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Abstract
In Armstrong et al. (Proc Lond Math Soc (3) 119(1):176–213, 2019) the authors
define three projections of Rd -valued stochastic differential equations (SDEs) onto
submanifolds: the Stratonovich, Itô-vector and Itô-jet projections. In this paper, after
a brief survey of SDEs on manifolds, we begin by giving these projections a natural,
coordinate-free description, each in terms of a specific representation of manifold-
valued SDEs. We proceed by deriving formulae for the three projections in ambient
R

d -coordinates. We use these to show that the Itô-vector and Itô-jet projections satisfy
respectively aweak andmean-square optimality criterion “for small t”: this is achieved
by solving constrained optimisation problems. These results confirm, but do not rely
on the approach taken in Armstrong et al. (Proc Lond Math Soc (3) 119(1):176–213,
2019), which is formulated in terms of weak and strong Itô–Taylor expansions. In the
final section we exhibit examples showing how the three projections can differ, and
explore alternative notions of optimality.

Keywords Ito · Stratonovich · Projection

1 Introduction

Consider the following problem: we are given an autonomous ODE

Ẋt = F(Xt ) (1)
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in R
d , and a smooth embedded manifold M ↪→ R

d . Let π be the metric projection
of a tubular neighbourhood of M onto M (see (41) below). We seek an M-valued
ODE, i.e. a vector field F on M , tangent at each point to M , with the property that the
solution to

Ẏt = F(Yt ) (2)

is optimal in the sense that the first coefficient of the Taylor expansion in t = 0 of
either

|Yt − Xt |2 or |Yt − π(Xt )|2 (3)

isminimised for any initial condition X0 = Y0 = y0 ∈ M . This requirement represents
the slowest possible divergence of Y from the original solution X (resp. from its metric
projection on M), subject to the constraint of Y arising as the solution of a closed form
ODE on M . It is an easy exercise (using (44) below) to check that these optimisation
problems both result in the same solution, which consists in F(y) being the orthogonal
projection of the vector F(y) onto the tangent space Ty M .

In the stochastic setting, the optimality criteria (3) do not carry over in a straight-
forward fashion, and in [2] are formulated through the machinery of weak and strong
Itô-Taylor expansions, i.e. approximations of solutions to SDEs that use iterated Itô
integrals [12]. The idea of projecting an SDE onto a finite dimensional manifold is
motivated by the projection method for approximating the solution to non-linear fil-
tering problems described in [4], and [2] gives an example of how one can obtain
optimal Gaussian approximations to non-linear filterings by considering the Itô-jet
projection defined therein. More generally, whenever one considers a perturbation of
an SDE whose solutions are known to be confined to a manifold, it would be natural
to approximate the solutions to the perturbed problem by projecting onto that mani-
fold. Projection is also likely to be of interest in problems where the geometry of the
situation or conservation laws introduce a natural manifold structure.

In this paperwe tackle the core problemof [2] through a different perspective,which
we proceed to describe. In Sect. 2 we begin with a survey of SDEs on manifolds, and
describe three equivalent but distinct ways of writing SDEs on smooth manifolds.
In Sect. 3 we prepare the framework for manifolds M embedded in R

d , and use
this framework to study the equations introduced in the previous section, in extrinsic
coordinates. In Sect. 4 we associate to each manifold-valued SDE representation a
natural projection, which gives rise to an SDE on a submanifold. These projections
coincide with the ones introduced in [2], but are described in ambient coordinates
instead of local ones: this removes dependency on the chart in the expression for the
projected coefficients, which in turn makes it easier to interpret these geometrically,
namely to consider their components orthogonal and tangent to the manifold (see
(90) below for the expressions of the tangential part of the Itô drift terms). In Sect.
5 we formulate the optimality criteria satisfied by the projections introduced prior,
using aweak/mean-square formulation, i.e. by directlyminimising the classical Taylor
coefficients of the quantities (94), instead of invoking Itô-Taylor expansions as done
in [2]: this has the advantage of representing a more tangible property of the solution.
Our main theorems 1 and 2 replicate the findings [2, Theorem 4.4 and Theorem 4.7]
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in this new setting. The fact that the Stratonovich projection does not satisfy either
of these optimality criteria is a confirmation of the fact that Itô calculus on manifolds
can be of great interest.

In this paper, we tackle the problem of finding the coefficients for the SDE defined
intrinsically on manifold, such that the solution best approximates the solution to a
given SDE in a certain mean-square or weak sense, for small time. While the formu-
lation and first solution to this problem are original to [2], the independent approach
given here has threemajor advantages: formulae aremore easily interpretable and com-
parable thanks to the use of ambient coordinates, the proof of optimality is streamlined
by bypassing the use of stochastic Taylor expansions, and the optimal solutions are
shown to coincide with natural notions of projections of intrinsic SDEs on manifolds
referenced in the literature, giving them a more solid theoretical underpinning.

2 SDEs onmanifolds

Let M be a smooth manifold; we write T M for its tangent bundle and �T M for its
C∞M-module of sections, i.e. tangent vector fields. A time-homogeneous ODE on
M consists of a vector field F ∈ �T M , i.e. X is a solution with initial condition x0
if X0 = x0 and Ẋt = F(Xt ), where Ẋt ∈ TXt M is the tangent vector of the smooth
curve X at time t . This can be written in local coordinates as Ẋ k

t = Fk(Xt ).
Not too much needs to be changed in order to describe Stratonovich equations. As

for the familiar Rd -valued case we will also need a driving semimartingale, which,
following [6] we take to be valued in another manifold N , of dimension n. Given
a stochastic setup (�,F·, P) satisfying the usual conditions, a continuous adapted
stochastic process Z : � × R≥0 → N is said to be a semimartingale if, for all f ∈
C∞N , f (Z) is a semimartingale. Just as for the ODE case, what is needed to define a
Stratonovich SDE in M driven by Z is a section of some vector bundle: in this case,
however, the bundle is no longer just T M , but Hom(T N , T M) → M × N , i.e. the
vector bundle of linear maps from T N to T M . An element F ∈ �Hom(T N , T M)

corresponds to a smooth map M × N � (x, z) �→ F(x, z) ∈ Hom(Tz N , Tx M). The
Stratonovich SDE

dXt = F(Xt , Zt ) ◦ dZt (4)

in local coordinates (this requires choosing a chart both on N and on M) as dXk
t =

Fk
γ (Xt , Zt ) ◦ dZγ

t on random intervals that make both sides of the expression well
defined. We will always use Greek letters as indices for the driving process, and Latin
letters as indices for the solution. The key property that allows one to prove that
the coordinate formulation of Stratonovich SDEs holds for all other charts (on the
intersection of their respective domains) is that Stratonovich equations satisfy the first
order chain rule: clearly (4) would not be similarly well defined with Itô integration.

Example 1 (Stratonovich diffusion) An important example is the case where N =
R≥0 × R

n and Zt = (t, Wt ), W an n-dimensional Brownian motion, and F not
depending explicitly on W . This means (4) becomes
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dXt = σγ (Xt , t) ◦ dW γ
t + b(Xt , t)dt (5)

for σγ , b ∈ �Hom(TR≥0, T M) = C∞(R≥0, �T M), γ = 1, . . . , n. Stratonovich
diffusions are sections of the vector bundle

Diff n
Strat:=

{
F ∈ Hom(T (R≥0 ⊕ R

n), T M) :
∀w1, w2 ∈ R

n F(t, w1; x) = F(t, w2; x)
}→ M × R≥0

(6)

i.e. elements of the vector space �Diff n
Strat. Notice that the base space is not M ×

(R≥0 × R
n), since independence of the Brownian motion allows us to forget the Rn

component.

We note that no additional structure on N and M , apart from their smooth atlas, is
needed to define Stratonovich equations. Stratonovich SDEs are the most used in
stochastic differential geometry, as they behave well w.r.t. notions of first order calcu-
lus: for instance, if there exists an embedded submanifold M ′ of M such that F(y, z)
maps to Ty M ′ for all z ∈ N and all y ∈ M ′, then the solution to the Stratonovich SDE
defined by F started on M ′ will remain on M ′ for the duration of its lifetime.

