
Vol.:(0123456789)1 3

Immunogenetics 
https://doi.org/10.1007/s00251-023-01293-w

REVIEW

Innate receptors modulating adaptive T cell responses: KIR‑HLA 
interactions and T cell‑mediated control of chronic viral infections

Laura Mora‑Bitria1 · Becca Asquith1

Received: 10 September 2022 / Accepted: 2 January 2023 
© The Author(s) 2023

Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are mainly expressed on natural killer (NK) cells and are key regulators 
of innate immune responses. NK cells are the first responders in the face of infection and help promote placentation during 
pregnancy; the importance of KIRs in these NK-mediated processes is well-established. However, mounting evidence sug-
gests that KIRs also have a prominent and long-lasting effect on the adaptive immune system. Here, we review the evidence 
for the impact of KIRs on T cell responses with a focus on the clinical significance of this interaction.
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Introduction

Host-parasite interactions represent a major evolutionary 
force; pathogens acquire new immune evasion strategies, 
and in turn, in response to this ever-changing challenge, the 
set of immune defences diversifies. The appearance of an 
adaptive immune system in jawed vertebrates is considered 
to be the pinnacle of this diversification process. Indeed, 
adaptive CD8 + T cells play a leading role against viral 
infections, one of the major sources of selective pressure in 
humans (Fumagalli et al. 2011). T cells express somatically 
rearranged T cell receptors (TCRs) that can recognize viral 
peptides presented by human leucocyte antigen (HLA) mol-
ecules. TCR recognition is not sufficient to initiate a T cell 
response. Additional innate signals are required to activate 
and orchestrate adaptive responses (Janeway and Medzhi-
tov 2002). This interdependence between the two defense 
arms has blurred the classical dichotomous view between 
innate and adaptive systems, and beyond the initiation of 
the adaptive response, functional definitions of innate and 
adaptive immunity are being relaxed (Kvell et al. 2007; Ter-
razzano and Carbone 2013). Here, we review a family of 
innate germline-encoded immune receptors, the inhibitory 
killer-cell immunoglobulin-like receptors (iKIRs) and their 

role in modulating the adaptive, somatically varying T cell 
immune response.

We focus this review on two main areas: evidence for KIR 
modulation of T cell responses and the clinical significance 
of KIR modulation of T cell responses.

The diverse KIR gene family

KIRs are a family of activating and inhibitory receptors 
predominantly expressed in natural killer (NK) cells but 
also in subsets of late-stage differentiated T cells. KIRs are 
encoded by a polygenic gene family located in chromosome 
19q13.4 containing up to 13 activating and inhibitory KIR 
genes with a high degree of homology. Each KIR can be 
distinguished by the number of extracellular immunoglob-
ulin-like domains: KIR2D- genes encode receptors with 2 
immunoglobulin domains whereas KIR3D- genes encode for 
receptors with 3 domains. Activating KIRs (aKIRs) are char-
acterized by a short cytoplasmatic tail with an ITAM motif 
(e.g. KIR2DS2, S for short). In contrast, iKIRs have a long 
cytoplasmatic tail containing ITIM motifs (e.g. KIR2DL2, 
L for long). An exception to this rule is KIR2DL4 which 
displays features of both activating and inhibitory isoforms; 
despite having an ITIM motif in its long cytoplasmatic tail, 
KIR2DL4 contains a transmembrane activation motif and 
is considered an aKIR (Long et al. 2013). The ligands for 
inhibitory KIR and some activating KIRs include HLA class 
I molecules (Pende et al. 2019).

 *	 Becca Asquith 
	 b.asquith@imperial.ac.uk

1	 Department of Infectious Disease, Faculty of Medicine, 
Imperial College London, London, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s00251-023-01293-w&domain=pdf


	 Immunogenetics

1 3

Several layers of genetic variation shape functional KIR 
diversity. The first layer of diversity is KIR gene content. 
Individuals vary in the number of activating and inhibitory 
KIR genes they carry in their genomes. Consequently, KIR 
diversity is created by copy number variation due to the 
high rates of recombination; this highly homologous and 
gene-dense region results in dozens of structural variants, or 
haplotypes, found across populations (Traherne et al. 2010). 
KIR haplotypes have been broadly grouped according to their 
gene content into group A and group B haplotypes. Group 
A haplotypes contain several iKIR genes, namely KIR2DL1, 
KIR2DL2/L3 and KIR3DL1, in addition to the framework 
genes KIR3DL2, KIR3DL3 and KIR2DL4. Group B hap-
lotypes show more structural diversity than group A hap-
lotypes and contain more aKIRs (Pyo et al. 2010; Uhrberg 
et al. 1997). In addition to the gene content variation, KIR 
epigenetic regulation shapes KIR repertoires (Manser et al. 
2015); both NK and T cells can express one or more KIRs in 
a stochastic fashion and independently of HLA class I geno-
type (Björkström et al. 2012; Valiante et al. 1997).

A second level of diversity is the vast amount of allelic 
variation displayed by KIR genes. The greatest number 
of alleles has been reported for KIR3DL1 and KIR3DL3, 
which display 184 and 248 alleles, respectively (Maccari 
et al. 2020). The full functional implications of this allelic 
variation are still unknown. For some KIRs, the allele has 
been shown to impact surface protein levels. For example, 
KIR3DL1 alleles have been grouped into “high expressers” 
and “low expressers” whilst the KIR3DL1*004 molecule 
is not expressed on the cell surface and is considered a null 
allele (Boudreau et al. 2014; Gardiner et al. 2001; Pando 
et al. 2003; Yawata et al. 2006). The binding strength of 
KIRs to their ligands is also determined by allelic poly-
morphism; for example, KIRs encoded by the KIR2DL2 
alleles are typically stronger binders than those encoded by 
the KIR2DL3 alleles (Moesta et al. 2008). Although KIR A 
haplotypes are invariant in terms of gene content, they have 
retained high levels of polymorphism (Pyo et al. 2010). The 
clinical relevance of KIR allelic variation is demonstrated by 
disease associations such as the association between posses-
sion of the KIR3DL1*004 allele and slower progression to 
AIDS (Martin et al. 2007) or KIR3DL2*107 and early onset 
of allergic pathologies (Gao et al. 2022).

