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Shape of a tethered filament in various low-Reynolds-number flows
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We consider the steady-state deformation of an elastic filament in various unidirectional,
low-Reynolds-number flows, with the filament either clamped at one end, perpendicular to
the flow, or tethered at its center and deforming symmetrically about a plane parallel to
the flow. We employ a slender-body model [Pozrikidis, J. Fluids Struct. 26, 393 (2010)]
to describe the filament shape as a function of the background flow and a nondimensional
compliance η characterizing the ratio of viscous to elastic forces. For η � 1, we describe
the small deformation of the filament by means of a regular perturbation expansion. For
η � 1, the filament strongly bends such that it is nearly parallel to the flow except close
to the tether point; we analyze this singular limit using boundary-layer theory, finding that
the radius of curvature near the tether point, as well as the distance of the parallel segment
from the tether point, scale like η−1/2 for flow profiles that do not vanish at the tether point,
and like η−1/3 for flow profiles that vanish linearly away from the tether point. We also use
a Wentzel-Kramers-Brillouin approach to derive a leading-order approximation for the ex-
ponentially small slope of the filament away from the tether point. We compare numerical
solutions of the model over a wide range of η values with closed-form predictions obtained
in both asymptotic limits, focusing on particular uniform, shear and parabolic flow profiles
relevant to experiments.

DOI: 10.1103/PhysRevFluids.8.014101

I. INTRODUCTION

Hydrodynamic couplings of filaments with flows are a fundamental aspect of the functioning of
various biological and synthetic systems. The latter include the self-propulsion of microorganisms
via the beating of individual flagella [1], the cooperative beating of cilia in airways to transport
mucus [2], the generation of feeding flows by cilia attached to the surface of corals [3], the rotation
of cilia for the development of the left-right asymmetry during embryogenesis [4–7], and the use
of artificial filaments for stirring fluid flows at the microscale [8–10]. In these distinct systems, the
filaments are typically tethered to a surface and the interplay of complex molecular processes and
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intricate interactions with their neighbors dictate the dynamics [11]. In addition, filaments can be
found in the interior of cells, such as DNA strands and cytoskeletal polymers, where, while being
subject to strong confinement and hydrodynamic flows, they drive cellular processes, such as mitosis
and migration [12,13].

Experimental studies have shown that attachment of slender bodies, such as DNA strands [14,15],
cilia [16], and bacterial pili [17], to surfaces can provide insights into their dynamical features, such
as the extension and retraction cycle of pili via binding of specific motor proteins [17], and allow
for quantitative measurement of their elastic properties via the application of external flows. To
infer material properties of these small-scale systems, theoretical predictions for their geometric
properties in flows are required.

Theoretical studies, building on the seminal work on slender-body theories of Cox [18], Batch-
elor [19], Lighthill [20], Keller and Rubinow [21], and Johnson [22], as well as the classical
bead-spring model [23–25], have addressed the behavior of individual filaments in flow and the
predictions for the filament motion and shape have also been successfully compared to experimental
observations. A large aspect of recent research concerns the motion of filaments in different mi-
croscale flows, which exhibit interesting dynamics ranging from tumbling motion [26] to buckling
phenomena [27–33]. In addition, the dynamics of sedimenting fibers have been studied extensively
[34–36] and experimentally measured scaling behaviors of the deformation of flexible fibers have
been compared to a slender-body theory at small deformation and a bead–spring model at large
deformation [36].

For the case of tethered filaments, the extension of DNA molecules in uniform flow [15], the
deformation of a tethered fiber in confinement [37], the buckling behavior in a stagnation flow [38],
and the physics of a rotating filament have been elucidated [39,40]. In addition, Brownian effects on
the dynamics of tethered filaments have been studied in an oscillatory flow [41] and in shear flow
[42,43], where scaling relations are provided at strong driving [43]. However, perhaps surprisingly,
theoretical predictions and scalings for the deformation of a single tethered filament in simple flows
have not been provided so far, even in the absence of Brownian forces.

Here, we consider the steady-state deformation of a tethered elastic filament in various unidi-
rectional, low-Reynolds-number flows. We shall adopt a general formulation where the filament is
either clamped at one end, in a direction perpendicular to the flow, or tethered at its center, deforming
symmetrically about a plane that is parallel to the flow and passes through its center. This will
allow us to focus on several experimentally relevant scenarios, including a filament clamped to a
wall in simple shear flow and a centrally tethered filament in uniform and parabolic-channel flows.
An important nondimensional number in this system represents the compliance, which measures
the viscous forces with respect to the elastic forces acting on the filament. For small compliances,
where elastic forces dominate over viscous forces, we expect that the tethered filament only displays
a small deflection from its nominal straight configuration perpendicular to the flow. In contrast, at
large compliances one expects that the filament is strongly bent, such that it is essentially aligned
with the flow except close to the tether point. Using the model proposed by Pozrikidis in Ref. [44],
we shall theoretically characterize this transition as a function of the compliance and develop
analytical predictions for small and large compliances, respectively. As further discussed later in this
paper, we shall rely in this study on a local slender-body description, which neglects the disturbance
flows produced by the filament and, consequently, hydrodynamic coupling of the filament with itself
and nearby walls.

II. PROBLEM FORMULATION

A. Slender-body model

Consider a slender filament tethered at the origin of a Cartesian coordinate system (x∗, y∗, z∗).
(An asterisk indicates a dimensional quantity.) The filament is immersed in a fluid of viscosity μ∗,
which may either be infinite or confined by physical boundaries parallel to the x∗ axis. We wish to
model the steady-state deformation, in the x∗ − y∗ plane, of the filament as a result of an ambient
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FIG. 1. Tethered filament deforming in a unidirectional flow u∗
∞: (a) filament of length 2L∗, tethered at its

center, in a uniform flow; (b) filament of length L∗, perpendicularly clamped to a wall in simple shear flow; and
(c) filament of length 2L∗, tethered at its center, in a parabolic channel flow. The flow profiles u∗

∞ are defined
in Table I.

perpendicular flow,

u∗
∞ = u∗(y∗)êx, (1)

where êx is a unit vector in the x∗ direction and u∗(y∗) is a unidirectional flow profile. The
latter satisfies μ∗d2u∗/dy∗2 = d p∗/dx∗, where d p∗/dx∗ is a possible pressure gradient, as well
as hydrodynamic boundary conditions at the physical boundaries. The filament is either of length
L∗ and clamped at one end, normal to the flow and physical boundaries; or of length 2L∗, tethered at
its center, and assumed to deform symmetrically about the x∗ axis. While our treatment will be for
a general flow profile, we shall focus our results on the particular uniform, shear, and parabolic
flow profiles depicted in Fig. 1 and defined in Table I; the first and third profiles correspond
to the symmetric-deformation scenario, while the second profile corresponds to the clamped-end
scenario.