We now pass to Itô theory on manifolds, as developed in [6, Ch.VI]. The difficulty
lies in the second order chain rule of the Itô integral. For this reason, we need to
invoke structures of order higher than 1. Let the second order tangent bundle of M ,
TM , denote the bundle of second order differential operators without a constant term,
i.e. given a local chart ϕ containing x in its domain, an element of Lx ∈ Tx M consists
of a map

Lx : C∞M → R, Lx f = Lk
x

∂ f

∂ϕk
+ Li j

x
∂2 f

∂ϕi∂ϕ j
(7)

The coefficients Lk
x , Li j

x obviously depend onϕ, but their existence does not;moreover,

requiring Li j
x = L ji

x ensures their uniqueness for the given chart ϕ. Note that if the
Li j

x ’s vanish Lx ∈ Tx M . TM is given the unique topology and smooth structure that
makes the projection TM → M , Lx �→ x a locally trivial surjective submersion.
Just as for the first order case, there is an obvious notion of induced bundle map
T f : TN → TM for f ∈ C∞(N , M). A chart ϕ containing x in its domain defines
the basis of Tx M

{∂xϕk, ∂
2
x ϕi j = ∂2x ϕ j i | k, i, j = 1, . . . , n} (8)

so the dimension of TM (as a vector bundle) is m + m(m + 1)/2. The fundamental
properties of TM are summarised the short exact sequence of vector bundles over M

0 T M TM T M � T M 0i p
(9)
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with the third term denoting symmetric tensor product, the first map the obvious
inclusion and the second map given by

Lx �→
(

f , g �→ 1

2
(Lx ( f g)− f (x)Lx g − g(x)Lx f )

)
(10)

Roughly speaking, this means that TM is “noncanonically the direct sum of T M and
T M � T M”. We now wish to define an Itô-type equation using second order tangent
bundles instead of ordinary tangent bundles. For this we need a notion of field of maps
F(x, z) : Tz N → Tx M . Since the bundles in question are linear, it is tempting to allow
F(x, z) to be an arbitrary linear map, but a more stringent condition is necessary to
guarantee well-posedness: the correct requirement is that F(x, z) define a morphism
of short exact sequences, i.e. a commutative diagram

0 Tz N Tz N Tz N � Tz N 0

0 Tx M Tx M Tx M � Tx M 0

F(x,z) F(x,z) F(x,z)⊗F(x,z) (11)

with F(x, z) = F(x, z)|Tz N . F(x, z) is then called a Schwartz morphism, and we can
then view F as being the section of a sub-fibre bundle Sch(N , M) of Hom(TN ,TM)

over M × N consisting of such maps, which we call the Schwartz bundle. Note that
Sch(N , M) is not closed under sum and scalar multiplication taken in the vector
bundle Hom(TN ,TM), and thus can only be treated as a fibre bundle. Now, given
F ∈ �Sch(N , M), we will give a meaning to the SDE

dXt = F(Xt , Zt )dZt (12)

which we will call a Schwartz-Meyer equation. If X is an M-valued semimartingale
the second order differential dXt should be interpreted in local coordinates ϕ as

dXt = dXk
t ∂Xt ϕk + 1

2d[Xi , X j ]t∂2Xt
ϕi j ∈ TXt M (13)

where the first differential is an Itô differential; this expression is seen to be invariant
under change of charts, thanks to the Itô formula. Then, given charts ϕ in M and ϑ on
N , and writing

F(x, z)∂zϑγ = F
k
γ (x, z)∂xϕk + F

i j
γ (x, z)∂2x ϕi j

F(x, z)∂2z ϑαβ = F
k
αβ(x, z)∂xϕk + F

i j
αβ(x, z)∂2x ϕi j

(14)

(12) becomes the system

{
dXk

t = F
k
γ (Xt , Zt )dZγ

t + 1
2F

k
αβ(Xt , Zt )d[Zα, Zβ ]t

1
2d[Xi , X j ]t = F

i j
γ (Xt , Zt )dZγ

t + 1
2F

i j
αβ(Xt , Zt )d[Zα, Zβ ]t (15)
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Computing the quadratic covariation matrix of X from the first equation above, using
the Kunita-Watanabe identity, and comparing with the second results in the require-
ment that

F
i j
γ ≡ 0; F

i j
αβ ≡ 1

2

(
F

i
αF

j
β + F

j
αF

i
β

)
(16)

which correspond precisely to the Schwartz condition (11), and justifies this require-
ment. (15) now reduces to its first line, i.e. the Itô SDE

dXk
t = F

k
γ (Xt , Zt )dZγ

t + 1
2F

k
αβ(Xt , Zt )d[Zα, Zβ ]t (17)

on random intervals that make both sides of the expression well-defined.

Example 2 (Schwartz–Meyer diffusion) Proceeding as in Example 1, but with
Schwartz-Meyer equations, we can define the Schwartz-Meyer SDE

dXt = F(Xt , t)dZt

= σγ (Xt , t)dW γ
t +

(
F0 + 1

2

n∑

γ=1
Fγ γ

)
(Xt , t)dt (18)

where we can call Fγ = σγ the diffusion coefficients, since they are elements of
C∞(R≥0, �T M); this also holds for γ = 0, but not for Fαβ ∈ C∞(R≥0, �TM).
Therefore the coefficient of dt , the “drift”, cannot be interpreted as a vector. Note that
setting Fγ γ ≡ 0 does not guarantee that such coefficients will vanish w.r.t. another

chart, since the transformation rule for them involves the Fi j
αβ ’s which cannot vanish

by the second Schwartz condition (16); in other words, there is no way to do away
with the non vector-valued drift in (18). We can consider Schwartz Meyer diffusions
as being sections of the fibre bundle

Diff n
SchM := {F ∈ Sch(R≥0 × R

n, M) : ∀w1, w2 ∈ R
n
F(t, w1; x) = F(t, w2; x)}

F ∼ G⇔ Fγ≥1 = Gγ , F0 + 1
2

∑n
γ=1 Fγ γ = G0 + 1

2

∑n
γ=1Gγ γ

→ M × R≥0 (19)

This means that, similarly to the case of (6) we are only considering F’s that do not
depend explicitly on the Brownian motion, and we are quotienting out the part that is
not relevant for (18).

The recent paper [1] treats SDEs on manifolds using a representation which is
similar to that of (12), but which has a distinct advantage when it comes to numerical
schemes. Here the authors focus on the autonomous diffusion case, without explicitly
taking time as a driver (N = R

n , Zt = Wt ), and take the field of SchwartzmorphismsF
to be induced by a field of maps i.e. a smooth function f : Rn×M → M , fx := f (·, x),
s.t. for all x ∈ M , fx (0) = x : this means

F(x) = T0 fx (20)
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In coordinates ϕ on M this amounts to

σ k
γ (x) = ∂(ϕk ◦ fx )

∂wγ
(0), F

k
αβ(x) = ∂2(ϕk ◦ fx )

∂wα∂wβ
(0) (21)

with F0 = 0 (note how the drift comes from the quadratic variation of Brownian
motion, without having to require time as a driving process). This particular form of
F is useful because it automatically defines a numerical scheme for the solution of the
SDE, similar to the Euler scheme, which cannot be defined in a coordinate-free way
on amanifold: the linear structure lacked by M is replaced with iterative interpolations
along the fx ’s. This also has the advantage of guaranteeing that if the maps are valued
in M , so are all the approximations. “Itô-type” Diffusions on manifolds have also
been investigated by other authors, most notably by [3, Ch.4] (although we refer to the
more recent exposition [9, §7.2]), who call the bundle Diff n

SchM the Itô bundle, and
give a local description of it. For a comparison of the Schwartz-Meyer and Itô bundle
approaches, we refer the reader to [8, Ch. 1].

There is a way of writing Itô equations on a manifold so that all the coefficients,
drift included, are vectors. It involves considering the additional structure of a linear
connection ∇ on M , i.e. a covariant derivative

∇ : T M × �T M → T M (22)

which is a smooth function that maps Tx M×�T M to Tx M , isR-bilinear, and satisfies
the Leibniz rule ∇Ux ( f V ) = f (x)∇Ux V + (Ux f )Vx . Equivalently, a connection is
described through its Hessian

∇2 : C∞M → �(T ∗M ⊗ T ∗M) (23)

which is an R-linear map satisfying ∇2( f g) = f∇2g+ g∇2 f + d f ⊗ dg+ dg⊗ d f
for all f , g ∈ C∞M . These two data are equivalent and related by

〈∇2
x f , V ⊗U 〉 = Ux (V f )− (∇Ux V ) f (24)

If �
i j
k are the Christoffel symbols of ∇ w.r.t. a chart ϕ (this means ∇∂x ϕi ∂ϕ j =

�k
i j (x)∂xϕk), the Hessian can be written as

∇2
x f = (∂2x ϕi j − �k

i j (x)∂xϕk)( f )dxϕ
i ⊗ dxϕ

j (25)

We will only be interested in connections modulo torsion, so it is not limiting for us
to assume that a connection is symmetric or torsion-free, i.e. that its torsion tensor
〈τ∇ , U ⊗ V 〉 = ∇U V − ∇V U − [U , V ] vanishes, or equivalently that its Hessian is
valued in �(T ∗M�T ∗M). By far the most important example of such a connection is
the Levi-Civita connection of a Riemannianmetricg; in this case the Hessian takes the
form 〈∇2

x f , Ux ⊗ Vx 〉 = g(∇Ux grad
g f , Vx ). Torsion-free connections are relevant
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to our study of SDEs in that they correspond to the splittings of (9), i.e. a linear left
inverse q to i or a linear right inverse j to p

0 T M TM T M � T M 0i
p

q

j

(26)

The existence of the bundle maps j and q are equivalent to one another and to the
isomorphism (q,p) : TM → T M ⊕ (T M � T M) (this is the well-known splitting
lemma [10, p.147], valid in the category of vector bundles). A torsion-free connection
∇ on M is equivalent to a splitting by setting

(qx Lx ) f :=Lx f − 〈∇2
x f ,px Lx 〉 (27)

We recall that, given V ∈ �T M , the “composition” Ux (V ) ∈ Tx M is defined by
Ux (V ) f :=Ux (y �→ Vy f ), and we have

px (Ux (V )) = Ux � Vx , qx (Ux (V )) = ∇Ux V (28)

Using that ∂2x ϕi j = ∂xϕi (∂ϕ j ) and (25) we have

px∂
2
x ϕi j = ∂xϕi � ∂xϕ j , qx∂

2
x ϕi j = �k

i j (x)∂xϕk (29)

Another way to view this correspondence is by j∗dx f = ∇2
x f .

