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Abstract

In previous work the framework for a hypercomplex function theory in superspace was established
and amply investigated. In this paper a Cauchy integral formula is obtained in this new framework
by exploiting techniques from orthogonal Clifford analysis. After introducing Clifford algebra valued
surface- and volume-elements first a purely fermionic Cauchy formula is proven. Combining this
formula with the already well-known bosonic Cauchy formula yields the general case. Here the
integration over the boundary of a supermanifold is an integration over as well the even as the odd
boundary (in a formal way). Finally, some additional results such as a Cauchy-Pompeiu formula and
a representation formula for monogenic functions are proven.
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1 Introduction

Superspaces and more general supermanifolds play an important role in contemporary theoretical physics,
e.g. in the study of supersymmetric (gauge), supergravity or superstring theories, in the study of the
geometrical meaning of the BRST symmetry, as well as in the theory of random matrices etc.
As to the mathematical part of the theory, several approaches are possible. Superspaces were first
introduced by Berezin, see [4, 5]. His approach was deeply influenced by modern algebraic geometry using
schemes and sheaf theory. Other important references in this approach are [17, 16]. Later, supermanifold
theory was also studied from the point of view of differential geometry (which perhaps ties in better with
a physical way of thinking). We refer the reader to [14, 19] and the book [2] for a general overview.
Moreover, both approaches are equivalent in the categorical sense, as was shown in [3].
It is however possible to study superspaces from yet another point of view, namely that of harmonic
analysis and hypercomplex function theory (as a refinement of harmonic analysis). In a set of recent
papers we have extended the theory of Clifford analysis (see e.g. [6, 15, 13]) to superspace in a canonical
way. In [8, 7] we have established the computational framework, introducing the basic symbols such as
variables and Clifford numbers, and also the basic differential operators (Dirac and Laplace operators,
Euler and Gamma operators, etc.).
Important in this new approach to superspace is the introduction of the so-called super-dimension M ,
which gives a global characterization of super Euclidean spaces; it is defined by the action of the Dirac
operator on the vector variable. A lot of results in superspace may be found by simply replacing the
classical dimension by this super-dimension in special formulae. This technique was used in e.g. [10],
where we studied spherical harmonics in superspace and introduced an integral over the supersphere
(based on an old result of Pizzetti). Moreover, this integral was extended to the whole superspace by
a generalized form of integration in spherical co-ordinates and it was proven that this yields the same
result as the well-known Berezin integral (see e.g. [4, 5]).
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One of the most interesting features of Clifford analysis is that it allows for the construction of several
nice Cauchy-type formulae in higher dimensions (see e.g. [20, 22, 21]). The aim of the present paper
is hence to show that one can also obtain a generalization to superspace of Cauchy’s integral formula.
This is an important result, because it is more or less equivalent to asking for a formula of Stokes in
superspace, connecting integration over a supermanifold with integration over its boundary.
Note that there are versions of Stokes’ formula known for supermanifolds, see e.g. the work of Palamodov
in [18]. In that approach however, rather complicated machinery of algebraic geometry is used. Our
aim is to use instead the framework of hypercomplex analysis to obtain a Cauchy formula in a more
straightforward way. The advantage of this Clifford analysis framework is that it will allow us to predict
the form of the desired formula by analogy with the classical case. Moreover we will obtain that the
boundary of a supermanifold consists of two parts, which can be interpreted as the even and the odd
boundary.
As a consequence of this integral formula, we will be able to construct a Cauchy-Pompeiu formula and
a Cauchy representation formula for monogenic functions in superspace (i.e. null-solutions of the super
Dirac operator), although not all nice properties from the complex plane will be preserved (such as e.g.
Morera’s theorem).
The paper is organized as follows. We start with introducing the basic operators and function spaces
in section 2. In section 3 we first briefly discuss the Clifford analysis version of Stokes’ formula in Rm.
This will provide us with the necessary ideas to construct a similar formula in purely fermionic space
(i.e. the case where only anti-commuting co-ordinates are considered). In section 4 the general case is
considered, which necessitates the construction of an appropriate surface-element and a corresponding
volume-element. Finally, in section 5 a few corollaries to this result, such as a Cauchy theorem, are
discussed.

