Equivalence properties of 3D conformal
transformations and their application to reverse
transformations

A. C. Ruffhead”

School of Architecture, Computing and Engineering, University of East London, UK.
*Corresponding author, email ruffhead40b@yahoo.co.uk

This article was published in February 2021 in Survey Review 53 (377) 158-168.
© Survey Review Ltd.
https://doi.org/10.1080/00396265.2019.1708604
DOI: 10.1080/00396265.2019.1708604

This is the accepted manuscript, posted on academic social networks on 08 January
2021, 12 months after Taylor & Francis had published the paper online.

ABSTRACT
Seven-parameter conformal coordinate transformations, also known as Helmert
transformations, can be constructed in more than one way. Two possible orderings of the
rotations are in common use, giving rise to Helmert versions 1 and 2. It is demonstrated how
the rotation parameters of either version can be converted into the rotation parameters of the
other. This is useful when software is designed for the other version. It also enables
computation of the same-formula inverse transformation by changing the sign of the equivalent
‘other version’ parameters. These results were primarily intended for conformal transformations
between geodetic datums. They can, however, be extended to coordinate transformations in

disciplines such as photogrammetry where rotations sometimes exceed 90 degrees.
Author Keywords: conformal transformations, Helmert transformations, reverse transformations, inverse transformations

Introduction

In this paper, a transformation in three dimensions converts coordinates from one coordinate reference system
(CRS) to another. The CRSs for which a transformation is designed are commonly described as source and target,
with associated subscripts s and ¢. That source-to-target transformation is sometimes referred to as the forward
transformation. The reverse transformation can be regarded as the corresponding operation that converts target
coordinates back to source coordinates.

The transformation is conformal if it totally preserves shape, in which case it is often referred to as a similarity
transformation. A conformal transformation applies rotations exactly, as opposed to a near-conformal
transformation which simplifies the rotation matrix by linearisation. It is widely referred to as a Helmert
transformation and is designated as such in this paper. See for example Sjoberg (2013) and Watson (2005).

It should be noted that a few sources, notably NATO (2001), use the name ‘Helmert transformation’ for the
simplified form attributed to Bursa (1962) and Wolf (1963). Ordnance Survey (2018, pp. 35-37) treats ‘Helmert
transformation’ as a generic term covering both the conformal version and the simplified form (which is given
without reference to Bursa or Wolf).

The Bursa-Wolf transformation is often used instead of Helmert, because the difference is negligible if the
rotation parameters are small. Rapp (1993, p. 61) summarises the effect for rotations of the order of 1”, 3" and 9”,
based on the research of Malys (1988). For geodetic transformations involving rotations of more than a few arc-
seconds, the Helmert form is needed to ensure conformality. Going beyond geodetic datum transformations, into
photogrammetry for example, transformations can involve rotations of many degrees, so simplifications of
Helmert are not an option.

The Helmert transformation in its general form involves 7 parameters. These consist of 3 shift (or translation)
parameters, a scaling factor and 3 rotations. There are 6 possible orderings of the rotations and these affect the
Helmert formula. However, only 2 are used in practice, with the Y-rotation applied between the other two. This



paper will show how the rotation parameters which produce one version of Helmert can be converted into
rotation parameters which produce the other version.

The Helmert transformation formula can be rearranged to give an exact reverse formula. There appears,
however, to be a preference for using the original formula with different parameters. Often the reverse
parameters are taken to be the forward parameters with signs reversed, and the results are only approximate.
Aktug (2009) has attempted to derive exact inverse parameters, but it will be shown that here again the results
are only approximate.

This paper will show how to obtain the same-formula inverse parameters that give an exact reverse Helmert
transformation. (‘Exact’ in this context means consistency between the reverse transformation and the forward
transformation, since the latter is only a model.) The proof uses the relationship between the two versions of
Helmert.

This paper only considers the effect of Helmert transformations on Cartesian coordinates. If the area of
application is geodesy, where latitude, longitude and height are frequently used, coordinate conversion to and
from Cartesians is often required. Traditional methods for doing this can be found in Heiskanen and Moritz
(1967, pp. 182-183), although the method of obtaining latitude from Cartesians is iterative. Alternative methods
of computing latitude from Cartesians are summarised in Featherstone and Claessens (2008).

Helmert parameters
The Helmert transformation has 7 parameters which determine what is done to the position coordinates in the
source CRS to obtain position coordinates in the target CRS. They consist of the following:

Translation parameters
These are additions to the Cartesian coordinates in the transformation from source to target. They are denoted
AX,AY,AZ .

Scaling parameter
These are distance-conversion factors in the directions of the axes. A scaling parameter can be expressed as a
scaling multiple S or as a scale-change AS (where S=1+AS). AS is often given in parts per million (ppm).

Rotation parameters

These describe rotation of position vectors about Cartesian axes, or rotation of Cartesian axes when points are
considered as fixed. Position vector (PV) rotations are illustrated in Fig. 1. The sign convention adopted here is
that positive rotations are counter-clockwise about Cartesian axis when viewed from the positive side of the
origin, as in Fig. 1. One characteristic is that a positive rotation about the Z-axis has the effect of increasing
longitude. Ordnance Survey (2018, p. 37) says of PV rotations, ‘It is the form in most common use in Europe
(particularly in the oil and gas industry), is used by the International Association of Geodesy (IAG) and
recommended by ISO (2007) and is EPSG dataset coordinate operation method code 1033°. This is the
convention adopted for this paper.
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Fig. 1. Position vector (PV) rotations.