Now, given symmetric connections on N and M , a field of Schwartz morphisms
F ∈ �Sch(N , M) can be viewed as a field of block matrices

[
F G
0 F ⊗ F

]
(x, z) : Tz N ⊕ (Tz N � Tz N )→ Tx M ⊕ (Tx M � Tx M) (30)

One can then require that G ≡ 0, so thatF reduces to F , which defines the Itô equation

dXt = F(Xt , Zt )dZt (31)

Such equations have been considered in [7]. The data needed to define this equation
is the same as that involved in the definition of the Stratonovich equation (4), namely
an element of �Hom(T N , T M), but the meaning of the equation depends on the
connections on N and M . In local coordinates, using (29) to specify Fk

αβ in (17) to the
case G ≡ 0, this equation takes the form

dXk
t = Fk

γ (Xt , Zt )dZγ
t + 1

2

(N�
γ
αβ(Zt )Fk

γ (Xt , Zt )

− M�k
i j (Xt )Fi

α F j
β (Xt , Zt )

)
d[Zα, Zβ ]t (32)
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Recall that an (M,∇)-valued semimartingale is a local martingale if for all f ∈
C∞M

f (X)−
∫ ·

0
〈p∗∇2

Xs
f ,dXs〉 (33)

is a real-valued local martingale (the integral is to be interpreted as half the quadratic
variation of X along the bilinear form∇2 f ); this property coincideswith the usual local
martingale property when M is a vector space. In local coordinates an application of
(25) and (13) shows that the local martingale property corresponds to the requirement
that

dXk
t + 1

2�
k
i j (Xt )d[Xi , X j ]t (34)

be a real-valued local martingale for each k.
In the following example we examine the case of diffusions, defined using Itô

equations, in which the issue of the drift not being a vector is (partially) resolved:

Example 3 (Itô diffusion) Example 2 specified to the above case (M has a symmetric
connection, G ≡ 0 in (30)) becomes the equation

dXt = σγ (Xt , t)dW γ
t + μ(Xt , t)dt (35)

where now μ(x, t) = F(x, t) ∈ Tx M can legitimately be referred to as the “drift
vector”. Note however that in an arbitrary chart ϕ the drift will still carry a correction
term:

dXk
t = σ k

γ (Xt , t)dW γ
t +

(
μk(Xt , t)− 1

2

n∑

γ=1
�k

i j (Xt )σ
i
γ σ j

γ (Xt , t)

)
dt (36)

which reduces to the ordinary Itô lemma if M = R
m and the chart ϕ is a diffeomor-

phismofRm . The N�
γ
αβ ’s do not appear since the driver is already valued in a Euclidean

space. The data needed to define such an equation coincides with that needed for (4),
so we can define the bundle

Diff n
ItoM :=Diff n

StratM → M × R≥0 (37)

already defined in (6). Crucially, however, the Stratonovich and Itô calculi give dif-
ferent meanings to the equation defined by a section of this bundle; in particular, a
torsion-free connection on M is required in the latter case. The “Itô” and “Strat” there-
fore do not represent differences in the bundles, which are identical, but only serve as
a reminder of which calculus is being used to give the section the meaning of an SDE.

Itô equations on manifolds are the true generalisation of their Euclidean space-
valued counterparts, but have the disadvantage of only being defined w.r.t. a specific
connection. For instance, if F ∈ �Diff n

Ito, M is Riemannian with M ′ a Riemannian
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submanifold s.t. for all z and x ∈ M ′, F(z, x) maps to Tx M ′, F does not in general
define an Itô equation on M ′, since the Riemannian connection on M ′ is not in general
the restriction of that of M . However, F , seen as a field of Schwartz morphisms, does
define a Schwartz-Meyer equation on M ′ (with a G term that is in general non-zero
w.r.t. to the Riemannian connection on M ′).

In the following table we summarise the advantages of these three ways of repre-
senting SDEs on manifolds:

Stratonovich Schwartz-Meyer/2-jet Itô

Does not require ∇ � �
Uses Itô integration � �
Coefficients are vectors � �

It is natural to ask how these three types of equations are related to one another. In
the case of diffusions, there exists a commutative diagram of bijections

�Diff n
SchM

�Diff n
StratM �Diff n

ItoM

ba

c

(38)

All threea,b,c are the identity on the diffusion coefficients. The behaviour ofa,b,c
on the Stratonovich, Schwartz-Meyer and Itô drifts is explained below

ab:=b + 1

2

n∑

γ=1
σγ (σγ ), bη:=qη, cb:=b + 1

2

n∑

γ=1
∇σγ σγ (39)

Note that, while b and c depend on the connection, a does not. If η = F0 +
1
2

∑n
γ=1 Fγ γ is a Schwartz-Meyer drift, (11) and (28) force η− 1

2

∑n
γ=1 σγ (σγ ) to lie

in Tx M , which is thus a−1η. Moreover, we have b−1μ = iμ+ 1
2

∑n
γ=1 j(σγ � σγ )

and c−1μ = b− 1
2

∑n
γ=1 ∇σγ σγ .a,b,c define correspondences of SDEs in the sense

that solutions are preserved (e.g. X is a solution of F ∈ Diff n
StratM if and only if X is

a solution of aF , and the same for b,c). This is immediate by the expression of such
equations in charts, by (28) and the usual Itô-Stratonovich conversion formula.

Remark 1 What makes Itô-Stratonovich conversion formulae difficult to state in the
case of a general manifold-valued semimartingale driver Z , is that the change of
calculus involves the emergence of new drivers which are not naturally valued in the
manifold where Z is valued (the quadratic covariation of Z ). Nevertheless, the map
a can be defined in this general setting [6, Lemma 7.22], though its inverse cannot
canonically.
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3 Manifolds embedded in Euclidean space

In this paperwewillmostly be concernedwithmanifolds embedded inRd : these can be
studied using the extrinsic, canonical, Rd -coordinates instead of non-canonical local
ones. Let M be an m-dimensional smooth manifold embedded inRd . We assume M to
be locally given by a non-degenerateCartesian equation F(x) = 0: M can be described
globally in this way if and only if it is closed and its embedding has trivial normal
bundle; therefore, to preserve generality, we only assume F to be local. Throughout
this paper the letter x will denote a point in R

d and the letter y a point in M . Thus
F : Rd → R

d−m is a submersion, which implies is an invertible (d − m)× (d − m)

matrix for all x ∈ R
d (J F(x) ∈ R

(d−m)×d the Jacobian of F at x):

J F(x)J F(x)ᵀvᵀ = 0 ⇒ (v J F(x))(v J F(x))ᵀ = v J F(x)J F(x)ᵀvᵀ = 0

⇒ v = 0
(40)

Let π , defined on a tubular neighbourhood T of M in Rd be the Riemannian submer-
sion

π(x):= argmin{|x − y| : y ∈ M} (41)

This map can be seen to exist by using the normal exponential map defined in [14,
p.132], and is constant on the affine (d −m)-dimensional slices of T which intersect
M orthogonally: this is because the fibre π−1(y) coincides with the union of all
geodesics in R

d (i.e. straight line segments) which start at y, with initial velocity
orthogonal to M , each taken for t in some open interval containing 0. It is important
also to remember that π is unique given the embedding of M (on a thin enough T such
that it is well defined), whereas F is not canonically determined. In what follows we
will be concerned with understanding which quantities are dependent on the chosen
F and which instead only depend on the embedding of M . The only properties of π

that we will need are that

F ◦ π ≡ 0, π |M = 1M ⇒ π ◦ π ≡ π (42)

Differentiating these (the second up to order 2) we obtain

∂ F

∂xh
(π(x))

∂πh

∂xk
(x) = 0

∂π

∂xh
(π(x))

∂πh

∂xk
(x) = ∂π

∂xk
(x)

∂2π

∂xa∂xb
(π(x))

∂πa

∂xi

∂πb

∂x j
(x)+ ∂π

∂xh
(π(x))

∂2πh

∂xi∂x j
(x) = ∂2π

∂xi∂x j
(x)

(43)

If Vy ∈ TM and X is a smooth curve s.t. X0 = y and Ẋ0 = V (y), differentiating
π(Xt ) = Xt results in Jπ(y) = Vy : this shows that Jπ |T M = 1T M . By a similar
argument, the fact thatπ−1(y) is a straight line segment that intersects M orthogonally
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implies that Jπ |T⊥M = 1T⊥M (T⊥y M the normal bundle of M at y). These two
statements mean that

P(y) = Jπ(y) for y ∈ M (44)

where P(y) : TyR
d → Ty M is the orthogonal projection onto the tangent bundle of

M , which can be defined in terms of F as

P(x):=1− Q(x) where

Q(x):=J Fᵀ(x)(J F(x)J Fᵀ(x))−1 J F(x) ∈ R
d×d and we have

P Q(x) = 0 = Q P(x), Q Q(x) = Q(x) = Qᵀ(x), P P(x) = P(x) = Pᵀ(x)

(45)

The notation is borrowed from [5]. Note that we can use F to define P, Q on a tubular
neighbourhood of M , but these will only be independent of F on M . Q(y) : TyR

d →
T⊥y M is the orthogonal projection onto the normal bundle. Another consequence of
(43) (evaluated at y ∈ M) that will be useful is that, for Vy, Wy ∈ TyR

d , and denoting
U y = P(y)Uy, qUy = Q(y)Uy (with U = V , W )

