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ABSTRACT 

This paper proposes a new method of deriving rigorously-conformal 7-parameter 3D coordinate 
transformations between geodetic datums. The problem of linearisation is reduced by distance 
analysis which provides an estimate of scale-change. The resulting 6-parameter transformation is 
linearised to enable an initial least-squares estimate of the rotation parameters. The 6-parameter 
transformation is then re-linearised to obtain a least-squares estimate of the corrections to the 
rotations. The validity of the scale-change estimate can be tested and is verified in almost all 
cases. The exception is transformations covering very small areas where short distances 
maximise the impact of measurement errors in the control data. Even there, the method can be 
adapted to optimise the transformation. The method can also be used to obtain pseudo-optimal 
conformal transformations that provide a closest fit to published Bursa-Wolf transformations. 
Keywords: datum transformations, geodetic datums, conformal transformations, Helmert. 
 
Introduction 
Coordinate transformations between geodetic datums fall into 3 categories: conformal, near-conformal and non-
conformal. Non-conformal transformations are useful when the intention is to model distortion. Conformal 
transformations are the ideal choice when the intention is to preserve the shape of the data being transformed. The 
most general form of conformal three-dimensional transformations are difficult to derive, however. One of the reasons 
for the popularity of near-conformal transformations is that they are easier to fit to control data using least-squares 
optimisation. 
    Conformal three-dimensional transformations involve smaller changes in size and orientation in the context of 
geodetic datums than in some other applications such as photogrammetry. The 7-parameter datum transformations in 
ESRI (2012) have no scale charge larger than 269 parts per million and no overall rotation greater than 90ʺ. Even 
allowing for the fact that the tabulated parameters were designed for use in the near-conformal Bursa-Wolf 
transformation, limits of that magnitude can be assumed to apply to conformal transformations between geodetic 
datums. 
    The 7-parameter conformal 3D transformation is generally applied to geocentric Cartesian coordinates and is 
sometimes known as a similarity translation. The parameters used are: 

• Translation parameters X, Y, Z. 
• Scaling parameter which may either be the scale factor S or the scale change S. They are interchangeable, 

since S=1+S. S is often expressed in parts per million (ppm). 
• Rotation parameters ZYX RRR ,, . In this paper they describe rotation of position vectors about Cartesian 

axes, as illustrated in Fig. 1. In Europe it is the more commonly used convention. It is used by the 
International Association of Geodesy and is recommended by ISO (2007). One characteristic is that a 
positive rotation about the Z-axis has the effect of increasing longitude. 
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1    Position vector (PV) rotations 

 
    Some authors prefer the coordinate-frame rotation convention shown in Fig. 2 which has the opposite effect to 
those in Fig. 1. Coordinate-frame rotation parameters are therefore opposite in sign to the position-vector rotations 
used here. 

 
 

 
2    Coordinate frame (CF) rotations 

 
    In this paper, the rigorous 7-parameter conformal transformation (7PC) is regarded as synonymous with the 
Helmert transformation. Sources that accept Helmert in that sense include Fan (2005), Hofmann-Wellenhof and 
Moritz (2006), Sjöberg (2013) and Watson (2005). The author disagrees with NATO (2001) which uses ‘Helmert’ 
to describe the simplified form associated with Bursa (1962) and Wolf (1963). 
    The combined effect of the rotation parameters is a rotation matrix R. The transformation equation which 
transforms the source coordinates (subscript s) to target coordinates (subscript t) is 
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Helmert versions 1 and 2 
The precise form of the rotation matrix R in equation (1) depends on the order in which the rotations are applied. 
There are six possible permutations but only two are used in practice. 
     One permutation is where XR is applied to the position vector first and ZR  last. This is the permutation 
described by Harvey (1986, page 107) as ‘the most commonly applied’. It is the permutation used in Dewitt (1996), 
Fan (2005), Harvey (1986), Hofmann-Wellenhof and Moritz (2006), Reit (1998), Varga et al (2017), Watson 
(2005), Wolf and Ghilani (1997). For the purposes of this paper, the 7PC transformation which uses this 
permutation of rotations is Helmert Version 1. 
    The other permutation is where ZR  is applied to the position vector first and XR  last, as in Awange and 
Grafarend (2002), Sjoberg (2013) and Wang et al (2018). For the purposes of this paper, the 7PC transformation 
which uses this permutation of rotations is Helmert Version 2. 
    For both possible forms of the rotation matrix, it is convenient to denote XX cR bycos , XX sR bysin , etc. 
    For Helmert Version 1, 
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    The Version-1 rotation matrix is therefore 
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    For Helmert Version 2, 
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    The Version-2 rotation matrix is therefore 
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    The sine terms in equations (2) to (5) change sign if the rotation convention is based on coordinate frame rather 
than position vector. 
 
