
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four benchmarks.
Unlike abbreviations—which stem from a single word from which letters have been

omitted or replaced with other characters—acronyms refer to multiple words. They
often result from the frequent use of multi-word terms in the clinical sublanguage.
This difference motivates a different approach for this latter kind of short form. Chap-
ter 5 describes this novel method which can create large training datasets for acronym
disambiguation by automatically modifying scientific abstracts so as to simulate the
usage of global acronyms. This chapter also shows how the created datasets can be
used in a second phase to train a supervised approach for word sense disambiguation
of acronyms (Filimonov et al., 2022). In particular, the model that we developed for
acronym disambiguation achieved an F1-score of 94.7% (as opposed to 60.7% for the
naive frequency baseline) when trained on data that were simulated and annotated using
our approach.

The success of DL models often depends on having a large enough set of training
data. Therefore the question remains whether using strategies such as those suggested
above is enough or whether creating synthetic data from existing ones can further help
the development of DL algorithms on clinical text data. To this end, we looked at
the effect of searching for a schedule label-preserving transformations on well-known
language understanding tasks (Chopard et al., 2021b). This study, which is the first
attempt to find augmentation schedules for text data automatically, is presented in
Chapter 6. The findings of this work reveal that combining data augmentation trans-
forms with a pre-trained LM yields very inconsistent improvement of performance if
any. We hypothesise that the language understanding captured by pre-trained LMs is
powerful enough to solve tasks with limited data and that augmenting the data with
label-preserving transforms is too noisy to be beneficial.

A summarised list of all contributions can be found as follows:

• Chopard, D. and Spasić, I. A deep learning approach to self-expansion of abbre-
viations based on morphology and context distance. In International Conference
on Statistical Language and Speech Processing, pp. 71–82. Springer, 2019.

• Chopard, D., Treder, M. S., Corcoran, P., Ahmed, N., Johnson, C., Busse,
M., and Spasić, I. Text mining of adverse events in clinical trials: Deep learning
approach. JMIR Medical Informatics, 9(12):e28632, 2021a.

• Chopard, D., Treder, M. S., and Spasić, I. Learning data augmentation schedules
for natural language processing. In Proceedings of the Second Workshop on
Insights from Negative Results in NLP, pp. 89–102, 2021b
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• Filimonov, M., Chopard, D., and Spasić, I. Simulation and annotation of global
acronyms. Bioinformatics, 38(11):3136–3138, 2022

1.4 Thesis Structure

The content of this thesis is summarised in Figure 1.1. The chapters in the remainder
of this thesis are organised as follows:

• Chapter 2 introduces the foundations of DL for text data and, more specifically,
for clinical text data in order to help the understanding of lower-level technical
details in subsequent chapters.

• Chapter 3 tackles SAE detection as a case study for rare occurrences. After a
review of related work on this task, the use of the transformer architecture BERT
and the UMLS for the interpretation of data from clinical trials is investigated.
This study shows the importance of combining pre-trained LMs and explicit do-
main knowledge when clinical text data are very limited.

• Chapter 4 reviews existing methods for expanding abbreviations—i.e. short forms
that refer to a single word—a crucial task when dealing with clinical text data
where characters are often omitted from words for efficiency. In addition, it
introduces to that effect a novel method that first uses a Siamese network to
learn abbreviation formation patterns before disambiguating between expansion
candidates using the WMD.

• Chapter 5 introduces an approach that extracts acronyms from scientific ab-
stracts and builds on that to create an annotated dataset that simulates global
acronyms similar to clinical text data, where acronyms are frequent and rarely
explicitly defined. This chapter also presents a supervised method which lever-
ages pre-trained LMs to successfully disambiguate between acronyms, using the
simulated abstracts for training as a way to unlock the information hidden behind.

• Chapter 6 investigates the use of transformative data augmentation on the per-
formance of pre-trained LMs for common language understanding tasks. More
precisely, a method is used to automatically discover schedules of text augmenta-
tion and draw conclusions on the relevance of data augmentation for fine-tuning
pre-trained LMs.

• Chapter 7 presents the conclusions of this thesis and offers avenues of research
for future works.
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Chapter 2

The Foundations of Deep Learning in
Clinical Text Mining

Deep learning is a sub-field of machine learning concerned with artificial neural
networks (ANNs), a set of algorithms loosely inspired by the functioning
of the animal brain. Like classical machine learning algorithms, ANNs use
data to learn to perform tasks without being explicitly programmed for it.

However, unlike the former, ANNs do not rely on manually engineered features for train-
ing but instead extract them directly from the raw input, limiting human intervention in
the learning process. This key characteristic, among others, is thought to be responsible
for the recent success of DL in many areas, such as computer vision, speech recognition
and NLP.

In practice, a deep feed-forward ANN in its quintessential form consists of an input
layer, one or more hidden layers and an output layer. Such an ANN is often referred to as
a multilayer perceptron (MLP). The units of the network input layer hold the raw input.
Examples of text input representations will be discussed later in this chapter. Then, these
units are fed to the next layer of neurons—the first hidden layer—according to predefined
connections. Each neuron in that layer takes a weighted sum of its input to produce
an output using a non-linear function, the so-called activation function. The resulting
value is then used as input for the next hidden layer and so on until the last layer of the
network—the output layer—is reached. As the data progress through the layers, they
are progressively transformed into more complex and abstract representations. Finally,
the output layer maps the values of the last hidden layer—which contains the highest
level of features—directly to a final output value whose interpretation depends on the
task that needs to be performed. For example, if the task at hand is text classification,
the output would be a vector of scores, each corresponding to the probability that
the input text belongs to the corresponding class. The learning process then consists

15
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in repeatedly getting the output of the network for each input in a set of samples and
adjusting the weights of the network accordingly to minimise a measure of the difference
between that value (or vector of values) and the true output.

Overall, it has been shown that feed-forward ANNs are universal function approx-
imators (Cybenko, 1989, Hornik et al., 1989, Leshno et al., 1993, Pinkus, 1999). In
other words, any function can be approximated by a feedforward ANN. Thus, the pur-
pose of the learning process of deep ANNs is to use data to learn the network weights
that correspond to the best function approximation for the task at hand. Since finding
the underlying mapping between a model’s input and output is at the core of machine
learning, this theoretical foundation explains why DL has been so groundbreaking.

In the rest of this chapter, we delve more deeply into the specifics of DL in the
context of text data and, more specifically, clinical text data. The goal is to provide
the theoretical foundations needed to understand the remainder of this thesis. First, in
Section 2.1, we briefly introduce clinical text data. Afterwards, Section 2.2 summarises
the most well-known kinds of input representations for texts. Then, in Section 2.3 we
look into the NN architectures that are most widely adopted when dealing with text
data. Finally, in Section 2.4 we discuss the principles of the learning process and how
they can be impacted by a lack of data that is inherent to clinical text data.

2.1 Clinical Text Data

The data that is at the centre of our interest in this work is clinical text data. In the
introduction, we discussed the challenges associated with this kind of data. In this
section, we focus on the properties of this data source.

It has been estimated that 80% of the data is in an unstructured format (Murdoch
& Detsky, 2013). As a result, it is not sufficient to rely solely on structured data when
trying to extract information. For example, Rannikmäe et al. (2020) reported that for
UK Biobank participants, 42% of the cases were coded as ”unspecified stroke” even
though the stroke subtype could be found in the unstructured part of the EHR in 99%
of the cases. Similarly, free texts allow for more comprehensive descriptions, which
cannot easily be captured in structured data Jensen et al. (2017).

In the UK, EHRs typically contain different types of free text such as GP clinic notes,
hospital reports (e.g. radiology and pathology reports), and discharge summaries (Ford
et al., 2021). However, any kind of clinical text is relevant to clinical text mining. For
example, as it will be seen in Chapter 3, clinical trial reports constitute an important
source of information.
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Depending on the types of clinical text and their intended use, the quality of the
data can vary. On the one hand, patient records, which are mainly used by a small group
of people for mnemonic reasons, might contain more noisiness. In contrast, discharge
summaries are usually well-written and well-structured as they are intended for a larger
audience. In between those two kinds of narratives, pathology and scan reports are semi-
structured, and often contain fewer spelling mistakes than patient records (Dalianis,
2018). On the other end of the spectrum, scientific articles from the medical domain
are very well written and should contain, in principle, no spelling mistakes.

As mentioned in Chapter 1, one of the challenges of clinical text data is privacy. In
order to be used for research, data from the medical domain must first be deidentified
as they contain sensitive information. As a result, the amount of data is often limited.
Despite this, there exist a few publicly available datasets for clinical text mining. The
main one is probably MIMIC (Medical Information Mart for intensive care) which con-
sists of deidentified data collected over more than 10 years at the intensive care units of
Beth Israel Deaconess Medical Center (Johnson et al., 2016). Different versions of the
dataset have been released over the years (Johnson et al., 2020). On top of free-text
clinical notes, such as discharge summaries, progress notes and radiology reports, the
dataset contains, for example, vital information, democratic information, medications,
and interventions. The MIMIC dataset has often been leveraged to train models for
automatic ICD coding (Huang et al., 2019a, Li et al., 2018). Other important sources
of publicly available datasets for clinical text mining have been released for the purpose
of community challenges. In 2006, the i2b2 (Informatics for Integrating Biology to the
Bedside) project provided a dataset of 1000 patient records labelled with to the pa-
tient’s smoking category (Uzuner et al., 2006). Similarly, the CLEF eHealth evaluation
lab has gathered datasets for automatic clinical coding of diagnoses for multiple lan-
guages (Suominen et al., 2018, Kelly et al., 2019, Goeuriot et al., 2020). Although all
these datasets have been invaluable for research in clinical text mining, they unite most
of the research efforts on a subset of clinical tasks for which annotations are available. In
addition, it is still unclear, whether models developed on data from a specific institution
translate well to different institutions Spasić et al. (2020).

2.2 Input Representation

As mentioned in the introduction of this chapter, one of the key characteristics of ANNs
is that they are capable of extracting higher-level features directly from raw input. In
the context of computer vision, the pixel intensity values in an image—or a sequence of
images if one deals with videos—are often used as input representation (LeCun et al.,
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2015). In speech recognition, the input audio could, for instance, be represented as a
sequence of amplitude values throughout time. However, this representation does not
take into account the rate of the signal. Alternatively, the signal could be transformed
into the frequency domain so that the input consists of the amplitude at each frequency
instead. Yet this representation is not ideal as it completely ignores the time component.
This is why, in practice, audio waves are often first converted to spectrograms—which
are visual representations of the signal frequencies through time, with each pixel intensity
corresponding to the amplitude—before being fed to an ANN (Wyse, 2017). This allows
for a richer representation while still keeping the amount of feature engineering to a
minimum. Overall, even though NNs can deal with raw input, it is important to provide
them with informative enough data to better exploit their potential for learning.

Similarly, when dealing with text data, it is important to find a meaningful input
representation that is as simple and compact as possible but still captures the richness
of language. However, unlike images and sounds, texts consist of discrete meaningful
units (i.e. words). When combined in a specific way, this finite set of symbolic units
can form sentences to express an infinite variety of meanings (Studdert-Kennedy, 2005).
The sparse and discrete nature of language increases the difficulty of finding a suitable
continuous representation.

In the remainder of this section, we describe the most common forms of input
representation for text data and discuss their perks and drawbacks. In addition, we
provide examples of clinical text mining applications using these representations.

2.2.1 Discrete Representations

Vector representations for text can be split into two main categories—localist or distributed—
depending on whether each component of the vector has a designated meaning or
whether they all participate in the representation of multiple concepts (Hinton, 1984).
In this first subsection, we discuss the former kinds of representations, also called discrete
representations, where each word is treated as an atomic unit.

One-Hot Encoding

The most trivial form of discrete text representation consists of a sequence of one-
hot vectors whose size corresponds to the number of words in the vocabulary. Each
coordinate corresponds to a word in the vocabulary. All values within a vector are set
to zero apart from the one corresponding to the given word, which is set to one. This
representation is referred to as one-hot encoding.

This representation has many advantages: it is easy to obtain, can capture word
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order, and assigns each word a unique vector. Unfortunately, this representation also has
multiple drawbacks. First, it is not scalable since the size of the vector increases linearly
with the size of the vocabulary. Similarly, the size of the sequence representation—which
is equal to the size of the vocabulary times the number of words in the text—varies for
input sequences of different lengths; this is an issue because all representations must
be of the same size when training a DL model. In the same vein, one-hot encoding
representations do not have any way of handling OOV words (i.e. words that were not
part of the corpus used to create the vectoriser) other than retraining the model from
scratch with a vocabulary of extended size. Thus, every time this representation needs to
accomodate a new word that is not part of the vocabulary, the dimensions of all existing
vectors must be increased accordingly. Second, it neither captures the relationships
between words nor their semantics: vectors are orthogonal to one another, and, as a
result, similar words are as far from each other in the vector space as dissimilar words
are. Third, this type of representation merely reflects the presence or absence of words,
not their importance. Finally, because the corresponding matrix is highly sparse and
high-dimensional, one-hot encoding is computationally inefficient. For these reasons, it
is rarely used as such to represent text. Instead, this encoding is often leveraged to
generate more suitable representations (see Section 2.2.2 for example).

Bag of Words

The motivation behind the so-called bag-of-words (BOW) representation is that similar
documents contain similar words. Thus, this representation takes into account the
frequency of words and represents each text sequence as a single vector with one entry
for each word in the vocabulary whose value directly relates to that word’s frequency.
As a result, similar documents are assigned a closer vector representation than dissimilar
ones.

There exist different variants of BOW depending on how word weights are computed.
The most basic one is CountVectorize, where each vector entry is equal to the number of
occurrences of the corresponding word in the text sample. The most popular alternative
is term frequency-inverse document frequency (TF-IDF) which relies on the statistic of
the same name. It is computed as the product of the term frequency—i.e. the relative
frequency of the word in a document—and the inverse document frequency—i.e. the
logarithm of the quotient of the total number of documents divided and the number
of documents containing that word. In more simple terms, the TF-IDF of a word can
be thought as a measure of the amount of information provided by this word. This
statistic offers a way of penalising very frequent and very rare words in order to capture
the importance of words within a text.
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In clinical text mining, Dessi et al. (2020) successfully leveraged BOW represen-
tations based on TF-IDF with a MLP for identifying morbidity types in clinical notes.
Nevertheless, when investigating two separate classification tasks—namely smoking sta-
tus and proximal femur fractures classification from clinical notes and radiology reports,
respectively—Wang et al. (2019b) found that the TF-IDF BOW representations were
significantly outperformed by more complex ones, such as word embeddings introduced
below in Section 2.2.2.

Overall, compared to one-hot encodings, BOW representations offer the advantage
of being of the same size for each text sequence, irrespective of its length. However,
even though these vectors reduce the input dimensionality to the size of the vocabulary,
they can still be sparse as the number of words in a document is often much smaller
than the number of words in a vocabulary. In addition, since every word occurrence is
collapsed into a single vector, this representation loses any information about the word
order and, as a result, two sentences of opposite meanings (e.g. ”the cat eats the dog”
and ”the dog eats the cat”) have the same representation. A variant of BOW which
is designed to account to the word order is bag-of-n-grams. This approach counts the
number of times each n-gram appears in a text. An n-gram is a common concept in
NLP and is defined a sequence of n consecutive words. Thus, it is a generalisation of
the BOW model which represents texts with 1-grams (often called unigrams). Using n-
grams with larger n allows to capture more precise information about the text. However,
the larger the n, the higher the number of n-grams in a text and the less frequent each
n-gram. As a result, the size of the vocabulary increases which leads to more sparsity.
Therefore, even though n-grams with a large n are more informative, they can become
inefficient.

In addition—as is the case with any discrete representation—the vector size is directly
proportional to the vocabulary size, making BOW representations poorly scalable. Other
drawbacks include the inability to capture any semantic similarity and most importantly
to handle OOV words. As we know, this is an important issue when dealing with small
datasets. Indeed, any classifier trained using the BOW representation will not be able to
leverage words that were not previously encountered in the training data. The smaller
the number of training samples, the less likely the classifier will have seen them during
training.

2.2.2 Distributed Representations

Discrete representations have the disadvantage of being sparse and high-dimensional.
In contrast, distributed representations are, by nature, dense and low-dimensional as
each component of the vector representation can contribute to the meaning of multiple
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words (Hinton, 1984). Overall, they have been shown to offer good internal represen-
tations that capture important features of the task domain (Rumelhart et al., 1986).

Bengio et al. (2000) were among the first to introduce—in the context of statistical
language modelling—distributed representation of words in the form of real-valued word
feature vectors. These representations, which are now commonly referred to as word
embeddings or word vectors, were successfully trained as part of a one-hidden layer
feed-forward NN that aimed to predict the next word in a sequence.

Following their work, Collobert & Weston (2008) have demonstrated the utility of
using word vectors that were pre-trained in an unsupervised setting as input representa-
tions to improve the performance of NNs on downstream tasks. Their experiments also
showed that this approach generates embeddings that capture syntactic and semantic
information in the sense that they cluster—syntactically or semantically—similar words
in the vector space.

Since then, various methods have been developed with the sole purpose of learning
word embeddings from large corpora. Because this new paradigm decouples the learning
of word representations from that of the task, one can leverage shallow architectures
which are computationally cheaper to train compared to networks that learn word em-
beddings implicitly as a by-product of solving a task. While there exist multiple variants
of models designed for learning word representations, they are generally based on the
same three fundamental components—the embedding layer, the intermediate layer and
the softmax layer—that were introduced with the very first model Bengio et al. (2000).
More specifically, the role of the embedding layer is to look up the embedding of a
word in a (trainable) lookup table, the so-called embedding matrix, based on its index
in the vocabulary. The intermediate layer (there may be several of them) relies on
non-linearities to transform the input into more abstract representations. Finally, the
softmax layer outputs a probability distribution over the vocabulary words.

In this section, we discuss the most popular models for generating word embeddings.

Word2Vec

One of the most well-known models for training word embeddings is the so-called
Word2Vec model, which was developed by Mikolov et al. (2013a) and popularised the
idea of using pre-trained word vectors as input representation for NNs. Word2Vec utilises
either of two model architectures (the continuous bag-of-words model or the skip-gram
model) to learn word embeddings in an unsupervised manner. Both architectures rely
on a similar shallow NN, but each is trained on a different self-supervised task.
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Continuous bag-of-words (CBOW) The CBOW model is tasked with predicting a
target word given its surrounding context. However, the implicit goal of the model is
to learn an embedding matrix V where each row i (0 ≤ i ≤ N − 1) is a d-dimensional
vector containing the embedding of word i from a vocabulary of size N . The arbitrary
hyperparameter d is often referred to as embedding dimension and defines the size of
the embedding space, which also corresponds to the number of units in the input layer.

The learning process unfolds as follows: at the very beginning of training, two
weights matrices V ∈ Rd×N and U ∈ RN×d are randomly initialized. The matrix V

contains the weights between the input layer and the hidden layer and will eventually
encode in its rows the representations of the input words—i.e. the words when they
appear in the context. Similarly, the matrix U contains the weights that connect the
hidden layer to the output layer and embeds in its columns the vector representations
of the output words, i.e. the words as targets. At each time step t, the network is
given a window of n words around the target word wt. These context words are first
mapped individually to their embedding—i.e. their one-hot vector is multiplied with
the weight matrix V to extract the corresponding row—before being averaged. Note
that any order information amongst context words is thereby discarded. The resulting
d-dimensional vector is then multiplied with the matrix U producing a vector of size N

which, in turn, is transformed into a probability distribution over the vocabulary through
a softmax function. The prediction can then be compared to the true label—the one-hot
embedding of the target word wt—and the matrix weights can be updated accordingly
through backpropagation and stochastic gradient descent (well-known learning processes
which will be explained in more detail in Sections 2.4.4 and 2.4.4). Even though the
model ends up learning two independent representations for each word (depending on
whether it is a context word or a target word), only the word vectors encoded by the
matrix V are eventually used as word embeddings in downstream tasks.

Skip-Gram This skip-gram model is similar to the CBOW model but is trained with
the reversed goal (i.e. the input and the output are swapped): given a target word, it
must predict words in its surrounding context. Thus, in this setting, the weight ma-
trix between the input and the hidden layer encodes words as target words, whereas
the other matrix contains the embeddings of words as context words. Since there is
a single input vector, it is no longer necessary to average after mapping the one-hot
encoded input to the embedding matrix. Instead, the intermediate state vector at the
hidden layer is simply the target word’s embedding. The model then takes this rep-
resentation and generates n score vectors—one for each word in a window of size n

around the target word, which are then turned into probabilities using a softmax func-
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tion. These probabilities are then compared to the true probabilities (i.e. the one-hot
vectors of the actual context words) and, once again, the weights of the matrices U and
V are adjusted via stochastic gradient descent to minimize the error. In this case, it is
the matrix containing the target word vectors that can be used as an embedding matrix.

Overall, even though the two methods are mirrored versions of each other, they offer
different perks and drawbacks. For example, the CBOW method converges much faster
as it is trained with an easier task—at each time step a single prediction is made and
evaluated—than the skip-gram model which requires a prediction for each word in its
context. Mikolov et al. (2013a) reported that the CBOW model could be trained in
less than a day as opposed to almost three days for the skip-gram model. However, the
latter is less prone to overfit frequent words and can in general better represent rare
words, as it relies on single-word inputs. Similarly, the skip-gram approach yields better
results when trained with smaller datasets compared to the CBOW model.

By leveraging the context of words to learn continuous vector representations, the
Word2Vec models draw on the concept of distribution similarity—i.e. the idea that
the meaning of a word can be inferred from the context in which it appears—and the
distributional hypothesis—i.e. when two words occur in a similar context, they have a
similar meaning (Harris, 1954, Firth, 1957). Since, by design, the models must output
similar word vectors for words that appear in similar contexts, words with similar mean-
ings will have similar representations. Thus, they will be closer together in the vector
space than words that are semantically different. Most surprisingly, word embeddings
trained with Word2Vec have been shown to exhibit interesting characteristics (Mikolov
et al., 2013b, Levy & Goldberg, 2014). Namely, there exist linear relationships amongst
word vectors in the continuous space. As a result, analogies of the form ”wa is to wb

as wa′ is to wb′” can be made using addition and subtractions: wb − wa + wa′ ≈ wb′ .
The most famous example of such an analogy is ”man is to king as woman is to ...?”
with wking − wman + wwoman ≈ wqueen yielding the word ”queen”. In fact, the existence
of linear analogical relationships among these kinds of embeddings was later proven
mathematically by Allen & Hospedales (2019). The models are not only able to capture
semantic analogies (e.g. ”Paris - France + Rome = Italy”), but also syntactic analogies
(e.g. ”bad - worst + big = biggest” or ”dancing - danced + going = went”).

Muneeb et al. (2015) and Chiu et al. (2016) reported, among others, that skip-gram
outperformed CBOW for biomedical tasks. The former study investigated semantic re-
latedness of biomedical terms, whereas the latter tackled biomedical NER. In the clin-
ical text mining literature, Word2vec embeddings obtained with the skip-gram model
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have for instance been combined with other features for a clinical concept extraction
task (De Vine et al., 2015). Similarly, in order to achieve higher effectiveness in clin-
ical information extraction, Kholghi et al. (2016) have used—on top of hand-crafted
features—word embeddings generated from a clinical corpus using the skip-gram model.
Word2vec skip-gram embeddings were also found to yield better performance than other
embeddings such as CBOW, GloVe and FastText (see Sections 2.2.2 and 2.2.2 below)
on a mortality prediction task (Krishnan, 2019). On the other hand, Luo (2017) exper-
imented with word2vec embeddings that were pre-trained on either the general domain
or clinical notes from MIMIC-III and reported that the latter word vectors outperformed
the former ones on a clinical relation classification task, thereby demonstrating the
importance of domain-specific representations. In the same vein, (Patel et al., 2017)
proposed a modified version of word2vec embeddings that includes domain-specific in-
formation for the task of medical coding. They showed that these modified embeddings
consistently performed better than the original ones. Later, Wang et al. (2019b) showed
that weakly-supervised ML models that used word2vec skip-gram embeddings outper-
formed those that used TF-IDF features on two different clinical text classification tasks
(smoking status classification and hip fracture classification). Word2vec embeddings
have also been utilised in information retrieval for biomedical query expansion (Wang
et al., 2017). Other examples of using word2vec embeddings in clinical text mining
include clinical abbreviation disambiguation (Xu et al., 2015), clinical NER (Wu et al.,
2015b), predicting unplanned readmission from hospital patient records (Nguyen et al.,
2016), adverse drug events identification from clinical notes (Henriksson et al., 2015)
and phenotype classification from discharge summaries (Gehrmann et al., 2018).

Global Vectors (GloVe)

Another popular algorithm for learning word vector representations is GloVe which was
developed at Stanford University by Pennington et al. (2014). Rather than being based
on a language modelling task as Word2Vec, this model draws on matrix factorisation to
generate word embeddings. More specifically, the model adds global statistics into the
process by taking into account the word-to-word co-occurrence matrix over the entire
vocabulary which contains in each entry Xij the number of times word j appeared
beside word i in the corpus. From the co-occurrence matrix, one can easily compute
the probability of a word j appearing in the context of another word i—i.e. P (j|i)—by
dividing the value Xij by the sum of the values in row Xi, namely Pji = P (j|i) = Xij/Xi

with Xi = ∑
k Xik. The model relies on ratios of occurrence probabilities to capture

semantic information between words. The use of ratios helps discriminate between words
that are relevant and those that are not. More specifically, the ratio Pik

Pjk
takes on a large
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value (i.e. >> 1) if word k is related to word i but not to word j. Similarly, the value
of the ratio will be small (i.e. << 1) if k occurs more times in the context of word j

than in the context of word i. In contrast, if word k occurs frequently or rarely in both
contexts, then the value of the ratio will be close to 1. Based on this observation, the
following training objective (see Section 2.4.3 is defined:

J =
∑
i,j

f(Xij)(wT
i w̃j − log Xij)2 (2.1)

In other words, the model tries to minimise the difference between the dot product
of the word vectors and the logarithm of the words’ probability of co-occurrence. For
computational efficiency, this difference is weighted by the function f(x) so that smaller
weights are given to words that are further apart. The authors propose using the
following weighting function:

f(x) =

(x/xmax)α if x < xmax

1 otherwise
(2.2)

GloVe is faster to train than Word2Vec but requires more memory for the computa-
tion of the co-occurrence matrix. However, since this matrix only needs to be computed
once upfront GloVe— unlike Word2Vec—does not need to be retrained from scratch
if the embedding dimension changes, it can re-use the co-occurrence matrix and only
modify the dimensionality of the factorisation. As mentioned earlier, GloVe also incor-
porates global statistics into the learning process. In fact, the authors have shown that
GloVe is equivalent to the Skip-gram model but with added global statistics (as opposed
to local statistics only as captured by a context window).

Because the GloVe model is designed to force linear relationships between words
based on the co-occurrence matrix, analogies can be drawn from the resulting embed-
ding vectors similarly to Word2Vec.