∂2π

∂xi∂x j
(y)V

i
y W

j
y ∈ T⊥y M,

∂2π

∂xi∂x j
(y)V

i
y
|W j

y ∈ Ty M,
∂2π

∂xi∂x j
(y) qV i

y
|W j

y = 0

�⇒ ∂2π

∂xi∂x j
(y)V i

y W j
y = ∂2π

∂xi∂x j
(y)
(
V

i
y W

j
y

)

︸ ︷︷ ︸
∈T⊥y M

+ ∂2π

∂xi∂x j
(y)
(
V

i
y
|W j

y + qV i
y W

j
y

)

︸ ︷︷ ︸
both terms ∈Ty M

(46)

Actually, to show that the third term statement in the first line, we need a separate
argument:

Remark 2 Let U ⊆ R
d , f : U → R

e, y ∈ U , Ay, By ∈ TyR
d . Then

∂2 f

∂xi∂x j
(y)Ai

y B j
y (47)

only depends on f restricted to the affine plane (or line) centred in y and spanned by
Ay, By . Indeed, intending with A the extension of Ay to a constant vector field on U ,
we can write

∂2 f

∂xi∂x j
(y)Ai

y B j
y = ∂

∂x j

∣∣∣∣
y

(
∂ f

∂xi
(x)Ai

x
︸ ︷︷ ︸
=:g(x)

)
B j

y (48)

This is the directional derivative of g at y in the direction By , and therefore only
depends on the restriction of g to the affine line span{By}. But g(x) is itself a directional
derivative, and only depends on f restricted to the affine line span{Ax }. Thus thewhole
expression only depends on f restricted to

⋃
x∈span{By} span{Ax } = span{Ay, By}.
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This shows that the term in question only depends on π restricted to span{ qVy, |Wy},
which is the constant y map, whose derivatives therefore vanish.

Remark 3 The other terms appearing in (46) have a description that should be more
familiar to differential geometers:

∂2π

∂xi∂x j
(y)V

i
y W

j
y = R

d∇⊥
V y

W :=Q(y)R
d∇V y

W = II
(
V y, W y

)

− ∂2π

∂xi∂x j
(y)V

i
y
|W j

y = R
d∇�

V y
|W :=P(y)R

d∇V y
|W

(49)

where R
d∇ denotes covariant differentiation inRd (i.e. just directional differentiation).

Notice this is true independently of the chosen extension of W , |W to local vector fields,
a priori needed to give the RHSs a meaning. The first term is the second fundamental
form of V y, W y [13, p.134], whereas the second term is the second fundamental tensor
[11, Def. 3.6.1]. If M is an open set of an affine subspace of M , π is a linear map
and both terms vanish. We prove the first of the two equalities in (49), the second is
proved similarly:

Q(y)R
d∇V y

W = Q j (y)
∂W

j

∂xi
(y)V

i
y = −

∂ Q j

∂xi
(y)W

j
y V

i
y =

∂2π

∂xi∂x j
(y)V

i
y W

j
y (50)

where the second equality follows from the fact that QW = 0 (and that the derivative
is taken in a tangential direction, i.e. V y ∈ Ty M), and the last equality is given by
(53) below. Note that the terms of (49) are extrinsic, in the sense that they depend on
the embedding of M , unlike

M∇V y
W y = P(y)R

d∇V y
W (51)

the Levi-Civita connection of the Riemannian metric on M , which is intrinsic to M .

Finally, it will be necessary to consider the relationship between the derivatives of
P, Q and the second derivatives of π . We differentiate (44) at time 0 along a smooth
curve Yt in M with Y0 = 0 and Ẏ0 = V y ∈ Ty M and obtain

∂ Pk

∂xh
(y)V

h
y =

∂2π

∂xi∂x j
(y)V

i
y (52)

from which we obtain, for W ∈ Ty M

−∂ Qk

∂xh
(y)V

h
y W

k
y =

∂ Pk

∂xh
(y)V

h
y W

k
y =

∂2πk

∂xi∂x j
(y)V

i
y W

j
y ∈ T⊥y M

−∂ Qk

∂xh
(y)V

h
y
|W k

y =
∂ Pk

∂xh
(y)V

h
y
|W k

y =
∂2π

∂xi∂x j
(y)V

i
y
|W j

y ∈ Ty M

(53)

where we have used (46).
We now consider a setup S = (�,F , P) satisfying the usual conditions, W

an n-dimensional Brownian motion defined on S. Consider the W -driven diffusion
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Stratonovich SDE

dXk
t = σ k

γ (Xt , t) ◦ dW γ
t + bk(Xt , t)dt, X0 = y0 ∈ M (54)

As already discussed in Sect. 2, the natural condition on σγ , b which guarantees that
X will stay on M for its lifetime is their tangency to M :

Q(y)σγ (y, t) = 0 = Q(y)b(y, t) for all y ∈ M, t ≥ 0, γ = 1, . . . , n (55)

Our focus, however, will be mostly on the Itô SDE

dXk
t = σ k

γ (Xt , t)dW γ
t + μk(Xt , t)dt, X0 = y0 ∈ M (56)

with smooth coefficients defined in [0,+∞) × R
d ; we do not assume them to be

globally Lipschitz, so the solutionmight only exist up to a positive stopping time, not in
general bounded from below by a positive deterministic constant. We are interested in
deriving the “tangency condition” for the aboveSDE, i.e. a condition on the coefficients
that will guarantee that the solution will not leave M . One way to impose this is to
convert (56) to Stratonovich form

dXk
t = σ k

γ (Xt , t) ◦ dW γ
t +

(
μk − 1

2

n∑

γ=1
σ h

γ

∂σ k
γ

∂xh

)
(Xt , t)dt, X0 = y0 ∈ M (57)

and require (55):

⎧
⎨

⎩

Qk(y)σ k
γ (y, t) = 0

Qk(y)

(
μk − 1

2

∑n
γ=1 σ h

γ

∂σ k
γ

∂xh

)
(y, t) = 0

(58)

Now, given that Qσα vanishes on M , all its directional derivatives along the tangent
directions σβ will too, which gives, using (53)

0 = ∂(Qσα)

∂xh
σ h

β =
∂ Qi

∂x j
σ i

ασ
j

β + Qk
∂σ k

α

∂xh
σ h

β �⇒ Qk
∂σ k

α

∂xh
σ h

β =
∂2π

∂xi∂x j
σ i

ασ
j

β on M

(59)

We can thus reformulate the second equation in (58) to obtain

{
Qk(y)σ k

γ (y, t) = 0

Qk(y)μk(y, t) = 1
2

∑n
γ=1 ∂2π

∂xi ∂x j (y)σ i
γ σ

j
γ (y, t)

(60)

This is useful because it removes the reliance of this constraint on the derivatives of
σ , and can be interpreted as saying that the diffusion coefficients must be tangent to
M and the Itô drift must instead lie on the space parallel to the tangent space of M ,
displaced by an amount which depends on the second fundamental form of M applied
to the diffusion coefficients.
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Remark 4 (Tangency of a second-order differential operator) (60) can also be derived
by writing the second order tangency condition for Lk

y∂y xk + Li j
y ∂2y xi j = L y ∈ TyR

d

to belong to Ty M : this is done by writing Tyπ L y = L y in Rd -coordinates as

[
Lh

y
Lab

y

]
=
[

∂πh

∂xk
∂2πh

∂xi ∂x j

0 ∂πa

∂xi
∂πb

∂x j

]

(y)

[
Lk

y

Li j
y

]

(61)

and then applying it to L y = σγ (y, t), η(y, t), given in terms a field of Schwartz
morphisms F as

σ k
γ = F

k
γ , ηk = F

k
0 +

1

2

n∑

γ=1
F

k
γ γ (62)

Note that it would instead be incorrect to split F according to the Euclidean connection
into a matrix with F and G terms as in (30), and then to require that F and G map to
T M , since the splitting of F according to the connection on M will be different, i.e.
the diagram

TR
d TR

d ⊕ (TR
d � TR

d)

TM T M ⊕ (T M � T M)

∼=

∼=
(63)

does not commute.

