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A B S T R A C T

Reliable estimates of human mobility are important for understanding the spatial spread of infectious diseases
and the effective targeting of control measures. However, when modelling infectious disease dynamics, data
on human mobility at an appropriate temporal or spatial resolution are not always available, leading to
the common use of model-derived mobility proxies. In this study we reviewed the different data sources
and mobility models that have been used to characterise human movement in Africa. We then conducted
a simulation study to better understand the implications of using human mobility proxies when predicting the
spatial spread and dynamics of infectious diseases.

We found major gaps in the availability of empirical measures of human mobility in Africa, leading to
mobility proxies being used in place of data. Empirical data on subnational mobility were only available for
17/54 countries, and in most instances, these data characterised long-term movement patterns, which were
unsuitable for modelling the spread of pathogens with short generation times (time between infection of a
case and their infector). Results from our simulation study demonstrated that using mobility proxies can have
a substantial impact on the predicted epidemic dynamics, with complex and non-intuitive biases. In particular,
the predicted times and order of epidemic invasion, and the time of epidemic peak in different locations can
be underestimated or overestimated, depending on the types of proxies used and the country of interest.

Our work underscores the need for regularly updated empirical measures of population movement within
and between countries to aid the prevention and control of infectious disease outbreaks. At the same time, there
is a need to establish an evidence base to help understand which types of mobility data are most appropriate
for describing the spread of emerging infectious diseases in different settings.
1. Introduction

Human movement is a key determinant of the spatial spread of
infectious diseases as evidenced by the spread of Ebola (Merler et al.,
2015; Yang et al., 2015), yellow fever (Dorigatti et al., 2017; Kraemer
et al., 2017), and most recently, SARS-CoV-2 (Tatem et al., 2006; Find-
later and Bogoch, 2018). The emergence and subsequent international
spread of the latter and its variants of concern (VOCs) highlight the
speed and scale at which infectious pathogens can spread around the
globe (Li et al., 2021; O’Toole et al., 2021; Viana et al., 2021).

Models of infectious disease dynamics that incorporate human
movement have been used to generate insights into the spatial spread of
pathogens. They can help identify locations that are most susceptible to
receive imported cases (Bogoch et al., 2015; Gilbert et al., 2020; Craig
et al., 2020), assess the effectiveness of travel restrictions (Chinazzi
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et al., 2020; Hollingsworth et al., 2006), and inform the allocation of
scarce resources such as vaccines, drugs, personal protective equipment
or specialist healthcare staff (Tuite et al., 2011; Wu et al., 2007; Longini
et al., 2005; Kucharski et al., 2015). Spatial models of infectious disease
spread typically rely on human population movement data. These can
be empirical measurements, for example flight passenger statistics,
information from national population censuses, or mobile phone call
detail records (Tatem, 2014; Kraemer et al., 2016). More recently, a
few high resolution datasets based on mobile phone GPS data have
been made available to researchers and public health officials and used
to analyse within-country movement patterns during the COVID-19
pandemic (Jeffrey et al., 2020; Ruktanonchai et al., 2020; Ascani et al.,
2021).

However, empirical data on human movement are not routinely col-
lected, particularly in low- and middle-income countries (Ramiadantsoa
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et al., 2022). Moreover, where empirical data are available, these
are not always at a spatial and temporal resolution that matches the
scale and pace at which pathogens spread (Wesolowski et al., 2016).
Although mobile phone usage is increasingly being used to understand
movement of populations at a fine resolution, these data are known
to be biased in systematic ways by limited smartphone ownership
or uneven mobile phone coverage (Wesolowski et al., 2012, 2013b),
and typically do not capture international movement. They are also
expensive and time-consuming to acquire, limiting their potential use in
real-time analysis. Finally, privacy concerns constrain wider sharing of
these data (Lai et al., 2019), preventing the reproducibility of analyses
based on them.

In the absence of empirical data, infectious disease modelling stud-
ies often rely on human movement models such as gravity and radi-
ation models (Kraemer et al., 2019; Zipf, 1946; Simini et al., 2012).
These models are sometimes calibrated using data from nearby coun-
tries (Kraemer et al., 2017, 2019), long-term movement data from
Demographic and Health Surveys (DHS), or observed patterns of dis-
ease spread (Bhatia et al., 2021). By definition, these mobility proxies
cannot be validated against local human movement data which do
not exist. The potential impact of using such proxies to predict the
spatial dynamics of infectious diseases has received little attention
despite their recurring role in informing policy and resource allocation
decisions. Therefore, better understanding both the availability of hu-
man mobility data, or lack thereof, and the impact of using mobility
proxies on predicting infectious disease spread is key to prioritise future
research effort.

The aim of our work was twofold. First, we aimed to characterise
the availability of human mobility data that could be informative
about the risk of epidemic spatial spread in Africa. We focus on the
African continent which over the past decade has experienced nu-
merous large epidemics with significant public health consequences,
including multiple epidemics of Ebola (Centers for Disease Control and
Prevention, 2022), yellow fever (Africa Centers for Disease Control and
Prevention, 2022a), cholera (Africa Centers for Disease Control and
Prevention, 2022b), and measles (Africa Centers for Disease Control
and Prevention, 2022c). Second, we assessed the extent to which
relying on mobility proxies, in the absence of adequate empirical data,
would affect model-based predictions of epidemic spread.

We reviewed the different data sources and mobility models that
have been used to estimate human movement in Africa. We then
conducted a simulation study to better understand the implications of
using human mobility proxies when predicting the spatial spread of
infectious diseases using dynamic transmission models. In the absence
of suitable publicly available mobility data from Africa, and motivated
by the frequent use of mobility proxies based on data from other
countries in the continent (both of which were findings of our scoping
review), our simulation study used high resolution movement data from
two Western European countries to explore how proxies based on out-
of-country data can impact epidemic models. The simulations were
performed with two widely-used forms of human mobility models, the
gravity and radiation models.