Finally, each KIR binds a subset of highly polymor-
phic HLA class I molecules. Although not all KIR ligands 
have been identified, especially those for aKIRs, it is well 
established that iKIRs bind HLA molecules in broad allele 
groups. For example, KIR2DL1 recognizes HLA molecules 
carrying the C2 motif (Asn at position 77 and Lys at posi-
tion 80), while KIR2DL2/L3 molecules recognize C1 group 
HLA alleles (possessing Ser at position 77 and Asn at posi-
tion 80) (Biassoni et al. 1997; Valés-Gómez et al. 1998) and 
KIR3DL1 binds HLA molecules carrying the Bw4 epitope, a 

sequence motif determined by amino acids 77–83 on the α-1 
α-helix (Gumperz et al. 1997). KIRs and their HLA ligands 
are encoded on different chromosomes and so are inherited 
independently. This gives rise to a great combinatorial diver-
sity: individuals vary in the number of KIR-HLA pairs they 
carry as the genes encoding either the ligand, the receptor 
or both might be missing. Therefore, in addition to KIR and 
HLA allelic variation, functional KIR polymorphism is ulti-
mately amplified by the combinations inherited from these 
two unlinked loci.

The KIR genes are rapidly evolving, and whilst present in 
primates (and a separate lineage in cattle), they are absent in 
mice (as well as other mammals such as rats and horses). The 
murine functional homologue of the KIRs is the Ly49 lectin-
like receptors (Guethlein et al. 2015). KIR and Ly49 recep-
tors are structurally unrelated (immunoglobulin-like vs C-type 
lectin-like glycoproteins, respectively), and there are important 
differences in tissue distribution; for example, Ly49 receptors 
are expressed on neuronal soma, axons and dendrites where 
they play a role in neurite branching, synapse formation and 
neuronal survival (Zohar et al. 2008) but no comparable role 
of KIR has been described. However, KIR and Ly49 do share 
some important similarities: they both bind MHC molecules 
and are both widely expressed in NK cells.

KIRs and NK cell‑mediated immunity

The main role of KIRs is to modulate NK cell-mediated 
immunity. The importance of this role is highlighted by 
immunogenetics studies in which carriage of KIR genes 
together with the genes encoding their ligands has been 
statistically associated with control of viral infection, 
increased survival following hematopoietic cell transplant 
in leukaemia patients, risk of autoimmunity and probability 
of reproductive success (Hiby et al. 2004, 2014; Jiang et al. 
2013; Ruggeri et al. 1999; Traherne et al. 2016). These 
associations have been recently reviewed in (Pollock et al. 
2022) so we only touch on them briefly here. The most 
well-studied associations between KIR-ligand and clinical 
outcome are in human immunodeficiency virus 1 (HIV-
1) infection. The aKIR allele at the KIR3DL1/S1 locus, 
KIR3DS1, in the presence of its Bw4-80I ligand, is associ-
ated with low setpoint HIV-1 viral load, slower progression 
to AIDS and low CD4+ T cell count and reduced occur-
rence of opportunistic infections in different HIV-1 infected 
cohorts (Barbour et al. 2007; Boelen et al. 2018; Martin 
et al. 2002; Pelak et al. 2011; Qi et al. 2006). Striking 
associations have also been reported between KIR3DS1-
Bw480I and seronegativity in HIV-exposed individuals 
(Boulet et al. 2008; Jennes et al. 2013). Other examples 
of KIRs being associated with changes in the course of 
chronic viral infection include associations with spontane-
ous clearance of hepatitis C virus infection (Jennes et al. 
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2013; Khakoo et al. 2004). In the presence of their ligands, 
KIRs have also been associated with the risk of autoim-
mune diseases; for example, the KIR2DL2-C2 compound 
genotype increases psoriasis risk whereas KIR3DL1-Bw4 
is protective against multiple sclerosis (Ahn et al. 2021; 
Hollenbach et al. 2016). Finally, certain KIRs have been 
strongly associated with reproductive complications, 
including pre-eclampsia and the risk of miscarriage (Hiby 
et al. 2004; Huhn et al. 2018).

KIRs and T cell‑mediated immunity

In addition to their clear role in modulating NK cell-mediated  
immunity, there are multiple, non-exclusive pathways  
by which KIRs could, potentially, modulate T cell-mediated 
immunity. We divide these pathways into “direct” in which 
KIR expression on a T cell directly impacts that T cell’s 
function and survival, and “indirect” in which KIR expres-
sion on another cell (e.g. an NK cell or a different T cell) 
indirectly affects T cell function.

Direct pathways

When NK cells were shown to kill tumour cells in a peptide-
independent MHC-dependent fashion, the field hypothesised 
the existence of NK receptors responsible for executing the 
so-called missing self-response (Ljunggren and Kärre 1990). 
In parallel, a 58 kDa surface receptor, named p58 (KIR2DL2/
S2, KIR2DL3), was identified as an inhibitor of NK cell acti-
vation (Moretta et al. 1990). Shortly after, the identification 
of similar inhibitory receptors and their ability to interact 
with HLA class I molecules changed the view of NK cells 
(Ciccone et al. 1992; Moretta et al. 1993). From being con-
sidered a non-specific effector population, the discovery of 
the molecular mechanism of the missing-self response con-
firmed the hypothesis that NK cell specificity was depend-
ent on interactions between HLA molecules and inhibitory 
NK receptors, the KIRs. Although KIRs are predominantly 
expressed in NK cells, flow cytometry data that led to the 
discovery of p58 on NK cells already showed the existence of 
a minor subset of CD3+KIR+ T cells (Moretta et al. 1990).