GloVe embeddings have, for instance, been used for clinical information extraction
and relation extraction tasks (Wang et al., 2018c). Ong et al. (2020) reported GloVe
representation supported the best performance for radiology report classification when
compared to BOW and TF-IDF. Similarly, GloVe embeddings were also shown to achieve
higher performance compared to word2vec embeddings on detecting comorbidity rela-
tionships in clinical notes (Beam et al., 2019). However, they were outperformed by
word2vec on other types of relationships. Bhatia et al. (2019) have used GloVe word
embeddings on top of character and tag embeddings to extract negative medical findings
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in clinical reports. On the other hand, Dingwall & Potts (2018) introduced an extension
of GloVe for fitting a new vocabulary of words. They added an extra term to the training
objective that encourages the learned embeddings of words that were already present in
the GloVe vocabulary to be as close as possible to existing embeddings. As the training
objective is retrofitting, all representations must be retrained each time a new word is
encountered. This novel model was shown to outperform the original GloVe embeddings
and those pre-trained on clinical notes for a clinical sequence labelling task.

One drawback shared by both GloVe and Word2Vec is their inability to represent words
that are not part of the vocabulary. Solutions to this problem include ignoring OOV
words, replacing them with the same token (e.g. <UNK>) whose embedding can be
learned during training, or initializing them from a uniform distribution. Nevertheless,
all these options completely discard the meaning of OOV words.

FastText

In addition to being unable to handle OOV words, Word2Vec and GloVe fail to take into
consideration the internal structure of words. A solution to model the morphological
structure of words suggested by Bojanowski et al. (2017) is to divide them into subwords
before feeding into an NN. This model is referred to as FastText. More precisely, words
are broken into character n-grams and the sum of the vector representations of these
n-grams is used as word representation. For instance, if we choose n = 3 the word
patient is represented as the sum of the vector representations of the tri-grams ’<pa’,
’pat’, ’ati’, ’tie’, ’ien’, ’ent’, and ’nt>’. Note that the symbols ’<’ and ’>’ are added
at the beginning and the end of the word to differentiate prefixes and suffixes from
other subwords. Vector representations for the individual n-grams are obtained using
the skip-gram algorithm introduced earlier but trained on windows of n-grams instead
of windows of words.

As FastText embeddings encode morphological information about words, they can
represent OOV words as well as misspelt and rare words provided that the n-grams
composing these words are present in the training data. One disadvantage of FastText
is that is computationally more expensive than the previous models as it operates at
a finer granularity. Similarly, it requires more memory. In particular, both these issues
become more important as the corpus size increases.

In the clinical domain, FastText has for example been used to represent medical
concepts in an event prediction task (Lu et al., 2020). In addition, Yang et al. (2019)
showed that FastText embeddings outperformed Word2Vec embeddings on a clinical
note de-identification task. More surprisingly, they reported that FastText embeddings
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trained on the Common Crawl corpus—a collection of web pages—yielded slightly bet-
ter performance than those trained on clinical notes. In contrast, Romanov & Shivade
(2018) observed, in the context of medical natural language inference (NLI), that Fast-
Text embeddings trained on clinical data or FastText embeddings trained on Wikipedia
articles and fine-tuned on clinical data achieved higher scores than those only trained
on Wikipedia or PubMed abstracts. However, the authors noticed that FastText em-
beddings trained on Wikipedia performed worse than GloVe embeddings trained on the
Common Crawl corpus.

One of the key issues of context-free distributed representations such as Word2Vec,
GloVe and FastText is that each word is assigned a unique vector representation. Thus,
it is impossible to differentiate between homonyms in the vector space. For example,
the word ”cold” takes on different meanings when used in the sentence ”Patient started
feeling pain after taking a cold shower.” and in the sentence ”Patient suffers from a
cold.”: the first one refers to a low temperature, whereas the second one refers to an
illness. However, the word embedding models presented above collapse the two meanings
into a single representation and fail to capture the polysemous nature of words.

2.2.3 Contextualised Word Embeddings and Pre-trained Lan-
guage Models

Context-sensitive representations that capture the contextual meaning of words have
been suggested as an alternative to address the inability of context-free word embeddings
to differentiate between homonyms. Hence, for instance, the word ”mole” used as
”a unit of measurement” and as ”a disorder that affects the soft tissue” will have
distinct representations in the word-embedding space. In this section, we discuss these
approaches in more detail.

Embeddings from Language Model

One of the first methods to generate context-sensitive word representations was ELMo
(Embeddings from Language Model) (Peters et al., 2018). ELMo representations are
functions of the entire input sequence and are obtained using a two-layer bidirectional
language model (biLM). Each layer in the biLM consists of separate forward and back-
ward passes. First, the sequence of words (e.g. a sentence) is fed to the first layer of
the model using a character-level convolutional neural network (char-CNN) (Kim et al.,
2016) (See Section 2.3.1 for details on CNNs). This allows embeddings to take into ac-
count the substructure of words and to accommodate for unknown words easily, thereby
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eliminating the problem of OOV words. The input is then processed in each direction by
two separate long short-term memorys (LSTMs)—a well-known NN architecture that is
detailed in Subsection 2.3.2. The objective of the forward LSTM is to predict the next
word in the sequence starting with the first one, while the backward LSTM must do the
opposite and predict the previous word starting with the last one. The outputs of the
two LSTMs—each of which contains an intermediate representation of the sequence—is
then fed to the corresponding LSTM in the second layer of the biLM. The second layer
does the same as the first one and produces another intermediate representation. Even-
tually, the final ELMo representation is computed as the weighted sum of the char-CNN
representation and the two intermediate word representations. The coefficient values
are task-specific. Indeed, the authors show in their paper that each of the three rep-
resentations encodes different information, with lower layers capturing better syntactic
information and higher layers semantic information. Therefore the importance of each
representation depends on the task to solve.

Even though the authors suggest first fine-tuning the biLM on domain-specific data
to improve the performance on the downstream task, the biLM weights are eventually
fixed during training. More specifically, they propose freezing the weights and concate-
nating the resulting ELMo representations with other representations (e.g. Word2Vec)
before incorporating them into existing neural NLP architectures without further modi-
fication.

Si et al. (2019) compared the performance of ELMo embeddings to context-free word
embeddings, such as Word2Vec and GloVe, on four different clinical concept extraction
datasets. Their results indicated, on one hand, that using ELMo embeddings improved
performance in most cases and, on the other hand, that training the ELMo embeddings
on a clinical dataset significantly helped downstream tasks. Similarly, a study by Zhu
et al. (2018) showed that domain-specific ELMo embeddings (namely, generated using
clinical reports and clinically relevant Wikipedia articles) produced better results for
a clinical concept extraction task. In particular, this approach outperformed several
existing benchmarks on the same dataset. In the same vein, Jin et al. (2019a) evaluated
BioELMo—an ELMo model trained on PubMED abstracts—on both a biomedical NER
and a biomedical NLI task. They found this model to be, in most cases, better than its
general domain counterpart. Another instance of a domain-specific ELMo for biomedical
NER was introduced by Sheikhshab et al. (2018). In contrast, Peng et al. (2019) used a
biomedical ELMo on five tasks and ten different datasets from the clinical domain and
found that it outperformed the state-of-the-art approaches in three instances only.
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Universal Language Model Fine-tuning

A significant shift in how word embeddings are integrated into NNs followed the work
of Howard & Ruder (2018). In their paper, the authors suggested a straightforward
way to make inductive transfer learning—i.e. the idea of transferring knowledge from
a source task to a different target task with labels only available in the target task—
possible for NLP. The authors were inspired by the success of this approach in the
field of computer vision, where models are not trained from scratch but rather first
pre-trained on large datasets, such as ImageNet (Deng et al., 2009), before being fine-
tuned on a downstream task (Donahue et al., 2014). More specifically, Howard & Ruder
(2018) introduced a new model called Universal Language Model Fine-Tuning (ULMFiT)
consisting of a single architecture—a 3-layer LSTM—that is first pre-trained on a large
unlabelled corpus from the general domain through a LM task and is then fine-tuned
on target task data. Eventually, two feed-forward layers are added to the pre-trained
LM which can then be fine-tuned on the target task classifier. As the model learns
general properties of language during the pre-training of the LM, the function of the
fine-tuning phase is simply to adapt the LM to the specificity of the target data. Hence,
this allows for fast convergence and robust representations even with small annotated
datasets. In fact, the same pre-trained LM can be fine-tuned on any NLP classification
task without the need to modify the underlying architecture. Therefore, ULMFiT offers
a new paradigm: relying on pre-trained LMs instead of pre-trained word embeddings
to represent natural language. This shift has minimised the dependency on manually
annotated datasets. A labelled dataset is required only for fine-tuning on the downstream
task and is no longer used to model the language itself. This means that its size does
not need to be as big. Consequently, the manual annotation of datasets can become a
less arduous task without necessarily sacrificing the performance. Indeed, even smaller
datasets can lead to great generalisation performance thanks to the general nature of
the underlying LM (Howard & Ruder, 2018).

Examples of uses of ULMFiT in the clinical domain include the classification of
patients’ smoking status from clinical narratives (Hirvonen et al., 2021), adverse drug
responses in tweets (Dirkson & Verberne, 2019), and benign and malignant breast
biopsies from pathology reports (Issa et al., 2021). The first two studies reported
choosing to use ULMFiT as a classification framework to take advantage of transfer
learning because of a lack of annotated data. Issa et al. (2021) compared this model to
more recent pre-trained LMs but found that they all yielded similar performance.
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Generative Pre-Training

To overcome the limitations of the LSTM architecture used by Howard & Ruder (2018)
in their ULMFiT model—such as poor handling of long-term dependencies—Radford
et al. suggested an approach called Generative Pre-Training or Generation from Pre-
trained Transformers (GPT). It replaces the LSTM in the LM with a variant of the
transformer architecture (Vaswani et al., 2017) consisting of a multi-layer transformer
decoder. Indeed, the transformer architecture—which is explained in more detail in
Section 2.3.4—relies on attention mechanisms which makes it possible to process the
whole input simultaneously instead of sequentially. GPT was shown to improve the
state-of-the-art on 9 out of 12 datasets and to outperform the LSTM-based pre-trained
LM on all but one dataset. The input sequences are encoded using byte pair encoding
(BPE), a subword-based tokenisation that iteratively looks for the most frequent pair
of characters and merges them. This in turn enables the model to handle OOV words.
More scaled-up versions of the GPT model have been released in subsequent years:
GPT-2 (Radford et al., 2019) and GPT-3 (Brown et al., 2020). Even though the GPT
LM was originally evaluated on supervised tasks, GPT models have since then been
mainly praised for their capacity to generate high quality texts that stand out by their
fluency and lexical diversity which makes them hard to distinguish from human-written
texts. Consequently, they are now mainly used for that purpose (Zhang et al., 2020b,
Dale, 2021).

GPT models have been leveraged in the clinical domain in multiple instances. For
example, (Van et al., 2020) investigated the use of pre-trained LMs such as GPT-2 to
autocomplete text simplifications in the medical domain. In addition, Li et al. (2021)
have used GPT-2 to generate synthetic clinical notes for training a NER model in an
attempt to overcome the privacy concern of real clinical data and achieved similar
performance as when using the real notes. Finally, Logé et al. (2021) have assessed
the capacity of GPT-2 and GPT-3 to answer medical questions related to patient pain
dosage.

Bidirectional Encoder Representations from Transformers

One of the shortcomings of the GPT model is its unidirectional nature. This limita-
tion was addressed by Devlin et al. (2019) who proposed a clever way of making an
LM truly and deeply bidirectional: they introduced a masked language model (MLM)
objective where random words are replaced with a mask and have to be predicted. The
architecture is called BERT and consists of transformer encoders blocks as opposed to
the decoders block from the GPT model. In addition to the MLM task, BERT is also
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pre-trained on a next sentence prediction (NSP) task. During training, BERT is given a
pair of sentences from the corpus and must predict whether the second sentence directly
follows the first one in the original text. BERT uses WordPiece tokenisation to obtain
subword units by applying a greedy segmentation algorithm to minimise the number of
WordPieces in the training corpus (Wu et al., 2016b). This implies that the model may
be able to leverage the word morphology of unknown words when dealing with previously
unseen data. Overall, BERT was shown to outperform existing approaches on all natural
language understanding (NLU) tasks from the General Language Understanding Evalua-
tion (GLUE) benchmark (Wang et al., 2018a) as well as question answering (QA) tasks
with little modification. Overall, BERT is the model that has been the most success-
ful due to its exceptional performance and the open-source release of large pre-trained
models that can be easily fine-tuned on a wide array of tasks.

The success of BERT has led to multiple powerful variants. First, to lower the
computational requirements, Lan et al. (2019) introduced ALBERT. This lite version of
BERT uses both cross-layer parameter sharing and factorised embedding parametrisation
to reduce the number of parameters by 18. As a result, training and inference are sped
up by almost 2 while achieving only slightly worse performance. Second, RoBERTa
(Robustly optimized BERT pre-training Approach) was suggested by Liu et al. (2019).
It was shown to outperform BERT on all GLUE tasks. This model differs from the
BERTBASE model on four points: First, the static MLM task is replaced by a dynamic
one. Instead of relying on the same masking pattern at each epoch, different parts
of the sentence are masked at different epochs. Second, the NSP task objective is
removed from the training procedure. Third, RoBERTa is trained on an about ten
times larger dataset, which includes the Common Crawl-News and the Open WebText
datasets on top of the original BookCorpus and English Wikipedia datasets. Finally,
larger batches of 8’000 samples instead of 256 are used to train the model. A third
popular variant of BERT is ELECTRA (Efficiently Learning an Encoder that Classifies
Token Replacements Accurately) (Clark et al., 2019). Similar to RoBERTa, this variant
does not rely on the NSP task for training. In addition, a Replaced Token Detection
(RTD) task is used in place of the MLM task. Rather than being masked, tokens are
replaced by another one. The model must then determine whether each token has
been altered or is the original one. ELECTRA was shown to outperform state-of-the-art
approaches with less pre-training time.

There also exist multiple domain-specific versions of BERT which have been pre-
trained on clinical or biomedical data. For example, BioBERT uses the original BERTBASE

architecture (initialized with weights from BERT) which they train on a collection of
PubMed abstracts and PMC articles (Lee et al., 2020). Even though the medical ter-
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minology differs from general English, the authors choose to use the same WordPiece
vocabulary as the original model. This new pre-trained LM leads to improved perfor-
mance on three different biomedical tasks: NER, QA and relation extraction. Similarly,
ClinicalBERT is a version of BERTBASE that has been pre-trained on clinical notes
from the MIMIC-III database Johnson et al. (2016) and has been developed for pre-
dicting hospital readmission (Huang et al., 2019b). Variants of ClinicalBERT have also
been introduced by Alsentzer et al. (2019). Finally, SciBERT refers to a variant of
BERT that has been pre-trained on scientific texts from both the computer science
domain (18%) and the broad biomedical domain (82%) using a domain-specific Word-
Piece vocabulary (Beltagy et al., 2019). The authors show that SciBERT outperforms
its classical counterpart BERTBASE on bio-medical tasks. It also achieves higher perfor-
mance than BioBERT on multiple tasks even though BioBERT is trained on a larger
biomedical dataset.

To assess the performance of BERT and ELMo models in the biomedical do-
main, Peng et al. (2019) introduced the Biomedical Language Understanding Evalua-
tion (BLUE) benchmark, a collection of five tasks on ten different clinical and biomedical
datasets. The best results were achieved by a BERTBASE model that was pre-trained on
both PubMed abstracts and clinical data from the MIMIC-II dataset. Similarly, Ji et al.
(2020) evaluated the effectiveness of the pre-trained BERT, BioBERT and Clinical-
BERT models for biomedical entity normalisation and reported an increase in accuracy
of up to 1.17% compared to existing state-of-the-art models. Finally, Liu et al. (2021)
compared those three models in the context of clinical trial NER and concluded that
the BioBERT model was the best model for extracting information from clinical trials.

2.3 Neural Network Architectures

Up until this point, we have only discussed NN architectures that consist of an input
layer, one or more hidden layers and an output layer, all of which are fully connected
(i.e. each node in a layer is connected to every node in the previous and subsequent
layer). However, there exist other types of networks, some of which are very popular for
NLP applications and which we will now shortly introduce.

2.3.1 Convolutional Neural Networks

Even though convolutional neural networks (CNNs) were originally proposed to process
input images, they have also found some success for text data (Kim, 2014). The core
building block of a CNN is the convolutional layer. This layer applies the same lin-
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ear transformation—a convolutional filter—to each part of the input through a sliding
window. Two-dimensional convolutions are usually applied to two-dimensional inputs
such as images. One-dimensional convolutions are used for text data as they are one-
dimensional data. A convolutional layer is generally followed by a so-called pooling layer
which takes as input the feature map generated by the convolutional layer and reduces
its dimensionality. For text classification, Chen (2015) suggested applying several convo-
lutions of different sizes, each followed by a non-linear activation and a global pooling.
Vector representations of the data are then obtained by concatenating the results of
each convolution and can be used for classification. Alternatively, multi-layered convo-
lutions (i.e. stacks of convolution and pooling blocks) can be used. This architecture
is well suited for longer inputs, such as models processing input at the character level
instead of the word level (Zhang et al., 2015). CNNs have also been suggested for
language modelling (Pham et al., 2016). In contrast to text classification models, CNN
LMs do not use pooling as they need to keep positional information intact. The main
characteristic of CNNs is that they can extract features that are somewhat invariant
to shifts in space, this allows the network to capture important local patterns (LeCun
et al., 1998, Er et al., 2016). When the input is text, the convolutional layer looks at
predictive n-grams and in a stack of multiple convolutional layers each can identify a
different range of n-grams (Goldberg, 2017).

CNNs have the advantage of being more efficient than fully connected layers because
the same filter reuses the same weights across the entire input (LeCun et al., 1998).
However, even though they have shown good performance in text classification tasks,
CNNs perform less well on other tasks that require the understanding of longer-range
dependencies such as QA (Minaee et al., 2021).

Amongst others, CNNs have been used in clinical text mining for assigning medical
subject headings to biomedical articles (Rios & Kavuluru, 2015), extracting clinical
relations (Sahu et al., 2016, Raj et al., 2017, He et al., 2019), and disambiguating
abbreviation senses in clinical narratives (Joopudi et al., 2018). An elaborated CNN
with attention has also been leveraged for classifying radiology reports according to
their degree of severity (Shin et al., 2017).

2.3.2 Recurrent Neural Networks

A popular class of NNs that are well suited for text data are recurrent neural networks
(RNNs) (Rumelhart et al., 1986). Indeed, this architecture offers an effortless way to
handle sequences of data, such as sequences of words, as the output of the hidden layer
is fed back to itself in a recurrent manner. This means that the network can access
information about previous parts of the sequence. Another advantage of RNNs is that
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they can process a sequence of arbitrary length in a fixed-sized vector. In particular,
since network weights are shared across time, the model size stays identical irrespective
of input size (Goodfellow et al., 2016). These key characteristics make RNNs a good
choice for processing text sequences. However, in practice, this kind of architecture
is difficult to train and struggles to capture long-term dependencies (Bengio et al.,
1994). Indeed, during training, the NNs are updated by comparing at each iteration the
current output of the network with the true output and computing how fast each weight
needs to be modified to gradually reduce that error. In practice, the backpropagation
algorithm (Rumelhart et al., 1986)—which will be explained in Section 2.4.4—offers
a convenient way to calculate the gradients with respect to the network weights and
propagate them backwards through the network from the last layer through the first.
However, this method involves successive gradient multiplication at each layer which
means that if the gradients are small (less than 1) they will keep getting smaller the
more layers there are and will not be able to reach earlier elements in the sequence. This
is called the vanishing gradient problem (Bengio et al., 1994, Pascanu et al., 2013) and
is an important issue in RNNs because the number of layers increases with the length
of the input sequence.

Long short-term memory

The most popular variant of RNNs is LSTM which was introduced by Hochreiter &
Schmidhuber (1997). This gating-based architecture improves on recurrent connections
by offering more elaborate memory cells which are designed to address the issue of
vanishing gradients.

An LSTM cell is composed of a cell state along with three different gates which
together regulate what information goes in and out of the cell. The first gate, the
forget gate, looks at the previous hidden state and the current element of the input
sequence and decides what information should be forgotten from the cell state. Then,
the second gate regulates how much each element of the cell state should be updated
with new information. This is the role of the update gate. Finally, the output gate
regulates what parts of the cell state should be forwarded to the following LSTM cell.

Even though LSTMs can tackle the vanishing gradient problem, they fail to eliminate
it completely, which means that their capacity to handle long-range dependencies is still
limited (DiPietro & Hager, 2020). Another drawback of LSTMs is that they require
lots of resources to get trained (Hou et al., 2019). Because they contain a high number
of parameters, LSTMs are prone to overfitting and must thus rely on large datasets for
training (Bashar et al., 2020).
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Gated Recurrent Unit

A simpler alternative to LSTMs cells for handling the vanishing gradient problem in
RNNs is offered by gated recurrent units (GRUs) (Cho et al., 2014a). In GRUs, the cell
state and the hidden state are merged. Similarly, a single update gate is used instead
of both a forget and an input gate.

As mentioned earlier, RNNs are particularly well suited for processing text sequences.
Therefore, it is no surprise that RNNs have been extensively used for clinical text mining.
Examples of applications include the detection of disease and medication information
from EHR notes (Jagannatha & Yu, 2016), clinical entity recognition from patient
reports (Liu et al., 2017), clinical NER (Wu et al., 2017), and the classification of chest
radiology reports for the presence of pulmonary embolism (Banerjee et al., 2019).

2.3.3 Encoder-Decoder Networks

Encoder-decoder networks—also called sequence-to-sequence (Seq2Seq) networks—are
designed to handle input and output sequences of variable length. As its name suggests,
this architecture consists of two main components: an encoder and a decoder. An
encoder maps an input of variable length to a fixed-sized internal representation. A
decoder does the opposite and takes that fixed-sized internal representation and outputs
a sequence of variable length. Encoders and decoders can take different forms. For
example, Sutskever et al. (2014) suggested using a pair of multilayered LSTMs as
encoder and decoder, whereas Cho et al. (2014b) proposed using a pair of RNNs with
GRUs cells instead.

In the clinical domain, Du et al. (2019) have used a Seq2Seq model to extract symp-
toms and their statuses (i.e., experienced/not experienced) from clinical conversations.
Indeed, since symptoms are sometimes not described explicitly by patients and must
rather be inferred from context, it is beneficial to formulate this problem as generating
a list of symptoms and their statuses from a chunk of conversation instead of a span-
attribute tagging task. Alternatively, Gharebagh et al. (2020) have used an LSTM-based
encoder-decoder to summarise radiology reports.

Attention Mechanisms

The encoder-decoder architecture has two main problems. On one hand, it is difficult
to compress all relevant information in a fixed-sized internal representation. On the
other hand, the decoder has to extract all information for a single representation, which
can be challenging. To address this issue, (Bahdanau et al., 2015) introduced the
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attention mechanism. Instead of producing a fixed-internal representation, the encoder
generates a separate encoder state for each input token. Then, at each time step during
the decoding, a different representation is computed: an attention score between the
current decoder state and each encoder state. This representation is immediately fed to
the decoder to produce the next output at that time step. The attention score encodes
the degree to which each element in the input sequence is relevant to the current
decoding step. From this, attention weights can be computed by applying a soft-max
function to the attention scores. Finally, attention outputs are obtained by multiplying
encoder states and attention weights. This product is then fed to the decoder. Overall,
this model allows the decoder to attend to specific parts of the input sequence when
producing the next output.

The attention mechanism has, among others, been incorporated into a NER system
to extract adverse drug reactions (Pandey et al., 2017). Similarly, Gligorijevic et al.
(2018) introduced a model that uses the attention mechanism to predict the number of
resources needed by patients when admitted to a hospital in order to improve patient
prioritization. Finally, the attention mechanism has been leveraged for medical text
categorisation (Qing et al., 2019).

2.3.4 Transformer

One of the biggest breakthroughs of the last decade in NLP is the Transformer archi-
tecture (Vaswani et al., 2017) which offers a new paradigm for processing sequences.
Instead of recurrence, this architecture leverages only attention mechanisms to learn
global dependencies between input and output. More specifically, the Transformer con-
sists of encoder and decoder blocks that rely on self-attention, which means attention
within a sequence itself rather than relative to another sequence. To compute attention
outputs for self-attention, each element in the sequence receives three different repre-
sentations: query q, key k and value v. The query is the vector representation of the
input element that is looking at all other elements. The keys are the representations of
the elements looked at by the query.They are used to compute the attention weights.
Finally, the value is the representation that gives the information to the elements that
need it and is used to compute attention outputs.

Attention(q, k, v) = softmax( qkT

√
dk

)v (2.3)

Note that the self-attention for the decoder is slightly different than for the encoder.
Indeed, since the whole sequence is fed at the same time, future elements in the sequence
have to be masked out so that the decoder does not know what comes next during
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the generation process. Finally, to keep information about the order of the sequence, a
positional embedding is added to each element. Vaswani et al. (2017) suggest using fixed
positional embeddings (instead of learned ones) with each dimension corresponding to a
sinusoid of different wavelengths. Because the whole input is processed at once instead
of sequentially, the learning process can be parallelized which reduces the training time
compared to RNNs and enables training on larger datasets. In addition to its greatly
improved training speed, the Transformer was shown to improve the state-of-the-art
on machine translation tasks (Vaswani et al., 2017) which has paved the way for its
application to other tasks. In particular, as mentioned in Section 2.2.3, Transformer-
based architectures have revolutionised the way text is processed by NNs through pre-
trained LMs.

In the context of clinical text mining, transformer-based models have been used to
measure semantic similarity for sentence pairs from clinical notes (Yang et al., 2020b),
predict hospital readmissions (Amin-Nejad et al., 2020), extract lymph nodes from ra-
diology reports (Peng et al., 2020) or extract clinical concepts (Yang et al., 2020a).

2.4 Training

To train NNs in a supervised setting, one relies on data pairs of input and output. The
input is fed to the network, which processes it and produces an output according to the
current value of its weights. This predicted output is compared to the true output using
a cost function and the weights of the network are adjusted to minimise the observed
error. Learning stops when the error rate cannot be reduced any further with new
observations. The whole process is explained in more detail in the remainder of this
section.

2.4.1 Training Data

To develop a DNN, as for any machine learning algorithm, it is important to take data
into careful consideration. Indeed, data are not only essential to train the network and
find its optimal weights but also necessary to estimate its performance on unseen data
(see Section 2.5). Thus, it is common practice, when working on a new application,
to split the data into three disjoint sets: a training set, a development set (also called
validation set) and a test set. The training set is used exclusively, as its name suggests,
to train the network and find an optimal set of weights. The development set acts
as an indicator of out-of-sample performance and can be used to evaluate different
hyperparameters or different architectures for example. Finally, the test set should
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only be used a single time, once the architecture has been fixed, all hyperparameters
have been set, and the training is complete. Its role is to give a good estimation of
the generalisation performance of the network, that is the performance outside of the
training data. In practice, when the data are very limited, one can resort to strategies
to get an estimation of the generalisation error without setting aside samples for the
development set. One popular approach is cross-validation (CV) (Allen, 1974, Stone,
1974, 1977). One of most well-known variant of CV is k-fold CV. It consists of splitting
the data into k sets of equal size called folds. Then, k −1 of these sets are used to train
the network and the remaining one to evaluate its performance on unseen data. This
process is repeated k times, each time leaving a different fold out for evaluation. Of
course, this means that the model needs to be re-trained from scratch for each fold of
the k folds, which is computationally expensive. Nevertheless, this method still provides
a good enough approximation of the out-of-sample error.