2. Methods

2.1. Search strategy

We carried out a scoping review of mobility data and models in
Africa, adhering to the guidelines established by PRISMA extension
for Scoping Reviews (Tricco et al., 2018). We searched PubMED and
Web of Science on 29th August 2018 for peer reviewed literature in
English on human movement data used in mobility models in Africa.
We restricted our search to gravity and radiation models, which are
the most commonly used in infectious disease modelling (Viboud et al.,
2006; Eggo et al., 2011; Charu et al., 2017; Truscott and Ferguson,
2012; Bharti et al., 2008).
2

In short, in a gravity model the population movement between two
locations is assumed to be proportional to the population sizes of the
origin and distance and inversely proportional to the distance between
them (Eq. (3)). The radiation model also describes how the movement
between two locations may be affected by other surrounding highly
populated locations (Eq. (S1)).

The search terms used were: ((gravity model OR radiation model)
AND human AND africa), (mobility model AND africa AND human),
(gravity model AND africa), (radiation model AND africa AND human).
Both abstract and full-text screening were carried out independently
by two reviewers and all disagreements were resolved by consensus.
Only primary research articles were eligible for inclusion. We excluded
studies that were not set in Africa, did not have a spatial component,
or did not use data or estimates of human mobility.

Data were systematically extracted from the studies to describe the
source (e.g. census), spatial resolution, and temporal resolution of data
on human movement. We extracted the location and the time period of
the data for each study and whether the data were made available.

We classified as ‘‘empirical’’ human movement data obtained from
mobile phone call detail records (CDR), micro-census data from In-
tegrated Public Use Microdata Series (IPUMS), short-term migration
data from DHS, and data on long-term migration (Global Bi-lateral
Migration Database, hereafter GBMD), or on movement of refugees
from the United Nations High Commissioner for Refugees (UNHCR).
In addition to these generic data sources, some studies carried out
surveys tailored to identify movement patterns relevant to the spread
of specific diseases, e.g. overnight stays for malaria. These were also
considered as empirical data sources. In contrast to these, a large
number of studies used models of human mobility calibrated to data
from nearby regions, or to the observed patterns of disease spread.
Some studies specifically aimed to generate such mobility estimates
for regions where no empirical data were available. Where a study
did not rely on empirical measurements to characterise mobility and
instead used indirect sources such as disease spread or data from
other countries, we refer to it as having used (or produced) ‘‘mobility
proxies’’. For those studies, we also extracted details of the mobility
models used. For each country included in a study, we considered
empirical data (or mobility proxy) for a given spatial resolution and
for a specific time period as a discrete data set.

2.2. Simulation study

To understand the implications of using human mobility prox-
ies instead of empirical data when predicting the spatial spread and
dynamics of infectious diseases, we carried out a simulation study
comparing epidemic outcomes when using empirical movement data
versus mobility proxies. Specifically, we focused on subnational mo-
bility proxies generated by calibrating mobility models to data from
another country in the same region, an approach that was frequently
adopted in the studies identified in the scoping review.

2.2.1. Commuting data
To evaluate the implications of using mobility proxies in modelling

epidemic spatial spread requires highly resolved empirical data on
movement patterns. With such data, a baseline scenario for disease
spread can be simulated using the empirical data and its results com-
pared to counterfactual scenarios based on mobility proxies. Ideally,
our simulation study would have used subnational movement data from
African countries to understand the extent to which relying on mobility
proxies instead of empirical data may affect predictions about epidemic
spread in Africa. However, as highlighted by the scoping review, such
resolved mobility datasets either did not exist or were not available for
use for most African countries. For instance, a CDR dataset that had
been released for research (Blondel et al., 2012) and used in multiple
studies (Wesolowski et al., 2014; Tompkins and McCreesh, 2016; Mari
et al., 2017) was no longer available.
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The settings for our simulation study were therefore selected based
on locations where empirical mobility data were openly accessible and
were not based in Africa. Instead we used available commuting data
from France and Portugal. While this approach did not allow us to
draw explicit conclusions on the impact of using mobility proxies in epi-
demic models for African settings, it did highlight general issues with
predictions from epidemic models using mobility proxies calibrated
with out-of-country data (as well as calibrations to data aggregated
at different spatial scales). These valuable insights from the European
context are informative on the suitability of using mobility proxies in
epidemic models in a more general context.

The movement data used were derived by Tizzoni et al. from
mobile phone call data in France and Portugal for 2007 and 2006
respectively (Tizzoni et al., 2014). The commuting patterns were ob-
tained from a large sample of users’ CDR by identifying the frequently
visited locations (based on proximity to mobile phone towers) of each
person in the dataset. The authors assumed that the most visited place
corresponded to the location where an individual lives, with the second
most visited place being the location where an individual works (Song
et al., 2010). This was then used to calculate the total numbers of
people in the sample who commute between each of the 323 districts
(corresponding to the ADM3 administrative units) in mainland France
and the 278 municipalities (the ADM2 administrative units) in main-
land Portugal. This approach also gave the number of people that both
lived and worked in the same spatial unit.

We combined the commutes between and within administrative
units to construct an origin–destination (O-D) movement matrix for
each country. To generate population-level estimates of the total move-
ment, we scaled the sampled movement flows between pairs of admin-
istrative units. The total number of individuals living in spatial unit 𝑖
nd working in unit 𝑗 is calculated as:

𝑜𝑏𝑠
𝑖𝑗 =

𝑛𝑖𝑗
∑

𝑗 𝑛𝑖𝑗
𝑝𝑜𝑝𝑖 (1)

where 𝑛𝑖𝑗 is the number of people commuting from 𝑖 to 𝑗 in the sample
of mobile phone users, ∑𝑗 𝑛𝑖𝑗 is the total number of people living in
𝑖 that were included in the mobile phone data sample and 𝑝𝑜𝑝𝑖 is the
population of location 𝑖. The scaling method in Eq. (1) ensures that the
sum of each row in the O-D matrix equals the population living in that
administrative unit (∑𝑗 𝑁

𝑜𝑏𝑠
𝑖𝑗 = 𝑝𝑜𝑝𝑖).

