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Introduction

This thesis contains three chapters focusing on risky decision making. This is an

important field of study as most of the outcomes to decisions we make in our life

have uncertain outcomes where the results are often unclear. Two of these focus on

decision time, its role in the decision-making process, how a lack of it can influence

a decision and how time can be used to help understand preferences. The third of

these papers consider gender effects and how we can recover different risk attitudes

for males and females.

In the first chapter, I introduce the Drift Diffusion Model, a common model used

in psychology that can use decision time as additional information about an individ-

ual’s preferences. I modify this model to consider Prospect Theory and then compare

this modified model to a logit model which is commonly used within the economics

literature but cannot take decision time information into account. We first estimate

both models and then compare their ability to predict choices that individuals make.

We find that whilst both models are good at predicting choices in a binary choice set-

ting, the drift-diffusion model can outperform the standard model in some settings.

The second chapter re-analyses data that previously yielded inconclusive results

on gender differences in risk attitudes between males and females. We use a model

that allows for heterogeneity between individuals, where males and females risk at-

titudes are drawn from two separate distributions as opposed to one value for males

and one for females. We take data from three experiments where gender effects were

not found and, using this method, we find gender effects. The second chapter was

co-authored with Konstantinos Georgalos and Jessica Alam and published in the

Journal of Economic Behavior and Organization, 202, 2022, 168-183.

The third and final chapter focuses on the impact of time pressure on an individ-

ual’s attitude to risk. We first propose and then carry out an experiment to investi-

gate this. Unlike other papers, we consider a budget allocation experiment instead

of a binary choice experiment. We then structurally recover parameters of interest

and find that individuals exhibit less risk-averse behaviour in the presence of time

pressure.
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Chapter 1

Testing the Drift-Diffusion Model

under Prospect Theory

1.1 Introduction

Decision-making is an involved and time-consuming process. We observe that de-

cisions do not happen instantaneously in the real world, as decision-makers need

time to consider options before deciding. The time taken to make decisions carries

information about an individual’s choices and preferences. For example, should

an individual decide quickly, we can argue that there is a stronger preference for

that option than the other. However, as the time to make a decision increases, we

can infer that the options are of closer value and the decision is more challenging.

This paper considers a model that allows us to model this relationship. We use a

model that will enable us to utilise both time and choice data simultaneously, un-

like more ’conventional’ models, which purely consider an individual’s choice. We

focus on applying this framework in a risky binary choice setting and incorporate

Prospect Theory (Tversky and Kahneman, 1992), which has not been considered to

our knowledge.

This idea can be motivated by an example highlighting a potential limitation

within risky decision-making and how considering decision time can help allevi-

ate it. Consider a hypothetical choice task where two individuals have to choose

between two 50-50 gambles, one with payoffs of £0 and £4 and the other £1 and

£3. Both gambles have an identical expected yield of £2; however, the first can be

considered riskier due to an increased payoff variance. If we also suppose their
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preferences are expressed by a utility function U(x) = xρ

ρ and our two individuals’

values for ρ1 are 0.9 and 0.7. The expected utilities for the risky gamble are 1.93 and

1.89, respectively, and for the safer gamble, 2.05 and 2.26. From this, we know that

both individuals would be more likely to choose the safer option with less noise,

giving both individuals higher expected utilities of 2.05 and 2.26. However, if we

were only to consider their choices, we would be unable to tell individuals apart,

despite their different attitudes towards risk. We could argue that the more risk-

averse individual (ρ = 0.7) is more averse to the risky gamble and values it lower

than the less risk-averse individual, as shown by the larger difference in utility. As

a result, we hypothesise that the more risk-averse individual would be able to make

the decision easier and faster than an individual closer to risk neutrality. If we had

this time data too, and the above assumption was correct, we could tell these two

individuals apart, despite their identical choices. We could say that whichever indi-

vidual makes the decision first is more risk averse due to the larger difference in the

valuation of both options making the decision easier. The validity of this argument

is supported by Clithero (2018a), which strongly suggests that decision time data

can make a good substitute for extra choice data and improve prediction accuracy

in choice tasks where options are more closely valued.

Decision times have been studied extensively, and a few key findings have been

established2. Familiarity with tasks and repeatedly performing them has been shown

to decrease reaction times. A larger difference in the valuation of options is associ-

ated with the higher probability of a higher-valued option being chosen in a rela-

tively shorter period of time. Requiring more information to make a decision in-

creases the decision time and lowers the chance of an error. This time can also be

helpful if discerning if an individual has made an error, if decision time is vastly

different to what you’d expect an individual to take, for example, taking 2 seconds

or 3 minutes to make a decision you would expect to take 30 seconds may suggest

an error has been made.

The Drift-Diffusion Model (Ratcliff, 1978) models an individual’s decision-making

1With this utility function ρ indicates risk attitudes, if ρ is between 0 and 1, they are risk averse and
above 1 they are risk seeking.

2See Clithero (2018b) for an in-depth review of the reaction time, where the following results can be
found.
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process and allows us to simultaneously consider an individual’s choice and deci-

sion time. The model assumes that a noisy accumulation process drives the decision-

making process. Once sufficient information has been received in favour of an op-

tion, the process stops, and the individual decides. The larger the drift rate (the rate

at which an individual receives information in favour of one option compared to the

other), the more information there is in favour of a given option and the faster an in-

dividual’s accumulation process "drifts" towards that option. However, the smaller

the difference in option values, the lower this drift rate will be and the longer it will

take to make a decision3.

Incorporating decision time has several advantages for researchers. This in-

cludes carrying information about task difficulty and how closely valued options

are. Should the decision take a long time, we know that options are more closely

valued, whereas a shorter reaction time carries information that an option is more

heavily preferred. Combining choice and reaction time data leads to analysis being

made using more data, which has several key advantages, for example, better qual-

ity estimates of an individual’s preferences (Alós-Ferrer, Fehr, and Netzer, 2021).

It can also reduce the number of tasks subjects need to carry out for experiments,

alleviating issues such as decision fatigue while maintaining accurate estimates.

This paper considers the Drift-Diffusion model and its possible applications in

risky decision-making. To do this, we must modify the existing model to include the

parameters commonly associated with rank-dependent utility (Tversky and Kah-

neman, 1992) and risky decision-making: the curvature of a utility function and a

probability weighting function. Following this, we conduct a series of increasingly

complex simulation exercises to see if estimating these models is possible and if re-

searchers can recover the parameters of interest successfully. We finally move on to

actual experimental data, estimating this model and comparing its performance to

a commonly used stochastic logit specification. This allows us to see how well our

model handles real-world data and whether it is robust enough to use economically.

We aim to provide an argument that decision time, despite being easily observable

in experiments, is under-utilised, and models that take it into account should be

considered when possible.

3This is a very brief overview of the model, which we will cover more in-depth in later sections.
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1.2 Literature Review

The idea of decision-making processes has been long explored in psychology. The

dual-process model (Epstein, 1994) is one of the most common theories, where an

individual either makes a quick, snap decision or a more analytical decision which

takes time. In economics, we assume decisions are made instantaneous and un-

til recently, there has been little economic interest in the process by which a hu-

man makes a decision. Examples of process data include eye-tracking (Fiedler and

Glöckner, 2012), neural activity (Rich, Stoll, and Rudebeck, 2018) and time (Clithero,

2018a), Fehr and Rangel (2011) provide a good summary of some of the advance-

ments made in this field. A model that has been widely researched, however, is the

Drift-Diffusion model. The model has been well established within the psychology

literature for many years and continues to be used. The model was first proposed

in the 1970’s (Ratcliff, 1978). Since then, it has evolved into a single drifting pro-

cess representation (Ratcliff, 1981) instead of a multiple racing drifts. After this, it

evolved to include variability in the model’s starting point. And finally, to account

for non-decision time, time in the decision-making process does not result in a drift,

such as understanding a particular task. Another more recent addition to the model

is a diminishing bound, where the individual requires less information to decide as

time progresses. Another common form of the model is the Hierarchical Bayesian

Drift-Diffusion model (Wiecki, Sofer, and Frank, 2013), which can, in some cases, be

easier to estimate.