The optimisation problem 
Whether R satisfies (3) or (5), the resulting form of (1) is non-linear with respect to the 7 parameters. This makes it 
difficult to obtain the parameters that give a least-squares fit to a set of control points. 
    The following methods have been considered by the author. 

• An iterative least-squares optimisation process. Xing Fang (2014) classifies one method as ‘quasi indirect 
errors adjustment’ (QIEA) using a quasi-Newton (Broyden-Fletcher-Goldfarb-Shanno) solution. 

• The more direct method given by Awange and Grafarend (2002). An algebraic technique called ‘Groebner 
basis’ is used to solve the problem. Hashemi et al (2013) also describes a method ‘using Gröbner bases 
techniques and solving polynomial systems’. 

• A novel RANSAC robust estimation technique described in Paláncz et al (2017), which allows for 
possible outliers among the data points. 

• Computation of approximate parameters from a small subset of the common points followed by 
linearization of the observations equations based on those approximate values. Least-squares optimisation 
is then applied to the linearised Helmert transformation model. The method is described and demonstrated 
in Fan (2005). The iterative phase is also described in Wolf & Ghilani (1997) which omits the issue of 
initial approximation. 

    None of these sources covers both of the commonly-used versions of Helmert. It is also unclear whether some of 
these methods actually derive the optimal Helmert parameters. Awange and Grafarend (2002) includes a worked 
example, but the derived transformation gives a worse fit to the control data than if Helmert had been applied using 
the optimal Bursa-Wolf parameters. 
 
New optimisation method 
The method devised by the author is believed to be original, although stage HO2 has some features in common with 
the iteration stage used by Fan (2005). In its general form, it consists of the following processes, each involving 
linear least-squares optimisation. ‘HO’ denotes Helmert optimisation. 

• HO1: Distance analysis to obtain the original estimate of the scale change ( DAS ). In this case, only the 
possible impact of measurement errors might stop DAS  being optimal because the 7PC transformation 
applies rotations exactly. 

• HO2: Derivation of initial approximate translation and rotation parameters. This is done from what would 
be the partially-linear version of Bursa-Wolf except that the scale change has been already determined.  

• HO3: Iteration using a relinearisation of Helmert (with scale change S  fixed) based on corrections to the 
approximate rotation parameters; the minimised root-mean-square distance residual corresponding to the 
estimated scale change is denoted MinRMS(S,7PC). 

• HO4: Verification of optimality by repeating HO2 and HO3 for small deviations from DAS . 
 
Stage HO1 
This is based on distances of the control points to the central point in both datums. The process is given by (6) to 
(10) below. 
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    Treating S=1+S as the parameter to be determined, the observation equations take the form 
           iisit Sdd += ,,    or   itiis dSd ,, =+ . (8) 
    The normal equation takes the form 
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    The least-squares solution, which determines S as well as S, is therefore 
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Stage HO2 
This stage optimises the translation and rotation parameters for the approximate value of S. Regarding S as fixed, the 
Helmert equation can be written in the form 
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    An alternative form is 
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    The matrix elements jir ,  in (12) are non-linear functions of the rotations XR , YR  and ZR . This is true whether the 
rotation matrix takes the form (3) or (5). 
    In the context of geodetic datum transformations, rotations are generally smaller than 1 (considerably smaller, in 
fact). That makes their sines approximately their value in radians, their cosines approximately 1, and the products of 
their sines negligible. Whether the rotation matrix is given by (3) or (5), it can be approximated as follows. 
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    Substituting (13) into (12), 
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    An equivalent formulation of (14) is 
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    The observation equations take the form 
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    Estimates of the six parameters are obtained by ordinary least-squares. ZYX RRR ,,  are the estimates that matter  
because they provide starting approximations to the rotation parameters. 
 