2.4.2 Learning Process

NNs are universal function approximators, meaning that any function can in theory be
approximated by an NN (Cybenko, 1989, Leshno et al., 1993, Pinkus, 1999). Therefore,
the goal of the learning process is to find the set of network weights that can best map
the input data to the desired output. The first step towards this goal is to define
a measure of how well the network performs throughout the learning process. This
measure can then be used to adjust the weights of the network until an optimal set of
weights has been found. In the remainder of this section, these ideas will be discussed
in more detail.

2.4.3 Loss function

The goal of the optimisation process is to find the weights that best approximate the
function that maps the input of the network to the desired output. In practice, this
is done by defining an objective function—often referred to as cost function or loss
function—that measures how well the network predicts the output given the input and
the value of its weights. The goal of the learning process is to iteratively modify the
network weights to minimise the value of the objective function.

The loss function can take different forms depending on the task that needs to be
solved by the network. Here we introduce the most common and widely used objec-
tive for optimising classification NNs: the cross-entropy loss function. For binary
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classification problems, the cross-entropy is given as follows:

L(w; xi; yi) = − 1
N

N∑
i=1

(yi log ŷi + (1 − yi) log(1 − ŷi)),

where yi ∈ {0, 1} denotes the true label of sample i and ŷi ∈ [0, 1] the prediction made
by the network for input i, that is a probability value between 0 and 1. Overall, this
loss function penalises predictions that are close to the either of the two extremes (i.e.
0 or 1), thus indicating high confidence, but are in fact incorrect.

When a sample can belong to one of many (more than 2) classes, i.e. in multi-class
classification tasks, the categorical cross-entropy is used instead:

L(w; xi; yi) = − 1
N

N∑
i=1

log(ŷi,c[i])

2.4.4 Optimisation

When training an NN, the goal is to find the network weights that minimise the loss
function. This is known as the process of optimisation. The most popular approaches
to this problem are gradient-based methods, which iteratively estimate the loss function
over the training set, compute the gradient of the weights with respect to the loss
and adjust the weights in the opposite direction of the gradient. There exist different
optimisation approaches depending on how the update is defined and how the gradient
of the cost function with respect to the network weights is computed (Goldberg, 2017).

Stochastic Gradient Descent

SGD is an iterative optimisation method based on gradient computation. Unlike batch
gradient descent—the vanilla version of the gradient optimisation algorithm which cal-
culates for one update the gradient over the entire training dataset—stochastic gradient
descent (SGD) computes a stochastic approximation of the gradient using a subset of
the train data (a so-called mini-batch). As this approximation helps speed up iterations,
SGD is more computationally efficient, especially for high-dimensional problems, than
its classical counterpart.

More specifically, the update looks as follows at each time step of the optimisation
process:

w = w − η · ∇wL(w; xi:i+n; yi:i+n) , (2.4)

where L is the loss function to minimise, w denote the weights of the NNs and η is a
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hyper-parameter, the so-called learning rate.
Selecting a good value for the learning rate can be challenging. If the value is set

too high, the optimisation algorithm will struggle to converge: it might bounce around
the minimum without ever reaching it or it might even diverge. However, if the value is
set too low, convergence will be extremely slow. In addition, it might be more beneficial
to perform a larger update for important features that are less frequent rather than
applying the same learning rate to all parameter updates. To deal with these issues an
adaptive learning rate is sometimes used instead of a constant one Duchi et al. (2011),
Tieleman et al. (2012), Kingma & Ba (2015), Dozat (2016).

Adam

Adam (adaptive moment estimation) is probably the most popular optimisation approach
that uses an adaptive learning rate (Kingma & Ba, 2015). As its name suggests, Adam
relies on the computation of estimates of the gradient moments for updating network
weights. The first moment (i.e. the mean) estimate mt and the second moment estimate
vt (i.e. the uncentred variance) which correspond to the exponential moving average of
gradients and squared gradients. They can be computed as follows:

mt = β1mt−1 + (1 − β1)∇wL(wt,i) (2.5)
vt = β2vt−1 + (1 − β2)(∇wL(wt,i))2 (2.6)

∇wL(wt,i) denotes the partial derivative of the loss function with respect to parameter
wi at time t. Based on these moments, the Adam update rule is the following:

wt+1 = wt − η√
v̂t + ϵ

m̂t ,

where m̂t = mt

1−βt
1

and v̂t = vt

1−βt
2

are the corrected versions of the first and second
moment estimates respectively which offset their bias towards zero. The authors suggest
using β1 = 0.9, β2 = 0.999 to control the decay rates and setting ϵ = 10−8.

Backpropagation

The so-called backpropagation algorithm was introduced in 1986 by Rumelhart et al.
(1986) as an effective way of computing the gradients of the loss function—i.e. the
partial derivative with respect to the network weights. The algorithm works as follows.
First, the loss function is computed based on the true output and the network’s pre-
dicted output given a set of training data (forward propagation). Then, the loss is
backpropagated through the network layer after layer, starting from the output layer
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all the way back to the input layer using the chain rule to get the gradient of the loss
with respect to each weight. At each layer, the values of the weights in this layer are
updated using the gradients. The idea of going backwards makes it possible to reuse
the intermediate terms of the chain rule, instead of recomputing them at each layer.
Because it is efficient, this algorithm enables the use of gradient-based algorithms, such
as SGD, to optimise the weights of DNNs.

2.5 Evaluation

In this section, we discuss the evaluation of DL models, including popular measures of
performance and issues that might arise and might impact generalisation error.

2.5.1 Performance Measures

An important structure for assessing the performance of binary classification models is
the confusion matrix. It summarises the number of correctly and incorrectly classified
samples: rows refer to true class labels whereas columns refer to predicted class labels.
Thus, the matrix contains, in each entry respectively:

• the number of True Positives (TPs), i.e. the number of positive samples that
have been correctly classified,

• the number of False Negatives (FNs), i.e. the number of positive samples that
have been incorrectly classified as negative,

• the number of False Positives (FPs), i.e. the number of negative samples that
have been incorrectly classified as positive, and finally

• the number of True Negatives (TNs), i.e. the number of negative samples that
have been correctly classified.

The confusion matrix is illustrated in Figure 2.1.
The confusion matrix can then be used to calculate an array of evaluation mea-

sures. A commonly used metric for evaluating classification models is the accuracy.
It corresponds to the fraction of correctly classified samples and can be computed as
follows:

Accuracy = TP + TN

TP + FN + TN + FP

Three other metrics frequently used to evaluate machine learning classification models
are precision (P), recall (R) and F1-score (F1). The precision is defined as the
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Figure 2.1: The confusion matrix: a popular representation of a binary
classification model’s performance.

number of correctly identified instances divided by the total number of instances identi-
fied. In contrast, the recall is computed as the number of correctly identified instances
divided by the total number of correct instances. Finally, the F1-score is defined as the
harmonic mean between the precision and the recall. Formally, this is equivalent to

Precision = P = TP

TP + FP
(2.7)

Recall = R = TP

TP + FN
(2.8)

F1 = 2PR

P + R
. (2.9)

2.5.2 Overfitting

In Section 2.4.1, we have mentioned the importance of relying on disjoint sets of data for
training, development and evaluation. Indeed, in order to best estimate the performance
of a model, it should eventually be evaluated independently on data that had not been
seen during training and development. One of the common problems when training
DL models is that if the model is too complex and the number of training examples
is too small, the network might be able to learn to fit idiosyncracies in the training
data perfectly rather than more general patterns, which means that it will achieve great
performance on samples used for training but low performance on unseen data. Such a
model is referred to as overfitting.

In general, in machine learning, the problem of finding a model that explains the
data well can be viewed as the problem of balancing the model’s variance error and



CHAPTER 2. THE FOUNDATIONS OF DL IN CLINICAL TEXT MINING 43

bias error, a concept called bias-variance trade-off. The variance captures the model’s
variability to changes in the training data, whereas the bias reflects the model’s capacity
to learn from the training data. Therefore, models with high bias make too simplistic
assumptions about the data and, thus, fail to accurately capture the patterns underlying
the data. Such models achieve high training error, and their validation error is of the
same magnitude. Conversely, models with high variance pay too close attention to the
data and are unable to generalise well to unseen data: small fluctuations in the training
data lead to drastically different predictions. Such models show lower training error but
much higher validation error. Overall, overfitting is the characteristic of models with
high variance and low bias, whereas models with high bias but low variance are said to
be underfitting.

An optimal model should have low variance and low bias. Yet, as the name ”bias-
variance trade-off” conveys, reducing the bias often increases the variance and vice
versa. A common strategy for reducing the bias error consists in increasing the model
size, as a higher number of parameters helps to learn more complex patterns. However,
if the model has too many parameters, its variance error might increase as the model
can learn to fit the training data perfectly by also learning underlying noise patterns
that are specific to the training examples. In contrast, lower variance can be achieved
by adding regularisation during training. Regularisation is a set of techniques designed
to reduce the generalisation error. One of the most common forms of regularisation
for DNNs is dropout Srivastava et al. (2014), a method which drops hidden units at
random during training to prevent the network from relying too heavily on any hidden
unit. Nevertheless, too much regularisation inevitably increases the model’s bias error
as the model complexity decreases Gao (2021).

One easy way to counteract the increase in variance error when increasing the model
size is to also increase the size of the training dataset. A higher the number of training
samples helps decrease the variance. However, getting more annotated examples is
often expensive, time-consuming and challenging. This is particularly true for clinical
text data, as mentioned in Chapter 1. Hence, a common approach consists in generating
synthetic training samples that are different from real training data but follow the same
distribution. This approach, which is called data augmentation, will be investigated in
Chapter 6.

2.5.3 Conclusion

In this chapter, we proposed a brief overview of DL techniques for NLP along with
examples of how these approaches have been used in the context of clinical text mining.
In the following chapters, we look at some practical applications of DL approaches
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in more details: we will start with the identification of rare clinical events, followed
by the automatic disambiguation of abbreviations and acronyms, and finish with the
augmentation of training samples. Whereas, in this chapter, we have only touched
upon possible applications, the following chapters will contain a more extensive section
that highlights related work specific to the application discussed.



Chapter 3

Identification of Rare Events

The issue of small datasets, which is common in the clinical domain, is ampli-
fied when dealing with rare medical events. Yet the success of DL models
largely depends on the identification and analysis of repetitive patterns that
occur within statistical significance thresholds. The recognition of such

patterns is further exacerbated by the variation of the language used by healthcare
professionals who often use different terms to refer to the same concept. Indeed, the
most commonly found type of term variants in the English scientific corpus are semantic
variations (Jacquemin, 2001) (e.g. benign tumors vs benign neoplasms).

In order to test our main hypothesis—namely that DL can be successfully applied for
clinical text mining, we have identified the first RQ: Is it possible to develop an effective
DL strategy to recognise references to rare clinical events? To answer that question,
we have chosen SAEs as a case study for rare clinical events and defined the following
RO: to combine the implicit semantic knowledge captured by pre-trained LMs with
explicit domain knowledge to compensate for the limited size and diversity of clinical
text datasets and the diversity of medical terminology.

In this chapter, we tackle the identification of SAEs within the narrative section of
clinical trial report forms. To that end, we use real-life data from the Centre for Trials
Research (CTR) in Wales. As expected, these data are extremely limited with a total
of 286 documents consisting of 37 tokens on average.

There are two main ways of formulating the problem of SAE identification and their
mapping to unique concept. First, a NER model can be trained to identify mentions of
SAEs within the text. Then, to make these mentions amenable to statistical analysis,
they need to be normalised to a unique concept that represents the corresponding
SAE. Alternatively, clinical events—SAE or not—can first be extracted from text using
a predefined list of concepts and their synonyms. Then, a classifier can be trained to
differentiate between SAEs and other types of events. We posit that the latter approach

45
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is better suited for small datasets as it breaks down the complexity of the problem into
two simpler tasks: (1) the identification of all clinical events, for which explicitly available
domain knowledge can be leveraged and (2) the classification of events into SAEs
depending on the context, for which the implicit language understanding knowledge of
a context-aware pre-trained LM, such as BERT, can be exploited. In this chapter, we
compare the two approaches.

The work detailed in this chapter has been published in the journal JMIR Medical
Informatics under the title Text mining of adverse events in clinical trials: Deep learning
approach (Chopard et al., 2021a).

3.1 Background

Modern health care is associated with increased costs and broad-reaching variations in
care and outcomes across the global population. The provision of evidence-based health
care is a critical priority for users, providers, and policy makers alike. The systematic and
high-quality conduct of clinical trials is critical for the development of clinical guidance
to inform evidence-based practice. Pharmacovigilance and safety reporting are among
the most important aspects of the conduct of clinical trials. This is relevant to all clinical
trials in which the benefit or harm must be fully established before any intervention or
medicinal product is adopted.

Pharmacovigilance and safety reporting provide the basis for ensuring clinical trial
participant safety and good research practice. It involves processes for monitoring the
use of medicines or interventions in clinical trials. It has a critical role in the identification
of previously unrecognised adverse events or changes in the patterns of adverse events.
It is also relevant to the assessment of the risks and benefits of medicines or interventions
to determine what action, if any, is needed to improve their safe use.

As mentioned in Chapter 1, an adverse event is any untoward medical occurrence in
a participant to whom a medicinal product has been administered, including occurrences
that are not necessarily caused by or related to the administered product. An SAE is any
untoward medical occurrence that, at any dose, results in death, is life-threatening, re-
quires inpatient hospitalisation or causes prolongation of existing hospitalisation, results
in persistent or significant disability or incapacity, or comprises a congenital anomaly
or birth defect. Early detection of unknown adverse events, reactions, interactions,
and an increase in the frequency of (known) adverse events is a key element of the
pharmacovigilance and safety process. Provision of up-to-date information on adverse
events to health care professionals, researchers, and regulatory bodies contributes to the
assessment of benefit, harm, effectiveness, and risk of the intervention, thus advancing
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their safe, rational, and more effective (including cost-effective) use. In multicenter
non-commercial clinical trials conducted in the United Kingdom, the SAE reporting re-
quirements are detailed in the trial protocol, and the principal investigators at NHS sites
are responsible for reporting SAEs to the coordinating clinical trial unit (CTU) for an
assessment of the seriousness, causality, and expectedness as delegated by the clinical
trial sponsor. An SAE report includes an event term and additional signs and symptoms
in a narrative. The narrative is reported by a physician during their medical assess-
ment of the event. The report is then reviewed by a central CTU reviewer to assess
any potential causal relationship with the trial drug. Each narrative is reviewed as a
single report. The narratives are typically received from sites as paper records. These
are logged electronically in the safety databases by the CTU pharmacovigilance team
for the relevant national competent authorities (e.g. the UK Medicines and Health
Care Products Regulatory Agency or European Medicines Agency). The reports are
searchable on request and subject to appropriate regulatory permissions. There is now a
clear recognition of the potential for artificial intelligence in safety case management to
identify relationships and signals (US Food and Drug Administration, 2018). Although
these approaches may be implemented in commercial settings and within competent
authorities, such methods for classifying and categorising data are not yet standardised
or explicit across non-commercial pharmacovigilance settings.

It is possible that the narrative contains additional adverse events or toxicities that
are not coded as additional events and are captured in the narrative only. However, there
is no mechanism for the detection of safety signals across individual reports or individual
trials and, thus, there is no possibility for early detection of worrying trends. This is
particularly the case for toxicities for which reconciliation with the clinical database
would be advantageous. Such a tool would facilitate the cross-checking of toxicities
recorded in the narrative of the SAE form with those recorded in the trial database,
which is currently only feasible if automated. Although these approaches may be used
in commercial trial settings, they would not always be used in the public domain simply
because of the nature of the drug licensing pathway. This study seeks to use text
mining to automatically identify and code adverse events from the narrative sections
of SAE reports in clinical trials of investigational medicinal products coordinated by a
non-commercial CTU, with the aim of unlocking narrative evidence for further statistical
analysis. Although such an analysis is beyond the scope of this study, it would serve to
monitor the patterns of adverse events at the cohort level rather than singular adverse
events. Owing to their narrative nature, such an analysis cannot be conducted directly
on the content of SAE reports.
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3.2 Related Work

Chapter 2 presented a review of DL in the context of clinical text mining. In this section,
we focus specifically to the problem at hand, namely the identification of SAEs in the
narrative section of clinical trial reports, and review how others tackled this problem,
not necessarily using DL but also more classical approaches.

Text mining has been used to identify adverse events from a variety of data sources,
including spontaneous reporting systems, medical literature, EHRs, and user-generated
content on the internet (Wong et al., 2018). The problem of mining adverse events in
text has been approached from different angles. Most commonly, it has been defined
as a text classification problem, where a piece of text, either an entire document or
its part (e.g. an individual sentence), is mapped to one or more predefined class that
correspond to a type of adverse event or its property. Some approaches target a specific
adverse event such as anaphylaxis and perform simple binary classification with respect
to the presence of the event considered (Botsis et al., 2011). Other examples target a
range of drugs and use documents that mention them to train a binary classifier with
respect to their safety, using an existing watch list of drugs that have an active safety
alert posted on the US FDA website (Chee et al., 2011).

In terms of semantics, adverse events are compatible with signs and symptoms.
When a dictionary-based method is used to extract such instances, a binary classifier
is needed to differentiate between the signs and symptoms that correspond to adverse
events and those associated with the underlying diagnosis (Botsis et al., 2012). Along
similar lines, when an adverse event is associated with medication, a system is needed
to support safety evaluators in identifying reports that may demonstrate causal relation-
ships with the suspect medications. To this end, it has been shown that a binary classifier
can be trained to successfully differentiate between two causality categories: certain,
probable, or possible versus unlikely or unassessable (Han et al., 2017). Multifaceted
classification can be performed to identify additional properties of an adverse event,
for example, temporal (historical or present), categorical (assertive, hypothetical, retro-
spective, or a general discussion), and contextual (deduced or explicitly stated) (Iqbal
et al., 2017).

Alternatively, the problem of identifying adverse events can be defined as that of
information extraction (Roberts et al., 2017). More specifically, we can differentiate
between entity and relationship extraction. Here, the goal of entity extraction is to
identify a text sequence that describes an adverse event. Therefore, it can also be viewed
as a sequence labelling problem (Nikfarjam et al., 2015, Cocos et al., 2017a, Fan et al.,
2021). In addition, the text sequence can be mapped to a relevant dictionary such as the
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Medical Dictionary for Regulatory Activities (Duke & Friedlin, 2010, Combi et al., 2018)
or the UMLS (Nikfarjam et al., 2015, Emadzadeh et al., 2017). Such normalisation
of named entities to standardised identifiers is especially relevant when processing text
originating from social media, whose language tends to be highly colloquial (Chee et al.,
2011, Nikfarjam et al., 2015, Cocos et al., 2017a, Combi et al., 2018, Emadzadeh et al.,
2017, Nikfarjam & Gonzalez, 2011, Sarker & Gonzalez, 2015, Liu et al., 2016).

When multiple medicines are considered, two types of named entities need to be
extracted—medicines and adverse events—and additional reasoning needs to be per-
formed to extract a relationship between the two (Iqbal et al., 2017, Liu et al., 2016,
Wang et al., 2009). Further statistical analysis can be applied to such pairs to measure
the strength of such associations (Wang et al., 2009). Information of interest can be
extracted using pattern-matching approaches, where patterns are typically modelled us-
ing regular expressions (Iqbal et al., 2017, Duke & Friedlin, 2010, Skentzos et al., 2011).
Alternatively, frequent patterns of language for expressing opinions about medications
can be learned automatically using association rule mining by considering sentences as
transactions and the words in a sentence as items in the transactions (Nikfarjam &
Gonzalez, 2011).

Specific methods chosen to mine adverse events from text depend on the way the
text mining problem is posed. Typical approaches chosen for text classification include
rule-based methods (Botsis et al., 2011, Iqbal et al., 2017, Emadzadeh et al., 2017,
Hazlehurst et al., 2009) and supervised machine learning (Botsis et al., 2011, Chee
et al., 2011, Botsis et al., 2012, Han et al., 2017, Sarker & Gonzalez, 2015, Negi et al.,
2019). A range of machine learning methods has been used, including naive Bayes,
support vector machines, random forests, maximum entropy, and logistic regression.
On occasion, ensemble learning has been used to improve classification performance by
integrating multiple models using methods such as bagging, majority voting, weighted
averaging, and stacked generalisation (Chee et al., 2011, Liu et al., 2016, Negi et al.,
2019). The different types of lexical, syntactic, and semantic features have been used by
the classification algorithms. Lexical features include n-grams (Chee et al., 2011, Sarker
& Gonzalez, 2015), context windows (Liu et al., 2016), and lexicon matches (Sarker
& Gonzalez, 2015). Typically, syntactic features include part-of-speech (POS) tags,
negation, syntactic dependencies, and syntactic functions (Sarker & Gonzalez, 2015,
Liu et al., 2016, Negi et al., 2019). Semantic features are either based on external
sources such as the UMLS, PubChem, or DrugBank (Sarker & Gonzalez, 2015, Liu
et al., 2016, Hazlehurst et al., 2009, Wang et al., 2019a) or manually engineered (Chee
et al., 2011, Botsis et al., 2012, Han et al., 2017, Iqbal et al., 2017). Other used features
were based on sentiment polarities (Chee et al., 2011, Sarker & Gonzalez, 2015) and
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topic modelling (Sarker & Gonzalez, 2015). A few examples of using feature selection
methods include bi-normal separation (Chee et al., 2011) and information gain (Liu
et al., 2016).

Finally, approaches chosen to address adverse event mining as a sequence labelling
problem include conditional random fields (CRFs) (Nikfarjam et al., 2015, Tao et al.,
2017) and, more recently, NNs (Negi et al., 2019, Wang et al., 2019a), including
RNNs (Cocos et al., 2017a) and LSTMs (Cocos & Masino, 2017), which outperformed
CRFs. For best results, a bidirectional LSTM is combined with CRF Fan et al. (2021),
Belousov et al. (2017), Dandala et al. (2017), Gu et al. (2017a,b), Xu et al. (2017).
Most approaches used word embeddings, which represent words as meaningful real-
valued vectors of configurable dimensions learned automatically from a large corpus
based on their co-occurrence using methods such as Word2Vec (Wang et al., 2019a,
Gu et al., 2017a), fastText (Cocos & Masino, 2017), and GloVe (Pawar et al., 2017)).
As mentioned in Chapter 1, word-embedding models generate a single embedding for
each word, thus conflating homonyms in the corresponding vector space, unlike trans-
formers such as BERT which captures contextual relationships in a bidirectional way to
contextualise the embedding of any given word based on the surrounding words. For
example, BERT has been used to model adverse event extraction as an NER task (Fan
et al., 2021, Du et al., 2021). The topics of word embedding and BERT, in particular,
will be revisited later in this chapter in the context of motivating and describing our
own approach to this problem.

The after-the-fact nature of text data collected from sources such as spontaneous
reporting systems, medical literature, EHRs, and social media naturally gives rise to
postmarketing surveillance applications (Wong et al., 2018, Luo et al., 2017). How-
ever, pharmacovigilance starts by collecting safety information derived from randomised
controlled trials. Our review of text mining applications related to the identification
of adverse events revealed that this source of data was underrepresented. This study
addresses this gap by using SAE report forms collected during clinical trials as the pri-
mary source of data. Given that each trial focuses on a specific medicinal product, the
problem is somewhat simplified as the need to extract information about the product
itself is obviated. This also makes it more natural to define it as a multi-label text
classification problem rather than an information extraction problem. Using the UMLS
as our classification scheme, the main aim is to map each document to a set of coded
adverse events. The main difficulty of the problem lies in differentiating between signs
and symptoms associated with the underlying condition and those that represent adverse
events. The fact that both types of references to signs and symptoms can be found
within a single SAE report, often within the same sentence, renders a BOW approach
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unsuitable. Instead, we opt for a DL approach. Instead of LSTM approaches, which
seem to dominate in our review of the related work, we opt for transformers, which tend
to outperform RNNs on a variety of natural language processing tasks.

3.3 Methodology

3.3.1 Data Provenance

Data were provided by the CTR, the largest group of academic (noncommercial) clinical
trial staff in Wales. Their portfolio of work includes drug trials and complex interven-
tions, mechanisms of disease and treatments, cohort studies, and informing policy and
practice in partnerships with researchers across the United Kingdom and worldwide.
Across all these trials, standard procedures are put in place to monitor and manage
safety reporting and SAE in line with the regulatory requirements for research.

Clinical trials SAE report forms (Figure 3.1) are completed by research nurses and
physicians at hospital or clinical trial sites and submitted as PDF documents to the CTR
central safety team for management and processing. They contain data on the SAE
and a narrative description of the event. The narrative is used by the reviewer to help
assess causal relationships with the trial drug but is not entered into the trial database
and is not used in any analysis of the events. Completed SAE reports are then sent for
review by a physician and, depending on the outcome of the review, are logged in the
safety databases for the regulatory authorities, ethics committees, and drug companies.

Although narratives in noncommercial settings, such as CTR, can be digitised, this
does not currently take place at the point of initial SAE reporting, as electronic data
capture for the SAE report is associated with additional regulatory challenges, primarily
because of the requirement for signature verification by a physician and a contem-
poraneous changelog. Clinical trial staff reviewing SAE reports are, thus, unable to
systematically analyse the information provided in the narrative, missing an opportunity
to identify the trends and potential safety signals. If the text mining approach were to
identify additional safety events and signals not detected through standard reporting,
processes could be altered to improve work practices at the level of a noncommercial
CTU pharmacovigilance team. This study aims to assess the feasibility of text mining in
the context of such an analysis. The findings could affect the way regulatory narratives
are reviewed and analysed, for example, noncompliances or audit findings.

3.3.2 Data Collection

Data were collected from 6 ongoing clinical trials, as described in Table 3.1.
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Figure 3.1: An SAE reporting form. CTCAE: Common Terminology Crite-
ria for Adverse Events; N/A: Not Applicable.



CHAPTER 3. IDENTIFICATION OF RARE EVENTS 53

Ethical review and approval were waived for this study as this study involved the use
of secondary SAE data that were fully deidentified. All involved trials were conducted
according to the guidelines of the Declaration of Helsinki and approved by the relevant
research ethics committees. All chief investigators from these trials were consulted, and
sponsor agreement was obtained for the use of the data in this secondary research study.
Participant consent was also waived for the reasons stated above.

A subset of SAE reports was sampled randomly from each trial, giving a total of 286
reports. Phases 1 and 2 were early phases with a smaller number of participants. The
fewer numbers of reported SAEs were a function of the smaller numbers of participants
compared with phase 3; hence there were variations in the number of documents across
the 6 trials.

The original SAE reports were pseudoanonymised at the point of extraction from
the system by obscuring any links between the patient and their individual records. The
narrative sections of the SAE reports were then transcribed and saved as Microsoft
Word documents. The transcription process was extended to include deidentification
by obscuring any personally identifiable information in a way that minimises the risk of
unintended disclosure of the identity of individuals and information about them. The
transcribed documents were an average of 37 (standard deviation (SD) 24) tokens long.

3.3.3 Data Annotation

The aim of this task was to annotate adverse events in the transcribed versions of the
SAE report forms. For the purpose of this task, we clarify the definition of an SAE
by the FDA mentioned in Chapter 1 (US Food and Drug Administration, 2016) and
define an adverse event as any unfavourable or unintended disease, sign, or symptom
(including an abnormal laboratory finding) that is temporally associated with the use of
a medical treatment or procedure, which may or may not be considered related to the
medical treatment or procedure. Such an event could be related to the intervention,
dose, route of administration, or patient or caused by an interaction with another drug
or procedure.