Follow-up studies have consistently reported the pres-
ence of KIR+ cells in different T cell subsets across healthy 
individuals. These KIR+ T cell populations are found both 
within the gamma/delta (Battistini et al. 1997; Nakajima et al. 
1995) and the alpha/beta T cell compartments (Ferrini et al. 
1994; Mingari et al. 1996; Phillips et al. 1995). Amongst con-
ventional alpha/beta T cells, the highest frequencies of KIR 
expression are found in CD8+ T cells (1–25%); nevertheless, 
low frequencies of KIR+CD4+ T cells (< 1%) are also con-
sistently detected (Moretta et al. 1990; Phillips et al. 1995; 
van Bergen et al. 2004). KIR+CD8+ T cells express memory 

markers and accumulate in the terminally differentiated com-
partment with age; up to 25% of CD8+ T cells express KIRs 
in elderly individuals, an observation that has been repli-
cated for Ly49 receptors in mice (Anfossi et al. 2001; Coles 
et al. 2000). Interestingly, Ly49+ T cells expand in some dis-
ease settings like influenza, lymphocytic choriomeningitis 
and Listeria monocytogenes murine viral infections (Kam-
bayashi et al. 2000; McMahon and Raulet 2001). In humans, 
KIR + T cells are enriched in HIV and HCV-infected indi-
viduals (Bonorino et al. 2007; Cauda et al. 1994), although 
in HCV infection, KIR+ T cell frequency does not correlate 
with lesion severity (Bonorino et al. 2007). In HIV-1 infec-
tion, KIR expression on CD8+ T cells correlated with RNA 
viral load and increased with the duration of HIV-1 infec-
tion. The subset of individuals with good control of HIV-1 
(long-term non-progressors) also had a lower frequency of 
KIR+CD8+ T cells. Whether the increase in KIR+ cell fre-
quency is a cause or consequence of high viral load cannot 
be conclusively established in these observational studies but 
the decrease in KIR+CD8+ T cell frequency amongst indi-
viduals on viral suppressive anti-retroviral treatment suggests 
that it is perhaps viral load that drives KIR expression rather 
than the converse (Alter et al. 2009). In a recent study of indi-
viduals living with chronic HIV-1 infection, KIR+CD8+ T 
cells negatively correlate with the total HIV-1 reservoir size 
(DNA load) (Jin et al. 2020). KIR+CD8+ T cell expansion 
was also detected in haploidentical bone marrow transplant 
recipients but not in fully compatible transplants (Albi et al. 
1996).

The effects of KIR expression on that T cell’s function are 
generally thought to depend on the presence of KIR ligands. 
Two main effects of ligation of iKIR expressed by T cells 
have been reported: inhibition of T cell effector function 
and reduction of activation-induced cell death (AICD). As 
might be expected by the nature of the T cell recognition 
via TCRs, KIR+ T cells do not display a TCR-independent, 
NK-like activity and are unable to kill cells that lack HLA 
expression (Guerra et al. 2000). Many studies have shown 
that KIR engagement with their HLA ligands dampens the 
TCR-dependent effector response, both via reduction of 
cytokine levels (IFNg and TNFa) (D’Andrea et al. 1996) and 
impaired cytotoxicity (Bakker et al. 1998). However, the 
extent and nature of this inhibition are highly heterogeneous 
across studies (Anfossi et al. 2004; Ferrini et al. 1994). While 
some studies argue that KIR modulation of CD8+ T cells is 
ligand-independent (it has been suggested that this could be 
explained by a process of education for CD8+ T cells as there 
is for NK cells) (Alter et al. 2008; Björkström et al. 2012; 
Chwae et al. 2002), others show a ligand-dependent effect 
i.e. functional impairment in the presence of cognate HLA 
(Anfossi et al. 2004; Gati et al. 2003; Guerra et al. 2000, 
2002; van der Veken et al. 2009; Zajac et al. 1999). The dis-
parity in these results might be explained by the cell type 
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used (ex vivo KIR+ T cells, KIR+ T cell clones, transgenic 
KIR+ T cell lines) but also due to the variability of func-
tional KIR receptor repertoire across individuals, the effector 
function assessed (cytokines vs cytotoxicity) and the nature 
and concentration of the stimuli. In conclusion, it seems that 
KIR expression probably reduces activation-dependent T cell 
effector function, but it is unlikely to be a global inhibitor.

As opposed to the inhibitory KIR effect on T cell function, 
the reduction of AICD upon KIR ligation is well established 
(Fig. 1A). Using mice transgenic for KIR2DL3, Ugolini 
et al. showed that if the mice were also transgenic for the 
matching HLA ligand, then there was a significant accumula-
tion of memory KIR+CD8+ T cells but this was abrogated 
in mice that were negative either for the ligand, the KIR or 
both (Ugolini et al. 2001). Similarly, the size of this memory 
population increased with age in these transgenic mice, an 
observation already reported for Ly49+ CD8+ T cells in 
non-transgenic mice (Coles et al. 2000) and recapitulated in 
healthy humans (Anfossi et al. 2001). Although KIR ligation 
had no impact on the number of cell divisions, KIR engage-
ment resulted in reduced AICD in T cells in vitro, suggest-
ing that the accumulation of memory CD8 T cells in vivo 
was attributable to increased T cell survival (Anfossi et al. 
2001; Ugolini et al. 2001). Similar in vitro experiments using 
the Ly49 receptor in mice resulted in the inhibition of TCR-
induced apoptosis in the presence of the Ly49 cognate ligand 
(Roger et al. 2001). Although in vitro experiments using a 
transfected KIR3DL1 Jurkat cell line suggested ligation was 
dispensable (Chwae et al. 2002), in human T cell clones, 
KIR ligation reduces AICD (Arlettaz et al. 2004). Consist-
ent with this, KIR expression correlates with higher levels 
of the antiapoptotic molecule Bcl-2 (Young et al. 2001) and 
decreased caspase 8 activity (Gati et al. 2003).