A key assumption underpinning our paper is that the filament is slender, such that the aspect ratio
ε = a∗/L∗ � 1, in which a∗ is the radius of the filament. We shall adopt the theoretical framework
developed in that limit by Pozrikidis [44]. In particular, we shall neglect the inertia of the filament
and the fluid and represent the filament by its centerline x∗(s∗), parameterized by the arc length s∗
measured from the origin where the filament is tethered. The derivative

dx∗

ds∗ = t (2)

defines the tangent unit vector t(s∗). Its evolution along the centerline is determined by the curvature
κ∗(s∗), according to the Frenet-Serret relations,

dt
ds∗ = −κ∗n, (3a)

dn
ds∗ = κ∗t, (3b)

TABLE I. The flows u∗
∞ = u∗(y∗)êy depicted in Fig. 1: Dimensional flow profile

u∗(y∗), characteristic speed U ∗ corresponding to the maximal flow speed over the
nominal configuration of the filament, and dimensionless flow profile u(y).

Uniform flow Shear flow Parabolic flow

u∗(y∗) U ∗ γ̇ ∗y∗ −( d p
dx

)∗ H∗2

8μ∗

(
1 − 4y∗2

H∗2

)
U ∗ U ∗ γ̇ ∗L∗ −( d p

dx

)∗ H∗2

8μ∗

u(y) 1 y 1 − 4y2

H2
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where choosing the normal unit vector n(s∗) as n = êz × t determines the sign of κ∗(s∗) and makes
(3b) redundant. Furthermore, introducing the angle ϑ (s∗) between t(s∗) and êx reduces (3) to

dϑ

ds∗ = −κ∗. (4)

Since the inertia of the filament is neglected, the elastic and hydrodynamic forces acting on an
infinitesimal section of the filament must balance. Denoting the cross-sectionally averaged internal
force by F∗(s∗) and the hydrodynamic force per-unit length by f∗(s∗), we accordingly have that

dF∗

ds∗ + f∗ = 0. (5)

In the slender-body limit, and for Stokes flow, f∗(s∗) can be approximated as

f∗ = R∗ · u∗
∞, (6)

in which

R∗ = 4πμ∗

ln 1/ε

(
I − 1

2
tt

)
(7)

is a resistance tensor, I being the identity tensor, and u∗
∞ is provided by (1) evaluated at y∗ =

êy · x∗(s∗). We note that (6) corresponds to a local slender-body approximation that neglects the
disturbance to the fluid flow owing to the presence of the filament as well as physical boundaries
(whose contributions are of order O(1/ ln2 ε−1) [18].

It is convenient to decompose the internal force into tangential and normal components, denoted
by T ∗ and N∗, respectively, so that

F∗ = T ∗t + N∗n. (8)

The force balance can then be rewritten using the Frenet-Serret relations (3) as(
dN∗

ds∗ − κ∗T ∗
)

n +
(

dT ∗

ds∗ + N∗κ∗
)

t + f∗ = 0. (9)

In addition to the force balance, we require the differential torque balance,

dM∗

ds∗ − N∗ = 0, (10)

where M∗ is the internal bending moment in the filament. It can be expressed in terms of the
curvature κ∗ as M∗ = E∗I∗κ∗, wherein E∗ is the elastic modulus and I∗ is the second areal moment
of inertia, such that (10) gives

dκ∗

ds∗ = N∗

E∗I∗ . (11)

From symmetry considerations, we can treat the clamped-end and symmetric-deformation sce-
narios simultaneously by prescribing clamped-end conditions at the tether point and considering
positive s∗. Thus, the formulation is closed by prescribing the clamped-end boundary conditions

x∗(0) = 0, (12a)

ϑ (0) = π/2, (12b)

and the free-end boundary conditions:

T ∗(L∗) = 0, (13a)

N∗(L∗) = 0, (13b)

κ∗(L∗) = 0. (13c)
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B. Dimensionless formulation

It will be convenient to normalize lengths by L∗, velocities by U ∗, defined as the maximal speed
over the nominal configuration of the filament (Table I), forces by 4πμ∗L∗U ∗/ ln ε−1 and moments
by the latter times L∗. Dimensionless quantities will be denoted similarly to before, with the asterisk
omitted. With a slight abuse of notation, we decompose the centerline position as x(s) = x(s)êx +
y(s)êy. The problem formulation above can then be seen to reduce to the set of ordinary differential
equations,

dT

ds
+ κN = −u(y)

2
cos ϑ, (14a)

dN

ds
− κT = u(y) sin ϑ, (14b)

dκ

ds
= ηN, (14c)

dϑ

ds
= −κ, (14d)

dx

ds
= cos ϑ, (14e)

dy

ds
= sin ϑ, (14f)

which are supplemented by the clamped-end boundary conditions,

x(0) = 0, (15a)

y(0) = 0, (15b)

ϑ (0) = π/2, (15c)

and the free-end boundary conditions:

T (1) = 0, (16a)

N (1) = 0, (16b)

κ (1) = 0. (16c)

The above dimensionless formulation involves a compliance parameter,

η = 4πμ∗L∗3U ∗

E∗I∗ln 1/ε
, (17)

which characterizes the relative strength of viscous forces to elastic (bending) forces. The latter
quantity is sometimes referred to as the Sperm number [45]. It is the only dimensionless parameter in
the problem, besides any parameters involved in prescribing the flow profile u(y). The dimensionless
flow profiles corresponding to the uniform, shear, and parabolic flows are provided in Table I. As
a consequence of the x independence of the flow profile, the above problem can be separated into
two subsequent steps. First, the differential equations (14a)–(14d) and (14f) can be integrated in
conjunction with the boundary conditions (15b), (15c), and (16) to obtain y(s), ϑ (s), T (s), N (s), and
κ (s). Having obtained ϑ (s), the differential equation (14e) can then be integrated, in conjunction
with the initial condition (15a), to find x(s).