We now compute the Hessian for embedded M : for f ∈ C∞M we have

〈M∇2
y f , V y ⊗U y

〉 = 〈Rd∇2
y ( f ◦ π), V y ⊗U y

〉
(64)

wherewe have used (24), (51) to reduce this to a computation of directional derivatives,
and finally (53) (the argument is similar to (50)). R

d∇2 of course is just the ordinary
Hessian. We can now compute Mq, the splitting appearing in (26) w.r.t. the connection
on M : if Ty M � L y = Lk

y∂y xk + Li j
y ∂2y xi j , using (27) yields

(Mqy L y) f = L y( f )− 〈M∇2
y f ,py L y

〉

= L y( f ◦ π)− 〈Rd∇2
y ( f ◦ π), Li j

y ∂2y xi j
〉

= ∂ f

∂xh
(y)

∂πh

∂xk
(y)Lk

y

(65)

which means

Mqy = P(y) ◦ R
d
qy : Ty M → Ty M (66)

Therefore the condition on an arbitrary Schwartz morphism of being Itô w.r.t. to the
Riemannian connection on M in the sense of Example 3 is Mq ◦ F ◦ R

d
j = 0, or
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Fig. 1 On the left a sample path of the solution to the Itô equation (blue) with the two diffusion coefficients
2(x2 + y2 + z2)−1(−y, x, 0), 2(x2 + y2 + z2)−1(0,−z, y), which are tangent to S2 ↪→ R

3, zero drift
and initial condition (0, 1, 0); in the same plot a sample path (using the same random seed) of the solution
to the Stratonovich equation (green) defined by the same vector fields and initial condition. The solution
to the Itô equation drifts radially outwards, while the solution to the Stratonovich equation remains on S2.
On the right we compare the same Stratonovich path with a sample path of the solution to the Itô equation
(red) with the same diffusion coefficients and initial condition, but with the orthogonal drift term necessary
to keep the solution on S2 (60). The resulting solution is an S2-valued local martingale, while the solution
to the Stratonovich equation is not: this is illustrated by plotting the vector field on S2 given by tangential
component of the Itô drift possessed by the Stratonovich equation: this can be viewed as a manifold-valued
drift component

MqFαβ = 0, which in Rd -coordinates is

Pk(y)Fk
αβ(y, t) = 0 (67)

Compare this with the stronger condition of F of being Itô w.r.t. to the connection
on R

d , which is Fk
αβ(y, t) = 0. Thus, given an Itô equation F on M , defined as in

(35) (σγ = Fγ , μ = F0) we have that the drift in R
d of such equation is given by

μk + 1
2

∑n
γ=1 Fk

γ γ , with the first term tangent to M and the second orthogonal to M ,

and equal to 1
2

∑n
γ=1 ∂πh

∂xi ∂x j σ
iσ

j
γ , by Remark 4 and (67). Therefore an Itô equation

on M with coefficients σγ , μ is read in ambient coordinates as

dXk
t = σ k

γ (Yt , t)dW γ
t +

(
μk + 1

2

n∑

γ=1

∂2πk

∂xi∂x j
σ i

γ σ j
γ

)
(Yt , t)dt (68)

Notice that the tangential part of the Rd -drift, μ, is arbitrary, while its orthogonal part
is determined by the diffusion coefficients, and the condition that the solution remain
on M .

The notion of M-valued local martingale also has a description in terms of ambient
coordinates [6, Par. 4.10]: for an M-valued Itô process (such as the solution to (68))
the local martingale property is equivalent to requiring that the drift be orthogonal to
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M at each point (and thus determined by the diffusion coefficients; for (68) this means
μ = 0). This condition is very reminiscent of the property of geodesics of having
acceleration orthogonal to M [13, Lemma 8.5].

Using all (39) and (66) it is easy to verify that converting between Stratonovich,
Schwartz–Meyer and Itô equations on M is equivalent when treating the equations
as being valued in M or in R

d . By this we mean that, denoting with Diff n
Strat,MR

d

the bundle of Stratonovich equations on R
d which restrict to equations on M (and

analogously for the other two diffusion bundles) the maps a,b,c of (38) fit into the
commutative diagram

�Diff n
Sch,MR

d

�Diff n
Strat,MR

d �Diff n
Ito,MR

d

�Diff n
SchM

�Diff n
StratM �Diff n

ItoM

R
dbR

da

R
dc

MbMa

Mc

(69)

where vertical arrows denote restriction. An embedding argument immediately allows
us to extend this assertion to the case whereRd is substituted with a Riemannian man-
ifold of which M is a Riemannian submanifold. This confirms there is no ambiguity
in converting an M-valued SDE between its various forms.

Example 4 (Time dependent submanifold) Observe that the tangency conditions (55)
and (60) can be written respectively as

{
(1− J π̃ )σγ = 0

(1− J π̃ )b = 0

{
(1− J π̃)σγ = 0

(1− J π̃)μ = 1
2

∑n
γ=1 ∂2π̃

∂xi ∂x j (y)σ i
γ σ

j
γ

(70)

for any smooth map π̃ defined on a tubular neighbourhood of M , with values in
M , s.t. π̃ |M = 1M , by the same exact reasoning (for the Itô case we argue as in
Remark 4). J π̃(y) is no longer the orthogonal projection P(y), but still restricts to the
identity on Ty M for y ∈ M , i.e. it has the property that ker(1 − J π̃ ) = T M on M .
Allowing ourselves to consider all such tubular neighbourhood projections is useful
in the following application. Given that we are considering time-dependent equations,
it is very natural to also allow the submanifold M to be time-dependent. Making this
precise entails considering a smooth (m + 1)-dimensional manifold M̃ embedded in
R
1+d , s.t. Mt :=M̃ ∩ {x0 = t} is a smooth m-dimensional manifold embedded in
{x0 = t} × R

d . We are looking for conditions on σ, b (resp. μ) which are sufficient
to guarantee the solution to (54) (resp. (56)) Xt to belong to Mt for all t for which
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it is defined. We then consider the R
1+d -valued process (t, Xt ), which satisfies the

dynamics

d

[
t

Xt

]
=
[

0
σ(Xt , t)

]
◦ dWt +

[
1

b(Xt , t)

]
dt resp. =

[
0

σ(Xt , t)

]
dWt +

[
1

μ(Xt , t)

]
dt (71)

Then, given a thin enough tubular neighbourhood of M̃ in R1+d consider the map

π̃ : T̃ → M̃, π̃(t, x) = πt (x) (72)

where πt is defined as in (41) for the manifold Mt . Notice that this does not in general
coincide with the Riemannian projection of a tubular neighbourhood onto M̃ , which
in general has no reason to preserve time, i.e. be expressible as a union of πt ’s. The
identity J π̃ J π̃ = J π̃ can be written in block matrix form as

⎡

⎣
1 0 · · · 0

Jπt π̇ t + π̇ t Jπt Jπt

⎤

⎦ =
⎡

⎣
1 0 · · · 0

π̇ t Jπt

⎤

⎦ (73)

where we are denoting π̇ t (y) = d
dt πt (y): this implies that at each point y ∈ Mt ,

π̇ t (y) ∈ T⊥y Mt . This choice of the tubular neighbourhood projection will be further
motivated later on, in Example 5, Example 6. In view of the above considerations, we
can use it anyway to impose tangency of the SDE: this results in an unmodified con-
dition on the diffusion coefficients, and the conditions on the orthogonal components
of the Stratonovich and Itô drifts are given respectively by

(1− Jπt )b(y, t) = π̇ t (y)

(1− Jπt )μ(y, t) = 1

2

n∑

γ=1

∂2πt

∂xi∂x j
(y)σ i

γ σ j
γ + π̇ t (y)

(74)

which keep track of the evolution of Mt in time.

4 Projecting SDEs

In Sect. 2 we discussed three ways of representing SDEs on manifolds: Stratonovich,
Schwartz-Meyer and Itô. In this section we will define, for each one of these repre-
sentations, a natural projection of the SDE onto a submanifold. We will mostly take
the ambient manifold to be Rd , which will allow us to use the theory of the previous
section to derive formulae for the projections in ambient coordinates.

Let M be a smooth submanifold of the smooth manifold D, let T be a tubular
neighbourhood of M in D and

π : T → M a smooth map which restricts to the identity onM (75)

123



Projections of SDEs onto submanifolds

If D is Riemannian π can be chosen as in (41), but this is not necessary. Let F ∈
�Hom(T N , T D) be a Stratonovich equation driven by an N -valued semimartingale
Z , where N is another smoothmanifold.We can then define the M-valuedStratonovich
equation

M × N � (y, z) �→ F̃(y, z):=Tyπ ◦ F(y, z) ∈ Hom(Tz N , Ty M) (76)

We call this Stratonovich SDE the Stratonovich projection of F .
Now consider the Z -driven, D-valued Schwartz-Meyer equationF ∈ �Sch(N , M).

We can project this SDE to an SDE on M too, by

M × N � (y, z) �→ F̂(y, z):=Tyπ ◦ F(y, z) ∈ Schz,y(N , M) (77)

We call this Schwartz-Meyer SDE the Itô-jet projection of F.
If N , D and M all carry torsion-free connections we can interpret a section F ∈

�Hom(T N , T D) as an Itô equation, and similarly for

M × N � (y, z) �→ −→
F (y, z):=Tyπ ◦ F(y, z) ∈ Hom(Tz N , Ty M) (78)

We call this Itô SDE the Itô-vector projection of F . Most often D will be Rieman-
nian, so that Levi–Civita connections are defined on both D and M . Note that the
Itô-vector projection is identical to the Stratonovich projection as a map, but the inter-
pretations of the resulting sections as SDEs differ (and the Itô-vector projected SDE
depends explicitly on the connections on all three manifolds). The names of these
three projections are taken from [2], where they were first defined.

Remark 5 (Naturality of the SDE projections) Assume we have a commutative square

D D′

M M ′

φ

π π ′
φ|M

(79)

where φ is a diffeomorphism, and D, M, π are as above, and similarly for D′, M ′, π ′.
Then functoriality of T and T imply that the Stratonovich and Itô-jet projections are
natural in the sense that the squares

Hom(T N , T D) Hom(T N , T D′) Sch(N , D) Sch(N , D′)

Hom(T N , T M) Hom(T N , T M ′) Sch(N , M) Sch(N , M ′)

T φ

˜ ˜

Tφ

̂ ̂
T φ|M Tφ|M

(80)

commute. The Itô-vector projection cannot be natural in the same way, since we are
still free to modify the connections on all four manifolds. However, if D, D′ are
Riemannian and φ is a global isometry, the corresponding statement does hold for the
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Itô-vector projection as well: this is by naturality of the Levi-Civita connection [13,
Proposition 5.6].