Stage HO3 
This stage uses iteration to optimise the translation and rotation parameters for the value of S used in Stage HO2. It 
starts with the estimates ZYX RRR ,,  obtained from stage HO2. The following substitution is made: 
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    This contrasts with equation 52 in the iteration phase by Fan (2005) which had four ‘delta’ quantities to be 
optimised.  
    Applying (17) to the quantities in the rotation matrix R, 
           )/()/()/( ,,,,, ZjiZYjiYXjiXjiji RrRRrRRrRrr +++=  . (18) 

    The partial derivatives are evaluated for the rotations ZYX RRR ,,  . Similarly, the overbar in jir ,  denotes jir ,  

evaluated for the rotations ZYX RRR ,, . 
    Substitution of (18) into (12) produces the following equation: 
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    The terms jim ,  in (19) can be evaluated from the following equations. 
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    Equations (20) to (22) can be expressed in vector form: 
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    Equation (19) can be expressed in terms of linear combinations of X, Y, Z, XR , YR  and ZR . 
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    For the ith point, the observation equations take the form shown below. 
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    Since this complies with the linear form vAxb += , the least-squares estimate of the 6 unknowns can be 
obtained by solving bAAxA TT = . The values of ZYX RRR  ,,   are added to ZYX RRR ,,  to obtain new 
approximations to the rotation parameters. The iteration step is repeated until convergence. 
    All that remains is to provide explicit formulae for the matrix elements in equation (26). 
    Consider the case of Helmert Version 1, where the rotation matrix satisfies equation (3). Using Xc  to denote 

XRcos ,  Xs   to denote XRsin , etc, the definition of jir ,  ensures that 
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    From (23), (24) and (25), 
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    Consider the case of Helmert Version 2, where the rotation matrix satisfies equation (5). Using Xc  to denote 

XRcos ,  Xs   to denote XRsin , etc, the definition of jir ,  ensures that 

           

















+−

−−+

−

=

















YXZXZYXZYXZX

YXZYXZXZXZYX

YZYZY

cccsssccscss
cssssccsccss

ssccc

rrr
rrr
rrr

3,32,31,3

3,22,21,2

3,12,11,1

 (32) 

    From (23), (24) and (25), 
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Stage HO4 
Stage HO4 involves repetition of the stages HO2 and HO3 for two slightly different scale changes, SSDA −  and 

SSDA + . The residuals enable the computation of three values of MinRMS(S, 7PC). If the latter is evaluated to 
8 or 9 decimal places, 0.01 ppm would be a suitable value for S. 
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    If MinRMS is less for the distance-analysis estimate of S than for the two neighbouring estimates, and the outer 
values of MinRMS are closer to each other than to the central value, then the distance-analysis estimate of S can 
be regarded as optimal along with the corresponding translation and rotation parameters obtained by stages HO2 
and HO3. The condition is illustrated in Fig. 3, in which MinRMS is near-symmetric about its central value. 
 

 
3    The pattern of minimum RMS distance residuals from the 7PC transformation that indicates that the S obtained from 

distance analysis is the optimum value 
 
    If the near-symmetry condition is not satisfied, than a quadratic curve can be fitted to the three values of (S, 
MinRMS), as in Fig. 4. The values of MinRMS are denoted by 1−M , 0M  and 1M . 

 
4    The quadratically-derived optimal S based on three minimum RMS distance residuals from the 7PC transformation 
 
    The value of S that matches the minimum point on the curve is a quadratically-derived optimal value and can be 
denoted QDOS . The curve does not need to be plotted, since QDOS  can be computed from 

           
)2(2

)(

011

11

MMM
SMMSS DAQDO

−+

−
+=

−

−  . (36) 

 
    Stages HO2 and HO3 are performed a 4th time to obtain the remaining parameters. 
    The use of formula (36) assumes that MinRMS behaves like a quadratic function around the optimal value of S. 
All the tests carried out by the author confirm this. To give one example, for the dataset of 44 points in Great 
Britain common to OSGB 36 and WGS 84, MinRMS had a minimum value (2.519810834 m) when S was 
−20.6863 ppm. For i in the range −8 to 8, MinRMS(S, 7PC) was almost indistinguishable from 

m)0000026244.0519642890.2( 2i+  when ppm)100/6863.20( iS −= . 
 
Practical implementation 
The new optimisation method was applied to three actual datasets to obtain the optimal Helmert Version 1 
transformations. 