.2.2. Mobility proxies
In order to assess the impact of using mobility proxies in epidemic

odels, we constructed predicted movement matrices at the same spa-
ial resolution as the observed data in France and Portugal. Movement
atrices can encode either the total number of individuals (referred to

s O-D matrix) or the probability of moving between locations (rescaled
-D matrix). For the latter, matrix entry 𝑝𝑖𝑗 is the probability that an

individual moves between spatial units 𝑖 and 𝑗. This is the product of
the probability that (i) they leave 𝑖 for any destination (1 −𝑝𝑠𝑡𝑎𝑦𝑖 ); and
(ii) they move to 𝑗 given that they have moved out of 𝑖 (for which we
se the notation 𝑝𝑚𝑜𝑣𝑒𝑖𝑗 ). This overall probability can be written as:

𝑖𝑗 =

{

𝑝𝑠𝑡𝑎𝑦𝑖 if 𝑖 = 𝑗
(1 − 𝑝𝑠𝑡𝑎𝑦𝑖 )𝑝𝑚𝑜𝑣𝑒𝑖𝑗 if 𝑖 ≠ 𝑗

(2)

where 𝑝𝑠𝑡𝑎𝑦𝑖 is the probability that a person living in 𝑖 also works in that
ame location.

Predictions of the relative flows 𝑝𝑚𝑜𝑣𝑒𝑖𝑗 were obtained from the grav-
ty model, which posits that the flow of individuals from location 𝑖 to
ocation 𝑗 is proportional to:

𝑚𝑜𝑣𝑒
𝑖𝑗 ∝

𝑁𝛼
𝑖 𝑁

𝛽
𝑗

𝑑𝛾𝑖𝑗
(3)

where 𝑁𝑖 and 𝑁𝑗 are the populations living in locations 𝑖 and 𝑗, and
𝑑 is the distance between the two locations (Riley et al., 2015; Zipf,
3

𝑖𝑗 i
1946). 𝛼, 𝛽 and 𝛾 are model parameters. We fitted the gravity model
to observed movement data and then used the estimated parameters to
predict 𝑝𝑚𝑜𝑣𝑒𝑖𝑗 .

The gravity model in Eq. (3) cannot be used to estimate 𝑝𝑠𝑡𝑎𝑦𝑖 .
Therefore, 𝑝𝑠𝑡𝑎𝑦𝑖 values were taken directly from observed data and used
to populate the diagonal elements of the 𝑝𝑖𝑗 matrix and to scale the
off-diagonal elements as shown in Eq. (2).

We multiplied the rescaled O-D matrix by the size of the origin
population (𝑝𝑜𝑝𝑖) to obtain the numbers of people predicted to move
between pairs of spatial units (O-D matrix):

𝑁𝑝𝑟𝑒𝑑
𝑖𝑗 = 𝑝𝑖𝑗𝑝𝑜𝑝𝑖 (4)

We generated different mobility proxies 𝑁𝑝𝑟𝑒𝑑
𝑖𝑗 by varying assump-

tions about the availability of movement data in a country and about
𝑝𝑠𝑡𝑎𝑦𝑖 . In our central scenario presented here, we assume that movement
data are unavailable for a given country and we therefore make predic-
tions based on data from a nearby country (Fig. 1). For Portugal, we
generate mobility proxies using data from France, i.e. 𝑝𝑚𝑜𝑣𝑒𝑖𝑗 estimated
by a gravity model fitted to France and 𝑝𝑠𝑡𝑎𝑦𝑖 set to the average observed
𝑝𝑠𝑡𝑎𝑦𝑖 across all French administrative units. The same approach was
used to generate mobility proxies for France using data from Portugal.

We explored additional scenarios where 𝑝𝑠𝑡𝑎𝑦𝑖 and 𝑝𝑚𝑜𝑣𝑒𝑖𝑗 were in-
formed by data from either the correct or the neighbouring country
and at various spatial resolutions (e.g. gravity model fitted to ADM2 but
used to predict movement at ADM3 in the same country) (Suppl Tab.
S1). To explore the robustness of our results to the choice of mobility
model, we also considered a scenario using a radiation model to predict
𝑝𝑚𝑜𝑣𝑒𝑖𝑗 .

2.2.3. Epidemic model
We use a stochastic discrete time SEIR metapopulation model to

simulate epidemics in France and Portugal. The subpopulations in the
metapopulation model are formed from each combination of home and
work location. The size of each subpopulation 𝑁𝑖𝑗 is the number of
individuals who live in 𝑖 and work in 𝑗. 𝑁𝑖𝑗 is set using either the
observed data (𝑁𝑜𝑏𝑠

𝑖𝑗 ) or mobility proxy (𝑁𝑝𝑟𝑒𝑑
𝑖𝑗 ). This means that the

home and work locations of individuals are fixed within our model,
with movements occurring recurrently. People in each subpopulation
fall into one of four compartments denoting their infection states:
susceptible (𝑆), exposed (𝐸), infectious (𝐼) or recovered (𝑅).

Each subpopulation has two sets of interactions with other sub-
populations. For half of each day (a day being defined as a 24-hour
period), we assume homogeneous mixing between all individuals who
reside in the same spatial unit (i.e. all people living in 𝑖) and for
the other half of the day we assume homogeneous mixing between
individuals who work in the same spatial unit (all people working in 𝑗).
These assumptions are in line with previous studies that incorporated
commuting data in models of infectious disease spread (Keeling et al.,
2010; Tizzoni et al., 2014).