It should be noted that some authors and researchers prefer to use coordinate frame (CF) rotations. According
to this, the sign convention is that positive rotations of the axis-planes are counter-clockwise when viewed from
the positive side of the origin, as in Fig. 2. CF rotation parameters are opposite in sign to PV rotation parameters.
Ordnance Survey (2018, 37) says the CF convention ‘is common in the USA oil and gas industry and is EPSG
dataset coordinate operation method code 1032°.
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Fig. 2. Coordinate frame (CF) rotations.

Where cited references have used the CF convention shown in Fig. 2, this has not been remarked upon. The
terms affected can easily be converted to comply with the PV convention, so the use of CF rotations can be
regarded as a presentational detail. The results in this paper can be adapted for use with CF rotations.

The two versions of Helmert
Given the parameters AX, AY, AZ, S (or AS), R, , R, and R,, it is convenient to denote cosR, by c,,
sinR, by s,, etc.; this convention is used in Deakin (2006). Using R to denote the rotation matrix, the

transformation equation is

X, | [Ax X,
Y, |=|AY |[+(1+ASRY, (1
Z AZ V4

t N
The precise form of R depends on the order in which the rotations are applied. For the purposes of this paper:
e Version 1 is where R, is applied first and R, last. Sources using this permutation include Deakin
(2006), Fan (2005), Harvey (1986), Reit (1998) and Watson (2005).
e Version 2 is where R, is applied first and R, last. Sources using this permutation include Awange
and Grafarend (2002), Sjoberg (2013) and Wang et al/ (2018).
There are four other possible permutations of the rotations R, , R, and R, . However, the author has seen

no evidence that any of them are used.
In the case of Version 1, R is given by

¢, —-s, O ¢, O s,J1 0O 0
=S, ¢, 0] 0 1 0[]0 c, -s, )
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R

It is easily verified that
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If the rotations are within the range -180° to 180° rather than -90° to 90°, the set of rotations leading to a given
rotation matrix is not unique. If the parameters R, , R, and R, which give rise to the rotation matrix in equation
(3) are replaced by R, £180°, £180°— R, and R, +180°, the rotation matrix is unchanged. This is because all
the sine and cosine terms in equation (3) will change sign except for s,. For example, the case where
R, =-50°, R, =94° and R, =10° will give the same Version-1 rotation matrix as R, =130°,
R, =86° and R, =—170°.

The non-uniqueness of the rotation-parameter set is known in photogrammetric circles; see for example Aimaiti

(2015, p. 13). The author recommends the proof given above for its simplicity.
In the case of Version 2, R is given by



1 0 0 e 0 s,0c, —s, O

R,,,=|0 ¢, -s,| 0 1 Ofs, ¢, O “4)
0 sy cx |-y 0 ¢ |0 O 1

It is easily Ve;iﬁed that
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If the rotations are within the range -180° to 180° rather than -90° to 90°, the set of rotations leading to a given
rotation matrix is not unique. If the parameters R, , R, and R, which give rise to the rotation matrix in equation
(5) are replaced by R, +180°, +180°— R, and R, £180°, the rotation matrix is unchanged. The reason is
exactly the same as for the Version-1 rotation matrix. For example, the case where R, =87°, R, =150° and
R, =—85° will give the same Version-1 rotation matrix as R, =-93°, R, =30° and R, =95°.

One common feature of the two versions of the rotation matrix is that they have the same linearised version.

I -R, R,
Noting that in this instance the rotations are in radians, that matrix is | g, 1 —R, | Thisis the
-R, R, 1

simplified rotation matrix used in the Bursa-Wolf method which, as stated earlier, is only valid for very small
rotations.

Among authors and researchers who use the rigorous rotation matrix, there has been a tendency to adopt one of
the matrices in equations (3) and (5) to the exclusion of the other. As a result, the possible equivalence of rotation-
parameter sets between Versions 1 and 2 appears to have been unexplored.

The following algorithms demonstrate how to convert the rotations in one version of Helmert to the equivalent
rotations in the other.

Rotation-parameter conversion from Version 1 to Version 2
For the moment, it is assumed that rotations are numerically smaller than 90°. Generalisations, including the
special case where arctangent values are undefined, will be considered later.