The annotation guidelines prescribed the scope of the annotation task as follows:
(1) focus only on adverse events that have occurred in the present or past, that is,
ignore hypothetical or future events; (2) annotate the entire phrase that describes an
adverse event; and (3) if the same adverse event were mentioned multiple times, then
annotate every mention. The annotation process was based on the following instructions:
(1) identify an adverse event that is mentioned in the narrative, (2) select the text
that describes the adverse event, and (3) highlight the selected text. The text editing
operations were performed using Microsoft Word, which was preferred over a specifically
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Table 3.1: Clinical trials from which data were collected. MRI: magnetic
resonance imaging.

ID Description Documents, n

Trial-1
A phase 2 study of neoadjuvant chemotherapy given before
short-course preoperative radiotherapy as treatment for
patients with MRI-staged operable rectal cancer at high
risk of metastatic relapse

5

Trial-2
A phase 1b/2 randomised placebo-controlled trial in
postmenopausal women with advanced breast cancer
previously treated with drug A

7

Trial-3
A randomised phase 3 clinical trial investigating the effect
of drug B added to standard therapy in patients with lung
cancer

131

Trial-4 Study of chemoradiotherapy in esophageal cancer, plus or
minus drug C 34

Trial-5
A phase 1/2 single-arm trial to evaluate combination drugs
for the treatment of advanced cancers, including
first-line treatment of patients with advanced transitional
cell carcinoma of the urothelium

3

Trial-6

A randomised phase 3, open-label, multicenter, parallel
group clinical trial to evaluate and compare the efficacy,
safety profile, and tolerability of oral drug X versus
intravenous drug Y in the treatment of patients with breast
cancer and bone metastases

106
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Figure 3.2: An SAE report annotated independently by two annotators.
Annotations are highlighted in yellow.

designed annotation tool such as BRAT or Bionotate (Neves & Leser, 2014) because of
zero installation and training overhead. Microsoft Word supports the bulk selection of
text based on its formatting. This functionality was used to export highlighted text as
stand-off annotations, which were later used to calculate the inter-annotator agreement.

A total of two annotators independently annotated all the documents. Figure 3.2
provides an example. Here, both annotators annotated two mentions of tremor but
did not annotate the historical mention of tremor as it was not temporally associated
with the use of the medical treatment that was the subject of the given clinical trial.
Further, one reviewer failed to annotate vomiting, leading to disagreement, which was
later resolved through discussion. To identify all such cases, we compared all annotations
automatically and measured the inter-annotator agreement.

The two annotators labelled SAEs as phrases, which were sequences of words whose
total number, together with their start and end positions, were not prefixed. Comparing
the inter-annotator agreement at the token level, as suggested by Tomanek & Hahn
(2009), was not entirely appropriate for two reasons. First, the annotators labelled
phrases as sequences of tokens instead of labelling the tokens individually. Therefore,
such an approach approximated the original annotation task. More importantly, the
number of negative cases (i.e. the tokens that had not been annotated) would in-
evitably be much larger than the number of positive cases, thus skewing the data. The
lack of a well-defined number of negative cases prevented the use of traditional inter-
annotator agreement measures such as Cohen’s kappa statistic (Deleger et al., 2012).
A common way of quantifying inter-annotator agreement in such circumstances is to
use information retrieval performance measures instead (Hripcsak & Rothschild, 2005).
By treating one annotator’s annotations as the gold standard and the other one’s as
predictions, we calculated the numbers of TPs, FPs, and TNs, as shown in the confusion
matrix (Table 3.2). When these values were combined to calculate the F1-score, it no
longer mattered which annotator was considered the gold standard as this measure is
symmetrical.
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Table 3.2: Agreement between two annotators. (TP=True positives,
FP=False Positives, FN=False Negatives, N/A=Not applicable)

Gold positive Gold negative
Predicted positive TP = 744 FP = 50
Predicted negative FN = 98 N/Ad

These values can then be used to calculate the precision, recall and F1-score as
follows, using the formulas defined in Chapter 2:

P = TP

TP + FP
= 744

744 + 50 = 0.9370 = 93.70% (3.1)

R = TP

TP + FN
= 744

744 + 98 = 0.8836 = 88.36% (3.2)

F1 = 2PR

P + R
= 0.9095 = 90.95% (3.3)

An advantage of using information retrieval performance measures to estimate in-
terannotator agreement is that their values can later be used to gauge a system against
human-like performance. At F1 = 90.95%, the interannotator agreement was found to
be relatively high. A total of 148 disagreements were resolved through discussions to es-
tablish the ground truth. As part of the discussions, the agreed annotations of adverse
events were coded manually against the UMLS, which integrates multiple terminolo-
gies, classifications, and coding standards in an attempt to support the interoperability
between biomedical information systems, including EHRs (Bodenreider, 2004). The
MetaThesaurus Browser, a web-based search interface, was used to query the UMLS
for each annotation to identify the corresponding concept (Figure 3.3). This searching
procedure involved checking concept definitions to make sure that the chosen concept
matched the sense of the adverse event annotation. Each concept in the UMLS is
assigned a concept unique identifier (CUI), which was used to code the corresponding
annotation (see Figure 3.4 for examples). Subsequently, the CUI codes were extracted,
duplicates were removed, and the remaining CUIs were used as class labels for each
document. Table 3.3 provides a statistical summary of the annotated dataset, which
contains a total of 995 class labels.

3.3.4 Problem Representation

The aim of this study was to automate the identification of adverse events described
in the narrative section of the SAE reports. This goal was cast as a text classification
problem. Given a document and classification scheme, the system should label the
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Figure 3.3: Metathesaurus browser search results.

Figure 3.4: Coding of documents against the Unified Medical Language
System.

Table 3.3: Statistical properties of the annotated dataset.

Statistical properties Document length (in tokens) Annotations Class labels
Values, minimum 2 1 1
Values, maximum 223 20 19
Values, median 31 3 3
Values, mean (SD) 36.71 (23.77) 3.76 (2.46) 3.48 (2.18)
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document with the relevant classes from the given scheme. In our case, the document
was an SAE report, a classification scheme was the set of concepts encompassed by
the UMLS, and their CUIs were used as class labels. The second column in Figure 3.4
provides an example of the expected output.

To identify the possible adverse events mentioned in a document, the first step
involved looking for concepts of the relevant semantic types. In our approach, the
UMLS dictionary lookup was restricted to six manually selected semantic types: disease
or syndrome, finding, injury or poisoning, neoplastic process, pathological function, and
sign or symptom. Some of their mentions could be in the context of medical history
and, therefore, not necessarily constitute an adverse event. To differentiate between
the two types of mentions, we formulated a binary classification task at the concept
level: given a context, does a specific UMLS concept constitute an adverse event?
Figure 3.5 provides different references to the concept of pleural effusion. For example,
the first three references do not constitute adverse events. The first and third mentions
of pleural effusion refer to medical history, whereas the second mention is negated. The
remaining three mentions of pleural effusion refer to the cause of hospital admissions
that prompted SAE reporting.

The practical implementation of such problem representations started with linguistic
preprocessing, which was originally developed to support cohort selection from hospital
discharge summaries adapted for this study (Spasić et al., 2019). This module involved
text segmentation and basic string operations, such as lowercasing, fully expanding en-
clitics and special characters, replacing a selected subset of words and phrases with
their representatives, and, in particular, replacing acronyms and abbreviations with their
full forms. Finally, the preprocessed documents were analysed using MetaMap (Aron-
son & Lang, 2010), a highly configurable dictionary lookup software, to find mentions
of UMLS concepts from the six semantic types listed above. MetaMap first uses the
SPECIALIST (McCray et al., 1994) parser to get all noun phrases from the text. Sec-
ond, it generates a list of variants for all the phrases using a table lookup. Third, it
builds a set of candidates by extracting all strings containing one of the variants in the
UMLS Metathesaurus. Finally, an evaluation function is used to evaluate each of these
candidates against the input text, assign them a score, and select the best candidate.
Figure 3.6 illustrates a portion of the UMLS dictionary and how it was matched against
the input text. As the figure illustrates, a single document might contain multiple ad-
verse events. To support the classification of one adverse event candidate at a time, a
separate copy of the given document was saved for each candidate. Each copy anchored
a single concept, which may have had multiple occurrences, by marking them up in line.
In addition, the text was further regularised by replacing all the concepts with their
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Figure 3.5: Adverse event identification as a binary classification task. CT:
computed tomography



CHAPTER 3. IDENTIFICATION OF RARE EVENTS 60

Figure 3.6: Identification of potential adverse event mentions. CUI: concept
unique identifier

preferred names. Concept anchoring provided a simple, uniform representation of the
potential adverse events, which enabled us to train a single binary classifier based on
the context surrounding the anchors.

3.3.5 Classification Rationale

The binary task formulation itself—given a context, does a specific UMLS concept
constitute an adverse event?—indicates two main types of involved features: extrinsic
(context) and intrinsic (concept). Extrinsic features may include the number of mentions
within a document, the position within a document, and other words within a fixed-size
window. When combined with gold standard annotations, machine learning can be used
to discover how to differentiate between positive and negative contexts without having to
manually describe the patterns of positive and negative use. For example, by considering
the co-occurring words (see Figure 3.7 for examples) and the corresponding annotations,
a simple NN can learn to use words such as previous and have as negative and positive
modifiers, respectively. By considering a wider context, more complex patterns such as
admitted to hospital with and known to have (see Figure 3.8 for examples) would start to
emerge as positive and negative contexts, respectively. Traditionally, such patterns were
observed using corpus linguistics methods, which were engineered manually and encoded
formally as regular expressions (Spasić et al., 2010). In recent times, NNs are used to
automatically capture both short- and long-range dependencies. Similarly, lexical
morphology could be explored in an NN approach to learn the patterns of subwords
within a concept’s name, which were positively or negatively correlated with adverse
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Figure 3.7: Observing the patterns of positive and negative modifiers.
CRTI: common respiratory tract infection; GI: gastrointestinal; OGD: oe-
sophagogastroduodenoscopy; PR: per rectum; SAE: serious adverse event.

Figure 3.8: Observing more complex patterns of positive and negative use.
Hb: hemoglobin.
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events. For example, it is reasonable to expect that any concept identified as a potential
adverse event that contains the word chronic (e.g. chronic obstructive airway disease or
chronic infection) is more likely to refer to a process than a single event. Similarly, any
concept whose name contains a word loss (e.g. loss of appetite or hair loss) is more
likely to be an adverse event. The words themselves can be analysed for affixes. For
example, the prefix hypo- (low or below normal) can be used to increase the likelihood
of concepts such as hypocalcemia or orthostatic hypotension corresponding to adverse
events. Similarly, the suffix -emia (presence in the blood) can be used to identify
concepts such as cerebrovascular ischemia or hyperkalemia as strong candidates for
adverse events. Again, no prior medical knowledge is required to embed such features
into NNs, which consider inputs and outputs simultaneously to support end-to-end
learning and, hence, bypasses manual feature engineering.

3.3.6 Classification Model

The MLM task was one of the two tasks on which BERT was trained simultaneously.
The second task was the NSP task. In addition to [MASK], BERT uses two other special
tokens for fine-tuning and specific task training: (1) a classification token [CLS], which
indicates the beginning of a sequence and is commonly used for classification tasks (the
output associated with this token is used for the NSP task); and (2) a sequence delimiter
token [SEP], which indicates the end of a segment.

The embedding layer shown in Figure 3.9 illustrates the input format that BERT
expects. Each token’s vocabulary identifier is mapped to a token embedding that is
learned during training. Next, a binary vector is used to differentiate between two text
segments, typically sentences. The type of segment depends on a specific task, for
example, in QA both question, and the reference text could be appended and separated
by a special delimiter token [SEP]. In our model, we chose the anchored concept as
one segment and its context (i.e. the whole document) as another. The binary vector
was mapped to a segment embedding using a lookup table, which was learned during
training. Finally, local token positions were mapped to positional embeddings using a
lookup table, which was updated during training.

The three types of embeddings were added and fed into the pre-trained BERTBASE

model, which comprises 12 layers of transformer encoders, each having a hidden size of
768 and 12 attention heads. Each layer produces a token-specific output, which can be
used as its (contextualised) embedding. Similar to binary classification tasks described
in (Devlin et al., 2019), the final transformer output corresponding to the special [CLS]
token was taken as an aggregate problem representation, that is, pooled output, and
passed on to the classification layer after a 0.1 dropout, which was used to reduce
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Figure 3.9: Architecture based on BERT for classification of adverse events.
CLS: classification token; SEP: sequence delimiter token.
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overfitting.
The classification layer reduced the size of the pooled output from 768 to 2, which

corresponds to the log-odds (or logits) of the classification output with respect to the
question of whether the given concept was an adverse event or not. In contrast to
the network up to that point, the classification layer was not pre-trained. Instead,
the corresponding weights were learned during BERT fine-tuning. As suggested in the
study by Devlin et al. (2019), the weights were initialized using a truncated normal
distribution with mean 0 (SD 0.02). A softmax function was then applied to obtain
the probability distribution of the two classes. The loss function (softmax cross entropy
between the logits and the class labels) was optimised using the Adam optimiser with
an initial learning rate of 2 × 10–5 , which was chosen without any fine-tuning, based
on the values suggested in the study by Devlin et al. (2019).

The classification model was trained for 8 epochs. This hyperparameter was prese-
lected without any tuning. In each epoch, the training data were looped over in batches
of 8 samples. The batch size was limited by memory. All other parameters were kept
identical to those in the original BERTBASE uncased model, including the clip norm of
1.0, and linear warmup (100 warmup steps with linear decay of learning rate). The
system was implemented in TensorFlow (Abadi et al., 2016), an open-source software
library for machine learning, with a particular focus on training and inference of DNNs,
using the GeForce RTX 2080 (Nvidia Corp) graphics processing unit to accelerate DL.

3.4 Results

During preprocessing, MetaMap was used to extract adverse event candidates. MetaMap
failed to extract a total of 118 adverse events from the ground truth. Therefore, these
instances automatically constituted FNs. By looking at the concepts that MetaMap did
not correctly identify, we noticed two main patterns of errors. The first one is concepts
related to test results. For example, unsurprisingly, MetaMap did not map the phrase
”oxygen saturation 92% on 15 liters of oxygen” to the concept ”Oxygen saturation
below reference range”. The other primary source of failed extraction is inflexions or
phrase variants. For example, the phrases ”was constipated”, ”shaking”, and ”reduced
appetite” were not matched to the concepts ”constipation”, ”tremor”, and ”decrease in
appetite”, respectively. This source of error is more surprising as part of the MetaMap
algorithm is explicitly defined to generate those alternate forms and use them for match-
ing. Therefore, one could parse a lemmatised version of the text to reduce the number
of FNs. Doing so would ensure that inflexions, such as ”fatigued”, are transformed to
their base root form (in this case ”, fatigue”) and therefore are correctly identified by
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MetaMap. The remaining 1021 adverse event candidates extracted by MetaMap were
passed on to the BERT-based classification model shown in Figure 3.9. To understand
the performance of the BERT classifier, we first focused only on these 995 adverse
event candidates before amalgamating them with 118 FNs. Of the 995 candidates,
659 (66.2%) were positive instances (i.e. regarded as adverse events in the ground
truth), and 336 (33.8%) were negative instances (i.e. not regarded as adverse events in
the ground truth).

We performed 10 independent 5-fold CVs to evaluate the performance of the clas-
sification model. In other words, during each CV, 20% of the documents were held out
for evaluation, whereas the remaining 80% were used for training, and this was done 5
times in a row, each time using a different fold for evaluation. More specifically, for each
of the 10 independent runs, we did the following: The 286 unique document identifiers
were first shuffled randomly and then split into 5 folds. Remember that each document
may have contained multiple adverse event candidates, and a separate copy was created
for each candidate during preprocessing. All copies of the same document shared the
same document identifier; hence, there was no overlap of data across the folds. As the
splitting was done by document irrespective of the number of events they contained, the
actual number of samples (i.e. potential adverse events identified by MetaMap) in each
fold may vary. We looped over the folds, each time using a different fold for evaluation
and the remaining 4 folds for training. Each time, we measured precision, recall, and
F1-scores. Once each of the 5 folds was used for evaluation, we calculated the mean
values obtained for each evaluation measure. Finally, these values were averaged over
10 independent runs.

The same CV process was applied to the baseline approach. Remember that the goal
of our system was to code adverse events against the UMLS; therefore, a UMLS lookup
was inevitable. The lookup itself could be performed as the first step to identify an
adverse event candidate (and code it at the same time) and then classify it. Alternatively,
it could be performed as the last step to code an adverse event, which was first extracted
from free text. In the former approach, we were dealing with a binary classification
problem where it needed to be determined whether a given UMLS concept was an
adverse event or not. In the latter approach, we were dealing with a sequence labelling
problem where the boundaries of a token sequence that referred to an adverse event
needed to be determined. This is how Du et al. (2021) approached the extraction
of adverse events from safety reports by framing it as the NER problem and fine-
tuning BERT for this task. We reimplemented and cross-validated their approach on
our dataset to establish the baseline. Although the authors originally used BERT for
biomedical text mining (BioBERT) (Lee et al., 2020), we replaced it with BERT in our
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Parameters
Baseline approach:

NER (BERT) +
concept extraction (MetaMap)

Our approach:
concept extraction (MetaMap)

+ classification (BERT)
Precision 57.15 (0.76) 86.38 (0.57)
Recall 71.16 (0.96) 76.04 (1.21)
F1-score 63.35 (0.72) 80.80 (0.71)

Table 3.4: Evaluation results. Both the mean and the SD over a 5-fold CV
are reported (in [%]).

Figure 3.10: Distribution of prediction probabilities for all folds in a CV
experiment.

experiments to make their approach directly comparable with ours. The results achieved
by the two contrasting approaches are presented in Table 3.4.

Despite the similarities in the underlying technologies, we can observe a notable
difference in the performance of the two approaches, most prominently in terms of
precision, where we can see an improvement of approximately 30 percent points over
the baseline. A detailed analysis of this phenomenon is provided in the Discussion
section. In this section, we proceed to describe the results achieved using our own
approach.

Figure 3.10 displays the distribution of the prediction probabilities. The histogram
combines the predictions from all folds used for CV. We can observe that most prediction
probabilities are concentrated around the two extremes, 0 and 1, which suggests that
the classification model is able to make clear-cut decisions, as it does not depend on a
specific threshold.
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Figure 3.11: Receiver operating characteristic curve for each fold in a CV
experiment.

In Figure 3.11, we used receiver operating characteristic curves to illustrate the
diagnostic ability of the classification model. A separate curve was provided for each
of the 5 folds used for CV. The plot shows the TP rate versus the FP rate at each
classification threshold. The solid-coloured lines correspond to the model’s performance,
whereas the gray dashed line represents the performance of a classifier with no skill, that
is, the one that always predicts the majority class. An ideal model would result in a
curve that bows toward the coordinate (1,0). With its curve consistently lying close to
the top-left corner, our model demonstrated very good classification performance. We
summarised the receiver operating characteristic results by calculating the area under
the curve to measure the ability of our model to distinguish between the 2 classes, with
higher values indicating better performance. With an overall mean score of 87.89% (SD
1.01%) and a range between 0 and 1, our model was clearly able to distinguish between
adverse events and underlying conditions 87.79% of the time on average.

Finally, to account for the class imbalance, we also looked at the precision-recall (PR)
curve shown in Figure 3.12. Again, the solid-coloured lines correspond to our model’s
performance, whereas the gray dashed horizontal line corresponds to a model with no
skill, that is, a model whose precision is equal to the proportion of positive samples.
The PR curve of our model was relatively close to that of an ideal model, whose curve
would bow toward the coordinate (1, 1). In comparison to a no skill model, which would
achieve a PR area under the curve score of 65.33%, our model reached a high score
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Figure 3.12: Precision-recall curve for each fold in a CV experiment.

of 91.08% (SD 1.03%), demonstrating its ability to correctly classify adverse events
despite the class imbalance.

3.5 Discussion

3.5.1 Principal Findings

Previously, we provided details on calculating the interannotator agreement using pre-
cision, recall, and F1-score. When a system is evaluated against the ground truth, the
corresponding values establishthe human performance baseline, which in this case were
P = 93.70%, R = 88.36%, and F1 = 90.95%. If we compare these values against the
results provided in Table 3.4, we can observe a 10.15 percent points difference in the
F1-score. In particular, we notice that the system’s recall is 10.34 percent points lower
than its precision. There are two potential sources of type 2 errors in the system. Re-
member that the system first uses MetaMap to identify potential adverse events, which
are then classified by BERT as positive or negative. Both components can give rise to
FN results. First, any adverse event that MetaMap failed to forward to BERT would
have been automatically counted as a FN. Second, any adverse event that MetaMap
did supply to BERT for further classification could have still ended in a FN. MetaMap
is a predefined rule-based system, and as such, its performance within our system is
limited by external factors. BERT, on the other hand, has been trained for a specific
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Parameters NER (BERT) Classification (BERT)
Precision 74.84 (0.66) 86.51 (0.53)
Recall 82.37 (0.86) 89.74 (1.04)
F1-score 78.35 (0.53) 88.02 (0.44)

Table 3.5: BERT performance. Both mean and SD over 5-fold CV are
reported (in [%])

task using the dataset described here. Therefore, it is worth focusing specifically on its
classification performance.

To evaluate how well BERT learned to classify adverse events, we removed those
FNs from the ground truth that were never actually classified by BERT because of
MetaMap failing to identify them in the first place. Table 3.5 provides the CV results
for BERT’s performance alone. We observe that the classification performance alone is
much closer to the human performance baseline, lagging behind the F1-score by only
2.93 percent points.

If we now compare BERT’s classification performance given in Table 3.5 with the
overall system performance given in Table 3.4, we can see that the precision is almost
identical (86.38 vs 86.51), whereas the recall differs by 13.70 percent points (76.04 vs
89.74). Hence, we can conclude that the recall of the overall system is primarily limited
by MetaMap’s performance, which naturally raises the question of whether its use as
a preprocessing step within our system was appropriate. The baseline method uses
MetaMap as the postprocessing step; therefore, we investigated the extent of its effect
on the overall performance by singling out BERT’s performance on the NER task, which
was evaluated using the exact matching of phrases annotated in the ground truth. If
we compare the first column of Table 3.5 with the second column of Table 3.4, we can
observe that without MetaMap, BERT can certainly achieve higher recall (82.37% vs
76.04%) when it is allowed to determine the phrase boundaries on its own rather than
having them prescribed by MetaMap.

Although such an approach is unarguably more flexible, it can also have a negative
impact when the goal of the system is to code adverse events rather than only recognise
their mentions in the text. If the phrase boundaries are not correctly detected as
part of the NER task, then searching the UMLS using an incorrectly extracted phrase
may provide an incorrect code. Consider, for example, two adverse events, respiratory
tract infection (whose code in the UMLS is C0035243) and urinary tract infection
(whose code is C0042029). Suppose that a system failed to correctly identify their
boundaries, for example, by suggesting tract infection in both cases. The UMLS has no
concept referring to tract infection; therefore, MetaMap would at best suggest infection
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(whose code is C3714514) as the closest concept matching the given search term, thus
incorrectly coding both respiratory tract infection and urinary tract infection, resulting
in 2 FNs (labeled C0035243 and C0042029 in the ground truth) and 2 FPs (both labeled
C3714514 by the system). On the other hand, MetaMap can be configured to recognise
the longest phrases from relevant semantic types and, in that way, impose tighter control
of the process, reducing the number of both FPs and FNs. Although MetaMap may
limit the recall, it does play an important role in controlling the precision in our proposed
approach, as the results in Table 3.4 clearly depict. Nonetheless, MetaMap could benefit
from revising its rule-based dictionary lookup approach in light of the new advances in
text mining and,in particular, DL approaches to bring its performance in line with the
state of the art.

Focusing on BERT’s performance alone in Table 3.5, we can see that it performs
better on the binary classification task than the NER task. This is not surprising, as
the sequence labelling task is inherently more complex than binary classification. This
is because of the number of possible sequences growing exponentially with the length
of a document. In particular, the performance gap is bound to widen when training the
corresponding models on a relatively small dataset, as is the case in this study. Having
less than 300 annotated documents available, we can see from Table 3.5 that BERT’s
performance on the classification task is in the high 80s across all metrics, whereas
its performance on the NER task is in the high 70s overall. This again justifies our
choice to run BERT after MetaMap rather than the other way around. Going back
to the BERT’s classification performance provided in Table 3.5, while examining the
misclassified examples, we noticed some patterns. Some simple negation patterns were
not captured by the classifier. For example, in the document containing the sentence
“Chest X-ray showed no new lesion, no pleural effusion disorder or pneumothorax and
history of smoking,” both pleural effusion disorder and pneumothorax were misclassified
as adverse events. Similarly, in the document with the sentence “admitted with right
scaptula/back pain, no chest pain or dyspnea,” both chest pain and dyspnea were
misclassified as adverse events.

This finding is in line with the current evidence that neural models struggle to
generalise negation to out-of-sample datasets, even within the same domain (Grivas
et al., 2020). The generalisability of negation remains a challenge, as none of the
factors considered, including the annotation guidelines, the amount of data available,
and their lexical and syntactic properties, fully explained the poor performance (Wu
et al., 2014). Empirical evidence suggests that the use of domain-specific embeddings
such as BioBERT (Lee et al., 2020) may improve negation detection (Zavala et al.,
2020). BERT can also be fine-tuned to support the negation detection task in clinical
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text (Zavala et al., 2020, Lin et al., 2020); however, this requires data to be annotated
specifically for this task. Nonetheless, manual adaptation, be it rule modification or in-
domain data annotation, remains a recommended strategy for optimising performance in
clinical NLP (Wu et al., 2014). Rule-based systems for negation detection such as Con-
Text (Harkema et al., 2009) seem to transfer well within a domain (Sykes et al., 2021).
Therefore, the simplest and most effective way of addressing negation as the source
of errors in our proposed framework would be to use the ConText algorithm (Harkema
et al., 2009) to detect negated contexts and automatically exclude them from further
consideration.

Some words, such as the word decreasing, can have the opposite effect depending
on the context in which it is used. For example, decreased mobility implies a negative
effect, whereas decreased pain implies a positive effect and not an adverse event. The
system was not able to differentiate between such contexts. This could be remedied by
incorporating domain knowledge about candidate adverse events. Alternatively, with a
larger training dataset, these properties could be learned directly from the data.

Finally, the classification model struggled when a given concept was used in multiple
contexts. For example, for the concept infection in the document extract “admitted
to hospital with lower respiratory tract infection [...] not commenced chemotherapy
related infection,” the model misinterpreted the latter mention as a negated one and,
consequently, misclassified this adverse event.

3.6 Conclusion

This study established the feasibility of automated coding of adverse events described
in the narrative section of the SAE reports. This, in turn, enables statistical analysis
of adverse events and the patterns of such events so that any correlations with the use
of medicines can be estimated in a timely fashion. We demonstrated how an existing
DL architecture trained on a relatively small dataset can be used to build similar tools
rapidly. Moreover, the evaluation results show that such tools also perform with high
accuracy. This performance can be attributed to the choice of the method. BERT is
already pre-trained on a large unlabelled corpus, which allows it to be fine-tuned on
a small, labelled corpus for a specialised task. As mentioned in the introduction of
this thesis, this is particularly relevant for clinical text mining applications, where the
data annotation bottleneck has been identified as one of the key obstacles to machine
learning approaches for clinical text mining (Spasić et al., 2020).