Although their discovery dates back over 3 decades ago, 
the functional relevance of the KIR+ T cell population is 
unclear. Several reasons explain the paucity of functional 
studies. First, the absence of the KIR family in murine spe-
cies hinders the translation of in vivo studies. Second, due 
to the relatively wide expression of KIR, it is difficult to 
identify which population is responsible for genetic asso-
ciations. Finally, the antigen specificity of KIR+ T cells is 
often unknown (Young et al. 2001). Cases where KIR+ T 
cell specificity has been identified include self-antigen spe-
cific T cell clones isolated from renal cell carcinoma (Guerra 
et al. 2000) and melanoma (Speiser et al. 1999) patients as 
well as HLA multimer+KIR+ T cells specific for cytomegal-
ovirus, human T cell leukaemia virus (HTLV-1) and human 
immunodeficiency virus (HIV-1) (Alter et al. 2008; Boelen 
et al. 2018; van der Veken et al. 2009; Young et al. 2001). 
Given the specificity of these KIR+ T cell populations and 

Fig. 1   The direct and indirect pathways. iKIR could increase T cell 
survival and lead to an enhancement of HLA class associations by a 
number of different pathways. In all diagrams, the HLA class I mole-
cule associated with disease outcome is the molecule shown in yellow 
(interacting with the TCR in blue). A Direct pathway: iKIR expres-
sion on antigen-specific CD8 + T cells reduces AICD and increases 
T cell lifespan upon ligation of the cognate KIR ligand. B Indirect 
pathway: iKIR ligation on other cells can affect CD8 + T cell lifespan 
through different mechanisms. (I) NK cells can interact with dendritic 
cells (DCs) and shape downstream T-cell responses. (II) NK cells can 
directly kill activated CD4+ T cells. (III) Similarly, activated CD8+ T 
cells are also susceptible to NK cell killing. (IV) KIR+CD8+ T cells 
can kill activated antigen-specific CD8+ T cells. iKIR ligation might 
impair the CD8+ regulatory function, resulting in increased T cell 
lifespan during autoreactive or antiviral responses
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their accumulation in the terminally differentiated compart-
ment, it has been suggested that KIRs on T cells might be 
involved in the regulation of autoreactive responses (Alter 
et al. 2008; Cauda et al. 1994; Guerra et al. 2000), acting as 
an immune checkpoint that increases the activation threshold 
of potentially autoreactive T cells. KIR+ T cells can also 
play an indirect role by regulating other T cell populations. 
KIR+ T cell regulatory function is covered in the next sec-
tion on indirect pathways.

Indirect pathways

A set of alternative pathways whereby iKIRs indirectly affect 
CD8+ T cell function and survival is through iKIR expression 
on other immune effectors (e.g. NK cells or other T cells) 
interacting with the responding T cell population (Fig. 1B).

There are many ways in which NK cells shape adaptive 
immunity. For example, NK cells interact with dendritic 
cells (DCs) during the T cell priming phase, a process known 
as NK-DC crosstalk (Fig. 1B(I)). There is evidence that 
NK-DC crosstalk can have both a positive effect (boosting 
the subsequent T cell response) or a negative effect, damp-
ening it down. Upon activation, NK cells secrete cytokines 
including interferon-gamma, which enhance dendritic cell 
maturation (Piccioli et al. 2002). Furthermore, during viral 
infection, NK cells have been shown to kill DCs, so-called 
DC editing, which ensures robust T cell responses by selec-
tively depleting immature DCs and sparing the most immu-
nogenic DCs (Ferlazzo et al. 2002; Morandi et al. 2012; 
Piccioli et al. 2002). It has also been shown that NK-DC 
crosstalk during priming can have the opposite effect and 
lead to impairment of the T cell response since NK killing of 
immature DCs can lead to a reduction in the efficacy of DC 
vaccinations (Hayakawa et al. 2004) and impairment of viral 
control (Andrews et al. 2010; Cook and Whitmire 2013; 
Mandaric et al. 2012). Whether NK-DC crosstalk promotes 
or dampens effective T cell responses remains unknown, 
but several factors such as cytokine milieu or the density of 
co-stimulatory molecules might be important. For example, 
some studies have shown that KIRs at least partly modu-
late DC-NK interactions (Chiesa et al. 2003; Ferlazzo et al. 
2002), so variability in the KIR-HLA interactions might 
partly explain the different outcomes.