The model has been used to explain the decision-making process of individu-

als. However, we differ from the exisiting literature by combining the model with

Prospect Theory (Tversky and Kahneman, 1992). Typically experiments with this

model involve binary choices, choosing between two different options based on an

individual’s preferences or between a correct and incorrect choice. Experiments with

correct and incorrect decisions include deciding if there are more dots on a screen

moving in which direction (Ratcliff and McKoon, 2008); brightness tasks, where

individuals determine whether a screen gets brighter or darker (Ratcliff and Van

Dongen, 2011), or memory, seeing if a word is on a given list (Ratcliff, 1978). Most

research into this model to consider preferences involves food, choosing between
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two different foods or between a food and a reference food, (Clithero, 2018a), and

can potentially explain violations in the transitivity of these choices (Baldassi et al.,

2020). There has also been some interest in considering eye tracking data (Fisher,

2017), (Krajbich and Rangel, 2011), to estimate how the drift rate of the decision-

making process changes as an individual focuses on a particular option. Another

similar line of research involves time pressure and how the parameters of the Drift-

Diffusion model change in the presence of time pressure (Milosavljevic et al., 2010).

The relationship between risky decision-making and the decision time has been

shown that decisions under gains are quicker than those under losses (He et al.,

2013). There is considerable literature looking at the speed-accuracy trade-off, (Wick-

elgren, 1977). We can see that faster reaction times can potentially lead to more errors

(Edman, Schalling, and Levander, 1983), (Hale, 1968). See Heitz (2014) for a sum-

mary of this field of literature. However, Fudenberg, Strack, and Strzalecki (2018)

show that shorter reaction times may lead to more accuracy if an individual’s beliefs

are correct. Faster reaction times can also be suggestions of biases towards a partic-

ular option, which can also be estimated by the Drift-Diffusion model (Criss, 2010).

Other factors have been shown to influence decision-making times. For example,

the quality of information (Zylberberg, Fetsch, and Shadlen, 2016) and age (Feen-

stra, Ruiter, and Kok, 2012) (adults vs adolescents) have been shown to decrease

decision time and sleep deprivation (Ratcliff and Van Dongen, 2011), (Venkatraman

et al., 2007) has been shown to increase the time to make a decision.

Despite the model’s popularity in representing the decision-making process, there

has been little progress in looking at the Drift-Diffusion model in a risky decision-

making setting. The closest we have found to this comes from Webb (2019), who

simulates the Holt and Laury (2002) exercises with risk neutrality to a race model.

Another similar one comes from Zhao, Walasek, and Bhatia (2020), where they con-

sider the model to explain loss aversion. However, they assume risk neutrality too.

A final paper is Howlett and Paulus (2020), where they use a race model and mea-

sure risk as a portion of risky choices. We build on this previous work by using ex-

perimental data and attempting to fit both the parameters for risky decision-making

and the Drift-Diffusion model simultaneously.

This paper complements the earlier papers by applying the Drift-Diffusion Model
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to decision tasks involving risk. Moreover, we extend the study by implementing

prospect theory (Tversky and Kahneman, 1992) into the model. We then compare

its performance to a more traditional model. We aim to see if this model can explain

risky decision-making.

1.3 Drift-Diffusion Model

The Drift Diffusion Model belongs to the family of bounded accumulation models,

which attempt to model how the decision-making process evolves throughout a de-

cision. These models work by having the individual better understand the value of

an option over time until sufficient information is received and a decision is made

for a corresponding option. They have a few key predictions: the larger an option’s

value relative to other options, the faster a decision is made and with fewer errors.

Conversely, the more information an individual requires to make a decision, the

slower and less error-prone a decision will be.

Bounded accumulation models consist of several ingredients that work together

to drive the process and make a decision. The first of these is an accumulation pro-

cess. This process shows how quickly an individual gains information about a given

option, with a faster accumulation process indicating a stronger preference for one

option. The accumulation process often includes a degree of noise to account for the

fact that an individual cannot always correctly perceive the valuations of the options

they face. The second is a stopping rule; this shows at what point an individual has

sufficiently understood their options and stops accumulating information. The final

part is a choice criterion, a rule that states what is to be done once the stopping rule

has been reached, for example, picking a given option4.

The Drift Diffusion Model follows this process stated above. In this case, an indi-

vidual’s accumulation process drifts between an upper and lower bound. The faster

the process drifts towards a given option, the more that option is preferred. The

difference in the valuation of both options determines this drift. Once either of the

bounds is reached (stopping rule), the accumulation process stops, and a decision is

made to pick the option associated with that bound. Figure A.1 shows this example

4This here is a summary of this family of models, for a more in-depth description, see Webb (2019).
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to help visualise how the decision-making process evolves before we go into more

detail. The accumulation process drifts with noise towards the upper bound, indicat-

ing that the upper option is preferred to the lower option. When this accumulation

process hits this upper bound, the decision maker stops accumulating information

and chooses the upper option.

FIGURE 1.1: Visualisation of the Drift-Diffusion Model

The drift-diffusion model’s accumulation process consists of both systematic and

random processes. The systematic process is called the drift rate, µ and can be in-

terpreted as the degree to which one option is preferred. As one option becomes

more valued compared to the other, this drift rate becomes larger, moving farther

away from 0. To calculate the drift rate and, by extension, the accumulation pro-

cess, we assume that an individual has a valuation function V(.) and two choices

to consider (1,2), leading to valuations V1, V2. Individuals perceive this difference in

valuations as µ + ϵ. Where µ = (V1 − V2) and ϵ ∼ N(0, σ2). This process shows

the systematic process (µ) and the stochastic process (ϵ). Following this, they up-

date their Relative Value Signal (RV), which shows where they currently are within
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the decision-making process. This process evolves throughout the decision-making

process as:

RVt = RVt−1 + µ + ϵt (1.1)

Where RVt is the position of the Relative Value Signal at time t. The drift rate,

µ = V1 − V2, shows the preferred option. If µ is greater than 0, option 1 is pre-

ferred to option 2, with a larger number indicating a stronger preference for option

1. Likewise, if µ is negative, option 2 is preferred, and more negativity results in a

stronger preference for option 2. A larger value of µ is a larger signal favouring a

given option. At time 0, RV0 = Z, where Z is the initial bias towards an option.

We can see that over time, this process evolves following a drifting random walk,

either positively or negatively. To decide when this process stops, we implement a

stopping rule in the form of an upper and lower bound. These bounds take a value of

β and 0. When the RV takes a value of either of these bounds, they receive sufficient

signals about which option is preferred. At this time, the decision maker chooses

option 1 if they stop with RVt∗ = β and 2 at RVt∗ = 0. The larger the boundary sep-

aration, the more information is needed to decide. The initial bias, Z, can be shown

as a natural preference for a given option. The closer this initial bias is towards ei-

ther bound, the less information is required in favour of the corresponding option.

Another parameter that the model can use is the Non-Decision Time (NDT), which

represents the time spent in the decision-making process not contributing towards

the decision-making process, including factors such as the time spent reading and

selecting an option.

The table below gives a summary of the parameters associated with the model.

TABLE 1.1: Summary of variables in Drift-Diffusion model

Parameter Brief Description

µ Rate at which information is accumulated in favour of an option

β Amount of information needed to make a decision

Z Initial bias, often assumed to be unbiased due to experiments so β/2

NDT Time spent not making a decision
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It is possible to make a mistake and pick the least preferred option. This can be

done if the individual receives sufficiently large stochastic shocks in favour of the

other option. However, this becomes less likely in two key ways:

1. A larger drift rate would require a more significant shock to push the signal

towards the least preferred option.

2. A larger degree of boundary separation β will mean that an individual will

require more information in favour of an option and thus may be able to with-

stand a few adverse shocks.

1.4 Estimating the Model

The model itself can prove challenging to estimate. Due to the accumulation pro-

cess’s stochastic nature, two identical individuals will likely take different times to

make a decision as they will face a different series of shocks. We can estimate the

parameters of the Drift-Diffusion model, the drift5 and the bound, by considering

the probability distribution of these decision times at each of the two bounds. From

Voss, Rothermund, and Voss (2004) and Feller (1971) provide a mathematical defini-

tion of these models. The probability distributions of the RV hitting either the upper

or lower bound (β or 0) at time t∗, the decision time, are given by:

Pr(RVt∗ = β) = g+(t∗; β, µ) =
π

β2 exp[(β− z)µ]
∞

∑
n=1

n ∗ sin(
π(β − z)n

β
) ∗ exp[−0.5t∗ ∗ (µ2 +π2n2/β2)]

(1.2)

and for the lower bound.