Unfortunately, the clinical trial data are still mainly handwritten, which means that
they cannot be immediately processed in the way proposed in this study. There are
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two ways in which this issue can be addressed. We can work with the stakeholders
to change the policy on the means of collecting information on SAEs, for example, by
transcribing the notes when they reach the safety and pharmacovigilance teams in the
central trial unit, by requiring them to be typed, or by using some combination of these
two approaches.

Alternatively, we can propose to develop methods to digitise handwritten notes
automatically using tools such as Transkribus (Kahle et al., 2017), which have been
designed to digitise historical documents and allow the training of specific text recog-
nition models. This would have a great potential for impact on safety by digitising and
mining legacy data from previous trials, where some medicinal products may have al-
ready reached the market, thus exposing the population to previously overlooked safety
concerns. Currently, these issues prevent a systematic analysis of the information pro-
vided in the narrative of SAE reports, hence missing an opportunity to identify potential
safety signals.

Overall, these findings show that an effective DL strategy can indeed be developed
to recognise references to rare clinical events in unstructured text, thereby answering our
first research question (RQ1). By using SAEs as a case study for rare events, we have
managed to combine the implicit semantic knowledge captured by pre-trained LMs and
the explicit knowledge of the medical domain encapsulated in the UMLS to compensate
for term variations and the lack of data when training a DNN. This is the first step
towards supporting our main hypothesis which states that DL can be successfully applied
for clinical text mining.



Chapter 4

Word Sense Disambiguation of
Abbreviations

Abbreviations are defined in this work as short forms whose full form consists
of a single word. As mentioned in Chapter 1, the prevalence of abbreviations
in healthcare reports is one of the main characteristics of the clinical sublan-
guage (Friedman et al., 2002). Indeed, clinical texts are often written under

high time pressure and short forms offer an efficient way to write text (Dalianis, 2018).
Unfortunately, as abbreviations are often created ad hoc by healthcare professionals,
they are not typically defined in formal vocabularies. As a result, they are treated as
unknown words by NLP algorithms which leads to a loss of information (Lu et al., 2019).
Since we know that clinical texts condense information in a small number of characters
and omit anything that is not indispensable, one can assume that every sequence of
characters present in these texts is essential (Leaman et al., 2015). Similarly, if some
word is used frequently and is too important to be left out, it will likely be shortened
to speed up the reporting process. Consequently, unlocking the meaning hidden be-
hind short forms is crucial to text understanding and information extraction. However,
many abbreviations are highly ambiguous and cannot be resolved to their full form in a
straightforward way. For instance, studies by Liu et al. (2001, 2002) showed that 33%
of abbreviations in English clinical text and 81% of abbreviations contained in MED-
LINE abstracts can correspond to different words depending on the context. Because
the clinical language keeps evolving (Shao et al., 2020), dictionary-based approaches
are not sufficient to address this issue that hinders the development of DL models for
clinical text mining. Pakhomov et al. (2005) noted, for example, that the number of full
forms relating to a single abbreviation has increased in successive versions of the UMLS.
This constant evolution calls for the development of an automatic approach that can
easily adapt to new short forms. These observations bring us to our second RQ: Can an
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effective DL strategy be developed to normalise clinical text by automatically expanding
short forms. This question in turn leads us to the following RO: to develop an approach
to automatically expand abbreviations to their full form. This approach is detailed in the
remainder of this chapter. Here we deal specifically with abbreviations as short forms.
Later, in Chapter 6, we will tackle acronyms, which represent a different category of
short forms.

The work described here has been published in the paper A Deep Learning Approach
to Self-Expansion of Abbreviations Based on Morphology and Context Distance, which
was presented at the 7th International Conference on Statistical Language and Speech
Processing (SLSP) (Chopard & Spasić, 2019).

4.1 Background

In recent years, text data has become ubiquitous in many critical fields. For example, it
is nowadays standard practice for medical practitioners to write and rely on electronic
reports when taking care of patients. As narratives are an important source of infor-
mation, this growth has been accompanied by a surge in NLP applications, such as
information retrieval and topic modelling. While NLP systems have displayed stellar
performance on numerous tasks, they rely most of the time on clean and normalised
data due to the tasks’ complexity.

However, as actual text data can rarely be found in canonical form, transforming
text data into a unique standard representation—also called text normalisation—is a
key aspect of NLP pipelines. Some documents might for instance contain uncommon
tokens that cannot be directly recognised by a standard NLP system and must first be
resolved. The normalisation of short forms (e.g. contractions) is particularly critical
in any field that involves the regular and rapid writing of reports, such as aviation or
healthcare, where such forms are frequently used to speed up the writing or to ease a
repetitive task. The word underlying a short form is hidden and therefore inaccessible
to NLP applications, thus skewing their performance (Spasić, 2018). This ambiguity
inevitably leads to a loss of information which weakens the system’s understanding of
language.

Liu et al. (2001) revealed in a study conducted in 2001 that among the 163,666
short forms they retrieved from the UMLS, 33.1% of them referred to multiple full
forms. Similarly, Li et al. (2015) reported that the 379,918 short forms which could be
found on the website AcronymFinder.com had in average 12.5 corresponding full form.
Furthermore, they noted that 37 new short forms were added daily to the website.
These observations further highlight the need for an automatic method for short form
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expansion that is highly adaptable, preferably unsupervised and domain-independent.
Short forms can be divided into two categories: those that refer to a single word

(e.g. PT for patient) and those that refer to multiple words (e.g. DOB for date of
birth). (Note that, although not completely accurate from a linguistic point of view,
in the remainder of this work we will refer to the former as abbreviations and to the
latter as acronyms for the sake of simplicity.) The way abbreviations and acronyms
relate to full forms is intrinsically different, due to their distinctive nature. Furthermore,
while acronyms tend to follow pre-defined rules, new abbreviations are often created
spontaneously. Consequently, we believe that these two types of short forms should be
considered independently.

4.2 Related work

Whereas Chapter 2 provided a broad review of DL with application to clinical text mining,
this section focuses on works related to the specific topic of abbreviation expansion.

NLP applications often rely on external lexical resources to expand the short forms
prior to text analysis. However, short forms may correspond to multiple long forms (Li
et al., 2015), which implies that word sense disambiguation (WSD) is a required as
part of pre-processing. Unlike acronyms, which are often standardised within a domain,
authors often create ad hoc abbreviations, which may not be encoded in existing lexicons.

When they are included in specialised biomedical terminologies, it is has been shown
that simple techniques, such as bag-of-words, combined with majority sense prevalence
were effective in practice despite an expectation that sophisticated techniques based
on biomedical terminologies, semantic types, POS and language modelling and machine
learning approaches would be necessary (Moon et al., 2015). The ShARe/CLEF eHealth
2013 challenge (Mowery et al., 2016) created a reference standard of clinical short forms
normalised to the UMLS (Bodenreider, 2004). The challenge evaluated the accuracy of
normalising short forms compared to a majority sense baseline approach, which ranged
from 43% to 72%. In line with findings suggested in (Moon et al., 2015), a majority
sense baseline approach achieved the second-best performance. Nonetheless, machine
learning approaches to clinical abbreviation recognition and disambiguation was found to
be as effective with F1-score over 75% (Wu et al., 2016a). However, this study focused
on 1,000 most frequent abbreviations in a corpus used for evaluation, which makes it
possible to successfully translate their distribution into a classification model. This also
means that the given approach may not necessarily work with ad hoc abbreviations.
Another problem with using supervised machine learning methods for abbreviation dis-
ambiguation in clinical texts is associated with the acquisition of training data. Manually
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annotating abbreviations and their senses in a large corpus is time-consuming, labour-
intensive and error-prone. In addition, the learnt model may not be transferable across
domains, which supervised learning impractical for this particular text-mining problem.
With accuracy up to 90%, semi-supervised classification algorithms proved to be a viable
alternative for abbreviation disambiguation (Finley et al., 2016). Moreover, an F1-score
of 95% could be reached by using an unsupervised approach (Kreuzthaler et al., 2016),
which avoids the need to retrain a classification model or use bespoke feature engi-
neering, which makes the approach domain independent. It also proved to be robust
with respect to ad hoc abbreviations. Word embeddings provide an alternative way to
represent the meaning of clinical abbreviations. Three different methods for deriving
word embeddings from a large unlabelled clinical corpus have been evaluated (Xu et al.,
2015). Adding word embeddings as additional features to be used by supervised learning
methods improved their performance on the clinical abbreviation disambiguation task.

More recently, DL approaches for abbreviation expansion have been developed. For
example, Jin et al. (2019b) addressed the problem of biomedical abbreviation expan-
sion by training abbreviation-specific bidirectional LSTM classifiers. They encoded sen-
tence tokens with BioELMo representations. In contrast, Wen et al. (2020) showed
that pre-training common NN architectures (e.g. biLSTM, LSTM with attention, and
Transformer) on an abbreviation disambiguation task before fine-tuning these models
on downstream tasks improved performance on the latter. To that end, they introduced
a new biomedical dataset that was automatically generated from PubMED abstracts
and in which abbreviations had been artificially introduced through reverse substitu-
tions (Skreta et al., 2020).

All of the above mentioned systems, post-process clinical notes long after clinicians
originally created them. The results show that post-processing clinical abbreviation can-
not yet guarantee 100% accuracy in their identification and disambiguation. With this
problem in mind, a system for real-time clinical abbreviation recognition and disambigua-
tion has been implemented (Wu et al., 2015a). The system interacts with an author
during note generation asking them to verify correct abbreviation senses suggested au-
tomatically by the system. With the accuracy of 89% and the processing time ranging
from 0.630 to 1.649 milliseconds, the system incurred around 5% of total document
entry time, which demonstrated the feasibility of integrating a real-time abbreviation
recognition and disambiguation module with clinical documentation systems.
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Figure 4.1: Pipeline overview.

4.3 Methodology

Our pipeline consists of three successive steps. The first step identifies short forms
contained in a document based on a set of rules and determines the ones referring to
single words (abbreviations) rather than multiple words (acronyms) using an NN. Then,
the second step extracts, for each abbreviation, a set of full form candidates with a
Siamese NN. Finally, the third and last step of our pipeline take advantage the Word
Mover’s Distance (WMD) to disambiguate each abbreviation based on the distance
between the full form and the short form’s context words in the word embedding space.
The whole pipeline is illustrated in Figure 4.1.

4.3.1 Step 1: Abbreviation Identification

Let us assume we have a document D for which we would like to automatically resolve
all abbreviations. As mentioned above, we must initially identify all abbreviations in the
document: all short forms contained in the text are first extracted, then we discard all
acronyms.

To extract all short forms the text is first tokenized, and we gradually discard tokens
that cannot be short forms. To begin with, all tokens that are recognised as English
words are discarded. For the sake of this work, abbreviations that are identical to existing
English words—such as the short form tab for the word tablet—are assumed to always
appear immediately followed by a period so that the two together can be identified as
a single token. Indeed, in such case, the use of a full point is standard practice to mark
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abbreviations to avoid any confusion.
Secondly, all tokens containing less than 2 or more than 6 characters are rejected. An

abbreviation should consist of at least two characters as a single character is extremely
ambiguous. Moreover, since abbreviations are short per definition, we set a strict upper
limit of 6 characters. This threshold is identical to the one used in previous works on
abbreviations (Liu et al., 2001, Xu et al., 2007). This helps the system discard unknown
words that are not abbreviations (e.g. misspelled words).

Although they must be discarded eventually, locations and names are rarely part of
an English dictionary and are therefore still retained by the system at this point. To deal
with this, a NER system is applied to the original document to classify the remaining
tokens. Those that are labelled as PERSON or LOCATION are not retained any further.

After this simple processing, we obtain a list of short forms that includes both
abbreviations and acronyms. As mentioned in Chapter 1, in this work we differentiate
between abbreviations and acronyms because of their difference in nature and, in this
chapter, we develop a method tailored to abbreviations exclusively. In order to model
morphological differences between the two, we develop a DNN that learns to distinguish
between abbreviations and acronyms. Using a deep architecture rather than other rule-
based or machine learning methods has the advantage of obviating the need for any
manual features, giving more flexibility to the model to accommodate any type of short
forms.

More specifically, the DNN takes as input a sequence of characters which is first
processed by fully-connected layers for representation learning. Then, an RNN sequen-
tially reads the improved representation for structure learning. Finally, a soft-max layer
predicts whether the sequence is an abbreviation or an acronym (i.e. refers to a single
or multiple words). The architecture is displayed in Figure 4.2.

At the end of this first step, the system yields a set A of abbreviations, namely

A = {w ∈ D | w is an abbreviation}

.

4.3.2 Step 2: Full Form Candidates Identification

In the second step, a set of full form candidates Φα must be identified for each abbre-
viation α ∈ A. Based on the assumption that characters appear in the exact same
order in both forms, a simple rule-based solution could consist in searching for all words
within the document that have as a subset all the characters of contained in the abbre-
viation. However, many short forms such as xmas and x-mas for the word Christmas
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binary representation of 
each character’s ASCII 

index

Figure 4.2: NN architecture to differentiate between abbreviations and
acronyms.

contain characters that are not present in their full form. Terada et al. chose to address
this manually by not considering specific characters such as X (Terada et al., 2004).
Unfortunately, this limits the system to follow manually engineered rules. Therefore, for
maximal flexibility, we instead take advantage of a DL architecture to select full form
candidates.

We design a Siamese RNN (Mueller & Thyagarajan, 2016) to learn how full forms
relate to short forms. Its architecture is depicted in Figure 4.3. Every abbreviation α ∈ A

and every word w in the document D that is recognised as an English word are first
encoded as a sequence of characters. Then, one by one, each abbreviation is fed along
with one word to the network. The two are first processed by multiple fully-connected
layers for representation learning. Each improved representation is then fed to one of
two independent RNNs: one that processes the sequence corresponding to the short
form and one that processes the full form. Finally, the output of the two RNNs are
compared by the network which must decide whether this word could potentially be
referred to by the short form or not. If so, the word is added to the list of full form
candidates Φ for that abbreviation.

Instead of feeding only corpus words, we could feed every English word contained in
the dictionary along with each abbreviation to get a set of full-form candidates that is
more comprehensive.
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Figure 4.3: Siamese RNN to select a set of full form candidates.

4.3.3 Step 3: Abbreviation Disambiguation

In order to determine the right full form for each abbreviation α ∈ A the system must
select the best of all full form candidates Φα. We rely on the assumption that short forms
and their corresponding true full forms share a similar context in order to disambiguate
each abbreviation and find the most appropriate of all full form candidates.

To compare the context of an abbreviation and its full form candidates, we propose to
use the WMD, a measure that was developed by Kusner et al. (2015) to assess similarity
between two documents. It takes advantage of the semantic properties inherent to word
embeddings to match documents that have a similar meaning, although they consist
of very different words. First, each word i is represented by a d-dimensional word
embeddings xi. The use of pre-trained word vectors allows the model to take advantage
of the linear properties of continuous space word representations (Mikolov et al., 2013b)
without the need to train it on the chosen corpus. For each document D, the n-
dimensional normalised BOW vector is denoted as fD with entries fD

i = ci/
∑n

j=1 cj,
where ci is the number of occurrences of word i in document D, and n the vocabulary
size. Finally, let T ∈ Rn×n be the transport matrix whose entries Tij denote how much
of fD

i should travel to fD′
j , where D′ is a another document. Then the WMD minimises

the following linear optimisation problem:

min
T≥0

n∑
i,j=1

Tij∥xi − xj∥2, subject to
n∑

i=1
Tij = fD′

j ,
n∑

j=1
Tij = fD

i ∀i, j (4.1)

which is an instance of the well-studied earth mover’s distance problem for which many
efficient solutions already exist (Monge, 1781, Rubner et al., 1998, Wolsey & Nemhauser,
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Figure 4.4: WMD for abbreviation disambiguation. The minimum cumula-
tive distance between non-stop words in the context of target abbreviation
Pt and of full form candidate patient is computed.

2014, Ling & Okada, 2007, Pele & Werman, 2009).
Figure 4.4 illustrates how this measure is used to determine the full forms that

are semantically close to target short form. In this example, the abbreviation Pt
used in the sentence ”The Pt was immediately taken to the emergency room” refers
to the word patient, which can be found in the sentence ”The patient is admit-
ted at once to the hospital.”. Although the two sentences do not share a single
representative word, they are semantically very close. To minimise the cumulative
distance between the two sets of context words c1 = {admitted, at once, hospital}
and c2 = {immediately, taken, emergency room}, the words admitted and taken are
matched together, and so are the words at once and immediately, and the words hospi-
tal and emergency room, because their respective word embeddings lie close together in
the word space. Since the context words for the short form Pt have a similar meaning
as the context words for the candidate patient, the WMD between the two sentences
will be small.

For each of the abbreviations α identified in the first step, we have filtered—in
the second step—a set Φα of potential full form candidates. Let S(w) be the set
of all sentences in document D containing word w, i.e. S(w) = {s ∈ D|w ∈ s}.
We must determine the best full form candidate ϕ∗

α that abbreviation α refers to in
sentence sα. We compute for each candidate ϕ ∈ Φα the WMD between the sentence
the abbreviation appears in (i.e. sα) and each sentence containing this candidate (i.e.
S(ϕ)). The individual WMD are then summed up and averaged to yield a disambiguation
score σ(ϕ):

σ(ϕ) =
∑

s̃∈S(ϕ)

WMD(sα, s̃)
|S(ϕ)| . (4.2)

Eventually, we consider the full form with smallest WMD as being the best one, namely
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ϕ∗
α = minϕ∈Φα(σ(ϕ)).

4.4 Results and Discussion

4.4.1 Step 1: Abbreviation Identification

Our pipeline separates the abbreviation identification step into two subsequent parts:
short forms identification and abbreviation-acronym differentiation.

We first evaluate the former on discharge summaries from the 2009 i2b2 medication
challenge (Uzuner et al., 2010) that we have manually annotated to this end. We use
the python library NLTK (Bird et al., 2009) both for word tokenization and to find non-
standard English words. More specifically, we build an English dictionary that combines
all words found in the Brown, Reuters, and Words corpora. To label entities, we use
the Stanford NER (Finkel et al., 2005). We succesfully identify short forms with an
average F1-score of 62.20% with high precision (92.18%) but low recall (52.90%). The
low recall can be explained by the presence of numerous short forms that are common
enough to be part of an English vocabulary (e.g. MD, Dr., mg, cm, tel, ID) and, as
a result, are discarded by our method. Such short forms would likely be discarded if
using a different dictionary, or could easily be resolved using a standard abbreviation
dictionary. When ignoring them, recall improves drastically and our approach achieves
an average F1-score of 91.04% (Precision: 95.20%, Recall: 87.38%).

Second, the network that we developed for abbreviation-acronym differentiation is
trained and evaluated using distinct samples from the 32,048 unique short forms of
the CARD framework (Wu et al., 2016a). The network takes as input a short form
xi and outputs a probability score yi ∈ [0, 1], where 0 denotes that the short form
refers to multiple words (acronyms) and 1 denotes that the short form refers to a single
word (abbreviation). Each short form is represented as a 6 × 8 matrix where each row
corresponds to the binary representation of one character based on its Unicode code
point—6 being the highest number of characters in a sequence. Standard characters
have code point value at most 256, which allows a compact representation in only 8
dimensions. As a comparison, a one-hot encoding would require around 100 dimensions,
depending on the actual number of characters in the corpus. Since short forms can
sometimes refer to either an abbreviation or an acronym depending on the context,
we assign each of them a label between 0 and 1 which accounts for this versatility.
More precisely, the label is computed as a weighted sum of the nature of all possible
expansions:

yi =
∑

Abb(xi)∑
Abb(xi) + ∑

Acr(xi)
, (4.3)
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where Abb(xi) and Acr(xi) are the sets of full forms of xi that are single word and
multiple words respectively. The deep architecture consists of 4 fully connected layers
(with 16, 32, 16 and 8 notes respectively) for representation learning followed by an
RNN consisting of an LSTM cell with 48 units for morphology learning. Finally, a
softmax layer outputs the probability score. The network is optimised using the Adam
optimiser (Kingma & Ba, 2015) to minimise the cross-entropy loss. The network is
trained on 80% of the data, while the test set, which is used to determine the final out-of-
sample performance, is composed of 20% of the short forms. Due to the high imbalance
of the dataset (only 19.15% of them are abbreviations), we oversample samples from
this smaller class so that there are roughly the same number of examples in both classes.
Since the goal is to retrieve all abbreviations, recall is the most important measure for
this task. On test set we achieve a recall of 72% (F1-score of 59%, Precision 49%).
These scores could be improved by training the network on a larger dataset. However,
we can easily set a minimum threshold for disambiguation, which will eventually reject
short forms that do not have any full form with context close enough therefore discarding
any remaining acronyms.

4.4.2 Step 2: Full Form Candidates Identification

To evaluate the second step of our pipeline, we use the 31,922 abbreviations from the
CARD dataset. We assign the label yi = 1 to each pair xi = (shortform, fullform)
contained in the dataset. Negative examples are created by randomly selecting a short
form from the dataset and pairing it with another randomly selected full form. If the
pair is not already in the dataset, we assign it the label yi = 0 and add it to the set of
samples. We repeat this process until we have as many negative as positive samples.
We train the Siamese RNN on 70% of the data whereas 30% are left out for testing.
The deep architecture consists of 6 fully-connected layers (with 16, 32, 64, 32, 16, and
8 nodes respectively) for representation learning followed by two independent RNN—
one for the abbreviation, one for the candidate. Each RNN consists of an LSTM cell
with 64 units. The output of each network are then compared by stacking them and
feeding them to 3 successive fully-connected layers consisting of 36, 18, and 2 nodes
respectively. Prediction is achieved through a final softmax layer. We use dropout to
prevent overfitting.

For comparison we implement the simple rule-based baseline suggested by Terada
et al. (2004). It is based on the assumptions that the short form always contain less
characters than the full form and the characters contained in the short form is a subset
in the same order of the characters contained in a potential full form candidate (except
for ”X”, ”-”, ”/”). The result of the comparison is displayed in Table 4.1. Our approach
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Table 4.1: Comparison between our DL-based full form selection approach
against a rule-based baseline [%].

Method Prec Rec F1
Baseline (Terada et al., 2004) 90.12 64.53 75.21
Ours (Siamese RNN) 75.21 84.04 78.57

achieves a slightly higher F1-score than the baseline, but with much higher recall. Once
again, recall is the most important measure as it is crucial to select the true full form
as part of the candidates, whereas FPs will be naturally dealt with in the final step.

The network handles around 5’000 samples per second for inference, which means
that it needs 8 seconds for a corpus of 40’000 words and less than 40s for the entire
Oxford English dictionary (i.e. 171’476 words).

4.4.3 Step 3: Abbreviation Disambiguation

Due to the lack of well-established benchmarks for abbreviation disambiguation, we
evaluate our approach on a subset of the MSH WSD dataset, which mostly contains
acronyms. We believe that although acronyms and abbreviations have different morpho-
logical properties, disambiguation is similar. Hence we here reproduce an experiment
first conducted by Prokofyev et al. (2013) and then later replicated by Li et al. (2015)
and Ciosici et al. (2019) respectively. The subset of MSH WSD—a dataset of abstracts
from the biomedical domain created by Jimeno-Yepes et al. (2011)—selected by Li et
al. consists of 11’272 abstracts which contain a total of 69 ambiguous short forms each
having in average 2.1 full form candidates.

To assess the performance of our approach, we compare it with the same methods
as Ciosici et al. (2019). First, a simple baseline called FREQUENCY which, as its name
implies, simply selects the most frequent full-form candidate. Clearly, such an approach
completely disregards any context information and relies purely on corpus statistics for
determining the best candidate. Second, the SBE model, a word embedding-based
model developed by Li et al. (2015), which first computes word embeddings of abbre-
viations by summing the word embeddings of the words in a window around the abbre-
viation before disambiguating between full form candidates using the cosine similarity.
Similarly, Distr. Sim. is an approach introduced by Charbonnier and Wartena (Char-
bonnier & Wartena, 2018), which relies on word embeddings to build weighted average
vectors of the context that are compared using the cosine similarity. Finally, the last
benchmark we compare with is the Unsupervised Abbreviation Disambiguation (UAD)
method developed by Ciosici et al. (2019), which deals with disambiguation as a word



CHAPTER 4. WORD SENSE DISAMBIGUATION OF ABBREVIATIONS 85

Table 4.2: Comparison between our disambiguation approach against dif-
ferent benchmarks (Surrounding Based Embedding (SBE) (Li et al., 2015),
Distr. Sim. (Charbonnier & Wartena, 2018), UAD (Ciosici et al., 2019))
on a subset of the MSH WSD dataset [%].

Weighted Macro
Method Acc Prec Rec F1 Prec Rec F1

FREQUENCY 54.14 30.04 54.14 38.46 25.55 46.34 32.79
SBE 82.48 83.07 82.48 82.53 82.18 82.16 81.87
Distr. Sim. 80.19 80.87 80.19 80.25 79.90 80.12 79.71
UAD 90.62 92.28 90.62 90.66 91.35 91.36 90.59
ours (WMD) 96.36 96.38 96.36 96.36 95.65 96.97 96.27

prediction task. For more details on all benchmarks’ implementation, please refer to the
work of Ciosici et al. (2019).

We use 300-dimensional word embeddings pre-trained on a subset of the Google
News corpus, which contains about 100 billion words. Our scores are computed as an
average of a 3-fold CV, similar to the implementation of the benchmarks. Table 4.2
illustrates the remarkable performance of the WMD compared to other benchmarks
for short-form disambiguation. The WMD improves the score on every metric by a
margin of at least 4.1%. It is worth noticing our approach, although it exhibits great
performance, comes with an important drawback. It needs to rely on a corpus that
contains sentences that include the long-forms. In practice, this might not always be
easy to acquire, especially when the long forms are domain-specific.

4.4.4 Discussion

As our method consists of three independent steps, its performance is always bounded
by the previous step. Here, the step with the lowest performance is the second one,
which involves identifying full-form candidates. Since we want to ensure we extract the
true candidate, the important measure in this step is recall, which is 84.04%. In order to
boost recall further, one could lower the threshold for selecting candidates. A drawback
is that the more candidates we need to process in the third step, the slower it is.

In general, because our method is not end-to-end, each step can be designed in
a specific way to address the difficulty of this step. However, it is known that devel-
oping end-to-end solutions that limit human input is often powerful and one of the
reasons behind the remarkable success of deep learning. Thus, it would be interesting
to investigate such approaches for comparison.
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4.5 Conclusion

In this study, we introduced a domain-independent approach to matching abbreviations
to their full form as part of text normalisation. Unlike the vast majority of existing
approaches to abbreviation expansion, which use an external lexicon in order to interpret
an abbreviation and match it to its full form, we extract full forms from the corpus itself.
This approach is based on the assumption that a full form is actually used elsewhere in
the corpus. The likelihood of such an event increases with the size of a corpus, which
makes the approach most suitable for large-scale text mining applications. However,
since our Siamese RNN is able to select full-form candidates from the whole English
dictionary in a short amount of time, one could use publicly available resources (such as
Wikipedia) to find context for the candidates that are not part of the corpus. Thus, our
approach is still very relevant for low-data regimes as often found in clinical settings.

