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ABSTRACT 

Seven-parameter conformal coordinate transformations, also known as Helmert 
transformations, can be constructed in more than one way.  Two possible orderings of the 
rotations are in common use, giving rise to Helmert versions 1 and 2. It is demonstrated how 
the rotation parameters of either version can be converted into the rotation parameters of the 
other. This is useful when software is designed for the other version. It also enables 
computation of the same-formula inverse transformation by changing the sign of the equivalent 
‘other version’ parameters. These results were primarily intended for conformal transformations 
between geodetic datums. They can, however, be extended to coordinate transformations in 
disciplines such as photogrammetry where rotations sometimes exceed 90 degrees. 
Author Keywords: conformal transformations, Helmert transformations, reverse transformations, inverse transformations 
 
Introduction 
In this paper, a transformation in three dimensions converts coordinates from one coordinate reference system 
(CRS) to another. The CRSs for which a transformation is designed are commonly described as source and target, 
with associated subscripts s and t. That source-to-target transformation is sometimes referred to as the forward 
transformation. The reverse transformation can be regarded as the corresponding operation that converts target 
coordinates back to source coordinates. 
    The transformation is conformal if it totally preserves shape, in which case it is often referred to as a similarity 
transformation. A conformal transformation applies rotations exactly, as opposed to a near-conformal 
transformation which simplifies the rotation matrix by linearisation. It is widely referred to as a Helmert 
transformation and is designated as such in this paper. See for example Sjöberg (2013) and Watson (2005). 
    It should be noted that a few sources, notably NATO (2001), use the name ‘Helmert transformation’ for the 
simplified form attributed to Bursa (1962) and Wolf (1963). Ordnance Survey (2018, pp. 35-37) treats ‘Helmert 
transformation’ as a generic term covering both the conformal version and the simplified form (which is given 
without reference to Bursa or Wolf). 
    The Bursa-Wolf transformation is often used instead of Helmert, because the difference is negligible if the 
rotation parameters are small. Rapp (1993, p. 61) summarises the effect for rotations of the order of 1ʺ, 3ʺ and 9ʺ, 
based on the research of Malys (1988). For geodetic transformations involving rotations of more than a few arc-
seconds, the Helmert form is needed to ensure conformality. Going beyond geodetic datum transformations, into 
photogrammetry for example, transformations can involve rotations of many degrees, so simplifications of 
Helmert are not an option. 
    The Helmert transformation in its general form involves 7 parameters. These consist of 3 shift (or translation) 
parameters, a scaling factor and 3 rotations. There are 6 possible orderings of the rotations and these affect the 
Helmert formula. However, only 2 are used in practice, with the Y-rotation applied between the other two. This 
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paper will show how the rotation parameters which produce one version of Helmert can be converted into 
rotation parameters which produce the other version. 
    The Helmert transformation formula can be rearranged to give an exact reverse formula. There appears, 
however, to be a preference for using the original formula with different parameters. Often the reverse 
parameters are taken to be the forward parameters with signs reversed, and the results are only approximate. 
Aktuğ (2009) has attempted to derive exact inverse parameters, but it will be shown that here again the results 
are only approximate. 
    This paper will show how to obtain the same-formula inverse parameters that give an exact reverse Helmert 
transformation. (‘Exact’ in this context means consistency between the reverse transformation and the forward 
transformation, since the latter is only a model.) The proof uses the relationship between the two versions of 
Helmert. 
    This paper only considers the effect of Helmert transformations on Cartesian coordinates. If the area of 
application is geodesy, where latitude, longitude and height are frequently used, coordinate conversion to and 
from Cartesians is often required. Traditional methods for doing this can be found in Heiskanen and Moritz 
(1967, pp. 182-183), although the method of obtaining latitude from Cartesians is iterative. Alternative methods 
of computing latitude from Cartesians are summarised in Featherstone and Claessens (2008). 
 
Helmert parameters 
The Helmert transformation has 7 parameters which determine what is done to the position coordinates in the 
source CRS to obtain position coordinates in the target CRS. They consist of the following: 
 
Translation parameters 
These are additions to the Cartesian coordinates in the transformation from source to target. They are denoted 

ZYX  ,, . 
 
Scaling parameter 
These are distance-conversion factors in the directions of the axes. A scaling parameter can be expressed as a 
scaling multiple S or as a scale-change S (where S=1+S). S is often given in parts per million (ppm). 
  