• OSGB 36 to WGS 84 from 44 common points in Great Britain. The optimal parameters were 445.18103 m, 
−161.83410 m, 542.61595 m, −20.68629 ppm, −0.73244, 0.27901, 1.60776. The RMS distance 
residual was 2.519643 m. 

• AGD 84 to WGS 84 from 82 common points in Western Australia. The optimal parameters were 
−115.83771 m, −48.37321 m, 144.75955 m, 3.68981 ppm, 0.11971, 0.38399, 0.37040. The RMS 
distance residual was 0.758323 m. 

• Accra datum to WGS 84 from 19 points in Ghana’s ‘Golden Triangle’. The optimal parameters were 
−151.19021 m, 31.59316 m, 327.17659 m, −7.16773 ppm, −0.44518, 0.00582, −0.02200. The RMS 
distance residual was 0.961925 m. 

    The method was also applied to 18 simulated datasets generated by relatively large rotations and scaling, with 
pseudorandom numbers used to represent measurement errors. 
    The first significant finding from these tests (actual and simulated) was that stage HO3 only needed a single 
iteration. The second iteration merely confirmed convergence. On this evidence, the re-linearisation only needs to be 
applied once. 
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    The second significant finding was that the ‘distance-analysis’ scale-change proved to be optimal, except in the 
case of three simulated datasets for which the area of coverage was significantly smaller than a degree square. 
    In each of the exceptional cases, stage HO4 showed that the optimal S differed from DAS  by 0.04 ppm. 
Halving the simulated measurement errors reduced the difference to 0.01 ppm. This suggested that small areas 
increase the size of measurement errors relative to the inter-point distances, undermining the validity of DAS  as a 
scale-change estimate (albeit slightly). This explanation was confirmed when doubling of the measurement errors 
and doubling of all inter-point distances had a totally neutral effect on the difference between DAS  and the 
optimal S. 
    One distinguishing feature of the three exceptional cases was that the standard errors of DAS  were between 
63.663 ppm and 63.669 ppm. This was far higher than in any of the other cases (the next highest being 12.619 
ppm). The likely cause is the smallness of the area of coverage, accentuating the relative effect of measurement 
errors. It is apparent that a small standard error is a good indication that DAS  is optimal. In the case of the three 
actual datasets, the standard errors of DAS  were 0.700 ppm, 0.064 ppm and 1.947 ppm respectively. 
    In practice, therefore, the Helmert optimisation process consists of: 

• HO1: Distance analysis to obtain the original estimate of the scale change ( DAS ).  
• HO2: Derivation of initial approximate translation and rotation parameters. This is done by applying least-

squares to the observation equations (16).  
• HO3: Deriving improved translation and rotation parameters using a relinearisation of Helmert (with scale 

change S  fixed) based on corrections to the approximate rotation parameters; further iteration will be 
unnecessary (except possibly when testing the software). Least-squares optimisation is applied to the 
observation equations (27). 

• HO4: Verification of optimality by repeating HO2 and HO3 for small deviations from DAS . This is 
only necessary when testing the software for stages HO1 to HO3, or in cases where all control points are 
within 150 kilometres of each other. The use of (36) will complete the optimisation of S if necessary. 

 
Conversion of optimal Bursa-Wolf to pseudo-optimal Helmert 
The new method of deriving Helmert transformations can be used to obtain the closest-fitting fully-conformal 
transformation to the near-conformal Bursa-Wolf transformation. Provided the area of application is known, this can 
be done without knowing the control points from which the Bursa-Wolf parameters were derived. 
    There are two commonly-quoted versions of the Bursa-Wolf transformation, even if the position-vector rotation 
convention is the only one considered. The partially linear form is 
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    The fully-linear version of Bursa-Wolf is 
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    The latter form leads directly to observation equations which are linear with respect to X, Y, Z, S, XR , YR  
and ZR . It is therefore highly probable that published parameters for Bursa-Wolf transformations have been obtained 
from fully-linear Bursa-Wolf. This is assumed to be the case for the ArcGIS parameters listed in Table 5 of ESRI 
(2012), even though ESRI (2008) recommends the use of the partially-linear form. The difference between the two 
forms depends on whether the products XSR , YSR  and ZSR  are small enough to be negligible. 
    It is not possible to derive the optimal Helmert (Version 1) transformation purely from the optimised Bursa-Wolf 
transformation. However, it is possible to derive a close-fitting ‘pseudo-optimal’ Helmert transformation by 

• applying the totally-linear Bursa-Wolf transformation to 25-50 points that give good coverage of the 
geographical region in question, and 

• deriving the Helmert transformation which gives the best fit at these virtual data points. This can be done 
by the stages HO1, HO2 and HO3 (without further iteration) described earlier. 