Remark 6 (The Itô-vector projection preserves local martingales) Although the Itô-
vector projection is natural w.r.t. a smaller class of maps, it has the advantage of
preserving the local martingale property: by this we mean that if the driver is a local
martingale, so must the solution to the Itô-vector-projected SDE be. This is shown
simply by the good behaviour of Itô equationsw.r.t. manifold-valued localmartingales.

Remark 7 Onemight wonder whether it is possible to “push forward” SDEs according
to an arbitrary smooth and surjective map f : D → D′. If f is a surjective function
admitting a smooth right inverse ι, then we may write the pushforward of, say, the
Stratonovich SDE dX = F(X , Z) ◦ dZ as dY = F(Z , ι(Y )) ◦ dY . This condition on
f essentially corresponds to the condition (75). For general smooth surjective f (such
as the bundle projection of a non-trivial principal bundle), however, we do not see a
way of defining a new closed form SDE on D′.

We will now restrict our attention to the projections of Rd -valued diffusions onto
the embedded manifold M . Focusing on diffusions has the advantage of allowing us to
use the maps (38) to compare the projections. In other words we can ask if the vertical
rectangles in the diagram

�Diff n
SchR

d

�Diff n
StratR

d �Diff n
ItoR

d

�Diff n
SchM

�Diff n
StratM �Diff n

ItoM

R
db

̂

R
da

˜

R
dc

−→

MbMa

Mc

(81)

commute (compare with (69), in which the equations on top already restrict to equa-
tions on M). We will show that they do not, and that all combinations of possibilities
regarding their non-commutativity are possible. We recall the notation V y :=P(y)Vy ,
qVy :=Q(y)Vy and begin by considering theRd -valued Stratonovich SDE (54). By (44)
the coefficients of the Stratonovich projection of this SDE will just be the projected
coefficients: σ̃γ = σγ , b̃ = b, so that the resulting Stratonovich equation is

dYt = σγ (Yt , t) ◦ dW γ
t + b(Yt , t)dt, Y0 = y0 ∈ M

= ∂π

∂xk
(Yt )σ

k
γ (Yt , t) ◦ dW γ

t +
∂π

∂xk
(Yt )b

k(Yt , t)dt
(82)

Throughout this paper we will use X for the initial SDE and Y to denote the projected
SDE. Now assume we start with (56), and want an Itô SDE on M . We can still use
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the Stratonovich projection by converting the SDE to Stratonovich form as in (57),
projecting as above, and converting back to Itô form (by (69) this last conversion can
be seen to occur interchangeably in M or in Rd ). We have

dYt = σγ (Yt , t) ◦ dW γ
t + Pk(Yt )

(
μk − 1

2

n∑

γ=1
σ h

γ

∂σ k
γ

∂xh

)
(Yt , t)dt

= σγ (Yt , t)dW γ
t +

(
μ+ 1

2

n∑

γ=1

(
σ l

γ

∂σ γ

∂xl
− σ h

γ Pk
∂σ k

γ

∂xh

)

︸ ︷︷ ︸
μ̃

)
(Yt , t)dt

(83)

Using (53) we can split μ̃ in its orthogonal and tangential components: on M we have

μ̃ = μ+ 1

2

n∑

γ=1

(
σ l

γ

(
∂ Pk

∂xl
σ k

γ + Pk
∂σ k

γ

∂xl

)
− σ h

γ Pk
∂σ k

γ

∂xh

)

= μ+ 1

2

n∑

γ=1

(
∂ Pk

∂xl
σ l

γ qσ
k
γ +

∂ Pk

∂xl
σ l

γ σ k
γ + σ l

γ Pk
∂σ k

γ

∂xl
− σ h

γ Pk
∂σ k

γ

∂xh

)

= μ+ 1

2

n∑

γ=1

(
∂2π

∂xi∂x j
σ i

γ qσ
j

γ − qσ h
γ Pk

∂σ k
γ

∂xh

)

︸ ︷︷ ︸
∈T M

+ 1

2

n∑

γ=1

∂2π

∂xi∂x j
σ i

γ σ j
γ

︸ ︷︷ ︸
∈T⊥M

(84)

with implied evaluation of all terms at (y, t).
We now move on to the Itô-jet projection. Let F ∈ �Diff n

SchR
d as in (62), so that

the Schwartz-Meyer equation it defines coincides with the Itô equation (56). We can
then write (77) using matrix notation as

[
dYt

1
2d[Y ]t

]
=
[

∂π
∂x

∂2π
∂x2

0 ∂π
∂x � ∂π

∂x

]

(Yt )

[
F G
0 F � F

]
(Yt , t)

[
dWt

1
2d[W ]t

]
(85)

of which the first line reads

dYt = ∂π

∂xk
(Yt )

(
Fk

γ (Yt , t)dW γ
t + Fk

0 (Yt , t)dt + 1

2

n∑

γ=1
Gγ γ (Yt , t)dt

)

+ 1

2

n∑

γ=1

∂2π

∂xi∂x j
(Yt )Fi

γ F j
γ (Yt , t)dt

= σγ (Yt , t)dW γ
t +

(
μ+ 1

2

n∑

γ=1

∂2π

∂xi∂x j
σ i

γ σ j
γ

︸ ︷︷ ︸
μ̂

)
(Yt , t)dt

(86)
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Remark 8 We can write the Itô-jet-projected drift μ̂ as the generator of the SDE,
applied to the tubular neighbourhood projection π :

μ̂(y, t) = ∂π

∂xk
μk(t, y)+ 1

2

n∑

γ=1

∂2π

∂xi∂x j
σ i

γ σ j
γ (t, y) = (Ltπ)(y) (87)

In [1] the field of Schwartz morphisms F is taken to be induced by a (time-
homogeneous) field of maps f as in (20). In this approach we can use functoriality of
T to write

F̂(y) = Tyπ ◦ F(y) = Tyπ ◦ T0 fy = T0(π ◦ fy) (88)

thus obtaining an SDE defined by the field of (2-jets of) maps given by projecting the
original field of maps onto M with the tubular neighbourhood projection π .

Finally, we consider the Itô-vector projection of (56). By (68), in coordinates this
amounts to projecting (56) to the Itô SDE on M with diffusion coefficients given by
σγ and drift

−→μ = μ︸︷︷︸
∈T M

+ 1

2

n∑

γ=1

∂2π

∂xi∂x j
σ i

γ σ j
γ

︸ ︷︷ ︸
∈T⊥M

(89)

To summarise, all three projections of the Itô equation (56) agree on how to map
the diffusion coefficients, and the orthogonal components of the drift terms will all be
fixed by the constraint (60),while their tangential projections are given by (respectively
Stratonovich, Itô-jet, Itô-vector)

Pμ̃ μ+ 1

2

n∑

γ=1

(
∂2π

∂xi∂x j
σ i

γ qσ
j

γ − qσ h
γ Pk

∂σ k
γ

∂xh

)

Pμ̂ μ+
n∑

γ=1

∂2π

∂xi∂x j
σ i

γ qσ
j

γ

P−→μ μ

(90)

By calculations similar to (84) we can compute the projections of (54) in
Stratonovich form: again, all three projections will orthogonally project the diffusion
coefficients, and behave as follows on the Stratonovich drifts.

b̃ b

b̂ b + 1

2

n∑

γ=1

(
qσ h
γ Pk

∂σ k
γ

∂xh
+ ∂2π

∂xi∂x j
σ i

γ qσ
j

γ

)

−→
b b + 1

2

n∑

γ=1

(
qσ h
γ Pk

∂σ k
γ

∂xh
− ∂2π

∂xi∂x j
σ i

γ qσ
j

γ

)
(91)
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From now on we will consider (56) as being our starting point, unless otherwise
mentioned, and thus refer to (90) when comparing the three projections.

We end this section with a brief comparison of the three projections. The three
projections coincide if σγ ∈ T M for γ = 1, . . . , n (which includes the ODE case
σγ = 0), in which case the diffusion coefficients remain unaffected, and the tangent
component of the projected drift is simply given byμ. If σγ ∈ T⊥M for γ = 1, . . . , n
all three projections result in an ODE on M , and the Itô-jet and Itô-vector projections
coincide. Another case in which the Itô-jet and Itô-vector projections coincide is when
the second derivatives of π vanish: this occurs in particular if M is embedded affinely,
i.e. it coincides with some open set of an affine space ofRd . All three projections forget
the orthogonal part of the (Itô or Stratonovich) drift. We observe from (90) that the Itô-
jet and Itô-vector projections of (56) onlydependon thevalues of the Itô-coefficients on
M . The Stratonovich projection, instead, could additionally depend on the tangential
components of the derivatives of the diffusion coefficients in the direction of their
normal components. Naturally, the situation is reversed when projecting (54): here it
is the Stratonovich projection that only depends on the values of the coefficients on
M , while the Itô-jet and -vector projections might depend on the mentioned derivative
term.