Numerically, we have implemented an iterative shooting method in Python, which incorporates
continuation to access a wide range of η values. Analytically, we shall derive in Secs. III and IV
closed-form approximations in the limits η � 1 and η → ∞, respectively. In Sec. V, we shall apply
our asymptotic predictions for a general flow profile u(y) to the uniform, shear, and parabolic flows,
and find good agreement with numerical results. We give concluding remarks in Sec. VI.
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III. SMALL COMPLIANCES

For η � 1, we expect small deformations of the filament from its nominal shape: x(s) = 0,
y(s) = s, κ (s) = 0, and ϑ (s) = π/2. For any smooth flow profile u(y), the governing equations sug-
gest regular perturbation expansions in powers of η of the form

x(s; η) = ηX1(s) + η3X3(s) + · · · , (18a)

y(s; η) = s + η2Y2(s) + · · · , (18b)

T (s; η) = ηT1(s) + η3T3(s) + · · · , (18c)

N (s; η) = N0(s) + η2N2(s) + · · · , (18d)

κ (s; η) = ηκ1(s) + η3κ3(s) + · · · , (18e)

ϑ (s; η) = π

2
+ ηϑ1(s) + η3ϑ3(s) + · · · , (18f)

with the flow profile possessing the corresponding expansion:

u(y(s; η)) = u(s) + η2 du

dy

∣∣∣∣
y=s

Y2(s) + · · · . (19)

We observe that x(s; η), T (s; η), and κ (s; η) are odd functions in η, while y(s; η) and N (s; η) are even
functions in η. Substituting the perturbation expansions into the set of differential equations (14),
and boundary conditions (15) and (16), yields a sequence of closed problems that, at least in
principle, could be solved iteratively.

Terms up to order η can be obtained by sequentially solving the three first-order equations

dN0

ds
= u(s), N0(1) = 0; (20a)

dκ1

ds
= N0, κ1(1) = 0; (20b)

dϑ1

ds
= −κ1, ϑ1(0) = 0; (20c)

after which both of the following first-order equations can be solved:

dT1

ds
+ κ1N0 = 1

2
u(s)ϑ1, T1(1) = 0; (21a)

dX1

ds
= −ϑ1, X1(0) = 0. (21b)

Terms up to η3 can be obtained similarly by sequentially solving the set of equations

dY2

ds
= −ϑ2

1

2
, Y2(0) = 0; (22a)

dN2

ds
− κ1T1 = u′(s)Y2 − u(s)

ϑ2
1

2
, N2(1) = 0; (22b)

dκ3

ds
= N2, κ3(1) = 0; (22c)

dϑ3

ds
= −κ3, ϑ3(0) = 0; (22d)
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after which both of the following equations can be solved:

dT3

ds
+ κ3N0 + κ1N2 = 1

2

[
u(s)

(
ϑ3 − ϑ3

1

6

)
+ u′(s)Y2ϑ1

]
, T3(1) = 0; (23a)

dX3

ds
= −

(
ϑ3 − ϑ3

1

6

)
, X3(0) = 0. (23b)

We have solved (20)–(23), using MATHEMATICA [46], for the uniform, shear and parabolic flow
profiles. Explicit solutions up to order η are provided in Appendix A; expressions for the order η2

and η3 fields are omitted, owing to their length, however they will be included in the results of
Sec. V.

IV. LARGE COMPLIANCES

A. Scalings and form of outer approximation

For η � 1, we expect that the filament strongly bends toward the direction of the flow, such that
y � 1 all along the filament. Accordingly, only the small-y behavior of the prescribed flow profile
u(y) should be important; to leading order, we assume that this behavior possesses the power-law
form

u(y) ∼ uαyα as y ↘ 0, (24)

where α � 0 is an arbitrary exponent and, without loss of generality (as the direction of the x axis
can be flipped), we shall assume that uα > 0. Note that α = 0 for the uniform and parabolic profiles
and α = 1 for the shear profile, with uα = 1 for all three profiles (Table II). Thus, the leading-order
behavior (24) is identical for the uniform and parabolic flow and, as a consequence, so will our
predictions be for the leading-order filament shape as η → ∞.

Asymptotically, we find that there are two regions: a filament-scale outer region, corresponding
to holding s ∈ (0, 1] fixed as η → ∞, and an inner region near the clamped point, corresponding to
the asymptotic region s = O(δ(η)), wherein δ(η) � 1 is a scaling to be determined.

Consider first the outer region, where the smallness of y suggests ϑ, κ � 1. By inspecting the
form of the governing equations (14), considered together with the free-end boundary conditions
(16), we conclude that ϑ , κ , and N must, in fact, be exponentially small in the outer limit. Given the
asymptotic smallness of ϑ , it follows from (14f) that y is constant to exponential order, viz.,

y(s; η) ≈ ȳ(η), (25)

where ȳ(η) � 1 is constant in s and we will use ≈ to indicate an exponentially small absolute error
as η → ∞. We also define the leading-order approximation of ȳ(η) as

ȳ(η) ∼ λ(η)ψ, (26)

in which ψ is a constant and λ(η) � 1 a scaling. Similarly, from (14e) we find

x(s; η) ≈ s + x̄(η), (27)

where x̄(η) � 1 is constant in s.
Using the exponential smallness of ϑ and κN , as well as (25), we can exponentially approximate

(14a) as

dT

ds
≈ − ū(η)

2
, (28)

where we define

ū(η) = u(ȳ(η)), (29)
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for which a leading-order approximation is uαλα (η)ψα . Using the free-end boundary condition
(16a), we can integrate (28) to find

T (s; η) ≈ ū(η)

2
(1 − s). (30)

In particular, to leading order we write

T (s; η) ∼ λα (η)(1 − s)ω, (31)

where we define the constant

ω = uαψα

2
. (32)

Turning to the inner region, the boundary condition (15c) suggests that ϑ is order unity there,
while the outer approximation (26), which is constant in s, suggests that y is order λ(η) also in the
inner region; (14f) therefore implies that the scalings δ(η) and λ(η) are comparable. Furthermore,
the outer approximation (31), which is regular at s = 0, suggests that T is also order λα in the
inner region; (14d) suggests that κ is order 1/δ and (14c) suggests that N is order η−1δ−2. In (14a)
and (14b), the hydrodynamic right-hand sides are order λα , negligible relative to dT/ds, and −κT ,
respectively, which are order λα−1. The balance of elastic terms in those equations thus yields the
scaling result:

δ(η), λ(η) = η−1/(α+2). (33)

We note that the choice of a unity prefactor on the right-hand side of (33) fixes the definition of ψ

(and ω).