2 Preliminaries

The basic algebra of interest in the study of Clifford analysis in superspace (see [8, 7]) is the real algebra
P = Alg(xi, ei; x̀j , èj), i = 1, . . . ,m, j = 1, . . . , 2n generated by

• m commuting variables xi and m orthogonal Clifford generators ei

• 2n anti-commuting variables x̀i and 2n symplectic Clifford generators èi

subject to the multiplication relations

 xixj = xjxi

x̀ix̀j = −x̀j x̀i

xix̀j = x̀jxi

and


ejek + ekej = −2δjk

è2j è2k − è2kè2j = 0
è2j−1è2k−1 − è2k−1è2j−1 = 0
è2j−1è2k − è2kè2j−1 = δjk

ej èk + èkej = 0

and where moreover all elements ei, èj commute with all elements xi, x̀j .
If we denote by Λ2n the Grassmann algebra generated by the anti-commuting variables x̀j and by C the
algebra generated by all the Clifford numbers ei, èj , then we clearly have that

P = R[x1, . . . , xm]⊗ Λ2n ⊗ C.

In the case where n = 0 we have that C ∼= Cl0,m, the standard orthogonal Clifford algebra with signature
(−1, . . . ,−1). Similarly, the algebra generated by the èj is isomorphic with the Weyl algebra over a
vectorspace of dimension 2n equipped with the canonical symplectic form.
The most important element of the algebra P is the vector variable x = x+ x̀ with

x =
∑m

i=1 xiei

x̀ =
∑2n

j=1 x̀j èj .
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One easily calculates that

x2 = x̀2 + x2 =
n∑

j=1

x̀2j−1x̀2j −
m∑

j=1

x2
j .

The super Dirac operator is defined by

∂x = ∂x̀ − ∂x = 2
n∑

j=1

(
è2j∂x̀2j−1 − è2j−1∂x̀2j

)
−

m∑
j=1

ej∂xj
. (1)

If we let it act from the right, we have to introduce an extra minus sign (see [8])

·∂x = − · ∂x̀ − ·∂x. (2)

The square of the Dirac operator is the super Laplace operator:

∆ = ∂2
x = 4

n∑
j=1

∂x̀2j−1∂x̀2j
−

m∑
j=1

∂2
xj
.

The bosonic part of this operator is ∆b = −
∑m

j=1 ∂
2
xj

, which is the classical Laplace operator. The
fermionic part is ∆f = 4

∑n
j=1 ∂x̀2j−1∂x̀2j

.
The Euler operator in superspace is defined as

E =
m∑

j=1

xj∂xj +
2n∑

j=1

x̀j∂x̀j

and allows us to decompose P into spaces of homogeneous C-valued polynomials

P =
∞⊕

k=0

Pk, Pk = {ω ∈ P | Eω = kω} .

For the other important operators in super Clifford analysis we refer the reader to [8, 7]. If we let ∂x act
on x we find that

∂xx = x∂x = m− 2n = M

where M is the so-called super-dimension. This super-dimension is of the utmost importance (see e.g.
[10]), as it gives a global characterization of our superspace. The physical meaning of this parameter is
discussed in [9].
The basic calculational rules for the Dirac operator on the algebra P are given in the following lemma
(see [8]).

Lemma 1. Let s ∈ N and Rk ∈ Pk, then

∂x(x2sRk) = 2sx2s−1Rk + x2s∂xRk

∂x(x2s+1Rk) = (2k +M + 2s)x2sRk − x2s+1∂xRk.

If we define the space of spherical monogenics of degree k by

Mk = {R ∈ Pk | ∂xR = 0}

we immediately have

Corollary 1. Let s ∈ N and Pk ∈Mk, then

∂x(x2sPk) = 2sx2s−1Pk

∂x(x2s+1Pk) = (2k +M + 2s)x2sPk.
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We also have the following lemma (see [10]).

Lemma 2. If R2t ∈ P2t, then the following holds:

∆t+1(x2R2t) = 4(t+ 1)(M/2 + t)∆t(R2t).

¿From this formula we derive the following important result. Let R2n−2k ∈ P2n−2k where the purely
fermionic case (m = 0, M = −2n) is considered. Then

∂2n
x̀ (x̀2kR2n−2k) = 4n(−n+ n− 1)∂2n−2

x̀ (x̀2k−2R2n−2k)

= 4n(−1)4(n− 1)(−n+ n− 2)∂2n−4
x̀ (x̀2k−4R2n−2k)

= 42n(n− 1)(−1)(−2)∂2n−4
x̀ (x̀2k−4R2n−2k)

= . . .