An advantage of using a corpus instead of a lexicon, which is typically domain-
specific, is that it makes our approach domain-independent. It also avoids the need for
maintaining an external lexicon while making our approach robust with respect to ad hoc
abbreviations. However, one may argue that our approach still uses an external lexicon.
Indeed, we do use an external lexicon to train an RNN to model the morphological
differences between acronyms and abbreviations. Assuming that these morphological
properties are universal across the language rather than specific to a domain, then once
trained on any representative lexicon, the model itself is readily reusable across domains
and does not require to be re-trained. The same can be said about the second RNN,
which models the morphological principles of word abbreviation. Once trained on any
abbreviation lexicon, the model can be used to expand abbreviations that were not
present in the training data (i.e. the lexicon). Lastly, the DL approach taken avoids the
need for manual feature engineering, while the novel use of existing lexicons avoids the
need for manual annotation of training data.

Finally, the use of DL to constrain the search space of possible matches based on
the morphological structure of both abbreviations and full forms paves the way for
more sophisticated approaches that can be utilised to analyse their contexts. We used
the WMD to leverage pre-trained word embeddings to measure semantic compatibility
between abbreviations and full forms based on the assumption that both are used in
similar contexts.

We have evaluated the different steps of our approach and achieved F1-scores of
91.04%, 78.57% and 96.36%, respectively. These results are in line with those reported
by other state-of-the-art methods.
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In this chapter, we have demonstrated the feasibility of developing an approach
to automatically expand abbreviations to their full form (RO2/a). This provides a
partial answer to our second research question (RQ2). Indeed, as touched upon earlier,
abbreviations are not the only kind of short forms prevalent in clinical text data. Clinical
reports also contain acronyms, short forms that refer to multi-word phrases. Therefore,
acronyms require the extraction of sequences of words, which adds another layer of
complexity to the problem of finding the corresponding full form. For this reason, we
handled the expansion of the two kinds of short forms as separate problems. In the next
chapter, we will turn our attention to the problem of automatic acronym expansion in
our quest to address the second research question (RQ2): Can an effective DL strategy
be developed to normalise clinical text by automatically expanding short forms?.



Chapter 5

Word Sense Disambiguation of
Global Acronyms

Acronyms represent another category of short forms prevalent in the clinical
sublanguage. Like abbreviations, they make the reporting task more ef-
ficient (Dalianis, 2018). The main difference between abbreviations and
acronyms is the number of words in their long-forms. Whereas the former

refer to a single word, the latter correspond to more than one word. The actual number
of words in the acronym long forms may vary, which exacerbates the problem of finding
long forms. Not all acronyms are initialisms, in which each character corresponds to
the initial letter of a word, e.g. High Blood Pressure (HBP). Several characters from an
acronym may be mapped to a single word, often indicating the initial letter of a mor-
pheme, e.g. AtheroSclerotic CardioVascular Disease (ASCVD). In addition, some words
such as determiners and prepositions are often ignored when constructing an acronym,
e.g. Activities of Daily Living (ADL), but not always, e.g. Shortness Of Breath (SOB).
As a result, it is impossible to determine the length of an acronym’s long form based on
the number of characters in the acronym itself. In contrast, abbreviations—which we
tackled in the previous chapter—are contractions of single words that are often created
ad hoc by removing some letters from words.

This crucial difference between abbreviations and acronyms motivates the develop-
ment of a different approach for expanding the latter. Nonetheless, such an approach
still addresses the same RQ about the feasibility of a DL strategy for normalising short
forms in clinical texts. The problem of acronym expansion in clinical texts is more chal-
lenging than the same problem in other types of narratives, e.g. scientific documents.
Indeed, scientific writing conventions prescribe that acronyms should be explicitly de-
fined when used for the first time in a text by writing the full form followed by the
acronym—written in uppercase—within parentheses (Doumont et al., 2010). By con-
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trast, global acronyms, such as the ones used in clinical narratives, appear in documents
without their definitions. Global acronyms are widely accepted as preferred synonyms
of predominant domain-specific concepts, e.g. Deoxyribonucleic Acid (DNA) (Yu et al.,
2002). As such, they are described in relevant domain dictionaries (Stedman, 2005, Bo-
denreider, 2004). However, shorter acronyms tend to be ambiguous (Andersson et al.,
2017, Moon et al., 2014) and, therefore, they may have multiple entries in such dic-
tionaries. For example, Diabetes Mellitus, Dystrophia Myotonica, Doctor of Medicine
and Drosophila Melanogaster all share the same acronym, DM. Automatic recognition
of global acronyms usually entails mapping to a correct entry in an external dictionary,
comparable to a WSD problem Agirre & Stevenson (2007). The novelty of our ap-
proach to this task is an attempt to forego an external dictionary altogether in order to
make the approach more portable. The automatic expansion of global acronyms comes
with two main challenges: the ambiguity of acronyms and a lack of annotated data for
training disambiguation models. As before, this lack of training data is associated with
privacy safeguards and the annotation bottleneck. To address the problem of suitable
training data, we suggest a method of simulating the usage of clinical acronyms using
biomedical abstracts. We use this method to create a large annotated dataset, which we
then take advantage of to train a DL model for the disambiguation of global acronyms.

Some aspects of the work presented in this chapter have been published in the jour-
nal Bioinformatics under the following titles (Filimonov et al., 2022): Simulation and
annotation of global acronyms. This work was a joint effort of the co-authors with
contributions from Dr Maxim Filimonov who implemented the web-based acronym sim-
ulation platform and Daphné Chopard who solely developed the acronym disambiguation
module. In the given publication, the module was used as a case study to practically
demonstrate the utility of the acronym simulation system for the purpose of training su-
pervised machine learning approaches to acronym disambiguation. Hence, the article’s
focus was on the performance of acronym disambiguation. In this chapter we focus on
the methodological aspects of the proposed acronym disambiguation approach.

5.1 Background

Acronyms are systematic abbreviations of frequently mentioned words and phrases.
Their formation follows special capitalisation and blending patterns (Fandrych, 2008).
They are introduced primarily to support the efficiency of written communication in
terms of time and space. From the reading perspective, familiarity (prior experience
processing a given stimulus), rather than orthographic regularity, plays a critical role in
rapidly translating an acronym from percept to meaning (Laszlo & Federmeier, 2007).
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Therefore, the use of globally accepted acronyms should pose no major difficulties in
specialist communication between domain experts. Indeed, clinical narratives feature
extensive use of acronyms, which, unlike their counterparts in formal scientific writing,
are not defined explicitly in documents that refer to them. However, when the con-
tent of such documents needs to be analysed automatically, their use can hinder the
performance of NLP algorithms (Moon et al., 2014, Spasić et al., 2019). For example,
when retrieving information from EHRs, the use of acronyms (e.g. ‘HIV’) obscures the
corresponding phrase (e.g. ‘human immunodeficiency virus’) whose words (e.g. ‘virus’)
cannot be indexed by a search engine and, hence, cannot be retrieved. On the other
hand, the highly polysemous nature of acronyms (e.g. ‘MRS’ can be interpreted as
‘magnetic resonance spectroscopy’, ‘Melkersson-Rosenthal syndrome’ or a courtesy title
prefixed to the name of a married woman) may result in retrieval of irrelevant docu-
ments. These problems can be resolved by automatically mapping acronyms to correct
interpretation in an external dictionary (Bodenreider, 2004) based on their context of
use. This may be viewed as a WSD problem (Agirre & Stevenson, 2007), which is
commonly approached by supervised machine learning. Supervised methods are trained
using a set of manually annotated examples. Among other factors, the performance of
machine learning models and the significance of test results both depend on the size of
the dataset used for training and testing, respectively. A recent systematic review of
clinical text data in machine learning revealed the data annotation bottleneck as one of
the key obstacles to machine learning approaches to clinical NLP (Spasić et al., 2020).
The need to preserve patient privacy further narrows down this bottleneck by removing
crowdsourcing as a viable option for annotation. For synthetic data, crowdsourcing re-
mains an option, but it becomes an expensive commodity due to the medical expertise
required.

5.2 Methods

We present, in this chapter, a method for the automatic expansion of acronyms in
clinical narratives. A high-level overview of the approach is provided in Figure 5.1.

To eliminate the manual data annotation bottleneck, we look at the possibility of
generating an annotated dataset automatically. More specifically, we suggest a novel
application of existing NLP methods on scientific abstracts to simulate the clinical
narrative style of acronym usage and annotate them automatically with the correct
senses. This, in turn, enables the creation of large datasets that can be used to train
supervised approaches to WSD of biomedical acronyms.

We use this method to generate a large training dataset to train a DL model for
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Figure 5.1: Flowchart of our approach to acronym disambiguation.
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acronym disambiguation. More precisely, we fine-tune a pre-trained BERT model to
disambiguate an acronym occurrence based on its context. The sole function of the
model is the binary classification of a candidate pair linking an acronym and a candidate
long form. Its output is positive if they are compatible based on the context of the short
form and negative otherwise.

To fully automate the expansion of acronyms, we need a method to extract such
pairs from the text. We retrieve potential acronyms using a simple heuristic based
on their orthographic properties. Independently, we extract multi-word terms from
text based on their linguistic and statistical properties using an existing method called
FlexiTerm (Spasić et al., 2013).

Having retrieved both acronyms and multi-word terms, they are matched using their
internal properties. In a nutshell, the characters from an acronym are aligned against
each term to select a list of potential long forms. All candidate pairs of acronyms and
their potential long forms are then disambiguated using the previously trained DL model
based on the context of the sentence in which the acronym is mentioned. The final
result is a lexicon of acronyms mapped to their senses. Speaking of lexicons, we would
like to emphasise the fact that the method itself does not rely on any external lexicons.
In that aspect, our method departs from the traditional approaches, thus providing a
novel solution to the problem of expansion of clinical acronyms.

The following sections provide further details about each stage of the proposed
algorithm:

1. Simulation and annotation of global acronyms

2. Disambiguation of global acronyms

3. Expansion of global acronyms

5.3 Simulation and Annotation of Global Acronyms

The prevalence of acronyms in biomedical domains (Liu et al., 2002) gave rise to the
proliferation of methods that extract acronym definitions from texts. Most of these
methods focus on biomedical literature and have been evaluated on abstracts (Ao &
Takagi, 2005, Chang et al., 2002, Gaudan et al., 2005, Liu & Friedman, 2002, Okazaki
& Ananiadou, 2006, Pustejovsky et al., 2001, Schwartz & Hearst, 2002, Sohn et al.,
2008, Wren & Garner, 2002, Yu et al., 2003, 2007). They rely on scientific writing
conventions, which prescribe that all acronyms need to be defined the first time they
are mentioned in a document by specifying the full form followed by the acronym, written
within parentheses in uppercase. These conventions are modelled by pattern-matching
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Figure 5.2: System design for dataset creation.

rules to identify potential acronym definitions followed by heuristic alignment of the
acronym against its full form. The Schwartz-Hearst algorithm for identifying acronyms
by Schwartz & Hearst (2002), which performs at 96% precision and 82% recall, is by far
the most referenced method of its kind. It can be embedded easily into NLP algorithms
to support more complex tasks, e.g. multi-word term recognition (Spasić, 2018, 2021).
Similarly, it forms the backbone of the system described here (Figure 5.2).

As a first step to the simulation of global acronyms, we apply the Schwartz-Hearst al-
gorithm to recognise acronym definitions in scientific abstracts. As a result, an acronym
is linked to its full form, i.e. sense. To artificially simulate the clinical narrative style
of acronym usage, we need to remove these definitions. More precisely, we use the
definitions to re-write the corresponding document using either an acronym or its full
form consistently throughout the document. As a result, an acronym will never occur
alongside its long form within the same document. Therefore, physical proximity can
no longer be used as a feature to link acronyms to their long form. This characteristic,
in turn, creates an opportunity to learn how to link global acronyms to their long forms
based solely on their morphology and the context in which they are used.

The training dataset for this task is created as follows. Given a document, the
acronym simulation system first chooses between an acronym and its full form randomly
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and then replaces all occurrences of the chosen item with its counterpart. Whenever
the full form is removed from the text, it is retained as the sense annotation and can,
therefore, be used to train machine learning approaches to WSD. By repeating this
process on many documents, a large training dataset can be created automatically.

The above-described system has been implemented as a web-based application. The
main source of data is MEDLINE, a bibliographic database of scientific articles covering
the fields relevant to clinical applications, including medicine, nursing, pharmacy, den-
tistry and healthcare (MEDLINE, 2021). The choice of this particular database ensures
that there will be a large lexical overlap between the training data and clinical narratives.

MEDLINE is publicly available online and provides free access to the abstracts of the
articles it indexes. These abstracts are used as free-text documents to assemble a corpus
(Figure 5.2) whose topical coverage is constrained by the search query. This constraint
fosters the ”one sense per discourse” hypothesis (Gale et al., 1992). For example, in
a corpus retrieved using the search terms ‘knee’ and ‘MRI’, it is reasonable to assume
that any mention of the acronym ‘ACL’ would have a single meaning, which would be
that of ‘anterior cruciate ligament’. This assumption is in line with expectations from a
thematic corpus of clinical narratives. For example, a corpus of knee MRI reports would
be expected to uphold a ”single sense per discourse” hypothesis.

The search is performed using PubMed (2021), a search engine designed specifically
to retrieve information from MEDLINE. A search query, which follows PubMed’s syntax
to combine field names, MeSH terms, keywords and Boolean operators, is obtained
from a user using the front-end of our web-based application. It is then passed onto
PubMed using its API to retrieve the corresponding documents. The API limits the
number of results returned to 500 per query, so the application may take some time
to complete the search in multiple batches. To prevent unnecessary processing and to
save time, users have the option to limit the number of results themselves depending
on their needs.

Once retrieved, all documents are processed as described in Figure 5.2. In addition,
all long forms are used to search the UMLS (2021) to obtain their unique concept
identifier. This helps unify different long forms of the same acronym. For example, if
‘DM2’ is linked to ‘diabetes mellitus type 2’, ‘diabetes mellitus type II’ and ‘type two
diabetes mellitus’, then the corresponding sense will be the same as all three long forms
have the same concept identifier, C0011860. The UMLS is searched using its own API,
which has a rate limit of 20 requests per second per IP address. Consequently, the web
application may take some time to process all the long forms.

All information is managed in a MongoDB database. Once the corpus has been
processed, it can be downloaded together with the sense inventory in a simple JSON
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format, ready to be used to train an acronym disambiguation system.
The code for the simulation of global acronyms is made publicly available1.
Although MEDLINE offers a convenient source of data for simulating global acronyms,

it comes with the drawback of consisting of scientific writings. Therefore, we will inves-
tigate in Section 5.5 how well the method developed in the next section (5.4) works on
clinical notes since, as underlined in Chapter 2, both data sources have very different
properties.

5.4 Disambiguation of Global Acronyms

To collect abstracts relevant to clinical applications, we create a PubMed query using
the keyword ‘clinical’ and the suffix ‘logy’ to refer to various clinical domains (e.g.
gastroenterology) while excluding certain keywords (e.g. biology). All abstracts are
retrieved and annotated automatically by the system. All non-ambiguous acronyms, i.e.
those mapped to a single long form uniquely identified in the UMLS, are discarded,
leaving a total of 963 ambiguous acronyms with a mean of 4.09 potential long forms
per acronym (minimum 2, maximum 27, median 3).

Using the above training data, we develop a system for global acronym disambigua-
tion. The model is described in this section. We formulate the problem of acronym
disambiguation as that of binary classification: given an acronym in its context and
a potential expansion candidate, the model determines whether or not the candidate
corresponds to the true full form. In practice, acronyms can be found in a text using
an NER model trained to that effect or simple rules as suggested in Chapter 4. Below
we discuss an approach for finding multi-term expansion candidates.

As we choose to tackle a binary classification task, we must compile both posi-
tive samples—i.e. where the expansion candidate is the true expansion—and negative
samples—i.e. when it is not—to obtain a suitable training dataset. Using the simulated
data detailed above, we proceed as follows. First, we extract every sentence containing
an acronym from the set of all retrieved abstracts. This first step is straightforward as
acronyms are indicated by a tag in the simulated data. We save each sentence along
with the acronym and its true long form. Then, we loop through these sentences to
extract a dictionary that contains for each unique acronym a list of all true expansion
candidates. Similar to acronyms, true expansion candidates are easily extracted from
the simulated data as they are saved along with the corresponding short forms. Af-
terwards, for each sentence saved, we create two samples: a positive example which
corresponds to the original triplet (sentence, acronym, true long form) and a negative

1https://github.com/ispasic/acronimity
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example, where the true long form is replaced at random by one of the other expansion
candidates according to the dictionary created in the previous step. By proceeding in
this manner, we obtain a balanced dataset which consists of as many positive examples
as negative ones.

As mentioned in Chapter 2, in order to get a trustworthy estimate of the performance
of a system it is important to set aside a fraction of the data—a test set—prior to
doing any kind of analysis or training. Similarly, it is often beneficial to hold back
another portion of the data—a validation set—to get an unbiased evaluation of a model
fit throughout its development, including estimating a good set of hyperparameters.
Consequently, for each of the 963 ambiguous acronyms, a total of 1000 samples (or
10% if less than 10’000 samples are available) are drawn out randomly and reserved
for validation. We repeat this process a second time to obtain a test set. A total of
16’130’782 remaining samples are retained for training. Separating the dataset with
respect to each acronym helps ensure that each acronym in the test dataset is seen
during training prior to inference.

Next, the disambiguation of an acronym against the potential long forms is per-
formed using a transformer-based architecture similar to that of Huang et al. (2019c).
In that work, the classifier version of BERT (Devlin et al., 2019)—which can be used to
model the relationship of a pair of text sequences—is fine-tuned for WSD. More specif-
ically, the model is fed two sequences: (i) a word within its context and (ii) that word
followed by one of its definitions. The network is trained to determine whether or not
the definition in the second sequence fits in the context of the first sentence. Because
short form disambiguation is a special case of WSD, we draw on this idea for developing
our classifier. Similar to Huang et al. (2019c) we fine-tune BERT but, in our case, we
are modelling a relationship between (i) a sentence that contains an acronym and (ii)
the acronym itself together with its potential long form. The network is illustrated in
Figure 5.3. It uses the BERTBASE uncased model for classification and the implemen-
tation from HuggingFace. The network was pre-trained on BookCorpus and English
Wikipedia. Like the original paper, the network is fine-tuned with the Adam optimiser
with a linear warmup. A gradient clipping of 1.0 is used to prevent the gradients from
exploding.

It is worth noting that a similar strategy was developed by Pan et al. (2021) as the
winning solution for the second SDU@AAAI-21 shared task on acronym disambigua-
tion in English scientific papers (Veyseh et al., 2021). In their approach, the authors
suggested using the long form as a first sequence and the acronym within its context
as the second sequence. In order to single out the acronym and directing the model’s
attention to it, they wrapped the short form using two special tokens (<start> and
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ART was restarted 
promptly

ART : antiretroviral 
therapy

A: An acronym in its context
B: The acronym : an 
expansion candidate

art promptly art therapy

Eart Epromptly Eart Etherapy

E4 E5 E6 E9 E10

Figure 5.3: Diagram of BERT-based architecture for acronym disambigua-
tion.
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Table 5.1: Comparison between our transformer-based classifier against a
näıve frequency baseline [%].

Method Acc Prec Rec F1
Frequency baseline 64.96 69.15 54.02 60.65
Ours (BERT classifier) 94.62 94.45 94.89 94.67

<end>). In order to find the best candidate at inference time, one can select the
expansion candidate that was assigned the highest probability.

We train the transformer-based classifier to recognise the correct long form and eval-
uate it on the test dataset. Results can be found in Table 5.1. The accuracy, precision,
recall, and F1 score achieved are 94.62%, 94.45%, 94.89% and 94.67%, respectively. To
get a better sense of these results, we compare this performance to that of a näıve base-
line classifier. This benchmark—which is based on the most frequently occurring long
form—achieves accuracy, precision, recall, and F1 score of 64.96%, 69.15%, 54.02%
and 60.65%, respectively. These results show that the performance achieved by our
classifier is not an artefact of the acronym distribution in the dataset. On the contrary,
our model outperforms the frequency approach by at least 0.253, which shows that it
successfully identified patterns for acronym disambiguation.

The proposed method is easy and efficient. In addition, it does not rely on external
resources for learning to find the best expansion candidate. Its main drawback comes
from its supervised training. While nothing prevents the model from being fed at
inference short forms and long forms that were not seen during training, one can expect
that the model will not be able to correctly classify them if these were not present in
the training set. Indeed, the model does not take into account the context of long
forms. In theory, as we have introduced, at the beginning of this chapter, a method
for simulating clinical acronyms from biomedical abstracts, one could use as many of
these data to train a model to make sure that every short form and long form has been
seen prior. In practice, however, it might be computationally too expensive to train a
model with such a large number of samples. The potential lack of generalisation to
new short form and long form pairs will be examined more thoroughly in Section 5.5
below. In comparison, the disambiguation method based on WMD that was introduced
in Chapter 4 is fully unsupervised and relies on the context of long forms. Yet, because
of that, it often requires external resources in order to get the necessary sentences that
contain long forms.
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5.5 Expansion of Global Acronyms

The purpose of this section is twofold. First, it aims to demonstrate the effectiveness
of the acronym disambiguation module trained on a corpus of biomedical abstracts
using a corpus of clinical narratives. Second, it extends the functionality of acronym
disambiguation to include the extraction of potential acronyms and the corresponding
long-form candidates automatically from a given corpus. To assemble a corpus of
clinical narratives, we use MIMIC-III. This large, freely available database comprises de-
identified health-related data associated with over forty thousand patients who stayed
in critical care units of the Beth Israel Deaconess Medical Center between 2001 and
2012 (Goldberger et al., 2000). The choice of a subset of these data was motivated
by the availability of local expertise needed to interpret the results. Specifically, we
had easy access to the team who developed the TRAK ontology (Button et al., 2013),
which defines standard care for the rehabilitation of knee conditions, and who previously
applied this ontology to support text mining of knee radiology reports (Spasić et al.,
2015). We identified 2’609 knee radiology reports in MIMIC-III. For each report, we
extracted its main body. Section titles were pinpointed using a set of simple regular
expressions and removed from further consideration. The main reason for discarding
section headings was the subsequent recognition of potential acronyms. Namely, both
are written mainly using uppercase characters. To recognise potential acronyms, we
used a simple heuristic, which extracts tokens that satisfy the following conditions:

1. The length of the token is at least 2 and at most 10 characters.

2. The token has to be tagged as a noun.

3. The first character of the token has to be a capital letter.

4. The number of letters has to be greater than the number of digits.

5. The number of uppercase letters has to be greater than the number of lowercase
letters.

6. The token has to occur at least 10 times in the corpus.

Using this heuristic, we extracted a total of 26 potential acronyms, all of which were
coincidentally uppercased. The full list of these acronyms, together with their inter-
pretation, is provided in Table 5.2. LF is a special token used in MIMIC-III to indicate
missing information that had been removed to anonymise the data. Nonetheless, it is
retained as a potential acronym to really challenge the disambiguation model.
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Acronym True Long Form
ACL Anterior Cruciate Ligament
AM Ante Meridiem
AML Angiomyolipoma
AP Anteroposterior
BKA Below Knee Amputation
CPPD Calcium Pyrophosphate Deposition
CT Computed Tomography
DJD Degenerative Joint Disease
IV Intravenous
LCL Lateral Collateral Ligament
LF N/A
MCL Medial Collateral Ligament
MR Magnetic Resonance
MRI Magnetic Resonance Imaging
MVA Motor Vehicle Accident
MVC Motor Vehicle Collision
OA Osteoarthritis
OR Operating Room
ORIF Open Reduction Internal Fixation
PCL Posterior Cruciate Ligament
PD Posterior Duplication
PM Post Meridiem
SI Sacroiliac
STIR Short Tau Inversion Recovery
TKA Total Knee Arthroplasty
TKR Total Knee Replacement

Table 5.2: List of acronyms and their correct full form.
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As we mentioned before, in this project, we define acronyms as short forms of multi-
word terms. As seen in Table 5.2, three of the acronyms extracted in the previous
step are short forms for a single word, e.g. osteoarthritis (OA). Again, this puts the
disambiguation module to the test, as we want to establish whether the acronym would
be incorrectly matched to another multi-word term. To find potential long forms for the
given acronyms, we applied a method called FlexiTerm, which was originally developed
to recognise multi-word terms (Spasić et al., 2013). Even though it was subsequently
extended to recognise acronyms as multi-word terms (Spasić, 2018), we did not use
this option in order to test acronym disambiguation with our model. The list of multi-
word terms was obtained using the latest implementation of FlexiTerm (Spasić, 2021).
It consisted of 2,079 multi-word terms, each linked to multiple variants (e.g. plural,
hyphenation, etc.). Potential acronyms were matched to multi-word terms using a
simple heuristic:

1. Both the acronym and the multi-word term have to start with the same letter.

2. All characters from the acronym have to occur in the same order within the
multi-word term.

3. The acronym cannot occur as a token within the long form.

4. The last character from the acronym has to occur in the last token of the multi-
word term.

5. The Damerau–Levenshtein distance between the acronym and the initialism con-
structed out of the multi-word term is less than 2.

The matching procedure was deliberately loose so as to extract as many potential
long forms in order to test the disambiguation model. As a result, each acronym was
mapped to 4.19 multi-word terms with a standard deviation of 2.86 (see Figure 5.4 for
distribution).

To be able to disambiguate an acronym, we need its context of use. Therefore,
for each acronym, we extracted a list of all sentences that mention that acronym.
Each candidate long form of a given acronym was then classified against each of its
sentences. In practical terms, a sentence represents the first sequence that is fed into the
BERT-based disambiguation module as described in the previous section. The second
sequence consists of the acronym followed by a colon and the long-form candidate. To
evaluate the disambiguation module on clinical data, each pair was labelled as either
true or false depending on whether the long form was correct or not in accordance with
the gold standard provided in Table 5.2. The ground truth was created by manually
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Figure 5.4: Histogram of number of expansion candidates per acronym.

labelling multi-word terms suggested as long forms by comparing their meaning against
the interpretation given in Table 5.2. The corpus-specific ground truth is provided in
Table 5.3. Note that some acronyms have no corresponding long forms in the ground
truth. For example, SI is not considered an acronym as we assume that an acronym
always corresponds to a multi-word term. Even when an acronym corresponds to a
multi-word term, it may not occur in the corpus, in which case it will have no long form
in the ground truth. This is one of the drawbacks of using Flexiterm for identifying
multi-word candidate terms, the full-form candidate has to be present in the corpus,
which might not always be the case. To alleviate this issue, one could rely on external
resources, preferably from the same domain, to extract candidates.

Next, the unlabeled data were passed through the BERT-based disambiguation
model to classify each pair. In effect, this classified each acronym occurrence sepa-
rately. The corresponding results are provided in the first row of Table 5.7.

For each acronym, the classifications of its occurrences were aggregated to classify
its long forms. A long form was accepted as a positive one only if it was classified as
such in at least 75% of the acronym occurrences. Otherwise, the long form counts
as a negative prediction. Thus, for each pair containing an acronym and its potential
long form, we obtain a single prediction. The corresponding results are provided in the
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Table 5.7: Performance of our acronym disambiguation model on clinical
notes [%].