B. Inner approximation

To study the inner region, we define the strained arc length

S = η1/(α+2)s, (34)

and corresponding fields

x(s; η) = η−1/(α+2)X (S; η), (35a)

y(s; η) = η−1/(α+2)Y (S; η) (35b)

T (s; η) = η−α/(α+2)T (S; η), (35c)

N (s; η) = η−α/(α+2)N (S; η) (35d)

κ (s; η) = η1/(α+2)K(S; η), (35e)

ϑ (s; η) = (S; η), (35f)

where we have rescaled according to (33) and the discussion preceding that equation. The rescaled
inner fields are expected to possess η-independent leading-order approximations, i.e.,

F (S; η) = F0(η) + · · · , (36)

in the inner limit η → ∞ with S > 0 fixed.
From (14), the leading-order inner fields defined by (35) satisfy the differential equations

dT0

dS
+ K0N0 = 0, (37a)

dN0

dS
− K0T0 = 0, (37b)

dK0

dS
= N0, (37c)
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d0

dS
= −K0, (37d)

dX0

dS
= cos 0, (37e)

dY0

dS
= sin 0, (37f)

which describe bending of the filament in the absence of external forces. These differential equa-
tions are to be solved in conjunction with the clamped-end boundary conditions

X0(0) = 0, (38a)

Y0(0) = 0, (38b)

0(0) = π/2, (38c)

which follow from (15), and the matching conditions

Y0(S) → ψ, (39a)

T0(S) → ω, (39b)

K0(S) → 0, (39c)

0(S) → 0 as S → ∞. (39d)

The first two conditions are implied by the leading-order outer approximations (26) and (31), while
the latter two follow from the smallness of κ and ϑ in the outer region.

Substituting (37c) into (37a) and integrating using the matching conditions (39b) and (39c), we
find

T0 + 1
2K

2
0 = ω. (40)

Next, we differentiate (37c) and substitute (37b) and (40) to find

d2K0

dS2
= K0

(
ω − 1

2
K2

0

)
. (41)

Integrating once gives (
dK0

dS

)2

= K2
0

(
ω − 1

4
K2

0

)
+ const, (42)

where the integration constant must vanish given the matching condition (39c). We find the
separable equation

dK0

dS
= −

(
ω − 1

4
K2

0

)1/2

K0, (43)

where the sign of the square root has been chosen such that K0 decays, rather than grows,
monotonically. Integrating (43) yields the curvature profile

K0(S) = 2ω1/2sech(ω1/2S + σ ), (44)

where σ > 0 is an integration constant. Given (44), we find from (37c) and (40) that

N0(S) = −2ω sech(ω1/2S + σ ) tanh(ω1/2S + σ ), (45a)

T0(S) = ω(1 − 2 sech2(ω1/2S + σ )). (45b)
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TABLE II. Input parameters for the asymptotic expansions as
η → ∞, corresponding to the uniform, shear, and parabolic flow
profiles. The exponent α and prefactor uα describe the behavior
of the flow profile near the tether point in accordance with the
power law (24). The constant ψ corresponds to a leading-order
approximation for the approximately uniform y value away from
the clamped end [scaled by η−1/(α+2)]. The constant ω = 2/ψ2 is a
matching parameter, which gives a leading-order approximation for
the maximum tension force in the filament [scaled by η−α/(α+2)].

Uniform flow Shear flow Parabolic flow

α 0 1 0
uα 1 1 1
ψ 2 22/3 2
ω 1/2 2−1/3 1/2

The constant σ can be determined, along with an inner approximation for the geometry of the
filament, by solving the problem governing 0(S), which consists of the first-order differential
equation (37d), the boundary condition (38c), and the matching condition (39d). We thereby find

0(S) = 4 cot−1 exp(ω1/2S + σ ), (46)

with

σ = ln cot
π

8
.= 0.8814 . . . . (47)

With 0(S) given by (46), the geometric profiles X0(S) and Y0(S) are found by integrating (37e) and
(37f), employing the boundary conditions (38a) and (38b), as

X0(S) = S +
√

2

ω
{1 − 21/2 tanh(ω1/2S + σ )}, (48a)

Y0(S) =
√

2

ω
{1 − 21/2sech(ω1/2S + σ )}. (48b)

The constant ψ follows by applying the matching condition (39a) to the latter solution. This gives
ψ = √

2/ω or, more explicitly, using (32) for ω:

ψ =
(

4

uα

)1/(2+α)

. (49)

The specific parameters (α, uα , ψ , and ω) for the uniform, shear, and parabolic profiles are
provided in Table II and can be substituted into the general solutions for the geometric features
and forces acting on the filament. As anticipated, our leading-order large-η approximations are
identical for the uniform and parabolic flow profiles. We also observe from (45b) that T0(0) = 0,
since the constant σ , provided by (47), can also be expressed as arcsinh(1). This vanishing of
the leading-order tension profile at the tether point is coincidental rather than corresponding to
a boundary condition. We have no reason to expect higher-order terms in an expansion for the
tension profile to also vanish at the tether point; indeed, the numerical results presented in Sec. V
demonstrate that for large η the tension there is generally small, but does not vanish.

From this point, it is conceptually straightforward to extend the present large-η analysis to
higher algebraic orders. Indeed, the forms of the outer approximations have been determined up
to exponentially small errors. Thus, in the inner region we can solve, say numerically, a sequence
of higher-order inner problems, which are linear and made determined, together with corresponding
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terms in an expansion for ȳ(η), via asymptotic matching with (26) and (28). We demonstrate this
in Appendix B for the shear-flow profile, motivated by the fact that for that profile, but not for the
uniform and parabolic profiles, the calculation of leading-order approximations for exponentially
small quantities associated with the outer region demands knowledge of the first algebraic correction
to ȳ(η) (see Sec. IV E). Thus, we will need the result that, for the shear-flow profile,

ȳ(η) ∼ ψη−1/3 + ψ̃η−2/3, (50)

with ψ̃
.= 0.693 . . ..