= 4kn(n− 1) . . . (n− k + 1)(−1)(−2) . . . (−k)∂2n−2k
x̀ (R2n−2k)

= (−1)k4k n!k!
(n− k)!

∂2n−2k
x̀ (R2n−2k).

We define for further use the numerical coefficient

c(n, k) = (−1)k4k n!k!
(n− k)!

.

For the treatment of a Cauchy formula in superspace we need of course a broader set of functions. For
our purposes we define the function spaces

F(Ω)m|2n = F(Ω)⊗ Λ2n ⊗ C

where Ω is an open set in Rm and where F(Ω) stands for D(Ω), Ck(Ω), Lp(Ω), Lloc
1 (Ω), . . . according to

the application. We denote by M(Ω)l(r)
m|2n ⊂ C1(Ω)m|2n the space of left (respectively right) monogenic

functions, i.e. null-solutions of the super Dirac operator.
The fundamental solution of the super Laplace operator is given by

ν
m|2n
2 =

n∑
k=0

4kk!
(n− k)!

ν
m|0
2k+2x̀

2n−2k, (3)

where the functions νm|0
i are fundamental solutions of the powers of the bosonic Laplace operator ∆b

(see e.g. [1] for some explicit expressions), satisfying

∆j
bν

m|0
2l = ν

m|0
2l−2j , j < l

∆l
bν

m|0
2l = δ(x).

This fundamental solution can be determined either by direct methods (see [12]) or by Fourier transform
(see [11]).
Letting the super Dirac operator act on the left of (3) (acting on the right yields the same result) gives
us the left (and right) fundamental solution of the Dirac operator in superspace:

ν
m|2n
1 =

n−1∑
k=0

2
4kk!

(n− k − 1)!
ν

m|0
2k+2x̀

2n−2k−1 +
n∑

k=0

4kk!
(n− k)!

ν
m|0
2k+1x̀

2n−2k (4)

with νm|0
2k+1 = −∂xν

m|0
2k+2 = −νm|0

2k+2∂x. Note that there does not exist a fundamental solution in the purely
fermionic case (see [12]).
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Integration over superspace is given by the so-called Berezin integral (see [4, 5]), defined by∫
Rm|2n

f =
∫

Rm

∫
B

f, f ∈ D(Ω)m|2n

with ∫
B

= ∂x̀2n
. . . ∂x̀1 =

(−1)n

4nn!
∂2n

x̀ .

This definition means that one first has to derive f with respect to all anti-commuting variables and
then to integrate the commuting variables in the usual way. This integration recipe may seem rather
haphazard but can be explained in a satisfactory way using harmonic analysis in superspace (see [10]).

3 The limit cases

In this section we discuss the Clifford analysis versions of Stokes’ theorem in the two limit cases, namely
the purely bosonic case where one considers only commuting variables (m 6= 0, n = 0) and the purely
fermionic case where only anti-commuting variables are considered (m = 0, n 6= 0). We start with the
bosonic case.

3.1 The bosonic Stokes’ theorem

Let Ω be an open set in Rm, Σ a compact oriented differentiable m-dimensional manifold in Ω and ∂Σ
its smooth boundary. Then by introducing the following vector-valued surface-element

dσx =
m∑

j=1

(−1)j+1ej d̂xj , d̂xj = dx1 . . . dxj−1dxj+1 . . . dxm

and the volume-element
dV (x) = dx1 . . . dxm,

where the exterior product of differential forms is understood, we have the following (classical) theorem
(see e.g. [6]).

Theorem 1 ((Bosonic Stokes’ theorem)). Let f and g be C1-functions defined on Ω with values in Cl0,m.
Then one has ∫

∂Σ

fdσx g =
∫

Σ

[(f∂x)g + f(∂xg)]dV (x).

The proof follows from a direct application of Stokes’ theorem, because d(fdσx g) = [(f∂x)g+f(∂xg)]dV (x).