NK cells can also affect adaptive immunity by killing acti-
vated T cells in a perforin-dependent manner. Although acti-
vated CD8+ and CD4+ , including Tregs, upregulate activat-
ing ligands for NK cells and/or death receptors for NK cells 
(Cerboni et al. 2007; Crouse et al. 2014; Nielsen et al. 2012; 
Peppa et al. 2013; Rabinovich et al. 2003; Soderquest et al. 
2011; Waggoner et al. 2012; Welsh and Waggoner 2013), the 
exact mechanisms of NK recognition and killing of T cells 
are still not well defined (Waggoner et al. 2016). It has been 
suggested that the selectivity for activated cells indicates 

that NK cells might kill incorrectly activated T cells such as 
autoreactive T cells (Nielsen et al. 2012). Indeed, NK cells 
control autoreactive CD4+ T cells and ameliorate inflam-
mation in a mouse model of multiple sclerosis (Laroni et al. 
2016; Lu et al. 2007). In murine LCMV infection, NK cell 
killing of CD4+ T cells has been shown to be protective and 
to prevent immunopathology in the context of high viral 
load (Waggoner et al. 2012) (Fig. 1B(II)). However, in the 
same study, when using an intermediate viral dose, NK cell 
regulation results in viral persistence and immune pathology 
(Lang et al. 2012; Soderquest et al. 2011; Waggoner et al. 
2012). Therefore, while NK cell dampening of CD4+ T cell 
responses might be beneficial in some contexts (autoimmun-
ity, immunopathology), it can also have long-term negative 
effects (including viral persistence) and result in a reduced 
T cell memory pool (Lu et al. 2007; Rydyznski et al. 2015; 
Soderquest et al. 2011). NK killing of CD8+ T cells has also 
been described by Peppa et al. (Fig. 1B(III)). Using PBMCs 
from chronic hepatitis B virus patients (HBV), they showed 
that, in vitro, NK cells selectively kill HBV-specific T cells 
via the engagement of death receptors (Peppa et al. 2013). 
This regulatory role of NK cells on CD8+ T cells has been 
recently shown to limit specific CD8+ T cell responses to 
HBV vaccine in mouse in vivo and in humans in vitro in a 
programmed death ligand 1-dependent manner (Diniz et al. 
2022).

The role of iKIRs during NK cell killing of activated T 
cells has not been addressed. NK-T cell interactions prob-
ably take place within secondary lymphoid organs; after T 
cell priming, T cells undergo clonal expansion for approxi-
mately 2 days, coinciding with the peak of NK cell activa-
tion. Although perforin+ NK cells do not reside in secondary 
lymphoid organs (Dogra et al. 2020), upon activation during 
viral infections, type I interferon signalling triggers NK cell 
accumulation and renders them in close contact with T cells 
(Ali et al. 2021). Interestingly, NK cells within lymph nodes 
not only acquire cytolytic functions but also KIR expression 
(Ferlazzo et al. 2004). Therefore, activated KIR + NK cells 
are probably interacting with recently activated T cells in the 
lymph nodes, and the outcome of this interaction might be 
modulated by the iKIR-HLA receptor-ligand system. Type 
I interferon also induces KIR ligand expression, HLA-I, in 
activated T cells so T cells might avoid NK cell killing via 
iKIR engagement (Xu et al. 2014).

NK cells are not the only KIR-expressing effector popu-
lation that can affect T cell survival (Fig. 1B(IV)). A recent 
study from Li et al. reports that KIR-expressing T cells can 
also regulate other T cell populations (Li et al. 2022). They 
observed that KIR+CD8+ T cells are expanded in differ-
ent autoimmune conditions and also in patients with severe 
COVID-19. A previous study also observed that activated 
KIR+CD45RA+ T cells expand during acute respiratory 
infection (including COVID-19 patients) and showed that 
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KIR+RA+ T cells suppress the proliferation of stimulated 
KIR- CD8 T cells in vitro (Pieren et al. 2021). To address the 
function of the KIR+CD8+ T cells in autoimmunity, Li et al. 
isolated gliadin-reactive CD4+ T cells from celiac patients 
and cocultured them with KIR+CD8+ T cells. Upon activa-
tion, KIR+CD8+ T cells killed activated CD4+ T cells in 
a perforin-dependent manner. This effect was partly abro-
gated by the presence of anti-HLA class I antibodies and 
non-classical anti-HLA-E antibodies. Whether the interaction 
between HLA molecules and the relevant KIR is modulat-
ing this regulatory function was not addressed, and although 
the KIR+ T cells were preactivated before blocking, clas-
sical HLA class I blockade could in principle be attributed 
to TCR signalling, KIR signalling or both. Mice lacking 
Ly49+CD8+ T cells displayed normal antiviral responses 
but were more prone to autoimmunity. These observations 
are built on previous work on mouse models of multiple scle-
rosis where Ly49+ T cells were shown to suppress disease 
(Jiang et al. 1992; Saligrama et al. 2019). Based on this work, 
it was argued that KIR+CD8+ T cells are the counterpart of 
CD4+ regulatory T cells (Tregs) and might limit autoreactiv-
ity and immunopathology during infection.

Clinical relevance

Whilst there are multiple pathways whereby KIRs could 
affect T cell responses, whether these interactions have any 
impact on the course of disease in humans has not been 
studied. We have recently conducted an extensive immuno-
genetic analysis of three different persistent viral infections  
to address this question (Boelen et al. 2018; Seich al Basatena  
et al. 2011). In contrast to KIR-HLA association studies 
(which address the impact of KIR modulation of NK cells 
on the course of the disease), we start with the subset of 
classical HLA class I disease associations which are attribut-
able to T cells; these associations indicate that CD8+ T cells 
have a significant impact on clinical outcome. If iKIR-HLA 
ligand interactions modulate CD8+ T cell responses, then 
we would predict that functional iKIR genes (iKIR genes 
together with their HLA ligand genes) would modify these 
T cell-mediated HLA class I disease associations.