The initial Version-1 rotations R, , R, and R, are applied as per (2). By (3),

ha ho N CyCy  SySyCy; —CxS; SyS;+CyS8yCy

- _ 6
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For this exercise, R, R, and R, denote the equivalent Version-2 rotations. Bearing in mind (5), the first

objective is to find ¢!, s’ ,c},s},c,,s, such that
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On the basis that s is the sine of R,

(cg,)2 =1—(S'Y)2 =1—(s,5, +chYcZ)2. 9)

Given the nature of the cosine function, the numerically-smallest possible value of R) satisfies

¢, = 1=Gs))%. (10)

Equating the expressions for r; 5,7, 5,7 |, 7 , respectively,

ror
CxCy =CxCy, (11)
ror
SxCy =SxCz —CxSySz, (12)
rro_
CyCz =CyCys (13)



CySy =CyS, — Sy SyCy. (14)
Since c; is positive, the Version-2 rotations can be computed from
R, =arctan2(c,c},s'.c}), R, =arctan2(c},s}), R, =arctan2(c,c,,,c}s),) (15
The arctan2(x,y) function is arctan(y/x) in the range -180° to 180° such that it always has the same sign as x.
Programming languages usually have a function corresponding to arctan2. In VBA, a user-defined version is
needed; suitable code can be found, for example, in Ruffhead (2016). The use of arctan2 rather than arctan is not
strictly necessary when rotations are known to be small, but its presence here is to enable generalisation.

The solution for the Version-2 rotations only uses the five identities from the first row and first column of the
rotation matrix. Verification of the other four identities is given in Appendix A.

Example 1
If the Version-1 rotation parameters are -33.88457022", 70.66260075" and -9.39541463", equation (3) will
produce the following rotation matrix:

0.9999999403  0.0000454940 0.0003425894
R =[-0.0000455503 0.9999999855 0.0001642614 (16)
—0.0003425819 —0.0001642770 0.9999999278

Application of equations (8) to (15) will show that -33.88135347", 70.66414317" and -9.38380681" are the
equivalent Version-2 rotation parameters.

Rotation-parameter conversion from Version 2 to Version 1
For the moment, it is assumed that rotations are numerically smaller than 90°. Generalisations, including the
special case where arctangent values are undefined, will be considered later.

The initial Version-2 rotations R, , R, and R, are applied as per (4). By (5),

Ny ha Ng CyCy —CySy Sy

_ _ _ . 17
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For this exercise, R}, R, and R/, denote the equivalent Version-1 rotations. Bearing in mind (3), the first

objective is to find ¢/, s ,c},s;,c,,s, such that

CyCy  SySyCy; —CySy  SyS;HCysyC | | Ry Tia o T
C;,S'Z C;,C'Z + S;(S;fs,z C;(S§,S'Z _S;(C'Z = rz,l hy hHhil (18)
—sy scy ey By By nh;
Clearly,
S;' = =CxSyCy =SS, - (19)
On the basis that s; is the sine of R,
(c;)z :1_(5;/)2 :1_(CXSYCZ_SXSZ)2' (20)

Given the nature of the cosine function, the numerically-smallest possible value of R satisfies

¢ = 1-(s))%. @1)

Equating the expressions for 7, 5,75 ,,7,7,, respectively,

CyCy =cycy, (22)
CySsy =CySyS, +5,Cys (23)
cyCl, =cyCy, (24)
CySy =8,SyCy +CyS,,. (25)

Since c; is positive, the Version-1 rotations can be computed from
R, =arctan2(c'.cy,scy), R, =arctan2(cy,sy), R, =arctan2(c,c;,cys,). (26)
The arctan2(x,y) function is arctan(y/x) in the range -180° to 180° such that it always has the same sign as x.
The solution for the Version-1 rotations only uses the five identities from the third row and first column of the

rotation matrix. Verification of the other four identities is given in Appendix B.
Equations (19) to (26) can be applied to reproduce example 1 in reverse.
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Application to reverse (inverse) transformations
For either version of Helmert, the reverse transformation to Helmert can be obtained exactly by rearranging (1):

X, X, -AX

Y, |= L R Y, —AY | @n
: 1+AS)

Z, Z,-NZ

Equation (27) provides a simple and exact method of computing the reverse transformation, particularly as R

is orthogonal (R7l =R’ , which is easily verified by computing R” R ). The method is noted in Reit (2009).
However, there appears to be a preference among users for obtaining the reverse transformation by using the
original formula with different parameters. Unfortunately, there is a tendency to simply reverse the signs of the
shifts, scale-change and rotations. This only gives approximate results, and the larger the non-shift parameters
the larger the errors. In the extreme cases of WGS 84 back to Fatu Iva 1972 and RGR 1992 back to Réunion
1947, the distance errors are 0.970 m and 0.404 m respectively.

Aktug (2009) describes a derivation of the inverse datum transformation, but claims that ‘the scale and the
rotation parameters will be the same as the direct transformation parameters with opposite signs’. This is not
correct, since 1-AS differs (if only slightly) from 1/(1+AS). Also, his consideration of rotations makes no
allowance for the order in which they are applied.

Nevertheless, it is possible to obtain reverse parameters that enable the Helmert formula to be applied in the
other direction (target to source coordinates). In other words, given forward parameters AX, AY, AZ, S,R, , R, ,

. . SFI SF1 SF1
R, , there are corresponding ‘same-formula inverse’ parameters AX™" , AY™>" , AZ>" | § s Rf(F h Rf”, R;H

which make the Helmert formula exact, at least in terms of consistency with the forward transformation.
This is shown below for both versions of Helmert.