Rotation parameters 
These describe rotation of position vectors about Cartesian axes, or rotation of Cartesian axes when points are 
considered as fixed. Position vector (PV) rotations are illustrated in Fig. 1. The sign convention adopted here is 
that positive rotations are counter-clockwise about Cartesian axis when viewed from the positive side of the 
origin, as in Fig. 1. One characteristic is that a positive rotation about the Z-axis has the effect of increasing 
longitude. Ordnance Survey (2018, p. 37) says of PV rotations, ‘It is the form in most common use in Europe 
(particularly in the oil and gas industry), is used by the International Association of Geodesy (IAG) and 
recommended by ISO (2007) and is EPSG dataset coordinate operation method code 1033’. This is the 
convention adopted for this paper. 
 

 
Fig. 1. Position vector (PV) rotations. 

 
    It should be noted that some authors and researchers prefer to use coordinate frame (CF) rotations. According 
to this, the sign convention is that positive rotations of the axis-planes are counter-clockwise when viewed from 
the positive side of the origin, as in Fig. 2. CF rotation parameters are opposite in sign to PV rotation parameters. 
Ordnance Survey (2018, 37) says the CF convention ‘is common in the USA oil and gas industry and is EPSG 
dataset coordinate operation method code 1032’. 
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Fig. 2. Coordinate frame (CF) rotations. 

 
    Where cited references have used the CF convention shown in Fig. 2, this has not been remarked upon. The 
terms affected can easily be converted to comply with the PV convention, so the use of CF rotations can be 
regarded as a presentational detail. The results in this paper can be adapted for use with CF rotations. 
 
The two versions of Helmert 
Given the parameters X, Y, Z, S (or S), XR , YR  and ZR , it is convenient to denote XRcos  by Xc ,  

XRsin  by Xs , etc.; this convention is used in Deakin (2006). Using R to denote the rotation matrix, the 
transformation equation is 
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    The precise form of R depends on the order in which the rotations are applied. For the purposes of this paper: 
• Version 1 is where XR  is applied first and ZR  last. Sources using this permutation include Deakin 

(2006), Fan (2005), Harvey (1986), Reit (1998) and Watson (2005). 
• Version 2 is where ZR  is applied first and XR  last. Sources using this permutation include Awange 

and Grafarend (2002), Sjӧberg (2013) and Wang et al (2018). 
    There are four other possible permutations of the rotations XR , YR  and ZR . However, the author has seen 
no evidence that any of them are used. 
    In the case of Version 1, R is given by 
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    It is easily verified that 
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    If the rotations are within the range -180 to 180 rather than -90 to 90, the set of rotations leading to a given 
rotation matrix is not unique. If the parameters XR , YR  and ZR  which give rise to the rotation matrix in equation 
(3) are replaced by 180XR , YR−180  and 180ZR , the rotation matrix is unchanged. This is because all 
the sine and cosine terms in equation (3) will change sign except for Ys . For example, the case where 

−= 50XR , = 94YR  and =10ZR  will give the same Version-1 rotation matrix as =130XR , 

= 86YR  and −= 170ZR . 
    The non-uniqueness of the rotation-parameter set is known in photogrammetric circles; see for example Aimaiti 
(2015, p. 13). The author recommends the proof given above for its simplicity. 
    In the case of Version 2, R is given by 
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    It is easily verified that 
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    If the rotations are within the range -180 to 180 rather than -90 to 90, the set of rotations leading to a given 
rotation matrix is not unique. If the parameters XR , YR  and ZR  which give rise to the rotation matrix in equation 
(5) are replaced by 180XR , YR−180  and 180ZR , the rotation matrix is unchanged. The reason is 
exactly the same as for the Version-1 rotation matrix. For example, the case where = 87XR , =150YR  and 

−= 85ZR  will give the same Version-1 rotation matrix as −= 93XR , = 30YR  and = 95ZR . 
    One common feature of the two versions of the rotation matrix is that they have the same linearised version. 

Noting that in this instance the rotations are in radians, that matrix is 
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simplified rotation matrix used in the Bursa-Wolf method which, as stated earlier, is only valid for very small 
rotations. 
     Among authors and researchers who use the rigorous rotation matrix, there has been a tendency to adopt one of 
the matrices in equations (3) and (5) to the exclusion of the other. As a result, the possible equivalence of rotation-
parameter sets between Versions 1 and 2 appears to have been unexplored. 
    The following algorithms demonstrate how to convert the rotations in one version of Helmert to the equivalent 
rotations in the other. 
 