The interaction we are interested in investigating is there-
fore a three-way (gene–gene-gene) interaction, namely the 
iKIR gene—iKIR ligand gene—disease risk HLA allele. 
Three-way gene interactions are not investigated in GWAS 
studies because the resulting explosion of multiple compari-
sons is prohibitive; the interaction of interest here is thus 
invisible to hypothesis-free GWAS approaches and would 
have been missed by GWAS studies to date (Benjamini and 
Hochberg 1995). To detect such three-way gene interac-
tions, hypothesis-driven i.e. candidate gene studies in mod-
erate to large cohorts are required. To investigate the clinical 

relevance of iKIR- T cell interaction, we analyzed three inde-
pendent cohorts of individuals living with persistent viral 
infections: hepatitis C virus (HCV), HIV-1 and HTLV-1 (for 
details on cohort sizes, ethnic origin and outcome metrics 
analysed, see Table S1). In the following sections, we review 
the immunogenetics of these persistent viral infections start-
ing with well-known HLA class I associations followed with 
a review of findings from others and ourselves that these 
associations are modified by KIR-HLA ligand pairs i.e. 
there is a three-way association between iKIR genes, ligand 
genes and HLA class I risk alleles. This is consistent with the 
hypothesis that iKIR interactions with their ligands modulate 
HLA-restricted CD8 + T cell responses during these three 
chronic viral infections.

Classical HLA class I disease associations in chronic 
viral infections

The HLA genes are located within the major histocompat-
ibility complex (MHC) region in chromosome 6 and are a 
known hotspot for disease associations. Some of the most 
well-documented associations are between certain HLA 
class I alleles and clinical outcomes of chronic viral infec-
tions such as HIV-1 and HCV. For example, HLA-B*57 is 
associated with low setpoint viral load and slow progres-
sion to disease in multiple HIV-1 cohorts (Carrington et al. 
1999; Kaslow et al. 1996; Martin et al. 2002). In HCV, HLA-
B*57 is also protective, and it is associated with spontane-
ous clearance of infection (Chuang et al. 2007; Thio et al. 
2002). Detrimental HLA allele associations have also been 
reported; in HIV-1 infection, a subset of HLA-B*35 alleles, 
HLA-B*35Px (Gao et al. 2001), is associated with high set-
point viral load and faster progression to disease (Carrington 
et al. 1999). In individuals living with HTLV-1 infection, 
HLA-A*02:07, HLA-A*02:06 and HLA-C*08 are associated 
with low proviral load and reduced risk of the inflamma-
tory disease HTLV-1-associated myelopathy/tropical spastic 
paraparesis (HAM/TSP) whereas HLA-B*54:01 is detrimen-
tal i.e. it is associated with a significantly higher proviral 
load and an increased risk of HAM/TSP (Jeffery et al. 1999). 
Other HLA associations have been reported for these chronic 
viral infections but have not been consistently reproduced in 
different populations highlighting the importance of control-
ling for confounding, especially linkage disequilibrium and 
population stratification (Carrington and Alter 2012).

HLA class I molecules bind a range of molecules: TCR, 
iKIR, some aKIR as well as the leucocyte immunoglobulin-
like receptors LILRB1 and LILRB2. Because of this pleio-
tropic role, the mechanistic interpretation of HLA class I 
disease associations is not straightforward. Since we wished 
to investigate if KIRs affected HLA associations as a proxy 
for KIRs affecting T cell responses, we focused on the sub-
set of HLA class I associations that were attributable to T 
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cells. Initially, we identified HLA associations which could 
be attributed to T cells in an ad hoc way (Boelen et al. 2018; 
Seich al Basatena et al. 2011). For example, the detrimental 
association between HLA-B*54:01 and HTLV-1 proviral 
load is unlikely to be explained by the B54:01 molecule’s 
status as a KIR ligand because HLA-B54 is not known to 
bind any KIR and other HLA alleles with the same motif in 
the KIR binding region (the so-called Bw6 alleles) are not 
detrimental in the context of HTLV-1 infection. Similarly, 
other HLA molecules with similar LILR binding to B*54:01 
are also not detrimental. More recently, we performed this 
analysis in a more systematic way by developing an algo-
rithm, fstool (Debebe and Asquith 2020), to identify and 
quantify the relative contribution of different receptor-ligand 
interactions to HLA class I disease associations (Debebe 
et al. 2020). Briefly, Debebe et. al. developed metrics quan-
tifying the similarity of HLA class I alleles to each other 
in terms of their TCR binding, activating and inhibitory 
KIR binding and LILRB1 and LILRB2 binding. Then, 
they used multiple regression to quantify the association 
between similar HLA class I alleles and clinical outcomes. 
They hypothesized that if the underlying mechanism of a 
given HLA class I association is attributable to the CD8+ T 
cell response, other HLA alleles with similar TCR binding 
would show a similar disease association, and consequently, 
the TCR similarly metric would be significantly associated 
with outcome but HLA alleles with similar iKIR binding 
(for instance) would not be significantly associated with the 
disease. The same reasoning follows for the other mecha-
nisms i.e. KIR and LILR-mediated responses. For HTLV-1 
infection, the results were striking: all 4 HLA class I dis-
ease associations tested were best explained by TCR bind-
ing. Indeed, it was not just the behaviour of the 4 extreme 
protective or detrimental alleles that was explained by TCR 
binding, the protection conferred by the vast majority of 
all HLA class I alleles was also clearly attributable to TCR 
binding. Consistent with this, protective HTLV-1 alleles 
have been shown to preferentially present epitopes from the 
HBZ protein (MacNamara et al. 2010). In HCV infection, 
the picture was less stark with the protection conferred by  
different alleles explained by different mechanisms. Of 
note, the protective association with HLA-B*57 was 
attributable to its TCR-binding properties. Similarly, in 
HIV-1 infection, HLA-associated protection was mediated 
by different mechanisms. The protective effect of HLA-
B*57 in HIV-1 was mainly attributed to binding to the 
activating KIR, KIR3DS1, consistent with previous inter-
pretations (Martin et al. 2007). However, once individuals 
with KIR3DS1 were excluded from the cohort, there was 
still a residual protective effect of HLA-B*57, and this 
was attributable to TCR binding (Debebe et al. 2020). 
In short, it was possible to identify a number of HLA 
class I disease associations in HIV-1, HCV and HTLV-1 

infections that were most likely attributable to CD8+ T 
cell responses.