3.2 The fermionic Stokes’ theorem

We want to construct a formula which looks like∫
B

fdσx̀g =
∫

B

[(−(f∂x̀)g + f(∂x̀g))]dV (x̀) (5)

where dV (x̀) is a suitable volume-element in the purely fermionic superspace and dσx̀ a corresponding
surface-element. We first note that in the bosonic case, upon introducing dx =

∑m
i=1 eidxi, the surface-

and volume-elements can be expressed as follows:

(dx)m = m! e1 . . . em dV (x)

(dx)m−1 = −(m− 1)! dσx e1 . . . em.
(6)
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As we have shown in our paper [7], by studying the homology of the super Hodge coderivative d∗ on
spaces of polynomial valued differential forms, the correct volume-element in fermionic superspace is

x̀1 . . . x̀2n =
x̀2n

n!
.

Comparing this with formula (6) we conclude that a good candidate for dσx̀ would then be x̀2n−1/(n−1)!.
Although this approach would indeed yield a Stokes’ type formula in superspace, it is in fact a bit meager.
Indeed, if we expand f and g into homogeneous components

f = f0 + f1 + . . . f2n, fi ∈ Pi

g = g0 + g1 + . . . g2n, gi ∈ Pi,

we obtain
fx̀2n−1g = f0x̀

2n−1g1 + f1x̀
2n−1g0,

because there are no polynomials of degree higher than 2n. In formula (5), only the terms f0, f1 and
g0, g1 of the functions f and g would thus play a role. This can be extended by instead introducing the
following definitions:

dσx̀ = −2
(
x̀+

x̀3

1!
+
x̀5

2!
+ . . .+

x̀2n−1

(n− 1)!

)
= −2x̀ exp(x̀2)

and

dV (x̀) =
x̀2

1!
+
x̀4

2!
+ . . .+

x̀2n

n!
= exp(x̀2)− 1

as will become clear in the sequel. In this way, more components of the functions f and g will contribute
to the resulting formula (see theorem 2).
Let us start with the following technical lemma.

Lemma 3. Suppose f ∈ Pi, g ∈ Pj with i+ j + 1 = 2n− 2k. Then one has

∂2n−2k
x̀ (fx̀g) = 2(n− k)∂2n−2k−2

x̀

[
−(f∂x̀)g + f(∂x̀g)

]
.

Proof. The proof is done by induction on k. We first consider the case where k = n − 1. We then need
to prove that

∂2
x̀(f1x̀g0) = −2(f1∂x̀)g0

∂2
x̀(f0x̀g1) = 2f0(∂x̀g1)

with fi, gi ∈ Pi. We give the proof for the first equation:

∂2
x̀(f1x̀g0) = 4

n∑
j=0

∂x̀2i−1∂x̀2i(f1x̀)g0

= 4
n∑

j=0

∂x̀2i−1((∂x̀2if1)x̀− f1è2i)g0

= 4
n∑

j=0

((∂x̀2i
f1)è2i−1 − (∂x̀2i−1f1)è2i)g0

= 4
n∑

j=0

((f1∂x̀2i
)è2i−1 − (f1∂x̀2i−1)è2i)g0

= −2(f1∂x̀)g0.
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The other expression is obtained in a similar way. We proceed by induction. Suppose the lemma is
proven for k = l, . . . , n − 1, then we prove that it also holds for k = l − 1. This means that we have to
prove that

∂2n−2l+2
x̀ (fx̀g) = 2(n− l + 1)∂2n−2l

x̀

[
−(f∂x̀)g + f(∂x̀g)

]
where f ∈ Pi, g ∈ Pj with i+ j + 1 = 2n− 2l+ 2. We do the calculation in the case where i is odd (the
other case is similar). Then

∂2n−2l+2
x̀ (f x̀ g)

= 4∂2n−2k
x̀

n∑
i=1

∂x̀2i−1∂x̀2i(f x̀ g)

= 4∂2n−2l
x̀

n∑
i=1

∂x̀2i−1 ((∂x̀2i
f)x̀g − fè2ig + fx̀(∂x̀2i

g))

= 4∂2n−2l
x̀

n∑
i=1

(
(∂x̀2i−1∂x̀2i

f)x̀g + (∂x̀2i
f)è2i−1g − (∂x̀2i

f)x̀(∂x̀2i−1g)

−(∂x̀2i−1f)è2ig + fè2i(∂x̀2i−1g) + (∂x̀2i−1f)x̀(∂x̀2i
g)

−fè2i−1(∂x̀2i
g) + fx̀(∂x̀2i−1∂x̀2ig)