    The reason why stage HO4 should not be necessary is that the virtual data points do not have measurement 
errors. Residuals from the optimisation will represent the difference between Helmert optimisation and Bursa-Wolf 
optimisation. 
    If the scale change and rotations of a Bursa-Wolf transformation are small, then the difference between that 
transformation and the closest-fitting Helmert transformation is likely to be negligible. Conversely the difference 
between Helmert and Bursa-Wolf is most likely to be significant when the scale change and at least one rotation are 
large. For this reason, the author selected the following Bursa-Wolf transformations from Table 5 of ESRI (2012): 
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• Réunion 1947 to RGR 1992. The respective ellipsoids are the International Ellipsoid and GRS 80. The 
Bursa Wolf parameters in ESRI (2012) are 789.524 m, −626.486 m, −89.904 m, −32.3241 ppm, 0.6006, 
76.7946, −10.5788. 

• Fatu Iva 1972 to WGS 84. The local datum uses the International Ellipsoid. The Bursa Wolf parameters in 
ESRI (2012), with the rotations converted to position-vector rotations, are 347.103 m, 1078.125 m, 
2623.922 m, 186.074 ppm, −33.8875, 70.6773, −9.3943. 

    28 virtual data points were selected for Réunion Island as shown in Fig. 5. Apart from 4 points from the west and 
south coast, all are taken from 6 intersections. Height values between 10 m and 20 m were assigned to the points. 
RGR 1992 coordinates (Cartesian, then geodetic) were estimated by applying (38) with the ArcGIS parameters. 
 

 
5    Virtual data points in Réunion Island 

 
    25 virtual data points were selected for Fatu Iva as shown in Fig. 6. Apart from 7 points in coastal regions, all are 
taken from 0.02 intersections. Height values between 20 m and 740 m were assigned to the points. WGS 84 
coordinates (Cartesian, then geodetic) were estimated by applying (38) with the ArcGIS parameters. 
 

 
6    Virtual data points in Fatu Iva 

 
    In each case, the method of deriving the Helmert Version 1 transformation was by stages HO1 to HO3. Stage 
HO4 was only used for checking purposes and it confirmed the optimality of DAS . 
    The Helmert Version 1 parameters which gave the closest fit were as follows. 

• 789.70880 m, −626.93585 m, −89.93390 m, −32.26312 ppm, 0.60127, 76.79736, −10.57263 for 
Réunion 1947 to RGR 1992. The RMS distance residual was 0.000255 m. 

• 346.90967 m, 1078.23235 m, 2623.87087 m, 186.13000 ppm, −33.88457, 70.66260, −9.39541 for Fatu 
Iva 1972 to WGS 84. The RMS distance residual was 0.000140 m. 

    The submillimetre RMS distance residuals are an indication of proximity to the optimal Bursa-Wolf transformation. 
They suggest that whatever the quality of fit of Bursa-Wolf is to the (unavailable) control points, the quality of fit of 
Helmert Version 1 is only slightly inferior. Basically, an optimal near-conformal transformation has been converted 
into a near-optimal conformal transformation. 
    This process is only appropriate if some of the parameters S , XR , YR  and ZR  are relatively large (the two 
examples being extreme cases). If they are all small then Bursa-Wolf is as close to being conformal as to make no 
difference. 



10 

 
Conclusions 
This proposed new method of deriving rigorously-conformal 7-parameter 3D coordinate transformations is suitable for 
any pair of geodetic datums. The use of distance analysis (stage HO1) provides an estimate of scale-change which 
only needs correction in very small areas where measurement errors in the data have proportionally the greatest 
impact. The initial approximation of the rotation parameters (stage HO2) is sufficiently close to the optimal values to 
ensure that the re-linearisation phase (stage HO3) optimises the 6 size-preserving parameters in a single step.  
    The verification process (stage HO4) is needed in very rare cases. The scale change from the distance analysis and 
two variations on that scale change are used to compute a quadratically-derived optimum. 
    The proposed method is applicable to either version of the Helmert transformation and its computational 
implementation is straightforward. 
    The proposed method can also be used to obtain pseudo-optimal conformal transformations that provide a closest fit 
to published Bursa-Wolf transformations. 
 