C. Longitudinal displacement

Consider the longitudinal displacement of the free end of the filament along the x axis, for which
(27) gives the exponentially accurate, albeit uninformative, approximation:

x(1; η) ≈ 1 + x̄(η). (51)

A leading approximation for x̄(η) � 1 can be obtained via asymptotic matching between a two-term
outer expansion and a leading-order inner expansion for x. Alternatively, matching can be avoided
by considering the exact integral

x(1; η) = 1 −
∫ 1

0
(1 − cos ϑ ) ds, (52)

which follows from integration of (14e) using the boundary condition (15a). Since ϑ is exponentially
small in the outer region, the integral is dominated by the inner region and is most easily evaluated
to leading order using (37e) and the inner approximation (48a). Using either approach, we find

1 − x(1; η) ∼ η−1/(α+2) lim
S→∞

{S − X0(S)} = η−1/(α+2)

√
2

ω
(
√

2 − 1). (53)

D. Composite approximation for the tension

A leading-order composite approximation for the tension profile can be obtained by summing
the outer approximation (31) and the inner approximation (45b), and subtracting their asymptotic
overlap, namely, the limiting constant value of both approximations as either s ↘ 0 or S → +∞.
This gives the composite approximation

Tcomp = η−α/(α+2)ω{1 − s − 2 sech2(ω1/2η1/(α+2)s + σ )}, (54)

which describes both the linear variation of the tension in the outer region, and its exponential
behavior in the inner region. A leading-order composite approximation for the other fields is simply
given by their respective leading-order inner approximations, as in the outer region all other fields
are either exponentially small or, in the case of y, constant.

E. Exponential approximation for the filament slope at the free end

In the outer region, the filament is straight and aligned with the flow up to exponentially small
orders. A leading-order approximation for the exponentially small deviations of the filament from
a straight configuration can be determined with a Wentzel-Kramers-Brillouin (WKB) approach,
despite these deviations being beyond all orders of the asymptotic expansions for the outer fields y
and T , which we have actually only fully determined to leading order.

Starting from the differential equations (14b)–(14d), and using the exponential outer approxima-
tions (25) and (30), we find that, away from the tethered point, the angle ϑ satisfies the exponentially
accurate differential equation

1

η

d3ϑ

ds3
− ū(η)

2
(1 − s)

dϑ

ds
+ ū(η)ϑ ≈ 0. (55)
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This equation is supplemented by the boundary conditions

dϑ

ds
= 0, (56a)

d2ϑ

ds2
= 0 at s = 1, (56b)

which follow from the free-end conditions (16b) and (16c), as well as asymptotic matching with the
inner region as s ↘ 0. An obvious quantity of interest is a leading-order approximation for ϑ at the
free end s = 1.

The analysis is based on matching a WKB-type approximation for 0 < s < 1 with the inner
approximation as s ↘ 0, and with a free-end inner region near s = 1, which is necessary to satisfy
the boundary conditions at the free end. The details of this calculation are relegated to Appendix C.

The uniform- and parabolic-flow cases, for which ū(η) ≡ 1 + O(1/η), are again equivalent to
leading order. We find

ϑ (1; η) ∼ β

η1/12
exp

(
−

√
2

3
η1/2

)
, (57)

in which

β = 21/128
√

π tan π
8

35/6�(4/3)
.= 2.790 . . . . (58)

Consider now the shear-flow case, where ū(η) = ȳ(η). The analysis of this case is slightly more
involved, as the leading-order WKB approximation for 0 < s < 1, and hence approximation for
ϑ (1; η), turns out to depend on the first algebraic correction to ȳ(η) [cf. (50)]. We find in Appendix C
the result

ϑ (1; η) ∼ βs

η1/18
exp

(
−25/6

3
η1/3

)
, (59)

in which

βs = β

21/18
exp

(
− ψ̃

25/63

)
.= 2.358 . . . . (60)

V. DISCUSSION

We here discuss our predictions for the deformation of a slender filament in the uniform-, shear-,
and parabolic-flow scenarios shown in Fig. 1. We start by studying the stationary geometric shape
of the slender filament in each scenario, see Fig. 2. The flows induce a deformation of the tethered
filament depending on the dimensionless compliance η [cf. (17)]. For numerically small η values,
the filament remains almost perpendicular to the flow; the deformation is mostly appreciable near
the free end of the filament. In this regime, our perturbation solutions for η � 1 agree well with our
numerical solutions and describe the shape of the filament for all flows, even for η ≈ 1. Furthermore,
the filament shapes for the shear flow agree qualitatively with those presented in Ref. [44], where
a nonlocal slender-body theory was employed that accounts for hydrodynamic interactions with
the wall. For numerically large values of η, the filament is strongly bent at the tether point and
aligns with the flow near the free end. In this regime, we find good agreement with the asymptotic
approximations developed in the limit η → ∞. In particular, the y coordinate of the free end scales
as η−1/2 for the uniform and parabolic flows [Figs. 2(a), 2(c), and 2(d)], and as η−1/3 for the shear
flow [Fig. 2(b)]. As these scalings become comparable to ε, slender-body theory fails owing to
near-field interactions of the filament with itself (in the uniform- and parabolic-flow scenarios) or
the wall (in the shear-flow scenario). This is not a stringent limitation, however, as even for, say,
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FIG. 2. Stationary filament shape (x, y) for (a) uniform flow, (b) shear flow, and (c), (d) parabolic flow, with
H = 2 and H = 5, for the indicated values of η. Solid curves are numerical results. Dashed curves correspond
to our regular-perturbation expansions for η � 1 (including terms up to order η3). Dotted curves correspond
to leading-order asymptotic approximations as η → ∞; for the case of T the composite approximation (54) is
shown. The gray dashed lines indicate the asymptotic values ψη−1/(α+2) for the uniform outer approximation
for y.

η = 600, the dimensionless separation for the different flow scenarios is much larger than typical
values of the aspect ratio, i.e., y(1) ≈ 0.1 � ε (≈0.01).

To further address the dependence of the filament geometry on the compliance, we next discuss
the variation with η of several key geometric quantities. Consider first the displacement x(s = 1) of
the free end of the filament along the flow; in Fig. 3(a) we plot numerical predictions for 1 − x(s =
1) as a function of η, alongside our asymptotic approximations for small and large η. We note that
as η → ∞ the data for the uniform and parabolic flows (with H = 2 or 5) collapse on a common
asymptotic approximation, which scales as η−1/2. The details of the flow profile become important
at intermediate compliances 1 � η � 10, where the extension for the uniform flow increases faster
than for the parabolic flow. With increasing H and η, the parabolic-flow profile experienced by
the filament becomes approximately uniform; in particular, we observe that the displacement for
the parabolic flow with H = 5 is almost identical to that for the uniform flow for all η, while the
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FIG. 3. Longitudinal extension (a) and curvature (b) at the tether point, as a function of η, for the indi-
cated flow profiles. Solid curves are numerical results. Dashed curves correspond to our regular-perturbation
expansions for η � 1 (including terms up to order η3). Dotted curves correspond to leading-order asymptotic
approximations as η → ∞; note that the black dotted line corresponds to both the uniform and parabolic flow
profiles, for which the leading-order large-η asymptotics are identical.

results for the parabolic flow with H = 2 collapse on those for the uniform flow only at large η. As
predicted by the asymptotic theory, for the shear flow we find at large η the different scaling η−1/3.