Rotation-parameter conversion from Version 1 to Version 2 
For the moment, it is assumed that rotations are numerically smaller than 90. Generalisations, including the 
special case where arctangent values are undefined, will be considered later. 
    The initial Version-1 rotations XR , YR  and ZR  are applied as per (2). By (3), 
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    For this exercise, XR , YR  and ZR  denote the equivalent Version-2 rotations. Bearing in mind (5), the first 
objective is to find ZZYYXX scscsc  ,,,,,  such that 
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    Clearly, 
           .3,1 ZYXZXY cscssrs +==  (8) 

    On the basis that Ys  is the sine of YR , 
           .)(1)(1)( 222

ZYXZXYY cscsssc +−=−=  (9) 
    Given the nature of the cosine function, the numerically-smallest possible value of YR  satisfies 

           .)(1 2
YY sc −=  (10) 

Equating the expressions for 2,11,13,23,3 ,,, rrrr  respectively, 

           ,YXYX cccc =  (11) 

            ,ZYXZXYX ssccscs −=  (12) 

          ,ZYZY cccc =  (13) 
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            .ZYXZXZY cssscsc −=  (14) 

    Since Yc  is positive, the Version-2 rotations can be computed from 
            ),(2arctan),,(2arctan),,(2arctan ZYZYZYYYYXYXX scccRscRcsccR ===  (15) 
    The arctan2(x,y) function is arctan(y/x) in the range -180 to 180 such that it always has the same sign as x. 
Programming languages usually have a function corresponding to arctan2. In VBA, a user-defined version is 
needed; suitable code can be found, for example, in Ruffhead (2016). The use of arctan2 rather than arctan is not 
strictly necessary when rotations are known to be small, but its presence here is to enable generalisation. 
    The solution for the Version-2 rotations only uses the five identities from the first row and first column of the 
rotation matrix. Verification of the other four identities is given in Appendix A. 
 
Example 1 
If the Version-1 rotation parameters are -33.88457022, 70.66260075 and -9.39541463, equation (3) will 
produce the following rotation matrix: 
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Application of equations (8) to (15) will show that -33.88135347, 70.66414317 and -9.38380681 are the 
equivalent Version-2 rotation parameters. 
 
Rotation-parameter conversion from Version 2 to Version 1 
For the moment, it is assumed that rotations are numerically smaller than 90. Generalisations, including the 
special case where arctangent values are undefined, will be considered later. 
    The initial Version-2 rotations XR , YR  and ZR  are applied as per (4). By (5), 
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    For this exercise, XR , YR  and ZR  denote the equivalent Version-1 rotations. Bearing in mind (3), the first 
objective is to find ZZYYXX scscsc  ,,,,,  such that 
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    Clearly, 
           ZXZYXY sscscrs −=−= 1,3 . (19) 

    On the basis that Ys  is the sine of YR , 
           .)(1)(1)( 222

ZXZYXYY sscscsc −−=−=  (20) 
    Given the nature of the cosine function, the numerically-smallest possible value of YR  satisfies 

           .)(1 2
YY sc −=  (21) 

Equating the expressions for 1,21,12,33,3 ,,, rrrr  respectively, 

           ,YXYX cccc =  (22) 

            ,ZXZYXXY cssscsc +=  (23) 

          ,ZYZY cccc =  (24) 

            .ZXZYXZY sccsssc +=  (25) 

Since Yc  is positive, the Version-1 rotations can be computed from 

            ),(2arctan),,(2arctan),,(2arctan ZYZYZYYYYXYXX scccRscRcsccR === . (26) 
    The arctan2(x,y) function is arctan(y/x) in the range -180 to 180 such that it always has the same sign as x. 
    The solution for the Version-1 rotations only uses the five identities from the third row and first column of the 
rotation matrix. Verification of the other four identities is given in Appendix B. 
    Equations (19) to (26) can be applied to reproduce example 1 in reverse. 
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Application to reverse (inverse) transformations 
For either version of Helmert, the reverse transformation to Helmert can be obtained exactly by rearranging (1): 
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    Equation (27) provides a simple and exact method of computing the reverse transformation, particularly as R 
is orthogonal ( TRR =−1 , which is easily verified by computing RRT ). The method is noted in Reit (2009). 
However, there appears to be a preference among users for obtaining the reverse transformation by using the 
original formula with different parameters. Unfortunately, there is a tendency to simply reverse the signs of the 
shifts, scale-change and rotations. This only gives approximate results, and the larger the non-shift parameters 
the larger the errors. In the extreme cases of WGS 84 back to Fatu Iva 1972 and RGR 1992 back to Réunion 
1947, the distance errors are 0.970 m and 0.404 m respectively. 
    Aktuğ (2009) describes a derivation of the inverse datum transformation, but claims that ‘the scale and the 
rotation parameters will be the same as the direct transformation parameters with opposite signs’. This is not 
correct, since 1-S differs (if only slightly) from 1/(1+S). Also, his consideration of rotations makes no 
allowance for the order in which they are applied. 
    Nevertheless, it is possible to obtain reverse parameters that enable the Helmert formula to be applied in the 
other direction (target to source coordinates). In other words, given forward parameters X, Y, Z, S, XR , YR , 

ZR , there are corresponding ‘same-formula inverse’ parameters SFIX , SFIY , SFIZ , SFIS , SFI
XR , SFI

YR , SFI
ZR  

which make the Helmert formula exact, at least in terms of consistency with the forward transformation. 
    This is shown below for both versions of Helmert. 
 