Same-formula inverse parameters for Version 1 of Helmert
From (27) and the fact that R is orthogonal,

X, —AX X,

Y |=— L _R7|-AY |+—_R'|Y 28)
|1+ AS) (1+AS)

V4 Z

s t
The algorithm for rotation-parameter conversion (Version 1 to Version 2) is applied to obtain the equivalent
Version-2 rotations R’ , R; and R}, . The corresponding trigonometric quantities ¢, , s’ , etc. are also computed.

R'=¢s, ¢, 0| 0 1 0J0 ¢, —s,

(1 0 0 ¢, 0 s,]c, -s, 0
0 ¢y —=s%1 0 1 O0fs, ¢, O
10 sy ¢y -5y 0 ¢, JJO 0 1
¢, s, Olc, 0 —s,1 O 0
-5, ¢, 00 1 0 |[0 cf s%

0 0 1fsy 0 ¢ ||O0 =55 cf

(29)

Comparing this with equation (2) and noting that 5’ = —sin(—R’,), etc, it follows that
RY" =-R,, R =-R;, R} =-R,. (30)
From (28), the same-formula inverse parameters for scale and shift are given by the following formulae:
SSF — 1 =1+ (=AS) (31)
1+AS 1+AS




AXSF] —AX
AYSH —LRT —AY (32)

Az S (1+AS) _AZ

In equation (32) for Version 1 of Helmert, R’ can be deduced from equation (3).

Example 2

Consider the Version-1 Helmert transformation with parameters AX = 346.90967 m, AY = 1078.23235 m, AZ =
2623.87087 m, AS = 186.1299981 ppm, R, = -33.88457022", R, = 70.66260075" and R,= -9.395414631".
Some of these parameters are unusually large for a geodetic datum transformation, but it is suitable for
converting Fatu Iva 1972 coordinates to WGS 84. It is the conformal transformation that comes closest to
fitting the Bursa-Wolf transformation given in ESRI (2012).

R is the matrix given in Example 1. It was shown in that example that the equivalent Version-2 rotation
parameters are -33.88135347", 70.66414317" and -9.38380681". Equations (30) to (32) are applied. The same-
formula inverse parameters (for use in Helmert Version 1) are -345.8972629 m, -1077.61650 m, -2623.67829
m, -186.0953602 ppm, 33.88135347", -70.66414317" and 9.38380681".

Same-formula inverse parameters for Version 2 of Helmert
Equation (28) applies in this case also.
The algorithm for rotation-parameter conversion (Version 2 to Version 1) is applied to obtain the equivalent
Version-1 rotations R’ , R, and R}, . The corresponding trigonometric quantities ¢, , s’ , etc. are also computed.
The same-formula inverse parameters can be obtained from equations (30), (31) and (32), the proofs being

entirely analogous to those given for the Version-1 case. In equation (32) for Version 2 of Helmert, R’ can be
deduced from equation (5).

Equations (30) to (32) can be applied to reproduce example 2 in reverse.

Applications involving large rotations

Besides geodesy, conformal 3D transformations occur in a number of research areas. These include
photogrammetry, geographical information science (GIS) and computer vision. In some areas, particularly in
photogrammetry, conformal transformations involve rotations that are sometimes larger than 90° in magnitude.
Deakin (1998) discusses conformal transformations of practical use in the construction industry, where the source
coordinates are in the XYZ survey system and the target coordinates are in an ENU (East, North, Up) design
system.

The algorithms given are still valid, but need two modifications:
o allowance for equivalent sets of rotation parameters that produce the same rotation matrices;

. . . . . ! ! .
e an alternative process in the case where the cosine of R; is zero, so as to avoid R ' and RZ being

undefined.
Rotation-parameter conversion from Version 1 to Version 2 is carried out as before. Given Version-1
rotations R,, R, and R,, the method produces Version-2 rotations R}, R, and R, which give the same

rotation matrix. It has already been noted that R) will be in the range -90° to 90°. However, there is an alternative
solution for which R is outside this range. That solution is R’ —sgn(R)180°, sgn(R;)180°— R, and
R, —sgn(R,,)180°. The solutions are equivalent because they give rise to the same rotation matrix.

The only problem occurs when C; =0, because (15) will leave R;{ and Ré undefined. From (11) and (13),
this scenario only occurs if ¢, = 0orc y =C; = 0. This in turn only occurs if RY is an odd multiple of 90° or
Ry

cases, although the equivalent Version-2 rotations are not necessarily unique.
Same-formula inverse parameters for Version 1 of Helmert can be computed by the algorithm already given,

although it is only one set of SFI parameters. These can be denoted AX SELCAYS ) AZST ) S5 R)S(F ’, RfF !
and R . Of these, R)" will be in the range -90° to 90°. The alternative — but equivalent — set of inverse
parameters consists of AX®7, AV AZ¥ | S RS —sen(RI)180°, sgn(RS)180°— RS and
R} —sgn(R;")180°.

and RZ are both odd multiples of 90°. Table 1 (derived from trigonometrical identities) covers all special



Table 1 Special cases of rotation conversions from Helmert Version 1 to Helmert Version 2