Another quantity for characterizing the shape of the filament is its curvature at the tether point;
in Fig. 3(b), we plot numerical predictions for κ (s = 0) as a function of η alongside our asymptotic
approximations for small and large η. For η � 1, where the filament is barely bent, we find a linear
increase of that curvature, irrespective of the flow profile, which is smallest for the parabolic flow
with H = 2, followed by the shear flow, and largest for the uniform flow. For η � 1, the filament
becomes more strongly bent near the tether point, which can be characterized by an increase in the
curvature at the tether point. This curvature scales as η1/2 for the uniform and parabolic flows and
η1/3 for the shear flow.

In Figs. 5(a) (i)–5(c)(i), we plot numerical and asymptotic predictions for the filament curvature
as a function of arc length s. This demonstrates that the curvature decreases monotonically along
the filament, from its value at the tether point, discussed above, to zero at the free end. For η � 1,

FIG. 4. (a) Angle ϑ at the free end s = 1, for the indicated flow profiles. Solid curves are numerical
results. Dashed curves depict our regular-perturbation expansions for η � 1 (including terms up to order
η3). Dotted curves depict our leading-order exponential approximations as η → ∞, which are identical
for the uniform and parabolic flows. (b) Tangential-force profile T (s) for η = 50, for uniform, shear and
parabolic flows as indicated. Asymptotic predictions as η → ∞: dashed curve is the leading-order ‘outer’
approximation, dotted curve is the leading-order ‘inner’ approximation, and solid curve is the leading-order
‘composite’ approximation. The leading-order asymptotic predictions are identical for uniform and parabolic
flows. Symbols represent numerical results.
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FIG. 5. Curvature κ (s), tangential-force T (s) and normal-force N (s) profiles for (a) uniform flow; (b) shear
flow; and (c) parabolic flow, with H = 2. Plotted as a function of the arc length s for the indicated values of
η. Dashed curves correspond to our regular-perturbation expansions for η � 1 (including terms up to order
η3). Dotted curves correspond to leading-order asymptotic approximations as η → ∞. For the case of T the
composite approximation (54) is shown.

our asymptotic theory predicts that away from the tether point the curvature is exponentially small,
and describes the nearly straight filament geometry in that region in terms of the exponentially small
angle profile ϑ (s). In Fig. 4(a), we show the filament angle at the free end, ϑ (s = 1), as a function
of η and for the various flow profiles. The good agreement at large η between our numerical data
and the exponential asymptotic approximation serves to corroborate both the numerical method and
the asymptotic theory.

Finally, our solutions provide access to the internal forces, T and N , acting, respectively, tan-
gentially and normally to the filament backbone; numerical and asymptotic predictions are plotted
in Figs. 5(a)(ii)–5(c)(iii). Irrespective of η, the tangential force is compressive near the tether point
(s = 0) and extensional at intermediate s. The numerical data for the tension force agrees well with
our asymptotic predictions for small and large η. In the latter limit, the comparison is made with
the composite approximation (54), which is accurate all along the filament. As demonstrated in
Fig. 4(b), this composite approximation combines an inner approximation near the tether point and
a linear-in-s outer approximation valid away from the tether point. We note that the maximum of the
tension represents roughly the edge between the inner and outer regions; this maximum tension is
order unity for the uniform and parabolic flows, and small like η−1/3 for the shear flow. The normal
force, N , is directed toward the wall/plane of symmetry for all η, see Figs. 5(a)(iii)–5(c)(iii). Its
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FIG. 6. Total drag D on the filament as a function of η for the indicated flow profiles. Solid curves are
numerical results. Dashed curves correspond to our regular-perturbation expansions for η � 1 (including terms
up to order η3). Dotted curves correspond to leading-order asymptotic approximations as η → ∞.

magnitude is seen to attenuate with η, for all s. This attenuation, however, is nonuniform in s for
large η. As described by our asymptotic theory in that limit, the normal force becomes localized to
the tether point, where it scales like the tension force; it is exponentially small away from the tether
point where the filament is aligned with the direction of the flow. Incidentally, the total drag on the
filament,

D = êx ·
∫

fds, (61)

where the integral is over the length of the filament, can be related to the normal force component at
the tether point. Substituting the force balance (5) into the above integral and using (8) together with
the boundary conditions (12) and (13), we find D = −N (0) for shear flow and D = −2N (0) for the
uniform and parabolic flow scenarios. The drag as a function of η is shown in Fig. 6. At large η, it
approaches a constant for the uniform and parabolic flows, while for shear flow it decays as η−1/3.
We note that the total drag reduces only by a factor of ∼2 − 6 as we vary η by roughly four orders in
magnitude. In this context, we refer the reader to Ref. [47] for an analogous large-Reynolds-number
analytical study of reduced drag on a filament deforming in uniform flow.

VI. CONCLUSIONS

We have presented the stationary geometrical properties and forces acting on a slender filament
in different unidirectional flows. In our analysis, the filament is either clamped at one end perpendic-
ularly to the background flow or tethered at its center and deforms symmetrically around the plane
parallel to the flow. Besides the details of the background flow, the deformation of the filament
only depends on the nondimensional compliance η, which measures the relative importance of
viscous forces with respect to elastic forces. Using numerical solutions and asymptotic expansions
for η � 1 and η → ∞, we have rationalized scaling behaviors for the extension of the filament and
the filament curvature with particular focus on uniform, shear, and parabolic background flows.

Our theoretical predictions cover the entire regime from small to large compliances. In particular,
our analytical asymptotic approximations can be compared directly to experiments for slender bod-
ies and allow measuring their elastic properties by, for example, comparing the filament extension
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under flow. Furthermore, they represent the base case for studying Brownian effects present in
small-scale systems, such as DNA [43] or cellular appendages [17].