Thus there are two forces of infection acting each day on every
subpopulation in our model:

𝜆ℎ𝑜𝑚𝑒𝑖 = 𝛽
∑

𝑗 𝐼𝑖𝑗
∑

𝑗 𝑁𝑖𝑗

𝜆𝑤𝑜𝑟𝑘
𝑗 = 𝛽

∑

𝑖 𝐼𝑖𝑗
∑

𝑖 𝑁𝑖𝑗

(5)

where 𝛽 is the per capita transmission rate. 𝜆ℎ𝑜𝑚𝑒𝑖 therefore depends on
the number of infectious people living in the same spatial unit 𝑖 (∑𝑗 𝐼𝑖𝑗).
imilarly, 𝜆𝑤𝑜𝑟𝑘

𝑗 depends on the number of infectious people working in
he same spatial unit 𝑗 (∑𝑖 𝐼𝑖𝑗). We make the simplifying assumption
hat movement is independent of infection state and that 𝛽 is the same
n all settings.
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Fig. 1. Illustration of how movement patterns observed in France and Portugal can be used to generate mobility proxies. The ovals on the left represent the movement
patterns within each country, with the smaller dashed ovals representing different spatial units within the country. Movement between locations is shown by the blue arrows in
France and purple arrows in Portugal. Darker colours indicate more movement. People that move within their own spatial unit are shown with red arrows in France and green
arrows in Portugal. These movement patterns can be summarised in a movement matrix (i.e. O-D matrices, middle column) that provide information on movements between each
origin–destination pair (including where the destination is the same as the origin, i.e. 𝑝𝑠𝑡𝑎𝑦𝑖 , see methods). The matrices in the right column illustrate how movement patterns in
France are predicted in our central scenario based on a combination of a gravity model fitted to Portuguese movement data along with data on the probability that an individual
leaves the location they live in (1 - 𝑝𝑠𝑡𝑎𝑦𝑖 ). Similarly, we predict Portuguese movement using a gravity model fitted to French movement data and the average 𝑝𝑠𝑡𝑎𝑦𝑖 observed in
France. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
The transitions between infection compartments at each time step
(𝛥𝑡 = 0.1 day) are modelled stochastically as follows:

𝑆𝑖𝑗 → 𝐸𝑖𝑗 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙
(

𝑆𝑖𝑗 , 1 − exp (−𝜆𝛥𝑡)
)

𝐸𝑖𝑗 → 𝐼𝑖𝑗 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙
(

𝐸𝑖𝑗 , 1 − exp (−𝛿𝛥𝑡)
)

𝐼𝑖𝑗 → 𝑅𝑖𝑗 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙
(

𝐼𝑖𝑗 , 1 − exp (−𝛾𝛥𝑡)
)

(6)

where 1∕𝛿 and 1∕𝛾 are the mean latent and infectious periods respec-
tively. 𝜆 takes the value 𝜆ℎ𝑜𝑚𝑒𝑖 in the first half of each day when people
are at home, and 𝜆𝑤𝑜𝑟𝑘

𝑗 in the second half of each day when people are
at work.

We simulated and compared epidemics in France and Portugal
under different scenarios, where 𝑁𝑖𝑗 was informed by different data. In
the baseline scenario, 𝑁𝑖𝑗 was set to observed data 𝑁𝑜𝑏𝑠

𝑖𝑗 , while in the
alternative scenarios 𝑁𝑖𝑗 was based on mobility proxies 𝑁𝑝𝑟𝑒𝑑

𝑖𝑗 (Suppl
Tab. S1). The epidemics were seeded in either the capital city (Paris
and Lisbon) or a less central location (Brest in the northwest of France
and Miranda do Douro in the northeast of Portugal). These locations
were chosen to explore differences in the dynamics of outbreaks orig-
inating in a prominent urban centre and a location on the edge of the
commuting network.

For each scenario, we ran 100 simulated epidemics for 300 days,
seeding 5 infectious cases of a flu-like pathogen and assuming that the
rest of the population is fully susceptible (see Suppl Sec. 2 for further
details). We restricted our analysis to epidemics which were seeded
successfully (defined as simulations where > 10% of the total population
was infected after 300 days).

For each scenario 𝑠, we summarised all the successfully seeded epi-
demic simulations with four metrics, two which characterise scenario
𝑠 only, and two which compare 𝑠 to the baseline:

• Invasion time in 𝑖 (𝑡𝑓𝑖𝑟𝑠𝑡𝑖 ), defined as the median time to the
arrival of the first infectious case among those living in location
𝑖.

• Peak time in 𝑖 (𝑡𝑝𝑒𝑎𝑘𝑖 ), defined as the median time to the epi-
demic peak in location 𝑖 (i.e. time when the number of infectious
4

individuals living in 𝑖 is at a maximum).
• Relative error in invasion time in 𝑖 (𝜖𝑓𝑖𝑟𝑠𝑡𝑖 ). This was calculated
as the difference between 𝑡𝑓𝑖𝑟𝑠𝑡𝑖 in scenario 𝑠 (i.e. using mobility
proxy) and in the baseline (using the empirical mobility data), di-
vided by the largest invasion times across all locations in scenario
𝑠: 𝜖𝑓𝑖𝑟𝑠𝑡𝑖 = 𝛥𝑡𝑓𝑖𝑟𝑠𝑡𝑖 ∕𝑚𝑎𝑥𝑗

(

𝑡𝑓𝑖𝑟𝑠𝑡𝑗

)

.

• Invasion order similarity (𝑝𝑓𝑖𝑟𝑠𝑡𝑛 ), defined as the proportion of
the first 𝑛 locations invaded in the baseline scenario that were also
among the first 𝑛 locations invaded in scenario 𝑠. The invasion
order was defined based on the median invasion time across all
simulations with successfully seeded epidemics, i.e. 𝑡𝑓𝑖𝑟𝑠𝑡𝑖 .

3. Results

3.1. Scoping review

Of the 471 articles from the initial search, 129 were selected for
abstract screening and 30 full-text articles for data extraction, all of
which were published between 2007 and 2018. Across the 30 studies,
we identified 150 empirical human mobility data sets and 168 mobility
proxies.

3.1.1. Empirical data
Empirical data were available for 52 of 54 African countries (Fig. 2).

For 51 countries, data on long-term migration patterns between coun-
tries were available, from GBMD (n = 42 countries) or data on refugee
movement from UNHCR (n = 51). The GBMD provides data on in-
ternational migrations between all countries for each decade in the
period 1960–2000 (Özden et al., 2011). The UNHCR collects data
on the annual flows of refugees, asylum seekers and the number of
internally displaced persons between a country/territory of origin and
asylum (UNHCR, 2022).