Same-formula inverse parameters for Version 1 of Helmert 
From (27) and the fact that R is orthogonal, 
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    The algorithm for rotation-parameter conversion (Version 1 to Version 2) is applied to obtain the equivalent 
Version-2 rotations XR , YR  and ZR . The corresponding trigonometric quantities Xc , Xs , etc. are also computed. 
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    Comparing this with equation (2) and noting that )sin( XX Rs −−= , etc, it follows that 
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    From (28), the same-formula inverse parameters for scale and shift are given by the following formulae: 

           
S

S
S

S SFI

+

−
+=

+
=

1
)(1

1
1  (31) 
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















−

−

−

+
=























Z
Y
X

S
Z
Y
X

T

SFI

SFI

SFI

R
)1(

1  (32) 

In equation (32) for Version 1 of Helmert, TR can be deduced from equation (3). 
 
Example 2 
Consider the Version-1 Helmert transformation with parameters X = 346.90967 m, Y = 1078.23235 m, Z = 
2623.87087 m, S = 186.1299981 ppm, XR = -33.88457022, YR = 70.66260075 and ZR = -9.395414631. 
Some of these parameters are unusually large for a geodetic datum transformation, but it is suitable for 
converting Fatu Iva 1972 coordinates to WGS 84. It is the conformal transformation that comes closest to 
fitting the Bursa-Wolf transformation given in ESRI (2012). 
    R is the matrix given in Example 1. It was shown in that example that the equivalent Version-2 rotation 
parameters are -33.88135347, 70.66414317 and -9.38380681. Equations (30) to (32) are applied. The same-
formula inverse parameters (for use in Helmert Version 1) are -345.8972629 m, -1077.61650 m, -2623.67829 
m, -186.0953602 ppm, 33.88135347, -70.66414317 and 9.38380681. 
 
Same-formula inverse parameters for Version 2 of Helmert 
Equation (28) applies in this case also. 
    The algorithm for rotation-parameter conversion (Version 2 to Version 1) is applied to obtain the equivalent 
Version-1 rotations XR , YR  and ZR . The corresponding trigonometric quantities Xc , Xs , etc. are also computed. 
    The same-formula inverse parameters can be obtained from equations (30), (31) and (32), the proofs being 
entirely analogous to those given for the Version-1 case. In equation (32) for Version 2 of Helmert, TR can be 
deduced from equation (5). 
 
Equations (30) to (32) can be applied to reproduce example 2 in reverse. 
 
Applications involving large rotations 
Besides geodesy, conformal 3D transformations occur in a number of research areas. These include 
photogrammetry, geographical information science (GIS) and computer vision. In some areas, particularly in 
photogrammetry, conformal transformations involve rotations that are sometimes larger than 90 in magnitude. 
Deakin (1998) discusses conformal transformations of practical use in the construction industry, where the source 
coordinates are in the XYZ survey system and the target coordinates are in an ENU (East, North, Up) design 
system. 
     The algorithms given are still valid, but need two modifications: 

• allowance for equivalent sets of rotation parameters that produce the same rotation matrices; 
• an alternative process in the case where the cosine of YR  is zero, so as to avoid XR  and ZR  being 

undefined. 
     Rotation-parameter conversion from Version 1 to Version 2 is carried out as before. Given Version-1 
rotations XR , YR  and ZR , the method produces Version-2 rotations XR , YR  and ZR  which give the same 
rotation matrix. It has already been noted that YR  will be in the range -90 to 90. However, there is an alternative 
solution for which YR  is outside this range. That solution is − 180)sgn( XX RR , YY RR − 180)sgn(  and 

− 180)sgn( ZZ RR . The solutions are equivalent because they give rise to the same rotation matrix. 
    The only problem occurs when 0=Yc , because (15) will leave XR  and ZR  undefined. From (11) and (13), 

this scenario only occurs if 0=Yc  or 0== ZX cc . This in turn only occurs if YR  is an odd multiple of 90º or 

XR  and ZR  are both odd multiples of 90º. Table 1 (derived from trigonometrical identities) covers all special 
cases, although the equivalent Version-2 rotations are not necessarily unique. 
    Same-formula inverse parameters for Version 1 of Helmert can be computed by the algorithm already given, 
although it is only one set of SFI parameters. These can be denoted SFIX , SFIY , SFIZ , SFIS , SFI

XR , SFI
YR  

and SFI
ZR . Of these, SFI

YR  will be in the range -90 to 90. The alternative – but equivalent – set of inverse 
parameters consists of SFIX , SFIY , SFIZ , SFIS , − 180)sgn( SFI