The model adapted from Ref. [44] and our analytical framework is expected to serve as a refer-
ence system for studying numerous other scenarios involving slender filaments in flow. For example,
it could be extended to account for the twisted structure of slender filaments and their stationary
configuration in the presence of flows or internal driving [1,11]. The techniques established for
deriving asymptotic expansions as η → ∞ could be applied to investigate the shape of free filaments
in background flows, the deformation of filament beds, or scenarios with multiple solutions and
instabilities, such as the behavior of a clamped filament in a stagnation flow [38].

Finally, our theory is based on a leading-order slender-body approximation and thereby ignores
nonlocal hydrodynamic interactions of the filament with itself and nearby boundaries. While such
an approximation is asymptotically valid in the limit where the filament becomes increasingly
slender, it involves a logarithmic asymptotic error that can be significant in relevant experimental
systems [15,43]. Furthermore, the local approximation can formally break down at extremely large
compliances for which distances between different segments of the filament or between segments
of the filament and a boundary become comparable to the filament diameter. Future work should
address these deficiencies by revisiting this analytical and numerical study with nonlocal effects
included.
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APPENDIX A: SMALL-η PERTURBATION EXPANSIONS FOR DIFFERENT FLOW FIELDS

1. Uniform flow

For u(y) = 1,

N0 = s − 1, (A1a)

κ1 = 1
2 (s2 − 2s + 1), (A1b)

ϑ1 = 1
6 (−s3 + 3s2 − 3s), (A1c)

T1 = 1
48 (−7s4 + 28s3 − 42s2 + 24s − 3), (A1d)

X1 = 1
24 (s4 − 4s3 + 6s2). (A1e)

2. Shear flow

For u(y) = y,

N0 = 1
2 (s2 − 1), (A2a)

κ1 = 1
6 (2 − 3s + s3), (A2b)

ϑ1 = 1
24 s(−8 + 6s − s3), (A2c)

T1 = 1
288 (−8 + 48s − 36s2 − 32s3 + 33s4 − 5s6), (A2d)

X1 = 1
120 (20s2 − 10s3 + s5), (A2e)
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3. Parabolic flow

For u(y) = 1 − 4y2/H2,

N0 = −4(s3 − 1)

3H2
+ s − 1, (A3a)

κ1 = − (s − 1)2(−3H2 + 2s(s + 2) + 6)

6H2
, (A3b)

ϑ1 = s

30

(
2(s4 − 10s + 15)

H2
− 5((s − 3)s + 3)

)
, (A3c)

T1 = 1

720H4
(−15H4(s − 1)(7s((s − 3)s + 3) − 3)

+ 4H2(s − 1)(s(s(s(s(41s − 55) + 20) − 120) + 255)

− 45) − 4(s(13s7 − 128s4 + 150s3 + 160s − 240) + 45)), (A3d)

X1 = 1

360
s2

(
−4(s4 − 20s + 45)

H2
+ 15(s − 4)s + 90

)
. (A3e)

APPENDIX B: FIRST ALGEBRAIC CORRECTION AS η → ∞ (SHEAR FLOW)

Consider the shear-flow profile, where u(y) = y and so ū(η) = ȳ(η). It is readily seen from (14)
that the hydrodynamic force results in a perturbation of relative order η−1/3. Accordingly, we extend
the generic inner expansion (36) as

F (S; η) = F0(S; η) + η−1/3F1(S; η) + · · · , (B1)

and the expansion (26) for ȳ(η) as

ȳ(η) = η−1/3ψ + η−2/3ψ̃ + · · · . (B2)

From (14), the first-correction fields satisfy the differential equations

dT1

dS
+ K0N1 + K1N0 = −1

2
Y0 cos 0, (B3a)

dN1

dS
− K0T1 − K1T0 = Y0 sin 0, (B3b)

dK1

dS
= N1, (B3c)

d1

dS
= −K1, (B3d)

dX1

dS
= −1 sin 0, (B3e)

dY1

dS
= 1 cos 0. (B3f)

These differential equations are to be solved in conjunction with the boundary conditions

X1(0) = 0, (B4a)

Y1(0) = 0, (B4b)

1(0) = 0, (B4c)
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which follow from (15), and the matching conditions

Y1(S) → ψ̃, (B5a)

T1(S) + ψ

2
S → ψ̃

2
, (B5b)

K1(S) → 0, (B5c)

1(S) → 0 as S → ∞. (B5d)

The first two conditions are implied by the outer approximations (25) and (30), with (B2), while the
latter two follow from the exponential smallness of κ and ϑ in the outer region.

The above linear problem determines the order η−2/3 inner fields, together with the constant ψ̃ .
By solving this problem numerically, we find the result ψ̃

.= 0.693 also stated in the main text.

APPENDIX C: ANALYSIS OF EXPONENTIALLY SMALL FILAMENT ANGLE AS η → ∞
1. Uniform and parabolic flows

For both the uniform and parabolic flows, we have

ū(η) = 1 + O(η−1) as η → ∞, (C1)

so the exponentially accurate differential equations (55) can be written as

1

η

d3ϑ

ds3
− 1

2
[1 + O(η−1)](1 − s)

dϑ

ds
+ [1 + O(η−1)]ϑ ≈ 0. (C2)

A dominant-balance analysis of (C2) suggests an inner region of thickness order 1/η1/3 near the
free end s = 1 [unrelated to the inner region near the tether point, wherein (55) does not hold]. To
consider this free-end inner region, we define the strained arc length

ρ = η1/3(1 − s), (C3)

and expand

ϑ (s; ρ) = �(ρ; η) + · · · , (C4)

holding ρ > 0 fixed. From (C2), � satisfies the differential equation

d3�

dρ3
− ρ

2

d�

dρ
− � = 0, (C5)

while (56) give the free-end boundary conditions

d�

dρ
= 0, (C6a)

d2�

dρ2
= 0 at ρ = 0. (C6b)

The solution to (C5) and (C6) is

�(ρ; η) = ξ (η)ρI−2/3

(√
2

3
ρ3/2

)
, (C7)

where I−2/3 is the modified Bessel function of the first kind, of order −2/3, and ξ (η) is a prefactor
to be determined along with its scaling with η, which we expect to be exponentially small. We shall
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later need the behaviors [48]

I−2/3(x) ∼ 1

(2πx)1/2
ex as x → +∞, (C8a)

I−2/3(x) ∼ 22/3

�
(

1
3

)
x2/3

as x → 0. (C8b)

To connect the inner region near s = 0 with the free-end inner region near s = 1, we use a WKB
approach to approximate the solution to (C2) for 0 < s < 1. Substituting the ansatz