Out of 54 countries, we found only 17 with subnational mobility
data. These were informed by census (n = 14 countries), mobile

phone records (CDR, n = 5, Côte d’Ivoire, Kenya, Namibia, Sierra
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Fig. 2. Human population mobility data and proxies in Africa. We reviewed 30 peer-reviewed articles using human mobility data or proxies in any African country. For each
country included in a study, we considered empirical data (or mobility proxy) for a given spatial resolution and for a specific time period as a discrete data set. We identified
150 empirical data sets and 168 mobility proxies. (a) Locations for which empirical data on human mobility were available. Data from Global Bi-Lateral Migration Database on
international long-term migration and from the United Nations High Commissioner for Refugees on the movement of refugees between countries (red circles) were used as sources
of international mobility within Africa. Census data (including population-level census, census microdata, and health and demographic surveillance surveys) from 14 countries
(green circles) were used as empirical sources of subnational mobility at varying spatial resolutions across countries. Call details records (CDR) were used to quantify subnational
mobility patterns at a fine temporal and spatial resolution and were available for five countries (purple circles). Tailored interviews at specific sites (black circles) were also used
to quantify mobility. Social media usage at a fine spatial resolution (yellow circles) from two time periods were used to characterise mobility patterns in one country. (b) Locations
for which human mobility proxies derived from empirical data shown in (a) have been used in the literature. Subnational mobility proxies for 44 countries in Africa (blue circles)
were generated using census, CDR, or both, using data from one or more of 14 African countries where these data were available. For 37 countries in Africa, mobility proxies
were the only source of information on subnational mobility. (c) Locations for which mobility proxies were derived either from data sources not shown in (a) or indirectly from
other mobility proxies. The former were obtained through mobility models calibrated to empirical data from countries outside Africa (orange circles, flight data from Europe, the
United States, and Canada), or from indirect evidence of mobility such as disease spread (pink circle). The latter were characterised using mobility proxies from a different country
(cyan circles). In all panels, the size of the open circles indicates the spatial scale of the data or proxy, with smaller circles indicating higher spatial resolution. The number of
empirical data sets or mobility proxies derived from a given source is indicated in parenthesis in the legends. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Leone, and Senegal), social media records (n = 1) (Dobra et al.,
2018) or dedicated surveys (n = 5) (Yukich et al., 2013; Marshall
t al., 2018). Censuses include surveys designed to measure changes
n socio-demographic trends (such as internal migration) in a coun-
ry, e.g. recording a change in address at ADM1 level over the last
, 5, or 15 year period. These data are made available as either
ggregate statistics (referred to as census or population-level census)
r individual records (referred to as census microdata or individual-
evel census). Harmonised census microdata across different countries
rovided by the Integrated Public Use Microdata Series (IPUMS, 2022)
ere frequently used to quantify subnational mobility. Individual-level

ensus data from specific geographic locations (rather than the entire
ountry) were also available and informed more temporally and spa-
ially resolved movements (Collinson et al., 2014; Dobra et al., 2017;
ndrews et al., 2012). CDR provided the most spatially and temporally
esolved data and were used for methodological research (Lu et al.,
013; Matamalas et al., 2016; Wesolowski et al., 2013a) as well as
esearch into infectious diseases including Ebola (Peak et al., 2018),
alaria (Tompkins and McCreesh, 2016; Ruktanonchai et al., 2016),

chistosomiasis (Mari et al., 2017), and cholera (Finger et al., 2016).
imilarly, mobility data from social media use (i.e. geolocated tweets)
ere derived at a high spatial resolution (ADM3 in South Africa) (Dobra
t al., 2018). Dedicated surveys collected mobility data relevant to the
pread of a specific disease in a specific location (Yukich et al., 2013;
arshall et al., 2018).

.1.2. Mobility proxies
The empirical data described above were used to derive subnational

obility proxies for 44 of 54 countries in Africa, 37 of which had
o empirical data informing subnational mobility (Fig. 2(b)). These
roxies were often generated using mobility models fitted to cen-
us microdata from one or more countries, or CDR data from other
frican countries (Sorichetta et al., 2016; Wesolowski et al., 2014;
raemer et al., 2017). We also identified mobility proxies estimated

rom flight data from Europe and North America, and subsequently
sed to inform mobility between 140 cities across 43 countries in Africa
Fig. 2(c)) (Huang et al., 2013). Overall, we identified subnational
obility proxies for 51 of 54 countries.

We found that typically, mobility proxies were not only generated
sing data from different locations but also extrapolated the mobility
atterns from empirical data to earlier or later time periods, sometimes
ver a decade apart (Ruktanonchai et al., 2016; Finger et al., 2016;
raemer et al., 2017; Pindolia et al., 2013; Wesolowski et al., 2014).

In addition to those relying on empirical movement data, mobil-
ty proxies were also inferred from indirect evidence such as spatio-
emporal trends in disease incidence (D’Silva and Eisenberg, 2017;
ilal et al., 2015; Tatem et al., 2012) or pathogen genomic informa-
ion (Gustafson and Proctor, 2017; Dudas et al., 2017) (Fig. 2(c)).

Finally, mobility proxies were sometimes used to model human
ovement in different countries or at a different spatial scale, e.g. using

ravity model parameters fitted to ADM1 unit data to describe move-
ents between ADM2 units, in the same or another country (Kramer

t al., 2016).
Typically, mobility proxies quantified movement information as

bsolute flows over a specified time window (i.e. the number of people
oving between a source and destination) (D’Silva and Eisenberg,
017; Kraemer et al., 2017; Wesolowski et al., 2014; Sorichetta et al.,
016; Huang et al., 2013; Dudas et al., 2017; Silal et al., 2015), or
elative flows (i.e. probability of moving from a source to a given
estination, conditional on moving out of the source) (Marshall et al.,
018; Tompkins and McCreesh, 2016; Matamalas et al., 2016; Finger
t al., 2016). Some studies focusing on disease spread also characterised
irectly the probability of transmission of a pathogen between locations
n a given time unit (Gustafson and Proctor, 2017; Kramer et al., 2016).
he focus was therefore to quantify the movement between locations
6

nd not the probability of remaining in the same place. However, this
assumption was rarely stated explicitly, e.g. clarifying that relative
flows are conditional on moving in the first place. In fact, we identified
only one study that estimated the probability of not moving out of a
spatial unit over an year (i.e. 𝑝𝑠𝑡𝑎𝑦), albeit at a gross temporal scale
(Mari et al., 2017)

In studies that used empirical data sources to calibrate mobility
models, the underlying data were rarely shared with the publica-
tion, even when commercial restrictions did not prevent data sharing
(55/150 empirical data sets readily available). Mobility proxies were
more often available (125/168) (Huang et al., 2013; Sorichetta et al.,
2016; Wesolowski et al., 2014; Kramer et al., 2016).