Pr(RVt∗ = 0) = g−(t∗; β, µ) =
π

β2 exp[(−zµ]
∞

∑
n=1

n ∗ sin(
πzn

β
) ∗ exp[−0.5t∗ ∗ (µ2 +π2n2/β2)]

(1.3)

Where t∗ is the time taken to make a decision, (RT, the time from when a task

starts to when a decision is made and a choice is selected). If a researcher wishes

to include a non-decision time (NDT), this can be implemented by setting t equal to

RT-NDT.
5We will modify the drift rate later to include the parameters associated with risky decision-making,

the curvature of the utility function and probability weighting, in a later section.
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We can integrate the above probability distribution between 0 and decision time

t∗. Doing gives us the probability that a diffusion process will hit the upper bound

before time t∗.

Pr(RVt≤t∗ = β) = G+(t; β, µ) =
∫ t∗

0
g+(t; β, µ)dt (1.4)

and for the lower bound

Pr(RVt≤t∗ = 0) = G−(t; β, µ) =
∫ t∗

0
g−(t; β, µ)dt (1.5)

These integrals and the resulting probabilities can prove to be challenging to

recover due to the infinite integral with an infinite series in; however, there exist

several statistical packages made to deal with this, such as Fast-dm (Voss and Voss,

2007), HDDM (Wiecki, Sofer, and Frank, 2013), ez-diffusion (Wagenmakers, Maas,

and Grasman, 2007), rtdists (Singmann et al., 2020) and RWeiner (Wabersich and

Vandekerckhove, 2014) We can generate a likelihood function from here, which can

get tricky to estimate due to the infinite series within the equations. However, many

different packages and processes can deal with this series, such as the appendix

in Voss, Rothermund, and Voss (2004). Then it is a simple task of maximising the

loglikelihood function

Loglikelihood(θ) =
n

∑
i=1

yilog(G+i) + (1 − yi)log(G−i) (1.6)

Where θ is our variables of interest. yi is an indicator function taking 1 if the

individual chooses the "upper option" and 0 if it takes the "lower". This likelihood

function can be minimised using packages such as Rsolnp (Ghalanos and Theussl,

2015), which uses a method proposed in Ye (1987).

1.4.1 Adding Risk to the model

Above, we have described the Drift-Diffusion model and how it currently stands.

We now aim to apply this model to explain risky decision-making. We do this by

altering how the drift rate is determined; instead of estimating a drift parameter µ,
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we set µ to be the difference in the expected utilities of the lotteries individuals face.

We choose to model risk under Prospect Theory (Tversky and Kahneman, 1992).

1.4.2 Prospect Theory

Incorporating Prospect Theory into the model will enable us to consider individu-

als’ attitudes towards risk and probability and how they impact decision-making.

Incorporating this into the Drift-Diffusion Model can be done by altering the drift

rate. If we recall, the drift rate is the difference between the valuation of both op-

tions. Therefore if we define the drift rate as:

µ = Ua − Ub (1.7)

This can be interpreted as the difference between the two utilities of options. We can

see here that this behaves like a regular drift rate, an increase in Ua, showing option

A becoming more appealing, will cause the drift rate to become more positive.

The utility of each option can be calculated using prospect theory. For this, we

need valuations of the payoffs and how individuals perceive each payoff’s probabil-

ity.

For a utility function, we need a function that has a few key characteristics; it

must be concave in the gains domain, convex in the loss domain, strictly mono-

tonic and continuous. We propose using a normalised constant relative risk aversion

(CRRA) utility function:

U(x) =


xρg

ρg
, if x ≥ 0

−λ (−x)ρl

ρl
, if x ≤ 0

(1.8)

Where ρ measures the curvature of the utility function, as ρ gets closer to 1, the

less risk averse an individual is, where between 0 and 1 is risk-averse and above 1

is risk seeking. We assume different values of ρ for gains and losses to allow for

different attitudes under gains and losses, a result that is commonly found within

the literature (Harbaugh, Krause, and Vesterlund, 2002). The parameter λ represents
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loss aversion. We normalise this to 1 in the case of pure losses. This is because it acts

as a scalar on the drift rate and leads to estimation issues with it and the bound β.

FIGURE 1.2: Visualisation of the Utility Function

The above shows an example of this function for gains; we can see that it is

strictly monotonic; as wealth (W) increases, the utility increases, however, at a di-

minishing rate, showing diminishing marginal returns to additional wealth, a char-

acteristic of risk aversion. As the risk parameter, ρ gets closer to 1; this graph be-

comes more and more linear.

The second thing we need to consider is a weighting function to allow us to

model how an individual can perceive probabilities differently from what they are.

These are used to alter the subjective probability to a decision weight. We consider

the widely used Tversky and Kahneman (1992) function:

W(P) =
Pδ

(Pδ + (1 − P)δ)( 1
δ )

(1.9)

Where δ shows the degree of probability weighting, the closer it is to 1, the less
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distortion and the more the perceived probability curve becomes linear. Whereas

the further away δ is, the higher the degree of probability distortion. Like before, we

assume different values of δ for gambles with gains and losses in our utility function.

FIGURE 1.3: Visualisation of the Weighting Function

Above, we can see a plot of the weighting function in equation 1.9. From here,

we can see an over-weighting of low outcomes and an under-weighing of higher

probability outcomes. As δ moves closer to 1, this function becomes more linear and

moves towards the dashed lines, whereas the further from 1, the larger the degree of

probability distortion.
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Considering Gains

The dataset we use consists of risky binary gambles with two possible outcomes. For

example, a choice between lottery A with payoffs of £10 and £5 with probabilities

of 0.3 and 0.7 and lottery B with payoffs of £15 and £4 with probabilities 0.2 and

0.8. Suppose we had a general lottery with payoff X with probability P and payoff Y

with 1-P. Under the standard expected utility model, the expected utility of a gamble

would be equal to P ∗ U(X) + (1 − P) ∗ U(Y). The rank-dependant utility differs

by including a probability weighting, replacing the higher payoff probability with

decision weights of w(.) and 1-w(.) for the lower payoff. If X > Y then the utility of

this lottery can be defined as:

UL = w(P) ∗ U(x) + (1 − w(P)) ∗ U(Y) (1.10)

With the weighting function in equation 1.9 and the utility function in equation 1.8,

this becomes

UL =
Pδ

(Pδ + (1 − P)δ)( 1
δ )

∗ Xρg

ρg
+ (1 − Pδ

(Pδ + (1 − P)δ)( 1
δ )
) ∗ Yρg

ρg
(1.11)

Similarly, if Y > X then the expected utility becomes:

UL = (1 − w(1 − P)) ∗ U(X) + w(1 − P) ∗ U(Y) (1.12)

which can be written as:

UL = (1 − (1 − P)δ

(Pδ + (1 − P)δ)( 1
δ )
) ∗ Xρg

ρg
+

(1 − P)δ

(Pδ + (1 − P)δ)( 1
δ )

∗ Yρg

ρg
(1.13)

Considering Losses

Modelling losses is very similar to how we model gains. In gains, weights were

attached to the largest gain. However, in this case, they are attached to the payoff

with the largest (most negative) loss. We can then carry on as we did for gains. In

this case, individuals drift towards the option with the least negative payoff, which

is the most preferred. For example, if X < Y (X is a larger loss), our utility function
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becomes

UL =
Pδ

(Pδ + (1 − P)δ)( 1
δ )

∗ −−Xρl

ρl
+ (1 − Pδ

(Pδ + (1 − P)δ)( 1
δ )
) ∗ −−Yρl

ρl
(1.14)

And if Y < X

UL = (1 − (1 − P)δ

(Pδ + (1 − P)δ)( 1
δ )
) ∗ −−Xρl

ρl
+

(1 − P)δ

(Pδ + (1 − P)δ)( 1
δ )

∗ −−Yρl

ρl
(1.15)

Altering the Drift Rate

Now that we have defined our utility framework, we need to combine it with the

Drift-Diffusion Model. We do this by defining the drift rate as the difference in

utilities. For example, suppose we have the option to choose between 2 gambles,

(x1, y1); (p, 1− p) and (x2, y2); (q, 1− q), we can calculate the rank-dependent utility

of each gamble RDU1 and RDU2. We then define the drift rate as the difference

between these utilities, µ = RDU1 − RDU2. From here, we can substitute our drift

rate into the probability distributions shown in equations 1.2 and 1.3 and follow the

procedure shown above.