Evaluation method Acc Prec Rec F1
Acronym occurrence 75.80 47.52 93.63 63.05
Acronym 84.40 55.26 100 71.19

second row of Table 5.7. What stands out the most is the high recall of 100%. This
high value indicates that the model does not yield any FN. In other words, all true
long forms were correctly classified by the model. However, as shown by the precision
of 55.25%, the model misclassified some long forms that do not fit the context of the
acronym.

Detailed predictions can be found in Tables 5.3, 5.4, 5.5, and 5.6. The first column
contains the acronyms identified in the clinical notes, whereas the second column shows
the expansion candidates extracted from the notes using FlexiTerm. The third column
indicates which of these expansion candidates should be classified as True by the model.
Finally, the fourth and last column contains the candidates predicted as True by our
classifier in at least 75% of the acronym occurrences. True positives are indicated in
bold.

Among the 26 acronyms found in the clinical notes, 9 were not part of the dataset
that we created to train the BERT model from PUBMed abstracts, namely AM, AML,
CPPD, DJD, LF, MVC, PM, SI, STIR. Despite this, the classifier correctly handled
6 of them (i.e. two thirds) by not matching them to any incorrectly suggested long
forms. This indicates that the model is able to exploit the words in the long form to
disambiguate an acronym based on its context. The three acronyms AM, AML and
PM were all correctly assigned none of the suggested long forms. In addition, the true
candidate was correctly classified as positive for the two acronyms CPPD and DJD.
Finally, the system correctly identified the two true expansions of MVC. The model only
failed when handling the acronyms LF, SI, STIR. In all three cases, the model classified
some long forms as positive even though none of the expansion candidates fitted the
context of the acronym. In future work, this can be addressed by taking into account
the context of the long for in addition to that of an acronym.

5.6 Conclusion

We described a web-based application that uses a corpus of scientific abstracts to simu-
late the clinical narrative style of acronym usage and annotate them automatically with
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the correct senses, which in turn can be used to train supervised approaches to WSD
of biomedical acronyms. It helps navigate the problems associated with patient privacy
and manual annotation overhead associated with the use of clinical text data in machine
learning (Spasić et al., 2020). Even though the application can be used to create large
training datasets automatically, it is relatively slow due to limitations associated with
the use of external APIs. However, this is not a major issue as the acquisition of training
data is seen as batch processing rather than real-time processing.

Overall, this study shows that, even though acronym datasets are limited, it is
possible to artificially create such datasets. The simulated data can eventually be used
to successfully train powerful acronym expansion DL models. In addition, this work
demonstrates that the implicit knowledge captured by pre-trained LMs can be leveraged
for acronym expansion. In particular, we show that this approach can be applied to the
disambiguation of acronyms in clinical notes, even though the global acronyms were
simulated with medical scientific writings. More specifically, we approach the issue of
data scarcity in two ways: on the one hand, we use a large available corpus to create a
dataset that mirrors the behaviour of acronyms in clinical text. On the other hand, we
transfer knowledge from pre-trained LMs to help the classifier understand the context of
acronyms to find the best expansion candidate. These results conclude the second part
of our second research objective (RO2/b) and address our second research question
(RQ2) by providing an effective DL strategy to normalise clinical text by automatically
expanding acronyms.



Chapter 6

Data Augmentation

One main problem of clinical datasets is scarcity. Reasons for a lack of labelled
training data include the annotation bottleneck—labeling data is time-
consuming, expensive and challenging—as well as privacy concerns that
prevent data from sharing. In Chapter 2, we explained how when provided

with too few training examples, DL models can often fit the training data too well,
meaning that they even manage to learn the underlying noise patterns resulting in
models that do no generalise well on unseen data. This effect is called overfitting.
In contrast, relying on a large number of training samples can help DL models learn
invariances in the data. For example, an image of a car always represents a car whether
it is facing left or right; this can only be learned by an NN, if it is supplied with a
sufficient number of examples of cars facing both right and left.

Therefore, a natural way to help a model learn specific invariances when the number
of samples is limited is to explicitly provide training data that reflect those invariances.
To return to the previous example, if we know that the essence of a car is invariant to
the way it is facing, we can flip all images in our training set before adding them to the
training data (with the same label as the original images) to ensure that the DNN is
provided with examples of cars facing both left and right irrespective of the way they
were facing initially. This process is referred to as data augmentation.

Even though very popular in the domain of computer vision, data augmentation
struggles to gain popularity in the field of NLP. This can be explained in part by the
difficulty of finding easy label-preserving transformations for text data. Indeed, recall
that language consists of symbols and that any change in these symbols (e.g., inverting
letters within a word) or among these symbols (e.g., inverting words within a sentence)
can lead to symbols—or collections of symbols—that do not bear any meaning. In
contrast, images consist of pixels and one can easily change all the pixels—e.g., by
applying a greyscale filter—without modifying what the image represents.

109
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In addition, most of the efforts that have been put into developing data augmen-
tation techniques for NLP do not take into account recent advances and the advent
of transformers. Consequently, it is still unclear whether the language understanding
captured by pre-trained LM can still benefit from learning language invariances when
fine-tuned on a task with limited training data.

In this chapter we thus try to answer our third and last RQ: Can a label-preserving
transformation of existing text data improve the performance of DL approaches to text
mining that are based on pre-trained LMs?. As mentioned in Chapter 1 this RQ lead us
to two ROs. The first objective is to develop a set of label-preserving transformation for
text data. The second objective is to develop an approach that automatically chooses
the best schedule of transformations for a given task and dataset—both of which, we
will tackle here.

The outcome of this RQ has been published under the title Learning Data Augmen-
tation Schedules for Natural Language Processing at the Workshop on Insights from
Negative Results in NLP at the Conference on Empirical Methods in Natural Language
Processing (EMNLP) (Chopard et al., 2021b).

6.1 Background

In recent years, data augmentation has become an integral part of many successful DL
systems, especially in the fields of computer vision and speech processing (Krizhevsky
et al., 2012, Jaitly & Hinton, 2013, Hannun et al., 2014, Ko et al., 2015). Traditionally,
data augmentation approaches take the form of label-preserving transforms that can
be applied to the training datasets to expand their size and diversity. The idea of
generating synthetic samples that share the same underlying distribution as the original
data is often considered a pragmatic solution to the shortage of annotated data, and
has been shown to reduce overfitting and improve generalisation performance (Shorten
& Khoshgoftaar, 2019). However, despite a sound theoretical foundation (Dao et al.,
2019), this paradigm has not yet translated to consistent and substantial improvement
in NLP (Longpre et al., 2020).

The inability of NLP models to consistently benefit from data augmentations can be
partially attributed to the general difficulty of finding a good combination of transforms
and determining their respective set of optimal hyperparameters (Ratner et al., 2017),
a problem that is exacerbated in the context of text data. Indeed, since the complexity
of language makes text highly sensitive to any transformations, data augmentations are
often tailored to a specific task or dataset and are only shown to be successful in specific
settings.
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In this study, we investigate whether automatically searching for an optimal aug-
mentation schedule from a wide range of transformations can alleviate some of the
shortcomings encountered when applying data augmentations to NLP.

This endeavour follows the recent success of automated augmentation strategies in
computer vision (Cubuk et al., 2019, Ho et al., 2019, Cubuk et al., 2020). In doing so,
we extend the efforts to understand the limits of data augmentation in NLP.

6.2 Related Work

This section presents a review of related work in data augmentation for NLP and in
automated data augmentation in general. In contrast, Chapter 2 offered a more general
related work on DL in the context of clinical text data.

Although there exist recent surveys (Feng et al., 2021, Shorten et al., 2021) that offer
a comprehensive review of related work, they do not provide a comparative analysis of
the different data augmentation approaches and of their effect on learning performance.

In general, the literature lacks general comparative studies that encompass the vari-
ety of tasks and datasets in NLP. Indeed, most of the existing text data augmentation
studies either focus on a single approach in a specific setting or compare a small set
of techniques on a specific task and dataset (Giridhara. et al., 2019, Marivate & Se-
fara, 2020). In addition, many of these comparisons have been conducted before the
widespread adoption of contextualised representations. Recently, Longpre et al. (2020)
showed that, despite careful calibration, data augmentation yielded little to no improve-
ment when applied to pre-trained transformers even in low data regimes. While their
comparative analysis is conducted on various classification tasks, it focuses on a limited
set of augmentation strategies that are applied independently and whose hyperparame-
ters are optimised via a random search.

To assess the effectiveness of data augmentation on pre-trained transformers—our
third RQ, we investigate in this chapter the paradigm of learning data augmentation
strategies from data in the context NLP. The idea is to leverage the training data to
automatically discover an optimal combination of augmentations and their hyperparam-
eters at each epoch of the fine-tuning. First, we define a search space that consists
of a variety of transformations before relying on the training data to learn an optimal
schedule of probabilities and magnitudes for each augmentation. This schedule is later
used to boost performance during fine-tuning.

In this section, we review a variety of data augmentations and, for each category
of transformations, we highlight a subset of augmentations that is representative of the
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category and that will constitute our search space. We focus on transformative methods
which apply a label-preserving transformation to existing data—rather than generative
methods which create entirely new instances using generative models. Indeed their
simplicity of use and their low computational cost make them good candidates for a
wide deployment In the last decade, we witnessed a widespread adoption of continuous
vector representations of words, which can be easily fed to DNN architectures. As
a result, label-preserving transforms have been developed not only at the lexical level
(i.e. words) but also at the latent semantic level (i.e. embeddings). This distinction is
emphasised throughout this section.

6.2.1 Word Replacement-based Augmentation

A commonly used form of data augmentation in NLP is word replacement. At the
lexical level, the most common approach consists in randomly replacing words with
their synonyms (Zhang et al., 2015, Mueller & Thyagarajan, 2016, Vosoughi et al.,
2016). Some variants include replacement based on other lexical relationships such as
hypernymy (Navigli & Velardi, 2003) or simply words from the vocabulary which can
be sampled either uniformly at random (Wang et al., 2018b) or from a distribution
that takes into account word similarity (Cheng et al., 2018). Another popular approach
consists in using an LM for replacement:while Fadaee et al. (2017) take advantage of
an LM to replace common words by rarer words, Ratner et al. (2017) select words
to swap based on multiple pre-defined transformations functions that depend on the
relative location of entities of interest and POS tags. Similarly, Kolomiyets et al. (2011)
leverage the Latent Words Language Model (LWLM) (Deschacht et al., 2012) to replace
headwords—which is the assumed position of temporal trigger words. Because these
transformations do not ensure the preservation of the sample class, Kobayashi (2018)
suggested conditioning a bidirectional LM on the labels, an idea later revisited by Wu
et al. (2019) who replaced the LM with a conditional BERT.

At the latent semantic level, word replacement amounts to randomly replacing its
embedding with some other vector. For instance, Wang & Yang (2015) choose the
k-nearest-neighbour—as measured with cosine similarity—in the embedding vocabulary
as a replacement for each word. A similar strategy was later adopted by Vijayaraghavan
et al. (2016) who selected words to replace and their replacement (ordered by cosine
similarity) with geometric distributions. The same metric is also used by Zhang et al.
(2019) to replace words from a class with the most analogue word in another class based
on the linguistic regularities observed in word embeddings (Mikolov et al., 2013b).

In this study, as replacement methods, we select both synonym and hypernym re-
placement as well as contextual augmentation at the word level and nearest neigh-
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bour at the embedding level.

6.2.2 Noising-based Augmentation

A simple yet effective form of augmentation that is often applied to images and audio
samples is data noising. Not surprisingly, this type of data augmentation can also be
found in NLP despite the discrete nature of text data.

In its simplest form, data noising when applied to text consists in inserting, swapping
or deleting words at random (Wei & Zou, 2019). More generally, the process of ignoring
a fraction of the input words is often referred to as word dropout (Iyyer et al., 2015)
and can take multiple forms.For example, each input token can be retained with a given
probability while the rest are entirely discarded (Iyyer et al., 2015, Dai & Le, 2015).
Similarly, words may be completely dropped from the vocabulary, as suggested by Zhang
et al. (2016) who set random dimensions of the input vector—which contains word
frequencies—to zero. Alternative implementations of word dropout include replacing,
with a given probability, the word embeddings of the input tokens with the embedding of
the generic ”unknown word” token ”UNK” (Bowman et al., 2016) or with the underscore
token ” ” (also called blank noising) (Xie et al., 2017).

Sometimes, word replacement can also be thought of as a form of noising. For in-
stance, replacing words at random with other words from the vocabulary introduces noise
into the data.Variants include choosing replacements based on word frequencies (Xie
et al., 2017) or on the cosine distance between the respective word embeddings (Cheng
et al., 2018).

In contrast, at the distributed representation level, this type of augmentation often
takes the form of added noise to the embeddings. Possible noising schemes include
Gaussian noise (Kumar et al., 2016, Cheng et al., 2018), uniform noise (Kim et al.,
2019), Bernoulli noise and adversarial noise (Zhang & Yang, 2018). Typically, noising is
applied to every word embedding, but it can also be applied only to selected ones (Kim
et al., 2019). For instance, in the context of spoken language understanding, Kim et al.
(2019) choose to add noise to slot values only in order to account for their diversity
(”open-vocabulary”). Alternatively, as with word dropout, noise can be incorporated
into the training by discarding, across all words, some embedding dimensions with a
predefined probability (Dai & Le, 2015).

Noising strategies used in this study are based on random deletion, random swap
and random insertion at the sentence level as well as Gaussian noise and uniform
noise at the feature level.
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6.2.3 Back-translation

Back-translation provides a way for neural machine translation (NMT) systems to lever-
age monolingual data to increase the amount of parallel data (Sennrich et al., 2016,
Edunov et al., 2018). For instance, Fadaee & Monz (2018) sample monolingual data
containing difficult-to-predict words in the target language (German) and back-translate
these to the source language (English) before adding the resulting pairs to the train-
ing data to boost the performance of a NMT system. This approach has also been
leveraged for paraphrasing. For instance, Wieting et al. (2017) translate the foreign lan-
guage side of parallel data to English and use the produced translation as a paraphrase
for the English side of the bitext; the pairs are then use to learn paraphrastic sentence
embeddings.

In the same vein, back-translation can be applied twice in a row (e.g. from English
to another language and back to English) to generate new data points without the need
for parallel corpora and can therefore find applications as a task-agnostic augmentation
in other tasks such as text classification (Luque & Pérez, 2018, Aroyehun & Gelbukh,
2018), paraphrase generation (Mallinson et al., 2017) and QA (Yu et al., 2018a). For
instance, Mallinson et al. (2017) propose a paraphrasing model that takes a source
English sentence, generates k translations in an intermediate language, which are then
combined and back-translated into English to produce a single paraphrase. Similarly,
in the context of QA, Yu et al. (2018b) produce k foreign language translations of the
document containing the answer, which are in turn translated back into English so as
to obtain k2 document paraphrases from which the answers must then be extracted.

Here, we consider a wide range of intermediate languages to include back-translation
into our search space

6.2.4 Automated Data Augmentation

In NLP, little effort has been put into developing strategies that can, given a task and a
dataset, learn an optimal subset of data augmentation operations and their hyperparam-
eters (Shorten et al., 2021). Yet, this idea has been very successful in computer vision
and has led multiple approaches to achieve state-of-the-art results on various datasets
(Cubuk et al., 2019, Ho et al., 2019, Cubuk et al., 2020). For instance, in the context
of image classification, Cubuk et al. (2019) have proposed AutoAugment a procedure
that automatically searches for optimal augmentation policies using reinforcement learn-
ing. Later, population-based augmentation (PBA) (Ho et al., 2019)—an algorithm that
views the data augmentation selection and calibration problem as a hyperparameter
search and can thus leverage the population-based training (PBT) method (Jaderberg
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et al., 2017) to find an optimal transformation schedule in an efficient way—was in-
troduced as a more cost-effective yet competitive alternative to AutoAugment. Their
approach was shown to match the performance of the former and achieved state-of-the
art results on some datasets while requiring far fewer computational resources. Finally,
Cubuk et al. (2020) introduced the RandAugment method which tackles some of the
issues arising from these previous works.

In this study, we adapt the PBA framework to NLP in an attempt to learn an optimal
schedule of data augmentation operations with optimised hyperparameters.

6.3 Methodology

In this section, we discuss the mechanism behind the PBA algorithm in more details
and define our hyperparameter space. We also explain how we conduct the data aug-
mentation search and the overall training procedure.

6.3.1 Population-Based Augmentation

Given a hyperparameter search space that consists of data augmentation operations
along with their probability level (i.e. likelihood of being applied) and their magnitude
level (i.e. strength with which they are applied), PBA works as follows: during a pre-
defined number of epochs, k child models of identical architecture are trained in parallel
for the task at hand on a given dataset. Periodically, the training is momentarily
interrupted, all models are evaluated on a validation set and an ”exploit-and-explore”
procedure takes place. First, the worst-performing models (bottom 25%) copy the
weights and hyperparameters of the best-performing models (top 25%) (exploit), then
the hyperparameters are either slightly perturbed or uniformly resampled from all possible
values (explore). At that point, training can continue as before until the next exploit-
and-explore procedure. At the end of the training, a data augmentation policy schedule
is extracted from the hyperparameters of the best performing child model. The obtained
schedule can then be used to train from scratch a different model on the same task
and the same dataset. The PBT algorithm which underlines this process is illustrated
in Figure 6.1.

6.3.2 Hyperparameter Space

The hyperparameter space consists of 10 data augmentation operations highlighted in
the previous section with associated probability and magnitude. For most replacement
methods, the magnitude level can be thought of as a percentage of tokens on which
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Figure 6.1: The basic principles of the PBT algorithm.

the transformation is applied and, for noising transforms, it corresponds to the amount
of noising. In the context of back-translation, however, magnitude relates to the quality
of the translation according to BLEU3 scores (Aiken, 2019). The remainder of this
sections contains details concerning the implementation of these augmentations as well
as how exactly magnitude is defined for each one of them.

As a reminder we consider the following 11 data augmentation operations:

• Synonym replacement
• Hypernym replacement
• Nearest neighbour
• Contextual augmentation
• Random insertion of a vocabulary word
• Random insertion of synonym
• Random deletion
• Random swap
• Gaussian noising
• Uniform noising
• Back-translation

The search space consists of augmentation operations with associated probability and
magnitude. More specifically, this can be represented as a vector of 11 tuples (oi, pi, mi)
(i.e. one tuple for each transform). During the training, up to two data augmentation
operations oi are drawn uniformly at random for each training sample and applied with
probability pi and magnitude mi. As suggested by Ho et al. (2019), we set the number of
operations to 0, 1 and 2 with probabilities 0.2, 0.3 and 0.5 respectively. The operations
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are applied in the same order in which they are drawn. However, the two embedding-
level noising operations (i.e. Gaussian noising and uniform noising) are always applied
after the other augmentations since they must be applied in the middle of the graph,
after the representation layers, whereas the other augmentations are applied directly on
the input of the NN.

To allow for a smooth parametrisation of the search space with large coverage,
probabilities and magnitudes can take any values between 0 and 1: p, m ∈ [0, 1]. This
is different from the original PBA algorithm where the parameters are limited to discrete
values. The magnitude level, which represents the intensity with which each operation
is applied, is scaled down differently to fit the different operations. Maximal magnitude
values are chosen so as to allow for a wide enough array of impactful values and their
specific values for each augmentation are indicated in the corresponding paragraphs.

All transformation operations, along with their implementation, are detailed below.
Moreover, transformations that are applied directly on the input rather than on the
embeddings are illustrated in Table 6.1.

Synonym Replacement The implementation follows the one suggested by the au-
thors of the easy data augmentation (EDA) techniques (Wei & Zou, 2019) and uses the
provided codes. First, the number of words that are replaced with one of their synonyms
is determined as ni = ⌊m̂i ∗ |si|⌋, with m̂ the magnitude level scaled down between 0
and 0.25. Then stop-words are removed from the sample. While the number of words
replaced is lower than ni, one word is selected uniformly at random among the words
that have not been replaced yet and is replaced with one of its synonyms. Synonyms
are retrieved with WordNet (Miller, 1998). Note that since many words have multiple
meanings, it is not rare that the chosen synonym carries a different meaning than the
original word.

Hypernym Replacement The process for hypernym replacement is identical to that
of synonym replacement in all respect except that hypernyms instead of synonyms are
extracted using WordNet.

Nearest Neighbour At the beginning of each search (and at the beginning of the
final training), we feed every training sample into the pre-trained BERT and use the
contextualised representation of each token to build a k-d tree. Note that this process
is one-time only and is tailored to the train set. When applied to sample si, the
nearest-neighbour operation first tokenizes the sample into WordPiece tokens using the
BERT tokenizer before computing the number of tokens that will be replaced as follows:
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original sample (m = 0) m = 0.5 m = 1
Synonym Re-
placement

a pretentious and ul-
timately empty exam-
ination of a sick and
evil woman

a pretentious and ul-
timately empty exam-
ination of a sick and
malefic woman

a ostentatious and
ultimately empty
interrogatory of
a retch and evil
woman

Hypernym Re-
placement

just another dis-
jointed , fairly
predictable psycho-
logical thriller

just another dis-
jointed , fairly
predictable psycho-
logical adventure
story

just another part
, fairly predictable
psychological heroic
tale

Nearest Neigh-
bour

tormented by his her-
itage , using his story-
telling ability to honor
the many faceless vic-
tims

tormented by his
heritage , using his
storytelling ability
to honor the many
faceless emotions

tormented by his fate
, using his cinematic
ability to honor the
many unexplainable
victims

Contextual Aug-
mentation

small - budget thin - budget barely running bud-
get

Random Inser-
tion (vocabu-
lary)

actually manages to
bring something new
into the mix

actually manages
johns to bring some-
thing new into the
mix

lest actually manages
to goaltender bring
something new into
the mix

Random Inser-
tion (synonym)

is a gorgeous film -
vivid with color , mu-
sic and life

is a gorgeous film bril-
liant - vivid with color
, music and life

liveliness is a gor-
geous film - medicine
vivid with color exist ,
music and life

Random Dele-
tion

an adventurous young
talent who finds his
inspiration on the
fringes of the ameri-
can underground

an adventurous tal-
ent who finds his on
the fringes of ameri-
can underground

an young finds his on
the of underground

Random Swap the movie is widely
seen and debated
with appropriate
ferocity and thought-
fulness

the movie seen widely
is and debated with
appropriate ferocity
and thoughtfulness

movie the is
widely seen ferocity
thoughtfulness with
appropriate and and
debated

Back-
translation

does n’t know what it
wants to be

Do not know what he
wants to be

I don’t know what you
want to be

Table 6.1: Overview of the data augmentation transforms from our search
space that operate directly on the input. This shows the outcome when the
transformations are applied on samples from the Stanford Sentiment Tree-
bank (SST)-2 dataset with three different magnitude levels m = 0, 0.5, 1.
Where relevant, tokens that have been replaced are highlighted in bold.
In addition, newly inserted tokens are italicized whereas tokens that have
changed places are underlined.

ni = ⌊m̂i · |si|⌉. Here, |si| corresponds to the number of WordPiece tokens in sample si

and m̂i = 0.25 · mi is the scaled-down level of magnitude, which has a maximum value
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of 0.25 so that at most 25% of the tokens are replaced. Then, ni WordPiece tokens
at drawn uniformly at random. For each one of them, the 10 tokens with the nearest
embeddings (in the context of sample si) are retrieved and one of them is selected
for replacement using a geometric distribution with parameter q = 0.5. A geometric
distribution ensures that the nearest neighbours have a higher chance to be selected as
a replacement than the more distant ones. The implementation is based on the one
provided by Dale (2020).

Contextual Augmentation The contextual augmentation transform replaces words
by these predicted by an LM conditioned on the labels. In this study, we use the
implementation provided by Wu et al. (2019) which uses BERT as a conditional MLM.
At the beginning of the search, the model is fine-tuned on the training data on a task
that applies extra label-conditional constraint to the traditional MLM objective. Once
fine-tuned, the model can be used to infer masked words given a label. When applied
to sample si, this operation replaces ni = ⌊mi · |si|⌉ of the tokens with a mask, where
|si| is the number of tokens in the sample after applying the BERT tokenizer. Then,
along with its label, the masked sample is fed to the fine-tuned conditional model which
infers a vocabulary word for each of the masked tokens. These predictions are used as
a replacement.

Random Insertion When applied to a sample si, the random insertion operation
randomly adds a token to the sample. The number of tokens to insert ni is set to a
fraction of the length of si, namely ni = ⌊m̂i · |si|⌉, where |si| is the number of tokens
in si and m̂i = 0.25 · mi is the scaled-down magnitude which ensures the number of
inserted tokens does not exceed 25% of the original number of tokens and, by extension,
that the new sample contains at most 20% of randomly inserted tokens. We include
two independent variants: each inserted token is either a synonym of one of the tokens
(selected uniformly at random) in si as suggested by Wei & Zou (2019) as part of
their EDA techniques or is sampled uniformly at random from a subset of the BERT
vocabulary. Note that we only consider words between index 1996 and 29611 of the
vocabulary to exclude special and unused tokens as well as punctuation, digits and
tokens with non-English characters. We also ignore tokens that start with ”##” the
special characters used to indicate a trailing WordPiece token. The position for the
insertion of the new token in si is chosen uniformly at a random. The implementation
uses the codes provided by Wei & Zou (2019).
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Random Deletion The random deletion operation removes a fraction of the tokens
from the sample. Each token is discarded with probability qi, where qi = m̂i = 0.25 ·mi

which is the magnitude level scaled down between 0 and 0.25 to guarantee that at most
half of the tokens are removed. This allows a wide range of values around the original
intensity parameter of 0.1 suggested by Wei & Zou (2019) whose implementation we
use.

Random Swap This augmentation swaps any two words from the sample si at random
ni times in a row, where ni = ⌊m̂i ∗ |si|⌋ and |si| is the number of tokens in sample si.
The magnitude parameter mi is scaled down to have a maximum value of 0.25 to ensure
that at most 50% of the words are swapped. Once again, we rely on the implementation
provided by Wei & Zou (2019).

Gaussian Noising The Gaussian noising operation is not applied on the input se-
quences but rather directly on the contextualised word representations. Let wij be the
embedding of word j in sample si. Then, each embedding in the sample is transformed
as follows:

ŵij = wij + ej, ejk ∼ N (0, σ2) , (6.1)

where σ = mi and ej is a vector of the length of d (embedding dimension) with elements
ejk normally distributed with mean 0 and standard deviation mi.

Uniform Noising Similarly to Gaussian noising, the uniform noising operation is ap-
plied directly on the contextualised embeddings. More specifically,

ŵij = wij + ej, ejk ∼ U(−mi, mi) . (6.2)

Once again, ejk (0 ≤ k < d) are the elements of noise vector ej uniformly distributed
over the half-open interval [−mi, mi] and d is the dimension of the embeddings.