Functional iKIR genes enhance HLA associations

To investigate the clinical relevance of an interaction between 
iKIRs and T cells in vivo, Seich al Basatena et al. (2011) 
performed an immunogenetic analysis of HCV and HTLV-1 
cohorts. The study focused on the subset of HLA class I 
associations which could clearly be attributed to the CD8+ T 
cell response: HLA-B*57 in HCV and HLA-A*02:07, HLA-
A*02:06, HLA-B*54:01 and C*08 in HTLV-1. To test for 
an interaction between iKIRs and HLA class I restricted T 
cell responses, the cohorts were stratified into iKIR gene 
carriers and non-carriers, and the strength of the HLA 
associations with clinical outcome (namely risk of HAM/
TSP in the HTLV-1 cohort and odds of spontaneous clear-
ance in the HCV cohort) was assessed in each stratum. The 
iKIR gene KIR2DL2 was found to enhance both protective 
and detrimental HLA class I associations with clinical out-
comes. Additionally, KIR2DL2 presence also enhanced the 
protective effect of binding HBZ peptides in HTLV-1 and 
HLA class I associations with viral load in both HCV and 
HTLV-1 cohorts. This enhancement was stronger in the pres-
ence of genes encoding the stronger KIR2DL2 ligand, (HLA 
alleles carrying the C1 motif), suggesting that iKIR ligation 
is important for the observed KIR2DL2 impact on the T 
cell response. Together, these observations showed for the 
first time that the iKIR genotype has a significant impact on 
HLA class I associations suggesting that iKIRs affect anti-
viral HLA-restricted T cell responses in humans in vivo. No 
effects were detected for similar iKIRs genes like KIR2DL1 
or KIR2DL3. However, the power to detect a significant inter-
action between these iKIR genes and HLA class I alleles 
was low compared to that for the KIR2DL2 gene due to the 
unbalanced frequency of functional KIR2DL1 and KIR2DL3.

Another potential example of iKIR modulation of HLA 
risk alleles can be found in a study investigating the role of 
KIR3DS1 in HIV-1 control (Pelak et al. 2011). Although the 
expectation was that both KIR3DL1 and KIR3DS1 genes, in 
the presence of their ligand (Bw4 alleles and Bw480I alleles, 
respectively), would be protective as reported in two previ-
ous studies (Martin et al. 2002, 2007), in this cohort only the 
KIR3DS1-Bw480I compound genotype was independently 
associated with lower viral load. Interestingly, while the 
KIR3DL1-Bw4 compound genotype was not protective in 
this cohort, it was strongly associated with low viral load in 
a subset of KIR3DS1+Bw480I+ carriers in a dose-dependent  
manner. HLA-B*57 carries the Bw480I motif and is 
enriched among KIR3DS1+Bw480I+ individuals. Pelak 
et. al. attributed these findings to an epistatic interaction 
between KIR3DL1 and KIR3DS1 alleles on NK cells, with 
consequences for innate antiviral responses. An alternative 
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explanation is that KIR3DL1 in the presence of ligand, Bw4, 
enhances the well-known protective association of HLA-
B*57 (a Bw4-80I allele) with low viral load (Gao et al. 2010; 
Kiepiela et al. 2004). The potential KIR3DL1 gene enhance-
ment of B*57 protection in this study is reminiscent of the 
effect we observed in HCV and HTLV-1 with the KIR2DL2 
gene (Seich al Basatena et al. 2011), suggesting a universal 
mechanism of iKIR modulation of T cell responses.

To test this hypothesis, in a follow-up study, we extended 
the study of the KIR2DL2 effect to other iKIRs. There are 
6 iKIR loci in the human genome: KIR2DL1, KIR2DL2/3, 
KIR2DL4, KIR2DL5, KIR3DL1, KIR3DL2 and KIR3DL3. 
As mentioned previously, despite having a long cytoplas-
matic tail, KIR2DL4 transduces activating signals (Faure 
and Long 2002; Kikuchi-Maki et al. 2005), and so this KIR 
was excluded. The ligands for KIR2DL5 and KIR3DL3 have 
only been discovered recently so were not studied at the 
time of the analysis (Bhatt et al. 2021; Husain et al. 2019). 
Additionally, these ligands are not HLA class I molecules 
so whether the ligation of KIR2DL5 and KIR3DL3 triggers 
a similar effect compared to the rest of the iKIRs requires 
further study. And finally, KIR3DL2, a framework gene, 
was excluded since there is considerable evidence that it 
behaves differently to the other iKIRs (Ridley et al. 2016). 
We, therefore, focused our analysis on KIR2DL1, the two 
alleles at the KIR2DL2/3 locus and KIR3DL1 allele at the 
KIR3DL1/S1 locus. Given the functional evidence that iKIR 

signalling depends on ligation, we defined functional iKIR 
genes as the presence of a given iKIR gene together with 
the gene encoding the corresponding ligand in the same 
individual. We then calculated the presence or absence of 
functional KIR2DL1, KIR2DL2, KIR2DL3 and KIR3DL1 
genes. This allowed us to count the number of functional 
iKIR genes carried by each individual. The number of func-
tional iKIR genes in an individual can take values between 
zero and four, and its distribution in the population var-
ies with ethnicity (Fig. 2). Related to this count, we also 
constructed an inhibitory score (iKIR score), a weighted 
version of the count, that reflects subtleties in each iKIR 
ligation strength; for example, KIR2DL2 binding of C1 
alleles is stronger on average than KIR2DL3. Of note, nei-
ther iKIR count nor iKIR score was significantly associated 
with outcome, ruling out an innate NK cell mediated effect. 
As expected, the functional KIR gene KIR3DS1 was asso-
ciated with low early viral load set point in HIV infected 
individuals. Carriers of the functional KIR3DS1 gene were 
therefore excluded from the analysis to avoid confounding 
by NK cell-mediated associations.