X
SFI
X RR , SFI

Y
SFI
Y RR −180)sgn(  and 

− 180)sgn( SFI
Z

SFI
Z RR . 
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Table 1   Special cases of rotation conversions from Helmert Version 1 to Helmert Version 2 
Helmert Version-

1 rotations 
Equivalent Helmert 
Version-2 rotations 

ZYX RRR ,,  ZYX RRR  ,,  

 90,,90 YR  YR− ,90,90  

− 90,,90 YR  −− 90,90,YR  

− 90,,90 YR  YR,90,90 −−  

−− 90,,90 YR  − 90,90,YR  

ZX RR ,90,   +−− 90,90,90 ZX RR  

ZX RR ,90, −  −+ 90,90,90 ZX RR  
 
 
     Rotation-parameter conversion from Version 2 to Version 1 is carried out as before. Given Version-1 
rotations XR , YR  and ZR , the method produces Version-1 rotations XR , YR  and ZR  which give the same 
rotation matrix. It has already been noted that YR  will be in the range -90 to 90. However, there is an alternative 
solution for which YR  is outside this range. That solution is − 180)sgn( XX RR , YY RR − 180)sgn(  and 

− 180)sgn( ZZ RR . The solutions are equivalent because they give rise to the same rotation matrix. 
    The only problem occurs when 0=Yc  because (26) will leave XR  and ZR  undefined. From (22) and (24), 

this scenario only occurs if 0=Yc  or 0== ZX cc . This in turn only occurs if YR  is an odd multiple of 90º or 

XR  and ZR  are both odd multiples of 90º. Table 2 (derived from trigonometrical identities) covers all special 
cases, although the equivalent Version-1 rotations are not necessarily unique. 
    Same-formula inverse parameters for Version 2 of Helmert can be computed by the algorithm already given, 
although it is only one set of SFI parameters. These can be denoted SFIX , SFIY , SFIZ , SFIS , SFI

XR , SFI
YR  

and SFI
ZR . Of these, SFI

YR  will be in the range -90 to 90. The alternative – but equivalent – set of inverse 
parameters consists of SFIX , SFIY , SFIZ , SFIS , − 180)sgn( SFI

X
SFI
X RR , SFI

Y
SFI
Y RR −180)sgn(  and 

− 180)sgn( SFI
Z

SFI
Z RR . 

 
Table 2: Special cases of rotation conversions from Helmert Version 2 to Helmert Version 1 

Helmert Version-
2 rotations 

Equivalent Helmert 
Version-1 rotations 

ZYX RRR ,,  ZYX RRR  ,,  

 90,,90 YR  − 90,90,YR  

− 90,,90 YR  − 90,90,YR  

− 90,,90 YR  ,90,90, YR  

−− 90,,90 YR  YR−−− ,90,90  

ZX RR ,90,   −++− 90,90,90 ZX RR  

ZX RR ,90, −  −−− 90,90,90 ZX RR  
 
 
Example 3 
Consider the Version-1 Helmert transformation with parameters X = 197.306 m, Y = 157.968 m, Z = 
562.462 m, S = 36.78040521 ppm, XR = -50.05177814º, YR = 94.03082206º and ZR = 10.12609423º. This is 
fictitious, but the rotations are close to those of the example in Deakin (1998). 
    Equation (3) will produce the following rotation matrix: 
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















−−

−

−−

=

0451348530.00538884487.09975263807.0
8672942104.04976424599.00123585870.0
4957454968.08657066577.00691981588.0

R  (33) 

    Application of equations (8) to (15) will show that -92.97904193º, 29.71892126º and 94.57008241º are 
equivalent Version-2 rotation parameters. Equations (30) to (32) are applied. The first set of same-formula 
inverse parameters (for use in Helmert Version 1) consists of 576.65495 m, 61.88505 m, -209.42395 m, 
-36.77905246 ppm, 92.97904193º, -29.71892126º and -94.57008241º. 
    An alternative but equivalent set of ‘same-parameter inverse’ parameters consists of 576.65495 m, 61.88505 m, 
-209.42395 m, -36.77905246 ppm, -87.02095807º, -150.28107874º and 85.42991759º. 
    Equations (30) to (32) can be applied to reproduce example 3 in reverse (for Version 2 to Version 1). 
 