Due to the incorporation of risk attitudes and probability weighting, we have

more parameters to estimate than the conventional Drift-Diffusion model, non-decision

time, the bound, risk aversion and probability weighting.

1.5 Simulations

Before moving on to actual experimental data, we run some Monte Carlo simulation

exercises to see if it is possible to recover behavioural parameters associated with the

drift-diffusion model accurately. We perform several simulation exercises, starting

from the simple task of Holt and Laury choice list(Holt and Laury, 2002) under stan-

dard expected utility preferences and then progressing to risky binary choices with

rank-dependant utility preferences and finally adding in non-decision time.

These simulations follow the same procedure; we first set some parameters ap-

plicable for each model, such as the curvature of a utility function and the boundary
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separation. From there, we can calculate the expected utilities and drift rate of op-

tions with these parameters for each task. We can then simulate the process and

generate a choice our simulated individual will make, as well as the time taken to

make the decision. Finally, we then use this simulated choice and time data and

equation 2.4 to try and recover the initial parameters we initially set. It is worth not-

ing that due to the drift process’s stochastic nature, we cannot recover parameters

perfectly. The simulation procedure is repeated 100 times for each of the exercises

below. This is to ensure accuracy in our simulations and not recover the parameters

by chance.

1.5.1 Holt and Laury

Our first simulation exercise considers the Holt and Laury (2002) choice list. In this,

subjects are presented with a list of gambles, gamble 1 being a safe gamble and

gamble 2 being a more risky one. As an individual progresses down the choice

list, the larger payoff of both lotteries becomes more likely, making the more risky

gamble more appealing. The point where an individual switch from the safe gamble

to the risky gamble carries information about an individual’s risk attitudes. The

further down the list that a person chooses to switch from safe to risky, the more

risk-averse an individual is. The table below shows the tasks an individual faces in

this experiment.
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TABLE 1.2: The 10 Lotteries from Holt and Laury (2002).

Option A Option B

Task pA1 xA1 pA2 xA2 pB1 xB1 pB2 xB2

1 0.1 2.00$ 0.9 1.60$ 0.1 3.85$ 0.9 0.10$

2 0.2 2.00$ 0.8 1.60$ 0.2 3.85$ 0.8 0.10$

3 0.3 2.00$ 0.7 1.60$ 0.3 3.85$ 0.7 0.10$

4 0.4 2.00$ 0.6 1.60$ 0.4 3.85$ 0.6 0.10$

5 0.5 2.00$ 0.5 1.60$ 0.5 3.85$ 0.5 0.10$

6 0.6 2.00$ 0.4 1.60$ 0.6 3.85$ 0.4 0.10$

7 0.7 2.00$ 0.3 1.60$ 0.7 3.85$ 0.3 0.10$

8 0.8 2.00$ 0.2 1.60$ 0.8 3.85$ 0.2 0.10$

9 0.9 2.00$ 0.1 1.60$ 0.9 3.85$ 0.1 0.10$

10 1.0 2.00$ 0 1.60$ 1.0 3.85$ 0 0.10$

To simulate these tasks, we set a parameter commonly found within the literature

and use this combined with a Standard Expected Utility model (EU = PU(X1) +

(1 − P)U(X2)), to calculate the expected utility for each choice lottery. We start with

this simple model to minimise the parameters we recover before moving on to more

complex models. From here, we calculate the drift rate from the difference in these

lotteries, a positive drift rate showing lottery 1 is preferred to lottery 2 and vice

versa. We then simulate the Drift-Diffusion process to generate the choice and deci-

sion time data. We then perform our estimation process to recover our behavioural

parameters. Given the small number of choices an individual has to make, this pro-

cess is simulated 10 times to generate a larger amount of data to work with6. As

stated previously, this entire process is repeated 100 times to ensure robustness.

The table below shows the results of this first simulation exercise. We include the

parameters used to simulate the data and the mean and variance of the parameters

we recover from the 100 simulations of the data. We can see very close estimates

on average with a low level of variance, confirming we can successfully identify the

model and robustly recover our assumed parameters.
6This is similar to an example found in Webb (2019), where they repeat for 20 identical, risk-neutral

subjects compared to our 10 risk averse subjects.
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TABLE 1.3: Summary of Simulation for Holt and Laury choice list

ρ β

Parameters Used 0.75 2

Mean Parameters Recovered 0.7503 2.005

Standard Deviation 0.0066 0.0363

1.5.2 Risky Choices

We now extend this to a richer experimental design, allowing for the estimation

of more complex models. We use the list of gambles from the experiment in Guo,

Trueblood, and Diederich (2017). In this experiment, subjects had to choose between

a certain payoff and a risky gamble. Such as a certain £39 vs a gamble of £0 and

£70 with probabilities 0.4 and 0.6 respectively7. Subjects face 16 unique choice tasks,

repeated 4 times. However, the tasks were framed in several different ways. We

perform an identical process to before, calculating the drift rate for each task and

then simulating the drift process. In this case, we still assume the standard expected

utility model above. The table below shows the summary of these exercises. As

before, we can see parameters are recovered with low levels of variance. This gives

us confidence to recover parameters using the standard expected utility model and

move only a more complex model.

TABLE 1.4: Summary of Simulation for Binary Choice with SEU

ρ β

Parameters Used 0.75 5

Mean Parameters Recovered 0.7477 4.985

Standard Deviation 0.0129 0.0399

1.5.3 Adding in Probability Weighting

Before this, we considered the standard utility model, which only considers the cur-

vature of the utility function. We wish to extend this to consider prospect theory8,

7We include the tasks individuals face in the appendix.
8Since we consider only gains, this reduces to the Rank Dependant Utility framework.
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this considers the curvature of the utility function (ρ) and a probability weighting

variable (δ). We take the same exercises as above; however, this time, when calcu-

lating drift rates, we use a rank-dependent utility specification (equations 1.10 and

1.12) instead of the standard expected utility.

The table below shows a summary of these simulations. Like before, we can

consistently recover our parameters of interest with good accuracy. Different be-

havioural parameters are used to ensure we can recover our parameters of interest

with any value.

TABLE 1.5: Summary of Simulation for Binary Choice with RDU

ρ δ β

Parameters Used 0.75 0.8 5

Mean Parameters Recovered 0.7559 0.8051 4.948

Standard Deviation 0.0122 0.0119 0.0908

1.5.4 Non-Decision Time

Finally, we need to add non-decision time into the model, the time an individual

spends on a task that doesn’t contribute towards making a decision. This can include

time for reading and understanding what is asked in a task. As before, we simulate

data the same way; however, this time, we can add additional non-decision time to

it. Non-Decision Time is added by adding a given amount of time onto the time it

takes to make a decision. When estimating not decision time, instead of using t∗, use

t ∗ −NDT. As we can see from the summary, we can also recover parameters with a

reasonable degree of accuracy.

TABLE 1.6: Summary of Simulation for Binary Choice with RDU and
Non-Decision Time

ρ δ β NDT

Parameters Used 0.75 0.8 5 0.5

Mean Parameters Recovered 0.7336 0.7882 5.116 0.4566

Standard Deviation 0.0725 0.0561 0.8911 0.1313
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1.5.5 A Simulation with Losses

We have recovered parameters of interest in the gains domain; we now wish to con-

sider losses. Our current selection of experimental tasks does not include losses.

However, we take the negative value instead to create losses. We consider losses

with prospect theory and non-decision time. Below shows the results of our final

simulation exercise, in which we can see that we can successfully recover the values

we set for the four behavioural parameters we consider.

TABLE 1.7: Summary of Simulation for Binary Choice with PT and
Non-Decision Time under Losses

ρ δ β NDT

Parameters Used 0.5 0.7 5 1

Mean Parameters Recovered 0.4973 0.695 4.916 0.9985

Standard Deviation 0.0102 0.0352 0.388 0.0167

Throughout our simulation exercises, we can see that we can successfully iden-

tify the values for the behavioural parameters we set from simple exercises to more

complicated tasks and data.

1.6 Experimental Data

We now move to consider actual experimental data. The data comes from Glöckner

and Pachur (2012); subjects were tasked with choosing between two risky gambles.