3.2. Epidemic simulation study

A key finding of our scoping review was the large number of
subnational mobility proxies that were based on empirical movement
data from outside the country (occurring in 37 countries that did not
have subnational empirical data). In this simulation study, we illustrate
the potential implications arising from the use of such mobility prox-
ies in epidemic models. We present results for our main scenario in
which mobility proxies for France are generated from a gravity model
calibrated to Portuguese movement data with 𝑝𝑠𝑡𝑎𝑦𝑖 set as the average
across all Portuguese administrative units (and vice versa for Portugal).
We compare each summary metric (see Methods) for simulations using
mobility proxies against a baseline (using observed mobility data). We
also refer to results from some of the supplementary scenarios we
explored (Suppl Tab. S1) in which 𝑝𝑠𝑡𝑎𝑦𝑖 and 𝑝𝑚𝑜𝑣𝑒𝑖𝑗 for the mobility proxy
were informed by different combinations of local or out-of-country
data. Other scenarios looked at the effects of fitting the gravity model
to data from the same country but aggregated at a different spatial
scale, as well as a scenario similar to the main one but instead using a
radiation model to predict 𝑝𝑚𝑜𝑣𝑒𝑖𝑗 .

3.2.1. Performance of mobility models
The mobility proxies fitted the observed movement data moderately

well in both Portugal and France (𝑅2 = 0.44 and 0.47 respectively,
Fig. 3A, Fig. 4A). In a scenario where the mobility proxy was based on
data from the same country, the fit was marginally better (𝑅2 = 0.48
and 0.55 respectively), and only slightly decreased when using 𝑝𝑚𝑜𝑣𝑒𝑖𝑗
fitted to the other country and a local 𝑝𝑠𝑡𝑎𝑦𝑖 (Suppl Tab. S4). These
results suggest that, in both countries, the mobility model we used (see
Eqs. (2)–(4)) is only able to explain about half of the variance in the
mobility data, and performance decreases by about 10% when fitted to
data from another country.

3.2.2. Impact on epidemic dynamics
Invasion times (𝑡𝑓𝑖𝑟𝑠𝑡𝑖 ) in simulations using mobility proxies were

strongly correlated with those using observed movement, especially for
epidemics seeded in well-connected locations (𝑅2 = 0.89 and 0.85 for
Lisboa and Paris respectively, and 0.77 and 0.78 for Miranda do Douro
and Brest respectively (Fig. 3B, Fig. 4B)). However invasion times
tended to be under-estimated when using mobility proxies, particularly
in France and more so in epidemics with peripheral seeding (Fig. 3C,
Fig. 4C). In the most extreme scenario (epidemics seeded in Brest),
the invasion times were predicted approximately a month too early
(Fig. 4B), a considerable mismatch given the short assumed generation
time (the time between infection of a case and their infector) of on
average 3 days.

Despite this overall trend to under-predict invasion times, locally
around peripheral seeding locations, invasion times were paradoxically
over-predicted when using mobility proxies.

This led to poor characterisation of the early invasion dynamics,
particularly with peripheral seeding (Fig. 3E, Fig. 4E). For epidemics
seeded in Brest and Miranda do Douro, only 60% and 55% of the

first 20 patches invaded were correctly identified when using mobility
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Fig. 3. Mobility predictions and epidemic simulations for Portugal. (A) Predicted numbers moving between Portuguese ADM2 units vs observed numbers from mobile phone
all records. Each purple dot represents a pair of ADM2 units. The black dots show the median predicted value (y value) versus the median observed value in each bin (where the
ins are marked with grey dashed lines). Error bars show the 2.5% and 97.5% quantiles of the predicted values in that bin. (B) and (D) show respectively the median invasion

time (𝑡𝑓𝑖𝑟𝑠𝑡𝑖 ) and the median peak time (𝑡𝑝𝑒𝑎𝑘𝑖 ) amongst residents of each spatial unit (represented by a dot) across all simulations where an epidemic was successfully seeded.
Plots compare the times when using observed mobility patterns (x-axis) vs the mobility proxy (y-axis) from our central scenario in the epidemic model (see Methods). The colour
represents the normalised distance of each patch from the seed location (shown by the title of each grid), calculated by dividing the distance from the seed by the maximum
distance from that seed. The red dashed line is where y = x. (C) Maps of the relative error in invasion time in each spatial unit when using the mobility proxy vs observed data.

lue shading indicates the invasion time occurred earlier when using the mobility proxy, while red shading indicates a later invasion time when using mobility proxies. We use a
elative scale, calculated as the difference between invasion time using mobility proxy and in the baseline (using the empirical mobility data), divided by the largest invasion times
cross all locations when using the proxy. The seeding location is marked with a red triangle. (E) Invasion order similarity (𝑝𝑓𝑖𝑟𝑠𝑡𝑛 ). The y-axis shows the proportion of the first 𝑛
atches invaded in an epidemic model using observed mobility that were also among the first 𝑛 locations invaded when a mobility proxy was used in the epidemic model. 𝑛 is the
roportion shown on the x-axis. The two lines show different seed locations. The dashed red line shows the expected value if locations are chosen randomly. (For interpretation
f the references to colour in this figure legend, the reader is referred to the web version of this article.)
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roxies, but this increased to 85% and 90% for epidemics seeded in
aris and Lisboa.