Conclusions 
The two commonly-used versions of the Helmert transformation involve different sets of rotation parameters, and 
the larger the non-shift parameters, the larger the differences. However, there are simple conversion formulae to 
convert Version-1 rotations into Version-2 rotations, and vice-versa. One application is that parameters obtained for 
one version of Helmert can be converted for use in software designed for the other version. 
    Where mathematical models of 3D transformations are conformal, it is desirable that the inverse transformations 
should be exact relative to the forward transformations. This is partly to avoid additional errors which can add up at 
individual points if transformations occur regularly between CRSs. It also has the merit of giving users of 
positioning instruments confidence in the built-in transformation software. This is achievable through the use of a 
‘same-formula inverse’ method, provided the inverse parameters are computed by the algorithm recommended for 
the appropriate version of Helmert. 
    Both these results can be extended to Helmert transformations with large rotations, by making allowance for sets 
of rotation parameters that are equivalent in terms of the overall matrix. 
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Appendix A:  Helmert equivalence verification (Version 1 to Version 2) 
 
Equations (6) to (15) describe how to convert Version-1 parameters XR , YR  and ZR  into Version-2 parameters 

XR , YR  and ZR  which lead to the same rotation matrix. However, the following identities were left unverified. 
           .1,2rsccss ZXZYX =+  (34) 

           .2,2rssscc ZYXZX =−  (35) 

           .1,3rcscss ZYXZX =−  (36) 

           .2,3rcsssc ZXZYX =+  (37) 
 
The proofs make use of equations (8) to (9) and (11) to (14). They also use the trigonometrical identity 

1cossin 22 =+   and its variations, notably  222 sin21sincos −=−  and 
 222 cos21cossin −=− . 

 
The special case when 0=Yc  is covered by Table 1 and is not considered in this appendix. The proofs all involve 

2)( Yc  as a common factor in both parts of a quotient. From (9), 
           .21)( 222222

ZZYXXZYXZXY csscscscssc −−−=  (38) 
 
Since 222222 )1()(1 ZXZZZX sccsss −−+=− , (38) can be rewritten as 
           .2)( 2222222

ZZYXXZYXZXZY csscscscsccc −−+=  (39) 
 
Proof of (34): 

  ( )2

2,13,31,13,13,2

/)())((

)/)(/()/()/(

YZYXZXYXZYZYXZXZYXZX

YYYYZXZYX

ccsssccccccscssssccs

crcrcrrcrsccss

−++−=

−+=+

( )  ( )

( )  ( )223222222

222222322

/)(

/

YYZZYXXZYXXZYXXZZYXZZXZX

YYZYXXZXZZYXZZYXXZYXXZZX

cccsscscscscscscssccsssc

cccscssccssccsscscscscss
−−+−+=

−+−−+=

( )  ( )

( )  ( )2222222

22222222222

/2

1as/

YYZZZYXXZYXZXX

ZZYYZZYXXZZYXXZZYXZZXZX

ccscsscscsccsc

sccccsscscsscscssccsssc
−−+=

−=−−−−+=

ZY sc=     by (39) 

.1,2r=  
Proof of (35): 

  ( )

( )  ( )2222222

2

2,13,13,21,13,3

)(

))()(())((

)/()/()/)(/(

YZYXXZZYXZZYXZXXZXZYXZYX

YZYXZXZYXZXZYXZXZYYX

YYYYZYXZX

ccscscssccsssscscssscccc

ccsssccscssssccscccc

crrcrcrcrssscc

−+−−+=

−+−−=

−−−=−

 

  ( )

  ( )2222232233222322222232

2322222322232223222322

YZZYXXZZYXXZZYXZYXXZZYXXZYXXZZXXZZYXZYX

YZYXXZZYXXZZYXZZXXZZYXXZZYXZZYXXZYXXZYX

ccsscscsscscssssscscsscscscscscscsscccc

ccscscsscscssscscscsscscssccsscssscsccc
−−++−+−+=

+−+−−+−+=

                                                                                by rearrangement of terms 


 ( )2222232232232

22223222232222

2

2

YZZYXXZZYXXZZYXZZYXXZYXX

ZZYXXZZXXZYXXZZYXZZYXXZYX

ccsscscsscscssscsscssscs

csscscscscscscssccsscsccc
−−+++

−−+++=
 

                                                                        by introducing terms that cancel 
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( ) ( ) ( ) ( )22222222222222222222222 22 YZYXZZYXXZYXZXZXZXYZXZZYXXZYXZXZYXZYXY cssscsscscsccsccscccccsscscsssssscsssc −−+++−+−++=

( ) ( )

( ) ( ) 1as2

2
222222222

222222222

=+−−++

−+−+=

XXYZYXZZYXXZYXZZX

YZXZZYXXZYXZXZYY

sccssscsscscscccs

ccccsscscssssssc

( ) ( )

( ) ( )2222222

222222222

2

2)1()1(1

YZYXZZYXXZYXZZX

YZXZZYXXZYXZXZYY

cssscsscscscccs

ccccsscscscsscss

−−++

−−+−−+−=
 

( ) ( ) ( ) ( )2222
YZYXYYZXY csssccccc +=        by (38) and (39) 

.2,2r
ssscc ZYXZX

=

+=
 

Proof of (36): 