Most of these tasks were randomly generated; for example, an individual choosing

between A gamble of 400 and 320 with probabilities of 0.4 and 0.6 and a gamble of

770 and 20 with probabilities of 0.4 and 0.6. There were also a few other deliberately

chosen problems, such as the Holt and Laury (Holt and Laury, 2002) tasks; however,

all tasks still followed the theme of picking between two risky gambles. Subjects

faced two sets of questions 1 week apart to test preference consistency. Given that

they show the same preferences in both rounds, we pool the data. In total, subjects

faced 140 pure gains tasks, 60 pure losses tasks, and a few tasks considering mixed

gambles. For this paper, we focus on gains and losses. We also dropped several
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tasks where subjects mindlessly selected choices (for example deciding in 0.001 sec-

onds). We chose to use the data from this experiment due to the high-quality, easy-

to-understand decision time data, which is accurate to the microsecond (1 thousand

of a second), unlike a majority of other datasets we looked at, which had poor or

non-existent time data. Like our simulation exercises, we shall estimate the parame-

ters we need using equation 1.6. We do this for both gains and losses but do not do

this for the mixed gamble tasks in the experiment due to a small amount, making

estimation difficult.

1.7 Fitting a Benchmark Model

To see how the Drift-Diffusion model explains an individual’s actions, we compare

its performance to Logit-Errors, a well-established model within the literature. Util-

ities can be calculated as they have for the Drift-Diffusion Model. To account for the

stochastic nature of choices, we assume a Logit-Error function. Thus, the probability

of choosing lottery A is given by:

P(A) =
exp(1/sUA)

exp(1/sUA) + exp(1/sUB)
(1.16)

where s is a precision parameter to be estimated. This choice probability function

can be rearranged to be:

P(A) =
1

1 + exp(−µ/s)
(1.17)

Where µ = UA − UB, the difference in the valuations of both gambles is also the

drift rate from the Drift-Diffusion model. This can be done for gains and losses with

no tweaks to the function. According to the above assumptions, the log-likelihood

function is given by:

LL(θ) =
n

∑
i=1

yi ln(Pi(A)) + (1 − yi) ln(1 − Pni(A)) (1.18)

where n is the number of tasks, yi = 1(0) is an indicator function denoting the choice

of lottery A(B) for in task i, and θ is the vector of behavioural parameters to be esti-

mated. We also run a few simulation exercises similar to the previous specification to
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ensure that our model works, can recover preferences and that our coding is correct.

1.8 Comparing Both Models Under Gains

To measure the performance of the Drift-Diffusion model, we wish to compare its

predictive performance to that of our logit errors to see if additional information

gained from decision time can help improve predictive accuracy, as shown in Clithero

(2018a). We do this by considering a k-fold cross-validation method; the dataset is

split into two sets: a training set that is used to recover parameters and a test set

that uses said parameters to predict choices. For both models, we split the data into

2/3 and 1/3, using the first 2/3, the training set, to estimate the parameters associ-

ated with both models. Following this, we predict the choices of the remaining 1/3,

the test set, using the behavioural parameters we recover. When doing this for the

Drift-Diffusion Model, we can calculate their rank-dependent utilities and drift rates

and simulate this process for each of their remaining tasks. From here, we compare

if the choice, predicted by their drift rate with the parameters recovered, matches

the choice we observe. For our Logit-Errors model, we perform an identical pro-

cess where we estimate using 2/3 of the data available on each subject. We then use

the parameters recovered to estimate the probability of choosing option A using the

equation 1.17. From here, we generate a random number between 0 and 1 from a

uniform distribution. If the number generated is less than the probability, option 1

is selected; otherwise, option 2 is selected. We can then see if our predicted outcome

is the same as an individual’s choices in those particular rounds.

For both models, we repeat the process with the final third of the data 100 times

for each observation. For example, simulating the drift process 100 times per dataset.

We do this to ensure that our forecasting results are robust and we aren’t simply

getting lucky with a few randomly generated observations.
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TABLE 1.8: Portion of correct predictions from the final 1/3 of data

DDM Logit-Error

mean 0.7589 0.7313

Median 0.7634 0.7306

Lowest 0.5445 0.5623

Highest 0.9665 0.9072

Variance 0.0063 0.0060

Table 1.8 provides a summary of the forecasting results, showing a proportion of

correct predicted choices from the final 1/3 of the dataset, repeated 100 times. From

both the table and 1.4 below, we can see that our Drift-Diffusion model has both

a higher mean and median success at predicting this final third of chosen options.

The difference between these predictive accuracies of both models is statistically

significant with a Wilcoxon rank sum test with a p-value of 0.04818.

FIGURE 1.4: Density Plot for the predictive accuracy of both models

Whilst the difference in performance between both models is statistically signif-

icant, the difference is relatively small. To increase the robustness of our results, we

consider altering our k-fold cross-validation technique. In this case, we split choice
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data into 5 groups, combine 4 of these groups and use them to be the training set to

estimate individual’s behavioural parameters, then use these to forecast the remain-

ing fifth of their choice data. This process is repeated 5 times to allow each fifth to

have the chance to be the test set and forecasted. This allows each part to be fore-

casted, allowing for a more reliable result. It prevents the possibility that the final

third of the data was easier to predict than the other groups. As before, this forecast-

ing process is repeated 100 times per individual to ensure a more accurate forecast

and eliminate the chance of a lucky string of forecasted behaviour.

TABLE 1.9: Portion of correct predictions under gains

DDM Logit-Error

Mean 0.7520 0.7284

Median 0.7682 0.7262

Lowest 0.6188 0.6023

Highest 0.8604 0.661

Variance 0.0029 0.0039

Again we can see that from table 1.9 above and figure 1.5 below that the Drift-

Diffusion model is outperforming the standard model and that this time the differ-

ences are more significant, providing more support for the in the use of the model.

These differences are also significant with a Wilcoxon rank sum test with a p-value

of 0.0069

9For robustness, we perform this with different utility functions and weighting functions and find
that the model either outperforms the logit-errors or is equal to, depending on the specification. This
can be found in Appendix A.1.
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FIGURE 1.5: Density Plot for the predictive accuracy of both models

1.9 Comparing Both Models Under Losses

We now move to consider losses. The dataset contains relatively few loss tasks. Due

to this, we use our second k-fold procedure to allow for more estimation accuracy.

Like before, we split this into 5 groups, estimate the parameters with 4 of the groups

and then forecast the final group, repeating so that every fifth can be predicted and

used for estimation.

TABLE 1.10: Portion of correct predictions under losses

DDM Logit-Error

Mean 0.6127 0.6898

Median 0.6180 0.6784

Lowest 0.4937 0.5153

Highest 0.7326 0.9043

Variance 0.0034 0.0101
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FIGURE 1.6: Density Plot for the predictive accuracy of both models
under losses

We see the opposite result when considering losses: our logit error model out-

performs the Drift-Diffusion model. We have a few possible explanations for this;

first, we have a minimal amount of loss tasks compared to those for gains. Therefore,

fitting a model with more parameters (4 in the drift model instead of 3 in the logit

error model) could prove more difficult. We also note that the predictive power for

both many suggests more difficulty with losses; this could lead to a different deci-

sion process being involved instead, for example, heuristics shown in Glöckner and

Pachur (2012), based off Brandstätter, Gigerenzer, and Hertwig (2006) or with taking

more time to make a decision10. Another issue could be the many tasks individu-

als carried out during the experiment. Some degree of decision fatigue could lead

to further noise within an individual’s choices. Future work could involve trying

this again with a larger, more focused dataset with losses to test this domain more

thoroughly.

10We do find individuals take longer to decide for loss tasks, a summary of this information can be
found in the Appendix A.2
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1.10 Conclusions

We have considered a well-established, highly researched model in the psychology

literature and extended it into economics and the domain of risky decision-making.

We apply it to a standard risky binary choice experiment to test how incorporating

behavioural parameters associated with risky decision-making into the model can

lead to better predictive powers than models considered in the economics literature.

We have taken the model and compared it to a well-established model within

the economics literature. We can see that the model is suitable for explaining risky

binary choices with our extensive simulation exercises. Following this, we look at

the model’s ability to forecast the decisions made by an individual in a given situ-

ation. We can see that the Drift-Diffusion Model outperforms the logit-error model

we compared it to in the domain of gains. We perform a similar exercise with losses

and find that the model can recover parameters. Still, it struggles with predicting

losses; however, this could be due to the small data available. We suggest perform-

ing this exercise with a larger, more focused dataset to prevent decision fatigue and

noise. The results we gain from our simulation and comparison exercises indicate

that the Drift-Diffusion Model is suitable for modelling an individual’s behaviour

under risk and could be used instead of the logit model when the data is available.