We then split the cohorts based on the individuals’ inhibi-
tory scores into individuals with a high inhibitory score and 
individuals with a low inhibitory score, and the strength 
and significance of HLA associations were assessed in each 
subcohort (Table S2). All HLA class I associations in this 
HTLV-1 cohort were strengthened in individuals carrying a 

Fig. 2   Functional iKIR gene 
count distribution differs by 
ethnicity. Functional iKIR 
gene count was calculated from 
imputed KIR-HLA genotypes 
from sub-Saharan, European 
and Japanese individuals. 
Only KIR2DL1, KIR2DL2, 
KIR2DL3 and KIR3DL1 genes 
were considered for iKIR gene 
count calculation as explained 
in the text (see the “Functional 
iKIR genes enhance HLA 
associations” section). The sub-
Saharan and Japanese cohorts 
were genotyped previously 
(Jeffery et al. 1999; Martin et al. 
2002; Prentice et al. 2014; Seich 
al Basatena et al. 2011). KIR 
and HLA genotypes from Euro-
pean individuals were imputed 
with HLA*IMP and KIR*IMP 
programs using HumanHap300 
and HumanHap610Q SNP data 
(Motyer et al. 2016; Vukcevic 
et al. 2015)
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high inhibitory score and were greatly weakened and non-
significant in individuals with a low inhibitory score. Similar 
results were found when stratifying the cohort based on the 
count of functional iKIR genes instead. In HCV infection, 
a similar result was found: the protective HLA-B*57 asso-
ciation was enhanced in individuals with a high iKIR score. 
Finally, in HIV-1 infection, both the protective HLA-B*57 
and detrimental HLA-B*35Px associations were enhanced 
in individuals with a high iKIR score; this was replicated in 
two independent cohorts (Boelen et al. 2018). Together, this 
extensive immunogenetic analysis of three different chronic 
viral infections validated our earlier preliminary findings that 
iKIRs, in the presence of their ligands, modulate HLA class I 
associations, and our interpretation is that this is explained by 
iKIR modulation of HLA class I restricted T cell responses.

We proposed that iKIRs enhancement of CD8 + T cell 
survival is a plausible mechanism that can explain this iKIR 
effect on HLA class I associations. This hypothesis stems 
from ours and others’ experimental studies on T cells, where 
iKIR ligation is associated with increased T cell survival 
either via a direct or indirect pathway (see “Direct path-
ways” and “Indirect pathways” sections) (Boelen et al. 2018; 
Ugolini et al. 2001). Although it is difficult to imagine how 
increased survival can enhance both protective (HLA-B*57) 
and detrimental (HLA-B*35Px) associations, using math-
ematical modelling we showed that if T cell lifespan is very 
short (low number of functional iKIRs), then the effect of 
protective, detrimental and average HLA class I alleles is 
indistinguishable; individuals have similar viral loads irre-
spective of their HLA class I genotype. That is, if we strati-
fied a cohort and looked just at people with a low number of 
functional iKIRs, then the viral load would be independent 
of HLA genotype and HLA disease associations would be 
weak or absent. However, if T cell lifespan increases i.e. in 
individuals carrying a high number of iKIRs, the quality of 
the T cell response now becomes much more important and 
significant differences in viral load emerge between carriers 
of protective, detrimental and average HLA alleles. In an 
immunogenetic analysis, this is observed as strong detri-
mental and protective HLA associations. That is the strength 
of both protective and detrimental associations would be 
higher in people with a high iKIR score than in people with 
a low iKIR score. Although the model does not prove the 
hypothesis, it does provide a plausible explanation for our 
seemingly contradictory immunogenetic results.

Although this immunogenetic analysis suggests that 
iKIRs have a clinically significant impact on T cell 
responses, it does not distinguish between the direct and 
the indirect pathways: both are consistent with the data. 
The only hint is given by the size of the clinical effect com-
pared to the size of the KIR+ T cell population: it is perhaps 
difficult to imagine how the increase in survival of such a 
small population of KIR+ T cells can underlie such profound 

clinical effects, and for this reason, the data are arguably 
more aligned with the indirect pathway.

Conclusions

Functional iKIR genes enhance HLA class I disease associa-
tions in three different chronic viral infections. In contrast to 
many reported iKIR-disease associations, these observations 
applied to all iKIR genes and to all the three viral infections 
studied. This suggests the existence of a clinically significant 
checkpoint regulator of T cell responses. Our hypothesis is 
that the iKIR-HLA receptor-ligand system enhances T cell 
survival. Enhanced T cell lifespan might be desirable in 
the context of chronic antigen stimulation to avoid exhaus-
tion and cell death but increased T cell survival might also 
promote autoreactive T cell responses and worsen autoim-
munity. Although some T cells express KIRs, and this may 
directly affect the T cell’s lifespan (Fig. 1A) perhaps a more 
plausible explanation is modulation by another KIR express-
ing immune effector (most likely NK cells but also poten-
tially another T cell subpopulation, Fig. 1B). A number of 
regulatory mechanisms by which innate cytotoxic effectors 
affect adaptive responses have been described though the 
role of iKIRs in these interactions has generally not been 
investigated. The combination of both mathematical models 
and experimental data will help to investigate the underlying 
mechanisms behind our immunogenetic findings.
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