  ( )2

1,13,13,32,13,2

/)())((

)/()/()/)(/(

YZYZYXZXYXZYXZXZYXZX

YYYYZYXZX

ccccscsscccssscssccs

crrcrcrcrcscss

+−−−=

−−−=−

  ( )

  ( )222222222

2222222222

/2

/

YZYYXZZXXZZYXXZYXZYXZZXX

YZYYXZZYXXZZYXXZYXZYXZZXX

cccsccscscsscsssccsscscs

cccsccsccscsscsssccsscscs
−−+−−=

−−+−−=

                                                                                                                  as 12 222 −=− YYY scs  

  ( )

  ( )

  ( ) 1as/2

/2

/)1(2

2222322222

22322222222

222222222

−=−−++−−=

+−+−−=

−−+−−=

XXYZYXZZYXXZYXZY

YZYXZYXZZYXXZYXZYX

YZYYXZZYXXZYXZYX

csccsccsscsssccs

ccsccsccsscsssccss

ccssccsscsssccss
 

Ys−=         by (39) 

.1,3r=  
 
Proof of (37): 

  ( )

( )  ( )222223222

2

1,13,22,13,13,3

/

/)())((

)/)(/()/()/(

YYZZYXZXZYXXZZYXZZYXXZXX

YZYZYXZXZYXZXZYXZXYX

YYYYZXZYX

cccssccscscscssccsscsscs

cccssccscsssccscsscc

crcrcrrcrcsssc

−+−+−=

−+−+=

−+−=+

( )  ( )22222222 /2 YYZZYXZXZZYXXZZYXZYXXZXX cccssccscsscscssccscsscs −+−+−=

                                                                                                         since 222 21 XXX scs −=+−  

( ) ( )22222222 /2 YYZXZZYXXZYXXZXX cccscsscscscsscs +−−=  

YX cs=       by (39) 

.2,3r=  
 
Appendix B:  Helmert equivalence verification (Version 2 to Version 1) 
Equations (17) to (26) describe how to convert Version-2 parameters XR , YR  and ZR  into Version-1 parameters 

XR , YR  and ZR  which lead to the same rotation matrix. However, the following identities were left unverified. 
           .2,1rsccss ZXZYX =−  (40) 

           .3,1rcscss ZYXZX =+  (41) 

           .2,2rssscc ZYXZX =+  (42) 

           .3,2rcsssc ZXZYX =−  (43) 
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The proofs make use of equations (19) to (20) and (22) to (25). They also use the trigonometrical identity 
1cossin 22 =+   and its variations, notably  222 sin21sincos −=−  and 

 222 cos21cossin −=− . 
 
The special case when 0=Yc  is covered by Table 2 and is not considered in this appendix. The proofs all involve 

2)( Yc  as a common factor in both parts of a quotient. From (20), 
           .21)( 222222

ZZYXXZYXZXY csscscscssc +−−=  (44) 
 
Since )1()(1 222222

XZZXZX cscsss −−+=− , (44) can be rewritten as 
           .2)( 2222222

ZZYXXZYXZXXY csscscsccscc +−+=  (45) 
 
Since 222222 )1()(1 ZXZZZX sccsss −−+=− , (44) can also be rewritten as 
           .2)( 2222222

ZZYXXZYXZXZY csscscscsccc +−+=  (46) 
 

Proof of (40): 

  ( )2

1,23,31,11,32,3

/)())((

)/)(/()/)()(/(

YZXZYXYXZYZXZYXZXZYX

YYYYZXZYX

csccssccccsscsccsssc

crcrcrrcrsccss

+−−+=

−−=−

( )  ( )

( )  ( )223222222

222232222

/

/

YYZZYXXZYXXZYXXZZXZXZZYX

YYZXZYXXZZXZYXXZZYXXZZYX

cccsscscscscscscsssccssc

ccsccscscsscscscsscscssc
−−+−−=

−−−+−=

                                                                                                                 by rearrangement of terms 
( )  ( )2233222222 /2 YYZZYXXZYXXZYXXZZXZXZZYX cccsscscscscscscsssccssc −−+−−=

                                                                                                                  as 222 21 ZZZ scs −−=−−  

( )  ( )22222222 /2 YYZZYXXZZXZXZZYX cccsscscsssccssc −−−=  

( ) ( )22 / YZYY cscc −=       by (45) 

.2,1r
sc ZY

=

−=
 

  
Proof of (41): 

  ( )2

1,11,33,31,22,3

/)())((

)/)()(/()/)(/(

YZYZXZYXYXZXZYXZXZYX

YYYYZYXZX

cccsscscccsccsscsssc

crrcrcrcrcscss

−+++=

−+=+
 

  ( )2222222222 / YZZYXXZYYXZZXXZYXZYXZZYXX ccsccsccsccscscssssccsscs −++++=

  ( )2222222222 / YZYYXZYXZYXZZXXZZYXXZZYXX cccsccssssccscscsccscsscs ++++−=

                                                                                                                  by rearrangement of terms 
  ( )222222222 /2 YZYYXZYXZYXZZXXZZXXZZYXX cccsccssssccscscscscsscs ++++−=