ϑ (s; η) ∝ A(s; η) exp[η1/2�(s)] (C9)

into (C2), we find

A

(
d�

ds

)3

+ 1

2
[1 + O(η−1)](s − 1)A

d�

ds

+η−1/2

{
3

dA

ds

(
d�

ds

)2

+ 3A
d�

ds

d2�

ds2
+ 1

2
[1 + O(η−1)]

[
(s − 1)

dA

ds
+ A

]}

+η−1

{
3

d2A

ds2

d�

ds
+ 3

dA

ds

d2�

ds2
+ A

d3�

ds3

}
+ η−3/2 d3A

ds3
≈ 0. (C10)

This form of (C2) suggests expanding the amplitude function A(s; η) as

A(s; η) = A0(s) + η−1/2A1(s) + · · · . (C11)

The order unity balance of (C10) gives an equation for the function �(s):

d�

ds

[(
d�

ds

)2

− 1 − s

2

]
= 0. (C12)

We find that d�/ds either vanishes, in which case �(s) is constant, or we can have

d�

ds
= ± 1√

2
(1 − s)1/2, (C13)

in which case (suppressing the integration constant in the amplitude)

� = ∓
√

2

3
(1 − s)3/2, (C14)

respectively. The solution corresponding to constant � does not exhibit fast exponential variation;
furthermore, the requisite leading-order approximation for 0 < s < 1 must decay, rather than grow
exponentially with decreasing s. Thus, only the positive-sign solution in (C14) is relevant.

From the order η−1/2 balance of (C10), we find, using (C13),

(1 − s)
dA0

ds
+ 1

4
A0 = 0, (C15)

with solution

A0 ∝ (1 − s)1/4. (C16)

We have thus found a leading-order WKB approximation for 0 < s < 1 in the form

ϑ (s; η) ∼ �(η)(1 − s)1/4 exp

{
η1/2

√
2

3
(1 − s)3/2

}
, (C17)
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where �(η) is a prefactor. Matching with the inner approximation (46), we find

�(η) = 4 tan
π

8
exp

{
−η1/2

√
2

3

}
. (C18)

The WKB approximation (C17), which is now fully determined, is next matched with the free-end
approximation (C7), using (C8a), to find

ξ (η) = 23/4π1/24 tan π
8√

3
η−1/12e−

√
2

3 η. (C19)

We then find from (C7), (C8b), and (C19) the leading-order exponential approximation (57) for
ϑ (1; η) stated in the main text.

2. Shear flow

In the shear case, we have [cf. (50)]

ū(η) ∼ ψη−1/3 + ψ̃η−2/3 as η → ∞, (C20)

with ψ = 22/3 (Table II) and ψ̃
.= 0.693 (Appendix B). The exponentially accurate differential

equation (55) can therefore be written as

1

η

d3ϑ

ds3
− 1

2
[ψη−1/3 + ψ̃η−2/3 + · · · ](1 − s)

dϑ

ds
+ [ψη−1/3 + ψ̃η−2/3 + · · · ]ϑ ≈ 0. (C21)

A dominant-balance analysis of (C21) now suggests a free-end inner region of thickness order
1/η2/9. We accordingly define the strained arc length

ρ̂ = η2/9(1 − s), (C22)

and expand

ϑ (s; ρ̂) = �̂(ρ̂; η) + · · · , (C23)

holding ρ̂ > 0 fixed. From (C21), �̂ satisfies the differential equation

d3�̂

d ρ̂3
− ψ

2
ρ̂

d�̂

d ρ̂
− ψ�̂ = 0, (C24)

while (56) give the free-end boundary conditions

d�̂

d ρ̂
= 0, (C25a)

d2�̂

d ρ̂2
= 0 at ρ̂ = 0. (C25b)

Up to a rescaling involving ψ , this is the same free-end problem as found in the uniform- and
parabolic-flow cases [cf. (C5) and (C6)]. Indeed, the solution to (C24) and (C25) is

�̂(ρ̂; η) = ξ̂ (η)ρ̂I−2/3

(√
2ψ

3
ρ̂3/2

)
, (C26)

where the prefactor ξ̂ (η) is to be determined [cf. (C7)].
Following the analysis in the uniform- and parabolic-flow case, we next derive a WKB approxi-

mation for 0 < s < 1. Inspection of (C21) suggests the modified ansatz [cf. (C9)],

ϑ (s; η) ∝ A(s; η) exp[η1/3�(s)], (C27)

with the amplitude A(s; η) expanded as

A(s; η) = A0(s) + η−1/3A1(s) + · · · . (C28)
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Substituting (C27), with (C28), into (C21), we find from a leading-order balance that the function
�(s) satisfies

d�

ds

[(
d�

ds

)2

− ψ (1 − s)

2

]
= 0, (C29)

the relevant solution for matching being

�(s) =
√

2ψ

3
(1 − s)3/2, (C30)

again the same as in the uniform- and parabolic-flow cases up to a rescaling [cf. (C14)]. A higher-
order balance then shows that the amplitude A(s) satisfies the differential equation

(1 − s)
dA0

ds
+ A0

[
1

4
+ ψ̃

2
√

2ψ
(1 − s)3/2

]
= 0, (C31)

which is essentially different from the corresponding (C15) in the uniform- and parabolic-flow cases
owing to the dependence upon the constant ψ̃ , representing the first algebraic correction to the flow.
The solution to (C31) is

A0(s) ∝ (1 − s)1/4 exp

{
ψ̃ (1 − s)3/2

3
√

2ψ

}
. (C32)

We have thus found a leading-order WKB approximation for 0 < s < 1 in the form

ϑ (s; η) ∼ �̂(η)(1 − s)1/4 exp

{
ψ̃ (1 − s)3/2

3
√

2ψ

}
exp

{
η1/3

√
2ψ

3
(1 − s)3/2

}
, (C33)

where, by matching with the inner approximation (46), we find the prefactor as

�̂(η) = 4 tan
π

8
× exp

{
− ψ̃

3
√

2ψ

}
exp

{
−η1/3

√
2ψ

3

}
. (C34)

It remains to match the WKB approximation (C33) with the free-end inner approximation (C26),
which gives, using ψ = 22/3,

ξ̂ (η) = 211/12π1/24 tan π
8

31/2
exp

{
− ψ̃

25/63

}
× η−1/18 exp

{
−η1/3 25/6

3

}
. (C35)

We then find from (C8b), (C26), and (C35) the leading-order exponential approximation (58) for
ϑ (1; η) stated in the main text.
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