Helmert Version- Equivalent Helmert
1 rotations Version-2 rotations
Ry, Ry, R, Ry, Ry, R)
90°, R, ,90° 90°,90°,—R,
90°, R, ,—90° R,,—90°,-90°
-90°, R, ,90° -90°,-90°, R,
—90°, R, ,—90° R,,90°,-90°
R,90°%R,  —90°R,—R,+90°90°

R,,—90°,R,  90° R,+R,—90°90°

Rotation-parameter conversion from Version 2 to Version 1 is carried out as before. Given Version-1
rotations R,, R, and R,, the method produces Version-1 rotations R, R, and R, which give the same

rotation matrix. It has already been noted that R will be in the range -90° to 90°. However, there is an alternative
solution for which R] is outside this range. That solution is R’ —sgn(R’)180°, sgn(R;)180°— R, and
R, —sgn(R,,)180° . The solutions are equivalent because they give rise to the same rotation matrix.

The only problem occurs when c; =0 because (26) will leave R;( and R; undefined. From (22) and (24),
this scenario only occurs if ¢, = 0orc v =C, = 0. This in turn only occurs if RY is an odd multiple of 90° or

R ¢ and Rz are both odd multiples of 90°. Table 2 (derived from trigonometrical identities) covers all special

cases, although the equivalent Version-1 rotations are not necessarily unique.
Same-formula inverse parameters for Version 2 of Helmert can be computed by the algorithm already given,

although it is only one set of SFI parameters. These can be denoted AX" | AYS" | AZ5" | §5 R)S(F ’, RfF !
and R)". Of these, R)" will be in the range -90° to 90°. The alternative — but equivalent — set of inverse
parameters consists of AXS, AYS, Az §57 R;Fl—sgn(R)iFl)lSO", sgn(RfF1)180°—R;w and
R —sgn(RS™)180°.

Table 2: Special cases of rotation conversions from Helmert Version 2 to Helmert Version 1

Helmert Version- Equivalent Helmert
2 rotations Version-1 rotations
R,,R,.R, R,,R,.R,
90°, R, ,90° R,,—90°,90°

90°, R, ,—90° R,,90°,-90°
—90°, R, ,90° R,,90°,90°,
-90° R, ,—90° -90°,-90°,—R,

R, 90°%R,  —90° R +R,+90°-90°
R,,~90°R,  90° R,—R,—90°-90°

Example 3
Consider the Version-1 Helmert transformation with parameters AX = 197.306 m, AY = 157.968 m, AZ =
562.462 m, AS = 36.78040521 ppm, R, = -50.05177814°, R, = 94.03082206° and R,= 10.12609423°. This is

fictitious, but the rotations are close to those of the example in Deakin (1998).
Equation (3) will produce the following rotation matrix:



—0.0691981588 —0.8657066577 0.4957454968
R =|-0.0123585870 0.4976424599 0.8672942104 (33)

—0.9975263807 0.0538884487 —0.0451348530

Application of equations (8) to (15) will show that -92.97904193°, 29.71892126° and 94.57008241° are
equivalent Version-2 rotation parameters. Equations (30) to (32) are applied. The first set of same-formula
inverse parameters (for use in Helmert Version 1) consists of 576.65495 m, 61.88505 m, -209.42395 m,
-36.77905246 ppm, 92.97904193°, -29.71892126° and -94.57008241°.

An alternative but equivalent set of ‘same-parameter inverse’ parameters consists of 576.65495 m, 61.88505 m,
-209.42395 m, -36.77905246 ppm, -87.02095807°, -150.28107874° and 85.42991759°.

Equations (30) to (32) can be applied to reproduce example 3 in reverse (for Version 2 to Version 1).

Conclusions

The two commonly-used versions of the Helmert transformation involve different sets of rotation parameters, and
the larger the non-shift parameters, the larger the differences. However, there are simple conversion formulae to
convert Version-1 rotations into Version-2 rotations, and vice-versa. One application is that parameters obtained for
one version of Helmert can be converted for use in software designed for the other version.

Where mathematical models of 3D transformations are conformal, it is desirable that the inverse transformations
should be exact relative to the forward transformations. This is partly to avoid additional errors which can add up at
individual points if transformations occur regularly between CRSs. It also has the merit of giving users of
positioning instruments confidence in the built-in transformation software. This is achievable through the use of a
‘same-formula inverse’ method, provided the inverse parameters are computed by the algorithm recommended for
the appropriate version of Helmert.

Both these results can be extended to Helmert transformations with large rotations, by making allowance for sets
of rotation parameters that are equivalent in terms of the overall matrix.
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Appendix A: Helmert equivalence verification (Version 1 to Version 2)

Equations (6) to (15) describe how to convert Version-1 parameters R, , R, and R

, into Version-2 parameters

R;( s R; and R g which lead to the same rotation matrix. However, the following identities were left unverified.

s\ysyc, +clys, =r,,.
’ ! ! ! ’

chc, —Ssysys, =r,,.
’ ’ ’ ’ ’

SxySz =CxSyCy =13,.

ror ror
CySyS, +8yC, =T3,.