)
= 4∂2n−2l

x̀

n∑
i=1

(
(∂x̀2i−1∂x̀2i

f)x̀g + (f∂x̀2i
)è2i−1g − (∂x̀2i

f)x̀(∂x̀2i−1g)

−(f∂x̀2i−1)è2ig + fè2i(∂x̀2i−1g) + (∂x̀2i−1f)x̀(∂x̀2i
g)

−fè2i−1(∂x̀2i
g) + fx̀(∂x̀2i−1∂x̀2i

g)
)

= ∂2n−2l
x̀

[
−2(f∂x̀)g + 2f(∂x̀g)

]
+∂2n−2l

x̀

(
(∂2

x̀f)x̀g + fx̀(∂2
x̀g) + 4

∑
i

(∂x̀2i−1f)x̀(∂x̀2i
g)− 4

∑
i

(∂x̀2i
f)x̀(∂x̀2i−1g)

)
where we have used the fact that for Fi ∈ Pi

∂x̀k
Fi = Fi∂x̀k

if i is odd
= −Fi∂x̀k

if i is even.

We can now apply the induction hypothesis to the last line of the previous calculation. This yields

∂2n−2l
x̀

(
(∂2

x̀f)x̀g + fx̀(∂2
x̀g) + 4

∑
i

(∂x̀2i−1f)x̀(∂x̀2i
g)− 4

∑
i

(∂x̀2i
f)x̀(∂x̀2i−1g)

)
= 2(n− l)∂2n−2l−2

x̀

(
−((∂2

x̀f)∂x̀)g + (∂2
x̀f)∂x̀g − (f∂x̀)(∂2

x̀g) + f(∂3
x̀g)

+4
∑

i

[−((∂x̀2i−1f)∂x̀)(∂x̀2ig) + (∂x̀2i−1f)∂x̀(∂x̀2ig)]

+4
∑

i

[((∂x̀2i
f)∂x̀)(∂x̀2i−1g)− (∂x̀2i

f)∂x̀(∂x̀2i−1g)]

)
= 2(n− l)∂2n−2l−2

x̀

(
−(∂2

x̀(f∂x̀))g + (∂2
x̀f)∂x̀g − (f∂x̀)(∂2

x̀g) + f(∂2
x̀∂x̀g)

−4
∑

i

[(∂x̀2i−1(f∂x̀))(∂x̀2i
g) + (∂x̀2i−1f)(∂x̀2i

∂x̀g)]

+4
∑

i

[(∂x̀2i(f∂x̀))(∂x̀2i−1g) + (∂x̀2if)(∂x̀2i−1∂x̀g)]

)
= 2(n− l)∂2n−2l

x̀

[
−(f∂x̀)g + f(∂x̀g)

]
.
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We conclude that

∂2n−2l+2
x̀ (f x̀ g) = 2∂2n−2l

x̀

[
−(f∂x̀)g + f(∂x̀g)

]
+2(n− l)∂2n−2l

x̀

[
−(f∂x̀)g + f(∂x̀g)

]
= 2(n− l + 1)∂2n−2l

x̀

[
−(f∂x̀)g + f(∂x̀g)

]
which completes the proof of the lemma.

Using this lemma, we now calculate

∂2n
x̀ (fx̀2k+1g)

=
∑

i+j+2k+1=2n

∂2n
x̀ (fix̀

2k+1gj)

=
∑

i+j+2k+1=2n

c(n, k)∂2n−2k
x̀ (fix̀gj)

=
∑

i+j+2k+1=2n

c(n, k)2(n− k)∂2n−2k−2
x̀

[
−(fi∂x̀)gj + fi(∂x̀gj)

]
=

∑
i+j+2k+1=2n

2(n− k)
c(n, k)

c(n, k + 1)
∂2n

x̀ (
[
−(fi∂x̀)gj + fi(∂x̀gj)

]
x̀2k+2)

= 2(n− k)
c(n, k)

c(n, k + 1)
∂2n

x̀ (
[
−(f∂x̀)g + f(∂x̀g)

]
x̀2k+2)

where fi and gj are the homogeneous components of f and g.
As

c(n, k)
c(n, k + 1)

= − 1
4(k + 1)(n− k)

we conclude that

−2∂2n
x̀ (f

x̀2k+1

k!
g) = ∂2n

x̀ (
[
−(f∂x̀)g + f(∂x̀g)

] x̀2k+2

(k + 1)!
).