More importantly, it provides us with an argument that decision times are valu-

able and potentially carry a lot of information and models that can incorporate time

should be considered if possible when the data is available.

While we cannot say with the data used, we can speculate that the Drift-Diffusion

Model can recover behavioural characteristics in situations we previously could not.

This includes experiments between a risky gamble and a certain payoff of the same

amount, or in the Holt and Laury experiment shown earlier. We used this in our Holt

and Laury simulation exercises to recover a parameter where previously, one could

only recover a range of parameters. However, this is currently purely speculative

and whilst we have unintentionally done this with simulations and will need to be

investigated with experimental data.

Whilst this is undoubtedly an exciting start to incorporating the Drift-Diffusion

Model into economics, there already exists a few interesting ways we can further
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extend this. As stated earlier, fitting mixed gambles is a natural extension; however,

we need to find suitable data or run an experiment. Following this, we can follow

the history of the literature and look into variance in the parameters, for example, the

bounds and non-decision time varying throughout the experiment. Other examples

of ways to extend this model are by adding time pressure into the mix and seeing

if this causes an impact on the bounds. There is also a possibility of overcoming

one of the limiting characteristics of the model, that being; it could only be used

for binary choices and try to extend it further than this to multiple options. Other

potential extensions can include using this framework in different environments,

such as ambiguity or introducing this into game theory.
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Risk Preferences, Gender Effects
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2.1 Introduction

There is no doubt that risk preferences play a central role in every aspect of eco-

nomic life. Gender differences in risk preferences is a much debated topic and it

has often been argued that these differences might provide a possible explanation

of the observed differences between the two genders in various aspects of economic

life such as financial decision making, hold of front office roles, or entrepreneur-

ship, to name but a few. Nevertheless, there is little agreement on whether there is

a universal pattern of differences between the two genders. Early surveys from the

economic literature (Eckel and Grossman, 2008; Croson and Gneezy, 2009) provide

mostly supporting evidence of women being less willing to accept risks. Recently,

Filippin and Crosetto (2016) conducted an extensive meta-analysis on gender differ-

ences and risk attitudes, using data from 7000 subjects and 54 replication studies of

the Holt and Laury (2002) risk elicitation task. One of their main findings is that:

“[..] gender differences appear in less than 10% of the studies and are

significant but negligible in magnitude once all the data are pooled.”

and they conclude that:

“[..] the structural model seems to confirm that significant gender differ-

ences are detected in the HL task when merging all the observations. The

reason is to be found in the sky-rocketing increase of the statistical power

of the test, which drives fairly close to zero the likelihood of observing a

false negative when data are merged.”

The above statement indicates that in order to be in place to detect any potential

gender effects, one needs to recruit an extremely large sample of subjects, for the

standards of economic experimentation, a task which seems prohibiting given all

the time, financial and practical constraints that a researcher may face. In this paper,

motivated by the conclusions of Filippin and Crosetto (2016), we investigate how

one can increase the extracted information from small sample datasets, and what

are the implications of omitting to do so.

One of the most common approaches to explore potential differences between

genders is to assume a particular preference functional, pool all the data together,
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and estimate a representative agent model, using demographic dummy variables to

control for heterogeneity (see Harrison and Rutström, 2008, Xie, Page, and Hardy

(2017), Vieider et al., 2015, Bouchouicha et al., 2019). Parameters are then obtained

by using either Maximum Likelihood Estimation techniques (MLE) or Non-Linear

Least Squares estimation methods, and the statistical significance of the dummies

defines the existence and the size of potential differences. While the representative

approach is attractive, due to its simplicity , it comes with a serious limitation. By

ignoring individual heterogeneity, the estimated preferences may not be representa-

tive for any of the subjects. Consider an extreme scenario where out of 100 subjects,

50 are male and risk neutral, 25 female and risk seeking with a risk coefficient of

-0.50 (assuming a power utility function as in Holt and Laury, 2002 and later in our

analysis of the form x1−r/(1− r)) and the remaining 25 subjects are females and risk

averse, with a coefficient of 0.50. Pooling all the data together and fitting a represen-

tative agent model to this dataset, including a control variable to capture potential

gender differences, will return an estimated risk aversion very close to zero, imply-

ing risk neutrality, and the coefficient of gender effects to be insignificant1. The main

conclusion that a researcher could draw from a similar analysis is that the observed

population has risk neutral preferences and there are no gender effects. Consider

now a policy maker who aims to identify the risk seeking women in a population.

By conducting a similar analysis, the policy maker will reach the conclusion that no

risk seeking women exist in this sample and no action needs to be taken. While this

example is extreme and perhaps improbable, it is used to highlight the impact of

ignoring potential behavioural heterogeneity in identifying preferences and differ-

ences based on demographic criteria.

On the other end of the spectrum, one could estimate preference functionals at

the individual subject-level (see Hey and Orme, 1994, Stott, 2006). While this ap-

proach takes into consideration the individual characteristics of each subject, a large

amount of data points is required in order to obtain robust and reliable estimates.

This comes at a high cost for the researcher, as larger number of decision tasks would

mean longer sessions that could potentially lead to boredom and eventually to more

1We indeed executed a similar simulation exercise where this result was confirmed. Details are
available on request.
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noisy data.

In the present study we compare the representative agent modelling approach,

to two more flexible and informative methods of parameter estimation that allow

one to simultaneously make inferences at both the individual subject and the exper-

imental population level. In particular, we compare the frequentist and the Bayesian

methods, by analysing the data using Maximum Simulated Likelihood Estimation

techniques (MSLE), as well as Hierarchical Bayesian (HB) econometric modelling.

We use data from three prominent studies of decision making under risk. First, we

use the original data from the Holt and Laury (2002) experiment, and assuming Ex-

pected Utility preferences, we first show how all three inference methods are able

to capture gender effects. Then, we extend our analysis to non-Expected Utility

preferences, and particularly to Rank Dependent Utility, since our focus in on risky

choice in the gains domain. Using the dataset from Baillon, Bleichrodt, and Spinu

(2020), we show that taking into consideration individual heterogeneity, improves

the inference, while the MLE representative agent model fails to identify the exis-

tence of gender differences. Finally, we focus on the domain of losses, and adopting

a Cumulative Prospect Theory framework, we explore the differences between the

two genders, across all the components of risk preferences, namely utility curvature,

probability weighting and loss aversion. We show how MLE fails to capture gen-

der differences and we also focus on the differences between the MSLE and the HB

methods in capturing these differences.

Our results can be summarised as follows. When there is a small number of pa-

rameters to estimate, any of the inference methods will be able to detect the presence

of gender differences in the key behavioural parameters. As the model complexity

increases, and therefore the number of parameters along with their collinearity, more

flexible methods that take into consideration individual heterogeneity, provide more

robust inference when the focus is on the difference between two populations. We

complement our study with an extensive Monte Carlo simulation to compare the

three inference methods, and we show that while all MLE, MSLE and HB methods

are able to successfully recover the mean values of the simulated parameters, fre-

quentist methods are more prone to ignore statistical significance due to overfitting,

compared to Bayesian methods.
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The rest of the paper is organised as follows: section 2.2 briefly introduces the

idea of Hierarchical Bayesian modelling, section 2.3 focuses on the Holt and Laury

(2002) risk elicitation task and presents, along with the task and the data, the econo-

metric specification for both MLE and HB, assuming Expected Utility preferences

(EU), section 2.4 relaxes the hypothesis of EU and introduces Rank Dependent Util-

ity preferences using data that allow the estimation of such preferences, and finally,

section 2.5 focuses on the domain of losses, introducing a Cumulative Prospect The-

ory model and loss aversion. In section 2.6 we report the results of the simulation.

We then conclude.