Example 5 (The projections in the case M time-dependent) Recalling Example 4 (and
the map π̃ defined therein) we may ask whether there is a way to consider the three
SDE projections in the case of M time-dependent. The most natural way to define
this is to consider, as done in (71), the joint equation satisfied by (t, Xt ), project its
coefficients in the three ways onto M̃ , thus obtaining a solution of the form (t, Yt ): this
uses that π̃0(t, y) = t (with time the 0th coordinate), which is instead not necessarily
satisfied by the Riemannian tubular neighbourhood projection onto M̃ . It is easily
checked that the formulae (90) for the tangential component of the drift of Yt continue
to hold with the substitution of πt for π (so that also the projection onto the tangent
space P is now time-dependent), whereas in all three cases the orthogonal component
of the drift picks up the term π̇ t , needed to keep the process on the evolving manifold
Mt . In particular, in the Itô-jet case we have

μ̂(y, t) = (Ltπt )(y)+ π̇ t (y) = L̃ π̃(t, y) (92)

where Lt is the generator of X and L̃ is that of (t, Xt ) (which can be considered
as being a time-homogeneous Markov process). This identity extends the observation
made in Remark 8. The same term π̇ t should be added to the Stratonovich drifts (91)
for the extension to the case of M time-dependent.

5 The optimal projection

In the previous section we showed how to abstractly project manifold-valued SDEs
onto submanifolds in three (possibly) different ways, and specialised these construc-
tions to the case of M ↪→ R

d -valued diffusions. In this section we will seek the
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optimal projection of an SDE for Xt , which we write in Itô form as (56). Let

dY k
t = ◦

σ k
γ (Yt , t)dW γ

t + ◦
μk(Yt , t)dt, X0 = y0 ∈ M (93)

be the M-valued SDE to be defined, which we write inRd -coordinates. Its coefficients
◦
σγ and ◦

μ are to be treated as unknowns, to be determined by the optimisation criteria
that involve the minimisation of the quantities

E[|Yt − Xt |2], E[|Yt − π(Xt )|2], |E[Yt − Xt ]|2 (94)

asymptotically for small t . Before we define the optimality criteria precisely, it is
important to note that such expectations are undefined if the solution to either SDE is
explosive, or, in the second case, even if it exits the tubular neighbourhood of M on
which π is defined. The problem must be slightly changed so as to ensure that we are
minimising a well-defined quantity. One option is to take the above expectations on
the event {t ≤ τr }, where

τr :=min{t ≥ 0 : |(Xt , Yt )− (y0, y0)|2 ≥ r2} (95)

for some suitable r > 0. However, since for such optimality criteria the values of
the vector fields of both SDEs outside the ball B(y0,y0)(r) ⊆ R

2d are irrelevant, it is
simpler to just assume that they vanish outside B(y0,y0)(2r). Since the optimisation
criteria will only determine the value of ◦

σ , ◦μ at the initial condition, this is really only
an assumption on σ and μ. The following proposition reassures us that, at least in
well-behaved cases, this does not alter the problem in a way that interferes with the
optimisation (which, as will be seen shortly, only involves the Taylor expansions of
order 2 of (94) in t = 0).

Lemma 1 Let X , Y , y0, τr be as above, U a neighbourhood of (y0, y0) in R
2d and

assume that there exists deterministic ε > 0 s.t. Xt , Yt ∈ U for t ∈ [0, ε]. Let
f : U × [0, ε] → R be continuous s.t. f (y0, y0, 0) = 0, and assume moreover that
E[max0≤t≤ε | f (Xt , Yt , t)|] <∞ (this holds, in particular, under the global Lipschitz
assumptions that guarantee SDE exactness [15, Theorem 11.2]). Then for any r > 0
with Br (y0, y0) ⊆ U

E[ f (Xt , Yt , t)] − E[ f (Xt , Yt , t); t < τr ] (96)

belongs to O(tn) for all n ∈ N as t → 0.

Proof Fix r , and let τ :=τr . The Itô formula yields the decomposition |(Xt , Yt ) −
(y0, y0)|2 = Lt + At with Lt sum of Brownian integrals and At time integral, all of
which for t ≤ τ ∧ ε have bounded integrand (by continuity of the SDE coefficients
and compactness of Br (y0, y0)×[0, ε]). [L]t can be expressed as a time integral with
bounded integrand: let R > 0 bound the sum of the absolute values of all integrands
mentioned for t ∈ [0, τ ∧ε]. Then, still for t ≤ τ ∧ε we have |At |, [L]t ≤ Rt , and for
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any ξ > 0 it holds that |(Xt , Yt ) − (y0, y0)|2 ≤ Lt + Rξ for 0 ≤ t ≤ ε ∧ ξ . Letting
ξ :=r2/(3R), on [0, ε ∧ ξ ] we have

P[t ≥ τ ] = P
[
max
0≤s≤t

|(Xs, Ys)− (y0, y0)|2 ≥ r2
]

= P
[

max
0≤s≤τ∧t

|(Xs, Ys)− (y0, y0)|2 ≥ r2
]

≤ P
[

max
0≤s≤τ∧t

Ls > r2/2
]

= P
[
max
0≤s≤t

Lτ∧s > r2/2
]

≤ exp

(
− r4

4Rt

)

(97)

by the tail estimate [15, Theorem 37.8 p.77]. Now, for t ∈ [0, ε ∧ ξ ] by Cauchy-
Schwarz

∣∣E[ f (Xt , Yt , t)] − E[ f (Xt , Yt , t); t < τ ]∣∣
= ∣∣E[ f (Xt , Yt , t); t ≥ τ ]∣∣
≤ E[ f (Xt , Yt , t)2]1/2P[t ≥ τ ]1/2

≤ E
[
max[0,t] f (Xs, Ys, s)2

]1/2
P[t ≥ τ ]1/2

� exp

(
− r4

4Rt

)

(98)

since the first factor also vanishes as t → 0, by the hypotheses on f , X , Y and
dominated convergence. ��

We proceed with the constrained optimisation problem, assuming all SDE coeffi-
cients to be compactly supported; this means all local martingales involved will be
martingales, and that we may use Fubini to pass to the expectation inside integrals in
dt . If we can write the Taylor expansion of the strong error

E
[|Yt − Xt |2

] = a1t + a2t2 + o(t2) (99)

a first goal could be to minimise the leading coefficient a1 (of course there is no
constant term because Y0 = y0 = X0). Using Itô’s formula, and intending with  
equality of differentials up to differentials of martingales, we have

d|Yt − Xt |2 = d
d∑

k=1
(Y k

t − Xk
t )

2 = 2
d∑

k=1

(
(Y k

t − Xk
t )dY k

t − (Y k
t − Xk

t )dXk
t

)

+
d∑

k=1

(
dY k

t dY k
t + dXk

t dXk
t − 2dXk

t dY k
t

)
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d∑

k=1

[
2

( n∑

γ=1

∫ t

0

( ◦
σ k

γ (Ys, s)− σ k
γ (Xs, s)

)
dW γ

s

+
∫ t

0

( ◦
μk(Ys, s)− μk(Xs, s)

)
ds

)( ◦
μk(Yt , t)− μk(Xt , t)

)

+
n∑

γ=1

( ◦
σ k

γ (Yt , t)2 + σ k
γ (Xt , t)2 − 2σ k

γ (Xt , t)
◦
σ k

γ (Yt , t)
)]
dt

We now compute the expectation:

E
[|Yt − Xt |2

]

=
d∑

k=1
2E

[ ∫ t

0

( n∑

γ=1

∫ s

0

( ◦
σ k

γ (Yu, u)− σ k
γ (Xu, u)

)
dW γ

u

)( ◦
μk(Ys, s)− μk(Xs, s)

)
ds

]

+ 2E

[ ∫ t

0

(∫ s

0

( ◦
μk(Yu, u)− μk(Xu, u)

)
du

)( ◦
μk(Ys, s)− μk(Xs, s)

)
ds

]

+ E

[ n∑

γ=1

∫ t

0

( ◦
σ k

γ
◦
σ k

γ (Ys, s)+ σ k
γ σ k

γ (Xs, s)− 2σ k
γ (Xs, s)

◦
σ k

γ (Ys, s)
)
ds

]

=
∫ t

0
E

[ d∑

k=1
2

( n∑

γ=1

∫ s

0

( ◦
σ k

γ (Yu, u)− σ k
γ (Xu, u)

)
dW γ

u

)( ◦
μk(Ys, s)− μk(Xs, s)

)

+ 2

(∫ s

0

( ◦
μk(Yu, u)− μk(Xu, u)

)
du

)( ◦
μk(Ys, s)− μk(Xs, s)

)

+
n∑

γ=1

( ◦
σ k

γ (Ys, s)− σ k
γ (Xs, s)

)2
]
ds=:

∫ t

0
E[Zs]ds

and differentiating, with reference to (99) we have

a1 = d

dt

∣∣∣∣

+

0

∫ t

0
E[Zs]ds =

n∑

γ=1
| ◦σγ (y0, 0)− σγ (y0, 0)|2 (100)

where d
dt

∣∣+
0 denotes differentiating from the right. Since a1 only depends on the

diffusion coefficients, its minimisation is expressed by the constrained optimisation
problem whose solution is simply given by projecting the σγ ’s onto T M :

{
minimise

∑n
γ=1| ◦σγ − σγ |2

subject to Qk
h
◦
σ h

γ = 0
⇐⇒ ◦

σ = σ = Pσ (101)

Here we have omitted evaluation at the initial condition (0, y0). Since we have not
obtained a condition on ◦