The ability to predict epidemic peak times in each spatial unit (𝑡𝑝𝑒𝑎𝑘𝑖 )
hen using mobility proxies was very poor in France (𝑅2 = 0.05 and
.01 for Paris and Brest respectively, Fig. 4D) but better in Portugal
𝑅2 = 0.29 and 0.60 for Miranda do Douro and Lisboa respectively,
ig. 3D). The baseline epidemics seeded in Portugal and in Paris
ad limited variability in the peak times across administrative units
2–3 weeks). Using mobility proxies reproduced this small amount of
ariation for Portugal, but not for Paris where a synchronous peak was
redicted (1 week). Similarly, although the baseline epidemic seeded in
rest had substantial variability in epidemic peaks (up to 1.5 months
part), again a synchronous peak (1 week) was predicted when using
obility proxies. The sizes of the epidemic peaks were similar across

he different movement scenarios.
In both countries, and regardless of the data used to fit the mobility

odel, the mobility proxies had similar performance in predicting
ovement data. However, the resulting impact on epidemic dynamics
as very different between the two countries. In Portugal, again,
pidemic metrics did not differ substantially depending on the data
sed to fit the mobility model (Suppl Tab. S4, Figs. S5 to S7). In France,
sing mobility proxies calibrated to Portugal data led to underestimated
nvasion times, poor invasion order prediction (especially in Brest), and
alse synchrony in the peaks. However, when using 𝑝𝑠𝑡𝑎𝑦𝑖 from France,
ll metrics substantially improved, irrespective of the country used to
nform 𝑝𝑚𝑜𝑣𝑒 (Suppl Tab. S4, Figs. S1 to S3).
7

𝑖𝑗
Using the radiation model instead of the gravity model in the
ain scenario had a mixed impact on epidemic dynamics (Figs. S4

nd S8). Overall, the performance was slightly better in France and
orse in Portugal. The radiation model improved some metrics, such
s the ability to predict early peak timings of the epidemics seeded
n Brest, although the later peaks were predicted less well. Use of the
adiation model introduced substantial heterogeneity to the Portuguese
imulations that was not seen in either the baseline scenario or the
dditional scenarios using gravity models.

Our results demonstrate that using mobility proxies can have a
ubstantial impact on the predicted epidemic dynamics, with com-
lex and non-intuitive biases, which cannot be predicted when simply
omparing the mobility proxies to observed movement data.

. Discussion

Accounting for over 14% of the world’s population (Worldometer,
022) and approximately 2.4% of the global airline passenger vol-
me (Airports Council International Africa, 2022), Africa is a large
ource and sink of national and international movement of popula-
ions, and is estimated to bear half of the global burden of infectious
iseases (Boutayeb, 2010). Our review revealed major gaps in the
vailability of empirical measurements of human mobility in Africa,
eading to mobility proxies being used in place of data. Subnational
obility proxies were commonly derived from out-of-country data. We

herefore designed a simulation study using highly resolved mobility
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Fig. 4. Mobility predictions and epidemic simulations for France. Figure details as in Fig. 4 except here (A) shows predicted numbers moving between French ADM3 units vs
observed numbers from mobile phone call records. Each blue dot represents a pair of ADM3 units. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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data to assess the extent to which using mobility proxies based on data
from a different country in the same continent may affect predictions of
epidemic spread. In the absence of available empirical data from Africa,
we used movement data from France and Portugal. Our simulation
study showed use of these proxies can impair our understanding of
infectious disease dynamics, with biases introduced across a range of
scenarios that used the gravity model and a scenario based on the
radiation model.

Although we identified empirical mobility data in all 54 African
countries (Fig. 2), data informing subnational movement was only
available for 17 countries. These were mostly census data and focused
on long term movement (1–5 years), which would only be relevant to
the spread of pathogens with very slow progression (e.g. HIV). Despite
evidence that these long term movements correlate with short-term
mobility (Wesolowski et al., 2013a), census data are either not available
t all or infrequently updated in many African countries (Fig. 2).

Highly temporally and spatially resolved mobility data sources
UK Department for Transport, 2021; Eurostat, 2022; Transport for
ondon, 2022), including but not limited to mobile phone records
CDR data), are increasingly used to characterise human movement and
pidemic spread, most frequently in high income countries (Tizzoni
t al., 2014; Pepe et al., 2020; Silm et al., 2021; Chang et al., 2021;
chlosser et al., 2020; Jeffrey et al., 2020). However, such data is
parse for Africa: we only found 5 African countries with available
DR data, which was subsequently used to derive mobility proxies and
xamine epidemic spread in 17 other African countries, and which were
otentially vastly different in size, population, topography and other
actors expected to influence movement patterns.

Given the lack of appropriately resolved mobility data, such use
f mobility proxies, typically based on data from other countries, is
ery common in the African context: we identified subnational mobility
roxies for 51/54 African countries. Those were sometimes based on
light data from Europe and America, highlighting the scarcity of
eliable local movement data. It is worth noting that mobility proxies
ften focus on describing absolute or relative flows between distinct
8

ocations, but rarely attempt to quantify 𝑝𝑠𝑡𝑎𝑦𝑖 , i.e. the number or
roportion of people who do not move. This is a critical ingredient to
odel epidemic spread, where one needs to characterise movement but

lso the lack thereof.
Our work shows that subnational mobility proxies based on data

rom nearby countries are imperfect descriptions of empirical mobility,
xplaining only about half of the variability in the two mobility datasets
e considered. Our simulation study demonstrates that this can have

ubstantial and non-intuitive implications on our ability to predict
pidemic spread. We focused on the early invasion dynamics and the
ocal peak dynamics, as these metrics would be critical for informing
olicy, through timely, appropriately scaled and optimally targeted
llocation of resources and implementation of control measures (SPI-M,

2018; Danon et al., 2021; Deschepper et al., 2021). The availability of
high-resolution data from France and Portugal enabled us to explore the
impact of using subnational proxies when modelling epidemic spread
in a broader context. We expect that the biases that our simulation
study has highlighted could be even more pronounced in African
settings because of the heterogeneity in the size of African nations, the
population density and other key demographic factors (Meredith et al.,
021; Wesolowski et al., 2015).