If we combine this result with the definitions of dσx̀ and dV (x̀) we immediately obtain the fermionic
Stokes’ theorem:

Theorem 2 ((Fermionic Stokes’ theorem)). Let f and g be elements of P = Λ2n ⊗ C. Then one has∫
B

fdσx̀g =
∫

B

[−(f∂x̀)g + f(∂x̀g)]dV (x̀).

Remark 1. Note that not all properties of integration in the complex plane are still valid in superspace.
We do not have e.g. Morera’s theorem in the purely fermionic case. Take e.g. f = x̀2P1 with P1 a
spherical monogenic of degree one. Then ∫

B

dσx̀f = 0

but f is clearly not monogenic. This has to do with the fact that we have only one ‘contour’ to be
considered in purely fermionic space, whereas in the complex plane one integrates over all contours.

4 The general Stokes’ theorem in Clifford analysis

We consider an open set Ω ⊂ Rm and a compact oriented differentiable m-dimensional manifold Σ ⊂ Ω
with smooth boundary ∂Σ. In the previous section we have introduced two surface-elements dσx and dσx̀

and two volume-elements dV (x) and dV (x̀). Now we want to combine these elements to obtain a suitable

8



surface-element in superspace. First note that dσxdσx̀ is not a good candidate, because this would yield
an integration over a formal object of codimension two. It turns out that one has to define the surface
element on Σ as

dσx = dσx̀ dV (x)− dV (x̀)dσx.

Note that this is a vector in the ei and èj :

dσx =
m∑

j=1

(−1)jej d̂xjdV (x̀)− 2
2n∑

j=1

èj x̀j exp(x̀2)dV (x)

which one would also expect a priori by analogy with the classical case.
The definition of dσx forces us to define integration of an object such as fdσxg in the following way. First
we introduce the notations: ∫

B,Σ

=
∫

Σ

∫
B

=
∫

B

∫
Σ∫

B,∂Σ

=
∫

∂Σ

∫
B

=
∫

B

∫
∂Σ

then we define ∫
B,Σ,∂Σ

fdσxg =
∫

B,Σ

fdσx̀ dV (x)g −
∫

B,∂Σ

fdV (x̀)dσxg (7)

where we note that this includes two integrations: one over the whole manifold Σ as well as one over the
boundary ∂Σ. This might seem strange, but it is in fact very natural, as the two Berezin integrations

∫
B

are actually one over the whole fermionic space and one over the fermionic boundary. In this way, both
integrations in (7) are formally over the odd and the even boundary of a supermanifold (in the purely
bosonic case there is only an even boundary).
Similarly we have the following general volume-element defined by

dV (x) = dV (x)dV (x̀).

Now we can construct the general Stokes’ theorem. The two terms in (7) are calculated as follows, with
f, g ∈ C1(Ω)m|2n: ∫

B,Σ

fdσx̀ dV (x)g =
∫

B,Σ

(fdσx̀ g)dV (x)

=
∫

Σ

[∫
B

fdσx̀ g

]
dV (x)

=
∫

Σ

[∫
B

[−(f∂x̀)g + f(∂x̀g)]dV (x̀)
]
dV (x)

and ∫
B,∂Σ

fdV (x̀)dσxg =
∫

B,∂Σ

(fdσxg)dV (x̀)

=
∫

B

[∫
∂Σ

(fdσxg)
]
dV (x̀)

=
∫

B

[∫
Σ

[(f∂x)g + f(∂xg)]dV (x)
]
dV (x̀).

9



So we can calculate∫
B,Σ,∂Σ

fdσxg =
∫

B,Σ

fdσx̀ dV (x)g −
∫

B,∂Σ

fdV (x̀)dσxg

=
∫

Σ

[∫
B

[−(f∂x̀)g + f(∂x̀g)]dV (x̀)
]
dV (x)

−
∫

B

[∫
Σ

[(f∂x)g + f(∂xg)]dV (x)
]
dV (x̀)

=
∫

B,Σ

[
−(f∂x̀)g − (f∂x)g + f(∂x̀g)− f(∂xg)

]
dV (x)

=
∫

B,Σ

[(f∂x)g + f(∂xg)] dV (x),

where we have used the definition of the Dirac operator ∂x acting from the left and from the right (see
formulae (1) and (2)).
Summarizing we thus obtain the following theorem.