Acknowledgements 
The author thanks his Director of Studies Dr Brian Whiting for his comments and suggestions. The author also thanks 
Professor Joseph Awange of Curtin University for providing control data for Western Australia, and Ordnance Survey 
for providing control data for Great Britain. The author is grateful to the two anonymous reviewers for their comments 
and suggestions. 
 
References 
Awange, L. J. and Grafarend, W. E., 2002. Linearized Least Squares and nonlinear Gauss-Jacobi combinatorial 

algorithm applied to the 7-parameter datum transformation ℂ7(3) problem. ZFV 127 (2), 109-116. 
Bursa, M., 1962. The Theory of the Determination of the Non-parallelism of the Minor Axis of the Reference 

Ellipsoid and the Inertial Polar Axis of the Earth, and the planes of the Initial Astronomic and Geodetic 
Meridians from Observation of Artificial Earth Satellites. Studia Geophysica et Geodetica, 6 (3), 209-214. 

Dewitt, B., 1996. Initial approximation for the three-dimensional conformal coordinate transformation. 
Photogrammetric Engineering and Remote Sensing, 62, 79–83. 

ESRI, 2008. ArcGIS Desktop 9.3 Help: Equation-based methods. Available from: 
http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Equation-based%20methods 

ESRI, 2012. ArcGIS 10.1 Geographic and Vertical Transformation Tables. 
Available from: resources.arcgis.com/en/help/main/10.1/003r/pdf/geographic_transformations.pdf 

Fan, H., 2005. Three-Dimensional Coordinate Transformations with large rotations and scale change. International 
Workshop on Education in Geospatial Information Technology, 27-28 October, Technical University of 
Moldova, Chisinau, Moldova. 

Fang, X. 2014. A total least squares solution for geodetic datum transformations. Acta Geodaetica et Geophysica, 49, 
189-207. 

Harvey, B. R., 1986. Transformation of 3D Coordinates. The Australian Surveyor, 33 (2), 105-125. 
Hashemi, A., Kalantari, M. and Kasser, M., 2013. Direct solution of the 7 parameters transformation problem. 

Applied Mathematics & Information Sciences, 7 (4), 1375-1382. 
Hofmann-Wellenhof, B, & Moritz, M., 2006. Physical Geodesy (Second Edition). SpringerWienNewYork. 
ISO, 2007. ISO 19111, Geographical information – Spatial referencing by coordinates, Second Edition, 

International Organization for Standardization, Geneva, Switzerland. 
NATO, 2001. Standardization Agreement (STANAG) 2211 IGEO, Geodetic Datums, Projections, Grids and Grid 

References, Edition 6, NATO Military Agency for Standardization, Brussels.  
Paláncz, B., Awange, J. and Völgyesi, L., 2017. A novel RANSAC approach to robustly solve the 3D similarity 

problem. Australian Journal of Earth Sciences. Published online: 08 May 2017. 12 pages. 
Reit, B.-G., 1998. The 7-parameter transformation to a horizontal geodetic datum. Survey Review, 34 (268), 400-

404. 
Sjöberg, L. E., 2013. Closed-form and iterative weighted least squares solutions of Helmert transformation 

parameters. Journal of Geodetic Science 3 (1), 7-11. 
Varga, M., Grgić, M. and Bašić, T., 2017. Empirical comparison of the geodetic coordinate transformation models: 

a case study of Croatia. Survey Review, 49 (352), 15-27. 
Wang, Q., Chang, G., Xu, T. and Zou, Y., 2018. Representation of the rotation parameter estimation errors in the 

Helmert transformation model. Survey Review, 50 (358), 69-81. 
Watson, G. A., 2005. Computing Helmert transformations. Journal of Computational and Applied Mathematics, 197 

(2), 387-394. 
Wolf, H., 1963. Geometric connection and re-orientation of three-dimensional triangulation nets. Bulletin Géodésique, 

68, 165-169. 
Wolf, P. R. and Ghalani, C. D., 1997. Adjustment Computations: Statistics and Least-Squares in Surveying and 

GIS. 3rd Edition, John Wiley & Sons, Hoboken, New Jersey, 347-353. 
 