(34
(35
(36)
(37

The proofs make use of equations (8) to (9) and (11) to (14). They also use the trigonometrical identity
sin’ @ +cos* @ =1 and its variations, notably cos’@—sin’@=1-2sin’ @ and

sin?@—cos’@=1-2cos* 6.

The special case when c; =( is covered by Table 1 and is not considered in this appendix. The proofs all involve

(cy )? as a common factor in both parts of a quotient. From (9),

(c)) =1—s5%s) —crsich —25,C,8,5,C,.
2 2 2 2 :
Since 1—s%s, = (s +c;)—(1—c3)s;, (38) can be rewritten as
2 2 2 2 22
(c)) =c, +crs, —cysyc, —28,CySyS,C,.

Proof of (34):
S;(S;’C'Z + C;(S,Z = (r2,3 /C;)rm (’”1,1 /C;) + (7'3,3 /C'Y)(_rl,z /C;)

(3%

(39

2
= [(SXCZ —CySyS)SyS, ey )eyC, +Cycy(Cys, —85yS,Cy )]/(c;)

_ (.2 2 3 2 2.2 2 2
= [(SXSZCZ T S8SyCySyC, =Sy CyxSyS,C, —CSyS,C, +CyS

z ~SxCxSyCz )CY ]/(C;, )2

_ 2 2 2 2 2 2 3 2 r \2
[(c S, +8yS8,C, —chYSZcZ+(SXCXSYCZ—SXCXSYCZ)—SXCXSYSZCZ)CY]/(CY)

2 2 2 2 2 r\2 2 _ 2
[(c S, +83ys,00 CXSYsZcZ—SXchYsZcZ—sXchYsZcZ)cY]/(cY) asc, —1=-s,

[(CX +53 cz —cysy cZ 28 CySyS,C, )SZCY]/(C'Y)2
=cySs, by(39)

=r,

Proof of (35):
C;(clz - S;rs'yslz = (’3,3 /C;’)(rl,l /C;) - (_rz,s /c;)’i,s(_rl,z /c;)

)
= [(CXCY)(CYCZ) = (850, = 8,8, )88, 8,6, )€y S, = $48,C; )]/(C;)

[ CEe) ) 2 N/ oy
= [CXCYCZ +(Cy8y8, _chz)(sxcxsz =Sy SyS,C7 F CySyS,Cs =Sy CySyCy )]/(CY)
399

_ 23 2 2 2 3 2 2 2 2 23 1\2
=1C4CyCy +SXCXSYSZ SXCXSYSZCZ +Cy8y8,C, = 8y Cy8yS,C, = SyCyS,Cy + 8yS8yS,C; = 8Cy8yS,C; +8CySyC, ]/(Cy)

3 22

2 2 2 23 2 2 2 3 3 2 23 2 2 2.2 /
[c CyCy FCy8yS7C, = SyCyS7Cy + 8y CySyCy =8, CySyS,Cy+ 8, CrSy S, +8,8y8,C; = 8,CySy8,C; = SyCySyS5C, ]/(cy)

by rearrangement of terms
_ 2 2 2.2 322 2 23 2 2 2 2
= [cchcZ +8yCySyS7C, +CySyS5C, + 83C87C; = SyCy87C; = 28,CySyS,C;

2 3 2 2 2 23 2 2 22 2
+8,CySyS; +8,CySyS,C; + s}syszcz = §,Cy8yS,C; = 284CySyS5C; ]/(c'y)

by introducing terms that cancel

11
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222 2 22 222 2

(6515 =s}s3 45t =2e0s,0, e (6
+ (sf(c; + cé —cf(sﬁc; ~25,€,5,5,C, )sXsYsZ / (c’y )2 as cf( + sf( =1
= (1 =5y +8y(1=¢5) =557 + (1=} )sy¢; = 25,0485, )C)(Cz /(C; )2
+ (Si(c; + Cé - Cisgcé = 28yCySy8,¢; )VXSYSZ /(C'Y )2
= (C/Y )2CXCZ / (C;)Z + (c;’)2sXSYSZ / (C;)z by (38) and (39)
= CXCZ + SXSYSZ

=hy

Proof of (36):
S,XS'Z _c;(S;C,Z = (_rz,s /C;)(_rl,z /C;)_(r3,3 /C;)rm (’”1,1 /C;)
= [(SXCZ —CxSyS €y S, —SxSyCy) —CxCy(SyS, +CySyC, )CYCZ]/(C;’ )2
= [SXCXSZCZ _Sf(sycé _c,z\fSYS; +SXCXS)2’SZCZ _chxciszcz _sz\'SYcicé ]/(C; )2
= [SXCXSZCZ _Sf(SyCé —Cf(SYSE +2SXCXS)2’SZCZ —8yCyS,C, _C;SYC)%C;]/(C;;)Z
as s, —c; =2s; —1

e 2 2, 2 2 2 2y 2]\
= [_ SxSyCy —CySyS; +28,Cy8y8,¢, —CySy(1=5y)c; ]/(CY)

_ 2 2 2 2 2 2 2 2 .,3.2 r\2

= [— SySyC, —CySyS, +28,Cy8,5,C, —CySyC, +CySyC, ]/(CY)

_ 2 2 2 2 2.3 2 r\2 2 2
= [— SyC, —CySyS, +28,¢,8,5,C, +CySyC, ]/(cy) as—sy, —cy =—1
=—s,  by(39)

=r,.