Theorem 3 ((General Stokes’ theorem)). Let Ω ⊂ Rm be an open set and Σ ⊂ Ω a compact oriented
differentiable m-dimensional manifold with smooth boundary ∂Σ. Let f, g ∈ C1(Ω)m|2n. Then one has∫

B,Σ,∂Σ

fdσxg =
∫

B,Σ

[(f∂x)g + f(∂xg)] dV (x).

5 Consequences and applications

In this section we will discuss some corollaries of the general Stokes’ theorem obtained in the previous
section (see theorem 3). First we consider the case where both f and g are monogenic functions. This
leads to the following Cauchy theorem in superspace.

Corollary 2 ((Cauchy theorem)). Let f, g be right, respectively left monogenic, i.e. f ∈ M(Ω)r
m|2n,

g ∈M(Ω)l
m|2n. Then one has ∫

B,Σ,∂Σ

fdσxg = 0.

If we put f (resp. g) equal to the constant function 1, we obtain a generalization of the well-known Cauchy
theorem in the complex plane, stating that for any holomorphic function

∫
C f(z)dz = 0 independently of

the choice of the contour C.

Corollary 3. Let f, g be right, respectively left monogenic in Ω. Then for every compact oriented differ-
entiable m-dimensional manifold Σ ⊂ Ω with smooth boundary ∂Σ one has∫

B,Σ,∂Σ

fdσx = 0∫
B,Σ,∂Σ

dσxg = 0.

In the sequel, we will need the following lemma, the proof of which is classical.

Lemma 4. Let f be a C1-function defined in an open set Ω ⊂ Rm containing y, let B(y,R) be a ball of

radius R and center y contained in Ω. Further let νm|0
k be defined as in section 2. Then the following

10



holds:

lim
R→0+

∫
B(y,R)

ν
m|0
k (x− y)f(x)dV (x) = 0, ∀k

lim
R→0+

∫
∂B(y,R)

ν
m|0
k (x− y)dσxf(x) =

{
0 ∀k > 1
−f(y) k = 1.

Now we can formulate the following theorem.

Theorem 4 ((Cauchy-Pompeiu)). Let Ω ⊂ Rm be an open set and Σ ⊂ Ω a compact oriented differ-
entiable m-dimensional manifold with smooth boundary ∂Σ. Let g ∈ C1(Ω)m|2n and let νm|2n

1 be the
fundamental solution of the super Dirac operator. Then one has∫

B,Σ,∂Σ

ν
m|2n
1 (x− y)dσxg(x)−

∫
B,Σ

ν
m|2n
1 (x− y)(∂xg(x))dV (x)

=

{
0 if y ∈ Ω\Σ
g(y)dV (ỳ) if y ∈

◦
Σ.

Proof. Due to linearity it suffices to prove this formula for g = g1(x)g2(x̀) where g1 contains only com-
muting variables and g2 contains only anti-commuting variables.
The formula where y ∈ Ω\Σ follows from a direct application of theorem 3. So suppose y ∈

◦
Σ. Then we

consider a ball Γ = B(y,R) contained in
◦
Σ and we apply theorem 3 to Σ\Γ. We find that∫

B,Σ\Γ,∂(Σ\Γ)

ν
m|2n
1 (x− y)dσxg(x)

=
∫

B,Σ\Γ
[(νm|2n

1 (x− y)∂x)g(x) + ν
m|2n
1 (x− y)(∂xg(x))]dV (x)

=
∫

B,Σ\Γ
ν

m|2n
1 (x− y)(∂xg(x))dV (x),

as νm|2n
1 (x− y) is right monogenic for x 6= y.