These biases may have implications for studies modelling the impact
f interventions on infectious disease outbreaks. For example, spatial
rioritisation of vaccination in the context of a limited stockpile could
e suboptimal if relying on mobility proxies generated from out-of-
ountry movement data, as was done for a yellow fever epidemic in
ngola and the Democratic Republic of Congo (Kraemer et al., 2017).

Similarly, the potential impact of population mobility reductions on
case numbers and the epidemic duration for Ebola in Liberia may have
been mis-estimated by using a gravity model fitted to mobile phone
data from another country (Valdez et al., 2015; Wesolowski et al.,
014).

In most scenarios explored, predicted invasion times using mobility
roxies tended to be earlier than when using empirical mobility data.
hile this may seem less problematic than the reverse, it could lead
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to dismissing preventive interventions, wrongly perceived to take too
long to implement given the predicted speed of invasion (e.g. building
a new healthcare facility). Although the early invasion order was
relatively well characterised for epidemics seeded in the capital cities,
this was not the case when the epidemics were seeded in peripheral
locations, and could lead to inappropriate spatial targeting of control
measures. Heterogeneity in local epidemic peak times was overall well
quantified in Portugal but not at all for France. Better characterising the
peak heterogeneity may help better coordination of resources among
different regions, e.g. allowing movement of medical staff, patients or
material depending on the predicted local times of maximal epidemic
burden.

These issues were overall more apparent in France than Portugal,
and were much improved when using 𝑝𝑠𝑡𝑎𝑦𝑖 from the correct country.

lthough 𝑝𝑠𝑡𝑎𝑦𝑖 has received little attention by researchers, our work
mphasises the importance of collecting data to estimate this parameter
n all countries and at a fine spatial resolution, which can be later
ggregated if needed. Indeed 𝑝𝑠𝑡𝑎𝑦𝑖 will evidently depend on the size
f the spatial unit under consideration. For instance, ADM2 units in
ortugal are on average smaller than ADM3 units in France, leading
o the aforementioned underestimation of invasion times. Such data
ollection effort, to characterise non-movement, may be even more
ritical than collecting data on the destinations of the movements;
ndeed results from our epidemic simulations were much more sensitive
o changes in 𝑝𝑠𝑡𝑎𝑦𝑖 than in 𝑝𝑚𝑜𝑣𝑒𝑖𝑗 .

In our study, we found that using French data to inform Portugal
obility fared much better than the opposite. Population mobility in a

ountry potentially depends on a large number of factors such as the
eography of the country, population density, demographics, and distri-
ution of economic opportunities (Bonifazi and Heins, 2000; Castelli,
018; Conlan et al., 2021). Understanding the key determinants may
llow us to predict to what extent and in which contexts 𝑝𝑠𝑡𝑎𝑦𝑖 and 𝑝𝑚𝑜𝑣𝑒𝑖𝑗

may be informed by data from other countries. However, this would
only be possible if highly resolved mobility data from many countries
were available, which would reduce the need for mobility proxies.
Although in our simulation study, we generated mobility proxies using
data from one other country, we note that some popular published
proxies (Sorichetta et al., 2016; Wesolowski et al., 2014) use data
from multiple countries. It is unclear what the implications for disease
modelling are, and whether such data pooling across countries is more
appropriate than using data from a single country.

Our work has some limitations. First, since our search strategy was
limited to identifying studies that used movement data in mobility
models, we may have overlooked studies that primarily described
mobility data and did not use any models. However, we believe it is
unlikely that we have missed important data sets, as those would have
been used by modelling studies captured in our search.

Second, we carried out the search in 2018. Since then, novel sources
of mobility data have emerged specifically in the context of the COVID-
19 pandemic. This includes community mobility reports from Google
and Apple (Google, 2022; Apple, 2022); however those only measure
overall mobility trends which cannot directly be used to inform O-D
matrices. Furthermore, many such data are being released specifically
to support the COVID-19 response, and cannot replace much needed
highly-resolved representative and regularly updated mobility data.

Third, we used gravity and radiation mobility models, and a mul-
tipatch compartmental model stratified by home and work location,
guided by the available mobility data. More sophisticated models of
mobility (Meredith et al., 2021) or disease propagation (Keeling et al.,
2010; Van Kerckhove et al., 2013; Haw et al., 2019; Prem et al.,
2017) could display more complex dynamics. However our simple
and parsimonious approach was sufficient to highlight potential biases
in epidemic spread predictions stemming from using mobility proxies
instead of empirical data; this would only be magnified by using more
9

sophisticated models.
Finally, one aspect we did not consider, which is rarely acknowl-
edged, is that mobility proxies are outputs of statistical models, and
hence carry inherent uncertainty. Such uncertainty is rarely quanti-
fied, or reported, and almost never propagated in subsequent analysis,
e.g. epidemic models.

Overall, our work underscores the need for regularly updated em-
pirical measurements of population movement within and between
countries. Despite potential biases in mobile phone usage due to limited
and unevenly distributed smartphone ownership (GSMA, 2021), such
data sources remain the most promising to characterise short-term
human movement at high resolution. Mobile phone operators could
consider periodic release of aggregate data sets to support public health
efforts. Even though we did not restrict our search to studies related to
infectious diseases, most of the included publications focused on their
spread, highlighting the centrality of human movement in infectious
disease epidemiology. A few data sources underpinned wide-ranging
research on multiple diseases such as cholera, ebola, malaria, and
schistosomiasis. This suggests that availability of empirical mobility
data could pay large dividends in pandemic preparedness as well as
an improved understanding of spread of diseases that are endemic or
lead to recurring epidemics (Buckee et al., 2020).

Data availability

All code used in this analysis is available at https://github.com/j-
wardle/mobility_africa_models. The simulation study uses data made
available at https://doi.org/10.1371/journal.pcbi.1003716.
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