Back-translation The back-translation operation first translates the sample si to an
intermediate language before translating the intermediate translation back to English.
To allow us to incorporate this transform into the search space, we relate the magnitude
level with the quality of the translation: when back-translation is applied with a low
magnitude, the intermediate language used is one that achieves a high BLEU3 score
according to Aiken (2019). Similarly, high magnitude settings back-translate samples
through a language with a poor BLEU3 score. Table 6.2 summarises the languages that
can be chosen for each level of magnitude. To generate translations, we use the python
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mi

1
2
3
4
5
6
7
8
9
10

Intermediate Languages

Portuguese, Italian, French, Czech, Swedish
Dutch, Maltese, Polish, Romanian, Russian
Afrikaans, Belarusian, Slovak, Danish, Indonesian
German, Albanian, Bulgarian, Japanese, Spanish
Chinese, Croatian, Finnish, Latvian, Arabic, Malaysian
Greek, Korean, Norwegian, Serbian, Turkish, Welsh
Galician, Icelandic, Slovenian, Vietnamese
Catalan, Estonian, Filipino, Hungarian, Swahili
Irish, Thai, Hebrew, Ukrainian, Persian
Lithuanian, Macedonian, Yiddish, Hindi

Table 6.2: The intermediate translation languages for each magnitude level
mi. They are separated according to inverse BLEU3 scores.

library Googletrans which uses the Google Translate Ajax API to make calls.

6.3.3 Search

The search is conducted on 48 epochs using around 20% of the N data points for training
and the rest for validation. Both the child models and the final model follow the original
uncased BERT base architecture suggested by (Devlin et al., 2019). The learning rate
is chosen so as to slow down the fine-tuning without affecting the performance.

At the beginning of training, all probability and magnitude hyperparameters are set
to 0. This follows suggestions by Ho et al. (2019) who postulate that little to no aug-
mentation is needed at the beginning of the training, since the model only starts to
overfit later on, and the data should increasingly become more diverse throughout the
training. Because the complexity of the BERT models lies in the contextual represen-
tation layers which are already pre-trained and the task-specific layer that needs to be
fine-tuned is rather simple, we keep the architecture identical both for the child models
and for the final model. A key difference between applying PBA to image classification
and applying PBA to NLP tasks with pre-trained BERT model is that in the former
settings models are commonly trained for hundreds of epochs, whereas only two to
four epochs of fine-tuning are sufficient in the latter settings. Consequently, the orig-
inal strategy of running a search for 160 or 200 epochs (depending on the model and
dataset) while having exploit-and-explore procedures take place after every 3 epochs
is not feasible for NLP tasks with a pre-trained BERT model. Hence we modify the
learning rate to slow down the fine-tuning process. More specifically, we look through a
small grid search for a learning rate that can replicate the performance achieved when
using the original parameters (Devlin et al., 2019) but on a larger number of epochs.
Thus, by reducing the learning rate, we find a way to carry out the search over a total
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of 48 epochs. The search is conducted on 16 child models that are trained in parallel.
At the beginning of the search, approximately 80% of the training data are set aside
to form the validation set, which will be used to periodically assess the performance
of the child models. The remaining training data are used to optimise the networks.
After each epoch (instead of 3 originally), the exploit-and-explore procedure takes place
where the 4 worst performing (on the validation set) child models copy the weights and
the parameters of the 4 best performing child models. At the end of the 48 epochs, the
augmentation schedule of the model with the highest performance (on the validation
set) is extracted.

6.3.4 Train

To train the final model, the train and validation data are grouped to form the final
training set. Training is conducted using the same learning rate and the same number of
epochs as during the search and uses the discovered schedule for augmentation. At the
end of the training, the performance of the trained model is evaluated on an independent
test set.

6.4 Experiments and Results

In this section, we present the details of our experiments and discuss the results. Our
implementation builds on the original PBA codes (Ho et al., 2019). We make the NLP
adaptation of this framework publicly available1.

6.4.1 Datasets

To conduct our experiments, we use two of the datasets suggested by Longpre et al.
(2020) in their comparative analysis, namely: SST-2 (Socher et al., 2013) and Multi-
Genre Natural Language Inference Corpus (MNLI) (Williams et al., 2018). The former
is a corpus of movie reviews used for sentiment analysis: single sentences from movie re-
views taken from the SST (Socher et al., 2013) dataset have to be classified as positive
or negative (i.e. binary classification). Performance is evaluated using accuracy. In con-
trast, MNLI (Williams et al., 2018) is a natural language inference corpus which consists
of sentences pairs—a hypothesis sentence and a premise sentence—of miscellaneous do-
mains that have to be classified as entailment, contradiction or neutral. It is therefore
a non-binary classification task of sentence pairs. Similar to Longpre et al. (2020)’s
work, we focus on low resource settings and use only up to 9k samples for training and

1https://github.com/chopardda/LDAS-NLP
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validation. This allows us to use for each task a subsample of the original training set
for training and validation (since the training set is larger than 9k samples) and the orig-
inal validation set for testing. More specifically, we take N = {1500, 2000, 3000, 9000}
samples from the original train sets to constitute our train-validation sets and as test
sets, we use the full original validation sets which—unlike the original test sets—contain
publicly available ground-truths.

6.4.2 Implementation details

The implementation parameters can be found in Table 6.3.

.

SST-2
MNLI

Parameters
epochs learning rate batch size

48 1e-5 32
48 5e-5 32

Table 6.3: Implementation details of both the child models and the final
model (both with and without augmentation). The model used is the
uncased BERT base model with a classification layer.

6.4.3 Results and Discussion

The main results can be found in Table 6.4 and Table 6.5.
The first row corresponds to the performance on the test set when training the model

on all N samples without any augmentation. The second row in the table contains the
result of the evaluation on the test set of the model trained on all N samples using the
discovered schedules (i.e. for each data size, the schedule of the child model with the
highest validation accuracy at the end of the search is used to train the final model).
The same slowed-down learning rate and the same extended number of epochs are used
across all experiments to allow for a fair comparison.

Overall, the improvements yielded by the optimised data augmentation schedules
are inconsistent and unsubstantial (below 0.8%). Even though the incorporation of
transforms has a small positive impact on the SST-2 dataset, it has the opposite effect
on MNLI (i.e. the scores plummet by as much as 1.39%). A possible reason for these
poor results might be due to the difference in settings between our experiments and the
ones in the PBA study. Indeed, our search is conducted on 48 epochs as opposed to the
160 to 200 epochs suggested for image classification tasks and the exploit-and-explore
procedure takes place after each epoch rather than after every 3 epochs. In addition,
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.

No Augm
Schedule
Difference

Accuracy [%]

N = 1500 2000 3000 FULL

88.22 ±0.69 88.11 ±0.41 88.76 ±0.46 90.49 ±0.49
88.64 ±0.47 88.60 ±0.68 89.56 ±0.40 90.91 ±0.43
+0.42 ±0.00 +0.49 ±0.00 +0.80 ±0.00 +0.42 ±0.00

Table 6.4: SST-2 test dataset.

.

No Augm
Schedule
Difference

Mis-matched Accuracy [%]

N = 1500 2000 3000 FULL

65.73 ±1.12 67.60 ±2.21 69.67 ±0.79 74.26 ±0.35
64.78 ±1.20 66.21 ±0.77 68.71 ±0.49 73.95 ±0.47
-0.95 ±0.00 -1.39 ±0.00 -0.96 ±0.00 -0.31 ±0.00

Table 6.5: MNLI test dataset.

Table 6.6: Performance on SST-2 and MNLI. The model is trained 10
times independently either without augmentation or with the augmentation
schedule yielded by the search. Since a single search is conducted per
value of N , the reported standard deviation measures the robustness of
the training procedure for a single schedule. (For more details about the
robustness of the augmentation search, see Section 6.4.4.)

the size of the training datasets is very different. The size of our largest experiment is
roughly the same as the size of the smallest dataset in (Ho et al., 2019).

Surprisingly, our data-driven search seems unable to reproduce the performance
boost reported by Longpre et al. (2020) on the MNLI dataset, even though the aug-
mentations considered in their work are part of our search space. This might be explained
by the way augmentations are applied. In our study, we transform each training sample
by applying up to 2 transformations in a row with probability p and magnitude m. In
contrast, Longpre et al. (2020) add N ×τ augmented samples to the training set with
τ ∈ {0.5, 1, 1.5, 2}, meaning that the original examples are provided along with their
augmented counterparts at each iteration.

In general, it is expected that not every data augmentation operation is relevant for
every task. For example, when the goal of a task is to determine whether a sentence is
syntactically correct or not, changing a word with a synonym will not change the syntax
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of the sentence, even if that synonym carries a different meaning than the original
word. In contrast, swapping two words will most likely disturb the syntactic structure
of the sentence and might change the ground-truth label. However, when considering
a different task, the opposite might be true. For example, when dealing with a topic-
modelling task, swapping words has no effect on the label, but replacing them with a
synonym might change the topic and, therefore, the label. One could therefore expect
that different augmentation operations will be chosen for different tasks but this trend
was not observed in our experiments.

6.4.4 Search Robustness

Given the stochastic nature of the searching process, the discovered schedule is bound to
differ from one run to another. So far, we have run a single search for each experiment
setting. In this section, we investigate whether the limited effect of automatic augmen-
tation on the model performance may be caused by the stochasticity of the search. To
that end, we run 10 independent searches on the SST-2 dataset with N =1500 and
use each of the 10 discovered schedules to train a separate model. All the network
hyperparameters are kept the same as in the previous section. Overall, the standard
deviation over 10 independent schedules is 0.55%, which indicates that the performance
of the training is robust across searches. Thus, the poor results observed in the previous
section cannot be explained by the variability of schedules.

However, a closer look at these 10 individual schedules—as illustrated in Figure 6.2—
reveals that the chosen augmentation hyperparameters are very different from one run to
another and that the search does not seems to favour any particular set of augmentation
transforms. Note that, for a more compact representation, the product of the magnitude
and the probability hyperparameters through the epochs is shown for each schedule. In
Figure 6.5 the average magnitude and probability parameters over the 10 schedules at
each epoch is displayed.

These plots allow us to realise that, while the parameters generally increase through-
out the epochs, the magnitudes and probabilities of each transform have a similar value.
Although some operations (e.g. Random Swap) have slightly higher average parameters
than others, we can see that no augmentation transform clearly dominates the others.
This variation in the optimal set of hyperparameters for each independent search may
indicate that, in this setting, data augmentation acts more as a regulariser rather than
a way to learn invariance properties and that, as a result, any kind of augmentation
transform has a similar effect on performance. In view of these findings, it would be
interesting to explore whether relying on a greater number of child models during the
search could potentially yield less disparate schedules and improve the overall quality of
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Stacked product of probability and magnitude through epochs
SST-2 N=1500

RandomSwap
RandomDeletion
RandomInsertionSyn
RandomInsertionSyn

SynonymReplacement
HypernymReplacement
NearestNeighbour
ContextualAugmentation

Backtranslation
EmbNormalNoise
EmbUniformNoise

Figure 6.2: The schedules yielded by 10 independent searches on SST-
2 with N =1500 samples (using 250 for training and 1250 for validation
during the search). The height of each bar corresponds to the product of
the probability and the magnitude parameters at each epoch.
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Figure 6.3: Average probabilities.
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Figure 6.4: Average magnitudes.

Figure 6.5: The average probability and magnitude values for the schedules
yielded by 10 independent searches on SST-2 with N=1500 samples. The
height of each bar corresponds to the average probability and magnitude
parameters at each epoch over the 10 schedules.
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the search.

6.4.5 Validation size

As mentioned earlier, the limited impact of automatic data augmentation scheduling in
our settings might be due to the small number of samples available for each experiment.
In particular, one of the drawbacks of PBA is that a large portion of training data
(approximately 80% as suggested by Ho et al. (2019)) has to be set aside to form
a validation set that is used during the search to find optimal hyperparameters. For
example, at N=1500 only 250 examples are used to learn the network weights during
the search while the remaining 1250 samples are used for hyperparameter selection. As
a result of this discrepancy, the selected data augmentation might be relevant when
only 250 data points are available for training but less effective when learning with 1500
samples as is ultimately the case.

Overall, the main idea behind using a large validation set is to choose augmentation
hyperparameters that do not overfit the validation samples and thus generalise well to
unseen data. However, in our case, since the total number of available samples N is
small in all experiments, this implies that the size of the training set will be extremely
limited. This might hinder the learning process (with too few training examples it can
be difficult to learn the optimal network weights) or make the choice of augmentation
hyperparameters irrelevant for larger training sets (there is no guarantee that the aug-
mentation chosen for the small train set with will also help when ultimately training with
both the training and the validation set). Thus, there exists a clear trade-off between
the size of the two sets: while a large validation set can allow for better optimisation of
the augmentation hyperparameters, a larger training set allows for better optimisation
of the network weights which, in turn, has an impact on the quality of the augmentation
hyperparameters evaluation.

In this section, we investigate whether the poor results observed in Table 6.6 can be
attributed to the ratio chosen to split the available data into a train and a validation
set. To that end, we run the search on the SST-2 dataset using different ratios to divide
the N =1500 samples at hand. The results reported in Table 6.7 suggest that using
different proportions of train and validation examples does not affect the effectiveness
of the augmentation schedule in this setting. In fact, the performance remains the
same even though the model is trained with schedules that were optimised using very
different split ratios. This might be explained by the fact that both the train and the
validation sets are too small to find optimal augmentation hyperparameters irrespective
of the chosen split ratio. Alternatively, it is possible that the chosen dataset can simply
not benefit from augmentation because of its nature. To verify this hypothesis, it would
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Train/Val

Accuracy

250/1250 750/750 1250/250

88.64 ±0.47 88.64 ±0.62 88.76 ±0.59

Table 6.7: Performance on the SST-2 test set of the model trained on
N=1500 samples with the schedule discovered using different proportions
of validation and training sets. For each split ratio, the model is trained
10 times using the schedule yielded by a single search. The mean accuracy
and standard deviation are reported.

be interesting to extend this analysis to a wider range of datasets, including actual
low-resource datasets.

6.5 Conclusion

In this chapter, we have presented the first work that investigates the automatic search
of data augmentation schedules for text data. However, the results suggest that aug-
mentation schedules and data-driven parameter search do not provide a consistent and
straightforward way to improve the performance of NLP models that use pre-trained
transformers. There are a few possible explanations for this phenomenon. First, the
overall setup of the PBA approach (e.g. the need for large validation sets) might not be
well suited for low-data regimes in NLP. A second but more likely reason is that trans-
formers are already pre-trained on huge datasets and their representations may already
be invariant to many of the transformations that are encoded into the data augmenta-
tion. A systematic investigation into the latter hypothesis is required, which, if proven,
would show that data augmentation may be redundant when opting to use transformers
to implement NLP solutions. A final reason might be that the search space we consider
only contains transformative data augmentation techniques and omits generative ones,
even though the latter have started to show some promising results.

The findings made in this chapter suggest that pre-trained LMs do not benefit from
simple data augmentation during fine-tuning, thereby offering a negative answer to our
third RQ. Even though this is a negative findings, it has got significant implications.
It indicates that pre-trained LMs already provide a comprehensive understanding of
language on their own. This confirms the findings from Chapter 3, where the use
of pre-trained LMs enabled an understanding of context that was effective enough to
differentiate serious adverse events from other underlying symptoms.



Chapter 7

Conclusion and Future Work

In this thesis, we investigated the problem of leveraging DL techniques for clinical
text mining despite the various challenges associated with these kinds of data
including data scarcity, frequent use of abbreviations and their ambiguity, OOV
words and term variation. This chapter summarises this thesis’ main contributions,

discusses how we tackled the RQs, and proposes new avenues for extending this research.

RQ1. Can an effective DL strategy be developed to recognise references to
rare clinical events?

As highlighted throughout this work, the issue of data scarcity arises as a conse-
quence of privacy safeguards and the manual annotation bottleneck. This problem is
further exacerbated in clinical applications such as clinical trials that are concerned with
rare events, of which, by their definition, there are fewer instances. This problem was
addressed by the first RQ in Chapter 3, where we used SAEs as a case study for the issue
of rare clinical events. In addition to their rarity, the task of SAE detection is further
complicated by the fact that SAEs are a subset of signs and symptoms, whose mentions
are plentiful in clinical narratives. Therefore, the internal characteristics of SAEs, which
can be viewed as named entities, are bound to be insufficient for distinguishing signs
and symptoms monitored by a given clinical trial from those arising from factors. These
factors are typically related to the underlying disease that is the subject of the clinical
trial. As an additional challenge, any given sign or symptom may represent an SAE in
some contexts but not in others. Therefore, any system aiming to detect SAEs must
be able to utilise context as the main source of features.

In addition to their ambiguity, SAEs are also plagued by the problem of term varia-
tion, which is quite common in the biomedical domain (Krauthammer & Nenadic, 2004,
Zheng et al., 2015, D’Souza & Ng, 2015). For example, the terms ”heart attack” and
”myocardial infarct” are equivalent. When the training data are scarce, the distributional
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hypothesis, which assumes that there is a correlation between distributional similarity
and meaning similarity, is bound to be of little practical value. If the synonymy of
terms is ignored, then any subsequent statistical analysis of the corresponding concepts,
in this case SAEs, is bound to be skewed. To deal with this issue, we leveraged an
ontology as an explicit representation of domain knowledge to simplify the problem of
SAE detection. As we have already mentioned above, SAEs are a subclass of signs and
symptoms, which are defined as a separate class in the UMLS, the largest ontology of its
kind. It can be used to focus the attention of the system on these particular instances
in free text, allowing it to concentrate its effort on the analysis of their contexts, which
as we said above represent the main source of features for the classification of SAEs.
Therefore, we formulated the given problem as a binary classification task. All signs
and symptoms are first identified and mapped to unique UMLS concepts. Then, the
classifier determines which concepts refer to SAEs and which do not.

Given the rarity of SAEs, the issue of data scarcity still persists. The binary classifier
would, therefore, struggle to generalise when trained on such a small dataset. Large pre-
trained LMs already generalise word properties by building on their distribution in large
corpora. By fine-tuning a large LM to perform binary classification, we can leverage its
generalisability when using a small training dataset. Along these lines, we fine-tuned
BERT to differentiate between the UMLS concepts which refer to SAEs and those which
do not.

To test these hypotheses, we evaluated the effectiveness of this combination of a top-
down approach based on an ontology (representing explicit knowledge about the domain)
and a bottom-up approach based on a large LM (representing implicit knowledge about
the language). We used a very small real-world clinical trial dataset of less than 300
documents in total. Nevertheless, we successfully trained a system to recognise the
minority class of SAEs among the majority of all other signs and symptoms. The
key research contribution here represents a successful integration of two fundamentally
different approaches to word semantics that allow a system to make generalisations of
instances available in a training dataset despite its small size.

RQ2. Can an effective DL strategy be developed to normalise clinical text
by automatically expanding short forms?

The prevalence of short forms is another key characteristic of clinical texts. It is
the result of time pressure and repetitiveness associated with the reporting task. We
differentiate between two types of short forms, abbreviations and acronyms as they differ
in their formation patterns. The corresponding approaches were described separately in
two chapters, Chapter 4 and Chapter 5. Short forms present two important challenges to
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DL approaches to clinical text mining. First, they may not be present in the vocabulary
of a corpus used for training or an external vocabulary as they are often ad hoc in nature.
Second, the smaller the number of characters in a short form, the higher the probability
that it will collide with another short form, which introduces the problem of ambiguity.

As we have seen in RQ1, large LMs can be used to compensate for the lack of
sufficiently large training data. In other words, they are pre-trained on large corpora,
which have much greater coverage of the language measured by the size of the cor-
responding vocabulary. That means that even though a particular word is not present
in the clinical dataset, its representation (i.e. embedding) may still be available in the
pre-trained LM. However, this often does not apply to abbreviations as they may be
specific to an institution or even an individual (Moon et al., 2015). To a certain extent,
LMs can cope with this issue by inferring the embedding of an unknown word (in this
case abbreviation) from its context. Still, this does not help text interpretability from
the human perspective, which would prefer the abbreviation to be expanded to its long
form rather over its vector in the embedding space. This leads us to the main problem
approached in Chapter 4, which focuses on finding abbreviations and mapping them
explicitly to their long forms. Our approach is based on a hypothesis that the long form
(i.e. the original nonabbreviated word) is likely to occur elsewhere in a corpus. The
problem can therefore be framed as the problem of finding the long form within the
corpus. In addition to the similarity between an abbreviation and its long form (e.g.
shared characters and the order in which they appear), this approach lends itself to
checking whether these two forms are semantically similar by comparing their contexts.
Specifically, we used the WMD as it can compare two contexts (e.g. sentences) in a
meaningful way even when they have no words in common. The problem of finding
plausible candidates for long forms to compare against was approached by using a DL
approach. Specifically, a Siamese NN was chosen because of its ability to handle unseen
classes (Koch et al., 2015, Huang et al., 2022), which enables it to correctly interpret
new abbreviations and expansion candidates after training. In addition, Siamese NNs
focus on learning representations by relying on similarity information (Neculoiu et al.,
2016). By learning semantic similarity, such network constrains the number of long form
candidates to be compared using more costly WMD. The key research contribution here
represents a novel approach to abbreviation expansion that departs from the traditional
way in which this problem is tackled using a domain specific dictionary to find plausible
interpretations and a labelled corpus to supervise the process. This makes our approach
more robust especially against OOV abbreviations. Moreover, our approach can be easily
ported to other domains as it does not depend on a domain-specific dictionary.

We dedicated a separate chapter to another type of short forms. In Chapter 5
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we described our approach to acronym disambiguation. Because of data scarcity, it
is often difficult to have access to large clinical datasets for training disambiguation
models. In contrast, biomedical abstracts, which are known to contain many acronyms,
are widely available. In particular, in these abstracts acronyms and their full form
are explicitly defined contrary to clinical texts. Consequently, we suggested leveraging
this characteristic to simulate a dataset of clinical acronyms from biomedical abstracts.
This dataset can then be used to train classifier to disambiguate between expansion
candidates. One important component for finding the best expansion candidate is to
correctly interpret the context that the acronym appears in. This is why, similar to
Chapter 3, we proposed using a pre-trained LM as a classifier. Indeed, our experiments
have shown that such architecture was able to understand the context of clinical events.
Because we relied on a large number of simulated samples for training our network,
we retrieved expansion candidates directly from the training examples. Alternatively,
we suggested retrieving expansion candidates using Flexiterm in order to make this
step unsupervised. Indeed, Flexiterm offers a way of automatically extracting group of
words, which makes it very relevant for acronyms. The whole approach was validated
on a dataset of clinical notes. Our contribution was to introduce a suitable strategy to
face the problem of data scarcity by finding a way of generating data and use these data
for acronym disambiguation. By doing so, we addressed the final part of the second RQ.
Indeed, the approach we proposed makes possible the automatic expansion of acronyms
despite a lack of existing datasets.

Overall, we have demonstrated the possibility of developing effective DL strategies
to expand all short forms automatically.

RQ3. Can a label-preserving transformation of existing data improve the per-
formance of DL approaches to text mining that are based on pre-trained LMs?

In Chapter 3, we suggested using knowledge from pre-trained LMs as a way of
address the issue of data scarcity. Alternatively, we can try to augment the original
training dataset by creating new samples by artificially varying the existing ones. Here,
synthetic samples should follow the same distribution as the existing data at hand.
Even though this approach in already very popular in the field of computer vision, its
suitability for NLP applications remains underexplored. This leads us to the third and
final RQ in which we investigate the potential of data augmentation for pre-trained LM
representations.

More specifically, in Chapter 6, we leveraged PBA to find data augmentation sched-
ules for a pre-trained LM-based classifier. To that end, we chose two common NLP
tasks which we aimed to solve with an extremely limited amount of data. To the best
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of our knowledge, this represents the first systematic approach of automatically schedul-
ing augmentation for text data. Unfortunately, the results revealed that label-preserving
transformations of text data did not consistently improve the performance of pre-trained
LMs on this set of NLP tasks. The most plausible explanation for this negative finding
is that the types of invariance incorporated by data augmentation may have already
been captured by pre-trained LMs. In other words, large pre-trained models already
capture the asymptotic behaviour of the underlying NNs leaving little room for further
improvement. Another possible explanation is that fine-tuning on small datasets might
be instable (Zhang et al., 2020a). Despite this negative finding, our approach may
still find practical applications using clinical text data. Many researchers are still using
bag-of-words or context-free embedding approaches, which would certainly benefit from
augmenting the training data.

7.1 Limitations and Future Work

Each chapter came with its own limitations specific to each question we were trying to
address. For instance, the performance of the model that was developed in Chapter 3 to
detect SAEs was bounded by the capacity of the MetaMap algorithm to detect all kinds
of events. The number of FNs could hence be reduced by finding ways to increase the
number of events detected by MetaMap. In addition, the model was unable to correctly
deal with negations. This was most likely due to the lack of training data and, thus, we
suggested dealing with all negations separately, on top of the classifier.

The abbreviation expansion approach introduced in Chapter 4 also had some draw-
backs. For instance, one needed to feed each full form separately so that the Siamese
NN could determine whether it was a suitable expansion candidate or not. A solution
was to feed every word in the dictionary, but it could be interesting to investigate more
efficient approaches. Similarly, when disambiguating between expansion candidates for
an abbreviation in a given sentence, one computed the minimal distance between that
sentence and a set of other sentences in which the full form appeared. This implies that
one must have access to a corpus of sentences from which such a set of sentences can
be extracted. Therefore, looking into approaches that do not rely on external knowl-
edge could be an exciting avenue for research. Because we fine-tuned a pre-trained
LM for binary classification to achieve acronym disambiguation in Chapter 5, we relied
on a supervised setting. Neverthelessss, we showed that it did not prevent the system
from handling short forms or candidates that were not seen in the training data. Over-
all, because we chose to handle abbreviations and acronyms separately we dismissed
edge cases where a short-form could refer to either a single word or a group of words
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depending on context (e.g. ”pt” for ”patient” and ”physical therapy”).
Finally, the negative insight obtained in Chapter 6 could be the result of the limi-

tations that came with the PBA approach we adopted for discovering an augmentation
schedule. The first limitation of PBA is that it was developed for computer vision
tasks which require training for hundreds of epochs. In contrast, LM fine-tuning can
be achieved in a few epochs only. It would be interesting to apply this approach to
different settings which require longer fine-tuning to achieve convergence. Second, we
chose to limit our search space to transformation operations, as these techniques are
easy to apply and have proven popular in other fields. However, this does not imply that
generative data augmentation approaches could not be extremely beneficial to create
synthetic samples. This is definitely a path that needs exploring. Finally, another avenue
of research could be to use the PBA algorithm to jointly find a set of transforms to
apply not only during training but also at inference time as a kind of ensemble method.

On top of the limitations specific to each aspect investigated, this thesis comes
with some limitations of its own. Given the wide scope of the main hypothesis, we
chose to focus on three RQs which we felt were particularly relevant to the field of
clinical text mining. However, other paths that could be worth exploring. For instance,
one could research the topic of active learning to carefully select a few samples which,
once labelled, could help drive the model’s performance. This could help limit the
annotation bottleneck as the model learns to focus on the most informative samples
for learning. Another important research area which could help the development of
DL models on clinical text data is few-shot learning. This corresponds to a variety of
machine learning models which precisely aim to train NNs with a very limited number of
samples. We explored this topic to some extent when we used a Siamese NN for finding
abbreviation expansion candidates. Indeed, Siamese NNs rely on similarity to learn to
discriminate between unseen classes. In our work, a Siamese NN was trained to learn
how abbreviations related to their full form. This means that, in theory, the NN had
the capacity to apply this pattern to any new abbreviation without the need for further
training. However, this is only a small example of the many existing few-short learning
techniques that should be delved into further.
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