μ our SDE (93) is still underdetermined, and the condition
would be satisfied by the Stratonovich projection of (56).
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One idea to obtain a condition on ◦
μ would be to minimise a2 in (99). This attempt,

however, has the drawback that we are minimising the second Taylor coefficient of a
function without its first vanishing (unless the σγ ’s are already tangent to start with: in
this case the minimisation of a2 can be seen to result in the three projections, which all
coincide). Although this approach is discussed in [2], we will not do so here, as there
are more sound optimisation criteria. Indeed, we can look at the Taylor expansion of
the weak error

|E[Yt − Xt ]|2 = b2t2 + o(t2) as t → 0+ (102)

We compute the term on the left as

|E[Yt − Xt ]|2 =
∣∣∣∣

∫ t

0
E[ ◦μ(Ys, s)− μ(Xs, s)]ds

∣∣∣∣

2
(103)

and

d

dt

∣∣∣∣

∫ t

0
E[ ◦μ(Ys, s)− μ(Xs, s)]ds

∣∣∣∣

2

= 2E[ ◦μ(Yt , t)− μ(Xt , t)]
∫ t

0
E[ ◦μ(Ys, s)− μ(Xs, s)]ds

d2

dt2

∣∣∣∣
0

∣∣∣∣

∫ t

0
E[ ◦μ(Ys, s)− μ(Xs, s)]ds

∣∣∣∣

2

= 2| ◦μ(y0, 0)− μ(y0, 0)|2

(104)

which confirms that (102) lacks a linear term, and we have

b2 = | ◦μ− μ|2 (105)

Requiring the minimisation of b2 is thus independent of the minimisation of a1 above,
and results in the constrained optimisation problem

{
minimise | ◦μ− μ|2
subject to Qk

h
◦
μh

γ = 1
2

∑n
γ=1 ∂2πk

∂xi ∂x j σ
i
γ σ

j
γ

⇐⇒ ◦
μ = μ+ 1

2

n∑

γ=1

∂2π

∂xi∂x j
σ i

γ σ j
γ

(106)

A quick glance at (90) shows we have proven the following

Theorem 1 (Optimality of the Itô-vector projection) The coefficients
◦
σγ ,

◦
μ of the M-

valued SDE (93) that solve the constrained optimisation problem

{
minimise a1 in (99) and b2 in (102)

subject to (60)
(107)

for all initial conditions X0 = Y0 = y0 ∈ M are given (uniquely for t = 0) by the
Itô-vector projection of the original SDE (56).
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Remark 9 In defining the three projections inSect. 4we intended for the projected coef-
ficients to still be time-dependent if the original ones were. The optimality requirement
only fixes the coefficients at the initial condition, at time 0, i.e. ◦

σγ (y0, 0),
◦
μ(y0, 0).

To retain the time-dependence we may consider the optimisation involving all time-
translated initial conditions Yt0 = y0.

Remark 10 Note that the form (Itô or Stratonovich) the initial SDE is provided in is
irrelevant: if we had begun with (54) instead of (56) the optimality criterion would
still have led us to the Itô-vector projection, which for the Stratonovich drift would
have taken the form

−→
b in (91). The only reason to start with an Itô SDE is that

the calculations are simpler, and it is possible to express the optimal coefficients as
functions of the values of the coefficients of the original SDE, without reference to
their derivatives.

The optimisation of 1 has the disadvantage of coming from the two separate min-
imisations of a1 and b2, which are Taylor coefficients of different quantities. There
is a different way of arriving at coefficients by successively minimising the Taylor
coefficients of the same quantity, with the first minimisation resulting in a null term.
The idea is to consider

E
[|Yt − π(Xt )|2

] = c1t + c2t2 + o(t2) (108)

where X , Y are respectively as in (56) and (93), again assuming the coefficients of Y
vanish outside a small neighbourhood contained in the domain of π so as to make the
expectation well-defined. The map π is the one defined in (41), although it can more
generally satisfy (75). Letting ◦

σγ ,
◦
μ resume their status as unknowns, we proceed with

the calculations.

d|Yt − π(Xt )|2

= d
d∑

k=1
(Y k

t − πk(Xt ))
2

=
d∑

k=1

[
2(Y k

t − π(Xk
t ))dY k

t − 2(Y k
t − π(Xk

t ))
∂πk

∂xh
(Xt )dXh

t + dY k
t dY k

t

+
(

∂πk

∂xi

∂πk

∂x j
(Xt )− (Y k

t − πk(Xt ))
∂2πk

∂xi ∂x j
(Xt )

)
dXi

t dX j
t − 2

∂πk

∂xh
(Xt )dXh

t dY k
t

]

 
d∑

k=1

[
2
(
Y k

t − πk(Xt )
)( ◦

μk(t, Yt )− ∂πk

∂xh
μh(t, Xt )− 1

2

n∑

γ=1

∂2πk

∂xi∂x j
σ i

γ σ j
γ (Xt , t)

)

+
n∑

γ=1

(
◦
σ k

γ
◦
σ k

γ (t, Yt )+ ∂πk

∂xi

∂πk

∂x j
σ i

γ σ j
γ (t, Xt )− 2

∂πk

∂xh
σ h

γ (t, Xt )
◦
σ k

γ (t, Yt )

)]
dt=:Ztdt
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and

d

dt
E

[ ∫ t

0
Zsds

]

= E

[ d∑

k=1
2
(
Y k

t − πk(Xt )
)( ◦

μk(t, Yt )− ∂πk

∂xh
μh(t, Xt )− 1

2

n∑

γ=1

∂2π

∂xi ∂x j
σ i

γ σ j
γ (Xt , t)

)

+
n∑

γ=1

(
◦
σ k

γ (Yt , t)− ∂πk

∂xh
σ h

γ (Xt , t)

)2]

(109)

and therefore

c1 = d

dt

∣∣∣∣

+

0
E

[ ∫ t

0
Zsds

]
=

n∑

γ=1
| ◦σγ − Pσγ |2 (110)

(evaluation at (y0, 0) is implied). Thus c1 vanishes if and only if
◦
σ :=Pσ . Continuing

as before we have

dZt  
d∑

k=1
2
(
Y k

t − πk(Xt )
)
d(. . .)

+ 2

(
◦
μk(t, Yt )− ∂πk

∂xh
μh(t, Xt )− 1

2

∂2πk

∂xi∂x j
σ i

γ σ j
γ (Xt , t)

)2

dt

+ 2
n∑

γ=1

(
◦
σ k

γ (Yt , t)− ∂πk

∂xh
σ h

γ (Xt , t)

)
d(. . .)

+ 2 f (σ, Jσ, Hσ ; ◦σ, J
◦
σ, H

◦
σ ;μ, Jμ)|Xt ,Yt ,tdt (111)

for some smooth function f (J denotes Jacobian and H Hessian), which we denote ft

for short; the differentials d(. . .) can be ignored, since their factors will vanish when
evaluated below.

c2 = 1

2

d2

dt2

∣∣∣∣

+

0
E
[
Zt
]

=
∑

γ,k

(
◦
μk − ∂π

∂xh
μh − 1

2

∂2π

∂xi∂x j
σ i

γ σ j
γ

)2

+ ft

(112)

The constrained optimisation problem for the minimisation of c2 conditional on the
previous minimisation of c1 is thus given by
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⎧
⎪⎨

⎪⎩

minimise
∑d

k=1
(
◦
μk − ∂πk

∂xh μh − 1
2

∑n
γ=1 ∂2πk

∂xi ∂x j σ
i
γ σ

j
γ

)2

subject to Qk
h
◦
μh − 1

2

∑n
γ=1 ∂2πk

∂xi ∂x j
◦
σ i

γ
◦
σ

j
γ = 0

⎧
⎨

⎩
2

(
◦
μh − ∂πh

∂xl μl − 1
2

∑n
γ=1 ∂2πh

∂xi ∂x j σ
i
γ σ

j
γ

)
−∑d

k=1 Qk
hλk = 0

Qk
h
◦
μh − 1

2

∑n
γ=1 ∂2πk

∂xi ∂x j
◦
σ i

γ
◦
σ

j
γ = 0

λ ∈ Ty M, μ = P
◦
μ+ 1

2

n∑

γ=1

∂2π

∂xi∂x j
σ i

γ σ j
γ

(113)

Comparing with (87) we see that we have proven the following

Theorem 2 (Optimality of the Itô-jet projection) The coefficients
◦
σγ ,

◦
μ of the M-

valued SDE (93) that solve the constrained optimisation problem

{
minimise c1 and c2, conditionally on the minimisation of c1, in (108)

subject to (60)
(114)

for all initial conditions X0 = Y0 = y0 ∈ M are given (uniquely for t = 0) by the
Itô-jet projection of the original SDE (56).

Remarks analogous to Remarks 9 and 10 hold for 2. The Itô-vector and Itô-jet
projection therefore satisfy different optimality properties, while the Stratonovich
projection is suboptimal in both senses. We end the section with the extension of the
optimisations to the case of M time-dependent.

Example 6 (Optimality for M time-dependent) Recall the case in which the submani-
fold M depends smoothly on time, for which we can define similar versions of all three
projections (Example 5). For 1 the optimisation criterion does not require reformula-
tion,while the constraint ismodified as described inExample 4: therefore the Itô-vector
projection remains optimal in the case of M time-dependent. For 1 the natural general-
isation is given by substituting πt for π in (108). Since |y−πt (x)| = |(t, y)−π̃ (t, x)|,
by the definition of the Itô-jet projection in the case of M time-dependent (and since the
calculations in this section never relied on π being the Riemannian tubular neighbour-
hood projection), we have that the time-dependent Itô-jet projection (92) is optimal in
this case too.
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