2.2 Frequentist Vs Bayesian Parameter Estimation

The most common approach to estimate structural decision making models is by

either pooling all data together and fit a representative agent model, or by assum-

ing complete independence and fit subject-level models, using maximum likelihood

estimation techniques (MLE). Fitting a representative agent model ignores much of

individual behavioural heterogeneity and generates estimates which potentially, are

not representative of any individual subject in the sample. A simple way to intro-

duce heterogeneity to the representative model is to condition the parameters to a

set of observable demographics and assume that subjects that belong to the same de-

mographic group share the same behavioural parameters (see for example Harrison

and Rutström, 2008, Bouchouicha et al., 2019). An alternative way to introduce het-

erogeneity, within the frequentist framework, is to use a random-coefficients model,

a popular method to model unobserved heterogeneity, on top of the observed one

(e.g. through demographics). In this kind of modelling, it is assumed that each

behavioural parameter in the model is characterised by an underlying distribution

across the population. Using MLE techniques and simulation, it is possible to com-

bine estimates of the population distribution (mean and standard deviation) with

individual choices, and make inferences at both the population and the subject level

(for applications see Gaudecker, Van Soest, and Wengström, 2011; Conte, Hey, and

Moffatt, 2011; Moffatt, 2016). Nevertheless, it is known that MLE is susceptible to

overfitting and may generate noisy and unreliable estimates when there is a lack of
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a large number of observations (see Bishop, 2006, pp. 166, Nilsson, Rieskamp, and

Wagenmakers, 2011). An alternative method to introduce heterogeneity and miti-

gate these drawbacks is to adopt Hierarchical Bayesian estimation techniques (see

Balcombe and Fraser, 2015a; Ferecatu and Önçüler, 2016 and Baillon, Bleichrodt,

and Spinu, 2020 for some recent applications of hierarchical models for choice mod-

els under risk and Stahl, 2014 for ambiguity models.). The key aspect of hierarchical

modelling is that even though it recognises individual variation, it also assumes

that there is a distribution governing this variation (individual parameter estimates

originate from a group-level distribution). As Baillon, Bleichrodt, and Spinu (2020)

highlight, Hierarchical Bayesian modelling is a compromise between a representa-

tive agent and subject-level type estimation. It estimates the model parameters for

each subject separately, but it assumes that subjects share similarities and draw their

individual parameters from a common, population level distribution. In that way,

individual parameter estimates inform each other and lead to a shrinkage towards

the group mean that reduces biases in parameter estimates. The latter leads to more

efficient and reliable estimates compared to those estimated using frequentist meth-

ods. One of the most crucial aspects of Bayesian inference, is the way uncertainty

is incorporated in the econometric model in the form of probability distributions.

A researcher can use her subjective beliefs or objective knowledge and form a prior

distribution which summarises all the available knowledge regarding a particular

parameter, before observing any data. In Bayesian inference, the estimation of a pa-

rameter of interest corresponds to the calculation of the probability distribution over

the parameter, given the observed data and the prior beliefs. Another aspect of the

Hierarchical model is that it is applied in an hierarchical form providing both within

decision unit analysis (subject level) and across unit analysis (population level). Both

the way the Bayesian model incorporates uncertainty and its Hierarchical structure,

allows it generate precise estimation of preferences, even when the available data

are limited.

Jacquement and L’Haridon (2018, p. 247) provide a comparison between the fre-

quentist and Bayesian methods, highlighting the most important differences, namely

the way each method interprets each parameter, the nature of the point estimation,

the way intervals for statistical significance are estimated, and; the way hypothesis
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testing can be done. For the frequentist method the parameter is an unknown con-

stant while for the Bayesian a random variable. Similarly, the point estimation will

be the value of the estimator in the former, while a posterior summary in the latter

(e.g. the mode of the distribution). For statistical significance, the frequentist method

requires the estimation of confidence intervals, compared to the credible intervals in

the Bayesian inference. As Huber and Train (2001) point out, in the presence of

small samples, the two procedures can provide numerically different results, due to

the different way of treating uncertainty in the parameters of the population distri-

bution. In what follows, we compare the three different inference methods (MLE,

MSLE and HB) in their capacity to detect gender differences, focusing on three rep-

resentative examples of decision making under risk.

2.3 Risk Preferences and Expected Utility

Gender differences in risky decision making has been the topic of numerous studies.

Eckel and Grossman (2008) and Croson and Gneezy (2009) summarise the literature,

finding that female subjects tend to be more risk averse. Charness and Gneezy (2012)

and Holt and Laury (2014) discuss how the risk elicitation task affects the inference

on differences, while Filippin and Crosetto (2016) challenge the early evidence by

finding that the observed effects are negligible in magnitude. In this section we

focus on one of perhaps the most common elicitation methods that has been used in

the literature, the Holt and Laury (2002) task.

2.3.1 Decision Task and Data

For the analysis, we use the data from the original Holt and Laury (2002) study. Each

subject is presented with the 10 choice tasks, as shown in Table 2.1. Each task consists

of a choice between two paired lotteries A and B. The payoffs for lottery A are fixed

to $2.00 and $1.6, while for lottery B, the payoffs are 3.85 and $0.10. Since lottery A

is characterized by less variable payoffs, one can label A as the safe option and B the

risky one. In the first choice task, the probability of getting the high payoff is equal

to 10% for both lotteries, and it increases as one moves down the table. At the first

row, only the extremely risk seeking subjects are expected to choose lottery B. A risk
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neutral person is expected to choose lottery A for the first 4 tasks (since the expected

value of lottery A is greater) and then switches to lottery B for the remaining tasks.

Holt and Laury (2002), assuming a particular form of risky preferences, provide a

mapping between then number of safe choices and the value of risk coefficient of a

subject (the higher the degree of risk aversion, the higher the number of safe choices).

There are data from 212 subjects (95 females) from 4 treatments, an incentivised

low-payoff treatment (LOW1), with payoffs as those in Table 2.1, a hypothetical treat-

ment (HYP), with the payoffs scaled up by 20, 50 or 90, an incentivised high-payoff

treatment (HIGH), with payoffs scaled up by 20, and finally, a low-payoff treatment

(LOW2), identical to the first one. For our purposes, we use only the data from the

low-payoff treatment (LOW1).

TABLE 2.1: The 10 Lotteries from Holt and Laury (2002).

Option A Option B

Task pA1 xA1 pA2 xA2 pB1 xB1 pB2 xB2

1 0.1 2.00$ 0.9 1.60$ 0.1 3.85$ 0.9 0.10$

2 0.2 2.00$ 0.8 1.60$ 0.2 3.85$ 0.8 0.10$

3 0.3 2.00$ 0.7 1.60$ 0.3 3.85$ 0.7 0.10$

4 0.4 2.00$ 0.6 1.60$ 0.4 3.85$ 0.6 0.10$

5 0.5 2.00$ 0.5 1.60$ 0.5 3.85$ 0.5 0.10$

6 0.6 2.00$ 0.4 1.60$ 0.6 3.85$ 0.4 0.10$

7 0.7 2.00$ 0.3 1.60$ 0.7 3.85$ 0.3 0.10$

8 0.8 2.00$ 0.2 1.60$ 0.8 3.85$ 0.2 0.10$

9 0.9 2.00$ 0.1 1.60$ 0.9 3.85$ 0.1 0.10$

10 1.0 2.00$ 0 1.60$ 1.0 3.85$ 0 0.10$

2.3.2 Theoretical Framework and Econometric Specification

We assume that the agent holds Expected Utility preferences and receives utility

from income according to a Constant Relative Risk Aversion (CRRA) utility function

of the form:

u(x) =
x1−r

1 − r
(2.1)
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where x is the monetary payoff, and r is the risk coefficient with r > 0 indicating a

concave utility for gains (risk aversion), r < 0 a convex utility (risk seeking) and r =

0 a linear utility (risk neutrality). For r = 1 the function collapses to the logarithmic

function. A lottery is evaluated by the weighted sum of the utilities of the payoffs,

therefore, the expected utility of lottery A, for a particular task, is given by

EUA = pA1
xA1

1−r

1 − r
+ (1 − pA1)

xA2
1−r

1 − r
(2.2)

To account for the stochastic nature in choices, we assume a logit link function. Thus,

the probability of choosing lottery A is given by:

P(A) =
exp(1/ξEUA)

exp(1/ξEUA) + exp(1/ξEUB)
(2.3)

with ξ a precision parameter to be estimated. According to the above assumptions,

the log-likelihood function is given by:

LL(θ) =
N

∑
n=1

I

∑
i=1

yni ln(Pni(Ai)) + (1 − yni) ln(1 − Pni(Ai)) (2.4)

where N is the total number of subjects, I is the number of tasks, yni = 1(0) is an

indicator function denoting the choice of lottery A(B) for subject n in task i, and θ is

the vector of behavioural parameters to be estimated. Therefore, there are 2 param-

eters to estimate, the risk coefficient r and the precision parameter ξ. To introduce

gender effects, we introduce a dummy variable yFEMALE which takes the value 1 is

the subject is female, otherwise it is equal to 0. For each parameter θn in our model,

with θn ∈ {r, ξ} we specify

θn = θ0 + θFEMALE × yFEMALE (2.5)

Since we consider a stochastic model which takes into consideration the errors

of the decision maker, we include in the analysis the observations of all the subjects

(rather than focusing only on subjects without multiple switches). There are in total

4 parameters to estimate, the risk coefficient, the precision parameter and the two
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parameters that capture gender effects. 2

For the HB estimation, we follow Rouder and Lu (2005) and Nilsson, Rieskamp,

and Wagenmakers (2011) set-up. Each subject n made a series of I binary choices in

a given dataset and the observed choices vector is denoted by Dn = (Dn1 · · · DnI).