If R→ 0+ then the right-hand side tends to∫
B,Σ

ν
m|2n
1 (x− y)(∂xg(x))dV (x)

because νm|2n
1 (x− y)(∂xg(x)) is integrable. The left-hand side is calculated as∫

B,Σ\Γ,∂(Σ\Γ)

ν
m|2n
1 (x− y)dσxg(x)

=
∫

B,Σ\Γ
ν

m|2n
1 (x− y)dσx̀dV (x)g(x)−

∫
B,∂(Σ\Γ)

ν
m|2n
1 (x− y)dσxdV (x̀)g(x)

=
∫

B,Σ

ν
m|2n
1 (x− y)dσx̀dV (x)g(x)−

∫
B,∂Σ

ν
m|2n
1 (x− y)dσxdV (x̀)g(x)

−
∫

B,Γ

ν
m|2n
1 (x− y)dσx̀dV (x)g(x) +

∫
B,∂Γ

ν
m|2n
1 (x− y)dσxdV (x̀)g(x)

=
∫

B,Σ,∂Σ

ν
m|2n
1 (x− y)dσxg(x)

−
∫

B,Γ

ν
m|2n
1 (x− y)dσx̀dV (x)g(x) +

∫
B,∂Γ

ν
m|2n
1 (x− y)dσxdV (x̀)g(x).
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Now we simplify the expression in the last line. Using lemma 4 we see that only the term

ν
m|0
1 (x− y)

(x̀− ỳ)2n

n!
= ν

m|0
1 (x− y)δ(x̀− ỳ)

in ν
m|2n
1 (x− y) will play a role. This has the following result

−
∫

B,Γ

ν
m|2n
1 (x− y)dσx̀dV (x)g(x) +

∫
B,∂Γ

ν
m|2n
1 (x− y)dσxdV (x̀)g(x)

=
∫

B,∂Γ

ν
m|0
1 (x− y)δ(x̀− ỳ)dσxdV (x̀)g(x)

=
∫

∂Γ

ν
m|0
1 (x− y)dσxg1(x)

[∫
B

δ(x̀− ỳ)dV (x̀)g2(x̀)
]

=
∫

∂Γ

ν
m|0
1 (x− y)dσxg1(x)dV (ỳ)g2(ỳ)

= −g1(y)dV (ỳ)g2(ỳ)
= −g(y)dV (ỳ),

when taking the limit R→ 0+ and where we have applied lemma 4 in the penultimate line.
Putting all terms together completes the proof.

Remark 2. The result of theorem 4 is not completely as desired: we have found that the right-hand side
equals g(y)dV (ỳ). The function dV (ỳ) is absent in the classical result (see e.g. [6]). One could propose
to divide both sides of the Cauchy-Pompeiu formula by dV (ỳ) to improve the result. This is however not
possible, because dV (ỳ) is nilpotent.

If moreover g is left monogenic, the Cauchy-Pompeiu theorem reduces to the following representation
formula for monogenic functions in superspace.

Corollary 4. If g ∈M(Ω)l
m|2n, then one has∫

B,Σ,∂Σ

ν
m|2n
1 (x− y)dσxg(x) =

{
0 if y ∈ Ω\Σ
g(y)dV (ỳ) if y ∈

◦
Σ.

It is easy to generalize this corollary to k-monogenic functions, i.e. null-solutions of ∂k
x . We obtain the

following theorem, where νm|2n
j (x) denotes the fundamental solution of ∂j

x, determined in [12]. Note that
similar formulae also exist in classical Clifford analysis, see e.g. [20] or [21] for the case of polynomial
type Dirac operators.

Theorem 5. Let Ω ⊂ Rm be an open set and Σ ⊂ Ω a compact oriented differentiable m-dimensional
manifold with smooth boundary ∂Σ. Let g ∈ Ck(Ω)m|2n be k-monogenic, i.e. ∂k

xg = 0. Then one has∫
B,Σ,∂Σ

k∑
j=1

(−1)j+1ν
m|2n
j (x− y)dσx∂

j−1
x g(x) =

{
0 if y ∈ Ω\Σ
g(y)dV (ỳ) if y ∈

◦
Σ.

Proof. Similar to the proof of theorem 4, using the fact that ∂xν
m|2n
j = ν

m|2n
j−1 .

6 Conclusions

In this paper we have established a Cauchy integral formula in superspace. We have first obtained a
Stokes’ theorem in the purely fermionic case. When combining this theorem in a suitable way with the
classical (bosonic) Stokes’ theorem, we were able to construct the general formula. In this formula, the
integration over the boundary of a supermanifold consists of two parts: one integration over the even
boundary and one over the odd boundary.
Finally we used this Stokes’ formula to establish a Cauchy theorem in superspace, as well as a Cauchy-
Pompeiu formula, using the fundamental solution of the super Dirac operator as kernel.
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