Proof of (37):
c;(S;’S'Z + S;(C'Z = (’”3,3 /C;)rm(_rl,z /c;) + (_rz,s /C;)(ru /C;)
= [CXCY (SySz +CxSyCy ) xSy = SySyCy) +(SyCp = CySyS, )CYCZ]/(C;’ )2
= [(SXC§(S§ — S?(CXSYSZCZ + C;SYSZCZ — SXC;S)%C; + SXCé —CySyS,C, )CY]/(C,',)Z
= [(SXC)zfsé — 84 CxSyC; +CxSyS;C; —285Cy8y8,C; +83C; —CySyS;C; )CY ]/(C’Y )2
since —s3 +c¢; =1-2s3
= (ch)zfsé - SXC)2(S;C§ - 2S)2(CXSYSZCZ + SXcé )CY /(c; )2
=s,c, by(39
= }"3,2.

Appendix B: Helmert equivalence verification (Version 2 to Version 1)
Equations (17) to (26) describe how to convert Version-2 parameters R, , R, and R, into Version-1 parameters

R, R, and R} which lead to the same rotation matrix. However, the following identities were left unverified.

S\ SyCy —CyS; =1, (40)
S8y, +clysycl, =15 (41)
clyCly +8\syS, =15, (42)
ChsySy, =85l =755, (43)

12

2 22 Y 22,22, 22 22 1\
(CY + Sy Sy, +CxSyS, =88, +8y8C; — 2SXCXSYSZCZ )CXCZ /(Cy) + (CXSZ € +8yC; = Cy§yC; 2SXC)(S}'SZCZ )SXSYSZ /(CY)



The proofs make use of equations (19) to (20) and (22) to (25). They also use the trigonometrical identity
sin’ @ +cos* @ =1 and its variations, notably cos’@—sin’ @ =1-2sin’ @ and
sin*@—cos’@=1-2cos* 6.

The special case when C; =( is covered by Table 2 and is not considered in this appendix. The proofs all involve
(cy )* as a common factor in both parts of a quotient. From (20),

(c)) =1—5%s) —cispc, +25,Cy8,5,C,. (44)

Since 1 —s35, = (s +c;)—s,(1—c3), (44) can be rewritten as

r\N2 2 2 2 2 .2 2
(cy) =cy +85yC, —CySyCy +25,Cy8y8,C,. (45)

Since 1—s%s, = (s, +c2)—(1—c%)s,, (44) can also be rewritten as

rN2 2 2 2 2 .22
(cy) =c, +cyS, —CySyC, +28,CySyS,C,. (46)

Proof of (40):
! ’ ! ! ! _ ! ! ! !
SxSyCz =CxS, = (’”3,2 /CY)(_F3,1)(’”1,1 /CY)_(F3,3 /CY)(rz,l /cy)
= [(CXSYSZ +83C NCySyCp —5y8,)CyCp —CxCy(Sy8yCp +CyS, )]/(CY)
(2.2 2 2 3 2 2 2 1 \2
- [(CXSYSZCZ TSYCxSyS;C, T SYCxSyCy — 83 S8,C; —SyCySyCyp —Cx S, )CY ]/(CY)
(2.2 2 2 2 2 3 2 1 \2
- .(CXSYSZCZ —CxS; TS8SyS,C, T SyCxSyCy —SxCxSyCy —SxCxSyS,Cy )CY ]/(CY)
) by rearrangement of terms
2202 2o 2o o2 3 39 2 )C]/()
=[\CxSySzC; —CxS; =8xS;C; T8xCxSyCy —SxCxSyCy SxCxSySzCz Cy J\Cy
as —1—s, =—c, —2s,
_'(22 2 _2¢ 2002 9 2 )C]/(,)z
=[\CxSySzCz —CxS7; —SxS5;C; SxCxSySzCz Ly J\Cy
r\2 r \2
_(CY) CySy /(CY) by (45)
=—CySy

=1,.
Proof of (41):
! ! ’ !/ ! _ ! ! ! ’
SySz; tCySyC; = (r3,2 /CY)(rz,l /cy)+ (r3,3 /CY)(_FS,I)(FI,I /cy)
) \2
[(CXS Sy 8 )SySyCy HCyS, )t eypey(Cysycy, _SXSZ)CYCZ]/(CY)
_[ etss? 4 s2s o2+ b ets.cle? — 2 ]/(!)2
= SXCXSYSZCZ CxSySz; TSxSyCy TS8xCyS,C;, TCySyCyCy — Sy CyCyS,C, J/\Cy
_[ _ 2 + tctss? + 5252 + 2 22]/(!)2
= SXCXSYSZCZ SyCxCyS;C; TSyCyS;C;, TCYSyS,; TSySyCy T CxSyCyCy /\Cy
by rearrangement of terms
_ 2 2 2 2 2 2 2.2 1 \2
_[2SXCXSYSZCZ _SXCXSZCZ +SXCXSZCZ +CXSYSZ +SXSYCZ +CXSYCYCZ]/(CY)
since 57 —cp =2s; —1
_ 2 2 2 2 2 2 25 2 1 \2
= [2SXCXSYSZCZ +eysys; +(l=cy)sye; +eysy(I-sy)c; ]/(CY)
_ 2 2 2 2 2 2 1 \2
= [2SXCXSYSZCZ _CXSYCZ +SXSYCZ +SYCZ]/(CY)
r \2 r \2
:SY(CY) /(CY) by (46)
:SY