                                                                                                                   since 12 222 −=− YYY scs  

  ( )

  ( )2222222

222222222

/2

/)1()1(2

YZYZYXZYXZZYXX

YZYYXZYXZYXZZYXX

ccscsscsccsscs

ccssccscssccsscs
++−=

−+−++=
 

( ) ( )22
YYY ccs =  by (46) 

.3,1r
sY

=

=
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Proof of (42): 

  ( )2

1,23,12,31,13,3

))()(())((

)/)()(/()/)(/(

YZXZYXZXZYXZXZYXZYYX

YYYYZYXZX

csccsssscsccsssccccc

crrcrcrcrssscc

+−++=

−+=+
 

( )  ( )


 ( )2222322322

322222232322

2222222 )(

YZZXXZZYXZZYXXZyXX

ZYXXZZYXXZZYXZZYXXZYX

YZXXZZYXZZYXZYXXZXZYXZYX

ccscscssscsscscscs

sscscsscscssccsscsccc
cscscssscssccscscssscccc

−−++

−−++=

−−+++=

 

  


 ( )23222232223232

22222223

)( YZYXXZZYXXZYXXZZYXZZYXX

ZZXXZZYXXZYXZZYX

csscscsscscscscssscsscs

cscscsscsccccssc
−−+−+

−++=
 

                                                                                                              by rearrangement of terms 


 ( )22222222223232

22222223

)()2( YZYXXZZYXXZZYXXZYXXZZYXZZYXX

ZZXXZZYXXZYXZZYX

csscscsscscsscscscscssscsscs

cscscsscsccccssc
−+−+−+

−++=
 

                                                                          since 222 21 ZZZ ssc −=−  and 122 −=− ZZ cs  

  ( )232222232322222222223 22 YZYXXZZYXXZZYXZZYXXZZXXZYXXZZYXXZYXZZYX csscscsscscssscsscscscscscscsscsccccssc −−−+−+++=

( ) ( ) ( ) ( )2222222222222222 22 YZYXXZZYXXZXZYXYZXYXZZYXXYZYXZX csssccsscscscsccsssscsscscssccc −+−+−+++=

( ) ( ) ( ) ( )2222222222222222 22)1( YZYXXZZYXXZXZYXYZZYXXZXYXYZYXZX csssccsscscscscccsscsssssccsccc −+−++−++−=

( ) ( )

( ) ( )2222222

22222222222

2

2

YZYXXZZYXXZXZYX

YZZYXXZXYXYZYXYXZX

csssccsscscscsc

ccsscsssssccscsccc

−+−+

+−++−=  

( ) ( )

( ) ( ) 





−+−+

+−+−=

2222222

22222222

2

2

YZYXXZZYXXZXZYX

YZZYXXZXYZYXYZX

csssccsscscscsc

ccsscsssccscscc    as 122 =+ XX sc  

( ) ( )

( ) ( ) 





−+−+

+−−=

2222222

222222

2

21

YZYXXZZYXXZXZYX

YZZYXXZXZYXZX

csssccsscscscsc

ccsscssscsccc    as 122 =+ YY cs  

( ) ( ) ( ) ( ) 2222
YZYXYYYZX csssccccc −+=    by (44) and (45) 

.2,2r
ssscc ZYXZX

=

−=
 

 
Proof of (43): 

  ( )2

1,12,31,23,13,3

/)())((

)/)(/()/()/(

YZYZXZYXZXZYXZXZYXYX

YYYYZXZYX

ccccssscsccsssscsccc

crcrcrrcrcsssc

+−+−=

−=−
 

( )  ( )

( )  ( )222223222

222223222

/)(

/

YYZXZXXZZYXXZZYXZZYXZYXX

YYZXZZYXZXXZZYXXZZYXZYXX

cccsscscsscscssccssccscs

cccscsscscscsscscssccscs
−−−+−=

−−−−+=

                                                                                                         by rearrangement of terms 
( )  ( )22222222 /)2( YYZXZXXZZYXXZZYXZZYXZYXX cccsscscsscscssccssccscs −−−+−=

                                                                                                              as 222 21 XXX ssc −=−  

( )  ( )22222222 /2 YYZXZXXZZYXXZYXX cccsscscsscscscs −−−=  

( ) ( )2222222 /2 YYXZZXZZYXXZYX ccscsccsscscsc −−−=  

( ) ( )22
YYXY ccsc −=     by (46) 

.3,2r
cs YX

=

−=
 

 