=hs-
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Proof of (42)'
CXCZ + SXSYSZ (ry 3 /CY)(rl ! /CY) (”3,2 /C’y)(_rlg)(”z,l /C;)

)
= [(CXCY)(CYCZ) +(Cy8y8, 83, )(Cy8,C, =88, )8y8,¢, 48, )]/(C;)
_ [ ) ( 22, 2 ) 2 )]/ 1\
= ey e, +(Cy8y8, + 8,0 \SxCySyCs +Cx8y8,C, = Sy8y8,C, =S,CyS; (CY)

3 2.2 2 3
[CXCYCZ+SXCXSYSZCZ+CXSYSZCZ SXCXSYSZCZ SyCySyS,

2 .003 2 23 122 1\
+SXchch +SXCXSYSZCZ Y —SXCXSZCZ]/(CY)
322 2 2 122
= [CXSYSZCZ +CXCYCZ +SXCXSYSZCZ —8xCyS,C;
2300 32, 223 ) ) VB VAV,
+ 8y CySyS,C7 ~SkSy8,C, + (SXCXSYCZ _chxsyszcz) B SXCXSYSZ]/(CY)
by rearrangement of terms
322 2 2 2 2 2
=[cxsyszcz +CyCyCy + 8, CySyS,C; =Sy CyS5C,
2.3 2 3 2 2 2 2 2.2 2 2 2 2
8,0y 8y8,C, = Sy8yS,C, +(85Cy85C, —28,C,878,C,) +(8,C8yS,C; —sXchYsZ)]/(c;)
since ¢, —s, =1-2s, and —s, =c, —1
322 2 I T S S S 230 3.2 a2 22 VI VTTA:
= [CXSYSZCZ +CXCYCZ +2SXCXSYSZCZ +SXCXSYCZ _SXCXSZCZ+SXCXSYSZCZ —88y8,C, _2SXCXSYSZCZ —SXCXSYSZ]/(C;,)
222 20 22V (22 2 12
= CXCZ(CXSYSZ +CY +2SXCXSYSZCZ +SXSY _SXSZ)/(CY) +(CXSYCZ _SXCZ +2SXCXSYSZCZ _CX)VXSYSZ/(CY)
2,202 22 200 2 2 2
=c,C (cxsy(l—cz)+cy +8,8; = S5yS; +2sXchYSZcZ)/ (c'y) +(chYcZ — 570, +25,C,8,5,C, —cX)stysZ / (c))

20 2200 L2 : 4 )/(')2
K€\t —cusier ey sy —sus; +25,¢,8,8,¢, )l

o

+(cf(s§c§ —5hes +25,0,8,5,¢, —Ch )vxsysz/(c',)2
=c ¢ (sﬁ Crsycy +p —5ys, +25,C,8, szcz)/(c’,)2
crsic _chz +25,¢,8,8,¢, - cX)s s sz/(cy)
=c ( -5y, 425,08 szcz)/(c’ )

+(c§s§c§ —5he) +25,¢,8,5,C, —cx)sxsysz/(c'y)2
—icy 6P/ ] + (6 Pousysa [l ) by 44y and @)
=CyC, =58y,

as ¢y +55 =1

+

2 2
s sy +cy =1

27‘2’2.

Proof of (43):
! ! ! ! ! ! ! ! !
CxSyS; =8xC; = (r3,3 /CY)rl,S (”2,1 /CY)_(F3,2 /CY)(rl,l /cy)
' \2
= [CXCY(CXSYCZ —SyS)(SysyC, tCys, ) —(Cxsys, +SXCZ)CYCZ]/(CY)
_ 2 22 3 2 2 2 2 r\2
- [S CxSyCy T+ CxSyS;,C; —SyCxSyS;Cy —S8SxCxS; —Cx8yS,C, —854Cy )CY ]/(CY)
_ 2 .22 3 2 2 2 2 r\2
- (SXCXSYCZ —CxSyS;Cy +(CXSYSZCZ _SXCXSYSZCZ)_SXCXSZ —SxCz )CY]/(CY)
by rearrangement of terms

_( 222 + 942 22 2)C]/(f)
=|sycysyc, —cxsys,c, +(Cysys,C, SYCxSyS,C,) =S xCxS; —SyC; Jey [/cy

2 2 2
as cy —Sy =1-2s}

2

_( 22,2 _nQ2 e 22 2)0]/(1)2
= SXCXS Cz SxCxSySzC; —SyCxS; —S8SxC; [Cy J\Cy

R SR W
_CXS CZ SxCxSyS;zC; =CxS; —C; SxCy /\Cy

(— cy ) Sy Cy /(c; )2 by (46)
=—S8xCy

:r2’3.
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