Every subject is characterised by its own parameter vector Θn = (rn, ξn), and we as-

sume that both the utility curvature rn and the sensitivity parameter ξn are normally

distributed (θn ∼ N(µθ , σθ)), while for the hyper-parameters we assume normal pri-

ors for the mean µθ and uninformative priors (uniform) for σθ . We also follow the

standard procedure and transform all the parameters to their exponential form to en-

sure that they lie within the appropriate bounds (see Balcombe and Fraser, 2015a). To

capture gender differences, we condition the mean of all parameters to a female co-

variate. For each subject n, each parameter θn is assumed to be drawn from a normal

distribution of the form: θn ∼ N(θ + θFEMALE × yFEMALE, σ2
θ ), with yFEMALE a female

dummy variable. That is, the mean between the two groups differs by θFEMALE. In

what follows, we use either a normal or a log-normal distribution, depending on

whether there are constraints for a parameter to be strictly positive.

The likelihood of subject’s n choices is given by:

P(Dn|Θn) =
I

∏
i=1

P(Dn,i|Θn)

where P(Dn,i|Θn) is given by:

LL(θ) =
I

∑
i=1

yni ln(Pni(Ai)) + (1 − yni) ln(1 − Pni(Ai)) (2.6)

Combining the likelihood of the observed choices and the probability distribution of

all the behavioural parameters, the posterior distribution of the parameters is given

by:

P(Θ|D) ∝ P(D|Θ)× P(Θ)

with P(D|Θ) being the likelihood of observed choices over all the subjects and P(Θ)

the priors for all parameters in the set Θ.

2For the estimation we use a general nonlinear augmented Lagrange multiplier optimisation rou-
tine that allows for random initialisation of the starting parameters as well as multiple restarts of the
solver, to avoid local maxima. The estimation was conducted using the R programming language for
statistical computing (The R Manuals, version 3.6.1. Available at: http://www.r-project.org/).



2.3. Risk Preferences and Expected Utility 39

Monte Carlo Markov Chains (MCMC) were used to estimate all the specifica-

tions. The estimation was implemented in JAGS (Plummer, 2017). The posterior

distribution of the parameters is based on draws from two independent chains, with

50,000 MCMC draws each. Due to the high level of non-linearity of the models,

there was a burn-in period of 25,000 draws, while to reduce autocorrelation on the

parameters, the samples were thinned by 10 (every tenth draw was recorded). Con-

vergence of the chains was confirmed by computing the R̂ statistic (Gelman and

Rubin, 1992).

Finally, for the MSLE we follow Train (2009) and Moffatt (2016) and we esti-

mate the models with the help of simulation. As mentioned before, in this random-

coefficient model, the behavioural parameters for a given subject are fixed and they

vary across the experimental population according to a distribution (usually as-

sumed Normal). Assuming that a parameter θ is drawn from a distribution with

density g(θ), for a set of I choices, the likelihood of subject’s n choices is given by:

LL(θ) =
∫ [

I

∏
i=1

Pni(Ai)
yni × (1 − Pni(Ai)

1−yni)g(θ)

]
dθ (2.7)

and the total log-likelihood is given by the sum of the logarithm of (2.7) across all

subjects. The parameter θ is distributed over subjects according to the density func-

tion g(θ), and is known as the subject-specific random effect. The variation in θ cap-

tures the between-subject heterogeneity. When there are more than one parameters

θ, the distribution g(θ) is a multivariate distribution and the integral is multidimen-

sional. Therefore, the challenge for the estimation method is how to evaluate the

integral in (2.7), since there is no analytical solution. In our analysis, we resort to

simulation to approximate the integral, using Maximum Simulated Likelihood Es-

timation techniques. We use 100 Halton draws per subject. Following Conte, Hey,

and Moffatt (2011), we assume the stochastic parameter ξ to be constant. For the

Expected Utility model we therefore estimate 5 parameters, the mean and standard

deviation of the risk coefficient r, the precision parameter ξ and the gender effects

for both parameters.
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2.3.3 Results

Table 2.2 reports the estimates from the three inference methods. The first column

reports the results from the MLE, the middle from the MSLE and the last one from

the HB model. For each parameter θ, we report the point estimate for the MLE, the

mean of the distribution µθ for the MSLE, and the mode of the posterior distribu-

tion for the HB. The standard errors are reported in the Table, with the exception

of the HB model where the standard deviation of the posterior distribution of each

parameter is reported instead. The statistical significance is based on the respective

confidence intervals (credible intervals for the HB).

TABLE 2.2: Estimates using the Holt and Laury (2002) data.

MLE MSLE HB

r 0.289∗∗∗ 0.265∗∗∗ 0.292∗∗∗

s.e. 0.022 0.021 0.033

rFEMALE 0.103∗∗∗ 0.103∗∗∗ 0.103∗∗

s.e. 0.034 0.021 0.050

σr - 0.192 -

s.e. - 0.000 -

ξ 0.253∗∗∗ 0.184∗∗∗ 0.086∗∗∗

s.e. 0.014 0.016 0.014

ξFEMALE 0.050∗∗ 0.136 0.041

s.e. 0.023 0.193 0.333

The Table reports estimates from all three inference methods: Maxi-
mum Likelihood Estimation (MLE), Maximum Simulated Likelihood
Estimation (MSLE) and Hierarchical Bayesian (HB). For each param-
eter θ, the Table reports the point estimate for the MLE, the mean of
the distribution µθ for the MSLE, and the mode of the posterior distri-
bution for the HB. Standard errors are reported (standard deviation

for the HB). ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In all cases, the risk coefficient is positive and statistically significant, indicating

risk averse preferences for all subjects. The coefficient of risk aversion ranges be-

tween 0.265 and 0.292 between the three inference methods, what Holt and Laury
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(2002) characterise as “slightly risk averse”. Focusing on the gender effects param-

eters, the coefficient is positive and statistically significant in all three cases, and

remarkably at the same magnitude of 0.103. Finally, focusing on the precision pa-

rameter ξ, the effect of introducing more flexible inference methods to its magnitude,

is apparent. The estimate of ξ using MLE is equal to 0.253 which is quite large com-

pared to the other two methods. Since there is an inverse relationship between the

size of ξ and the estimated noise (the lower the ξ the higher the precision) a larger es-

timate of ξ indicates issues with overfitting. As the inference methods become more

flexible, the estimate of ξ becomes smaller, indicating more precise and less noisy

estimates. The main conclusion from this analysis, is that by ignoring the between-

subject heterogeneity, and estimating a model assuming a basic level of heterogene-

ity, as in the case of the MLE estimation, it is possible to detect the existence of

gender differences, regardless of which estimation method is adopted. In what fol-

lows, we explore whether this result can be generalised when the complexity of the

model increases. Filippin and Crosetto (2016) extend their analysis and investigate

whether relaxing the expected utility assumption, has an effect to the inferred gen-

der differences. By introducing a probability weighting function and non-expected

utility preferences, they estimate a structural specification, using MLE, and show

that the gender differences in the risk coefficient disappear, and they appear in the

probability weighting parameter. As the original Holt and Laury (2002) task was

not developed with non-expected utility preferences in mind, in the next section we

repeat the same analysis as above, using data from an experiment which was partic-

ularly developed to identify risk preferences, stemming from both the curvature of

the utility function and the shape of the probability weighting function.

2.4 Risk Preferences and Rank Dependent Utility

Motivated by the Allais paradox, a vast theoretical and experimental literature emerged,

challenging the assumption of expected utility preferences (see Starmer, 2000 for a

review of non-EU theories; Camerer, 1995 for an early discussion of the experimen-

tal work; and Hey, 2014 for a more recent review). In this section, we focus on one



42 Chapter 2. Risk Preferences, Gender Effects and Bayesian Econometrics

of the most influential alternatives to EU, the Quiggin (1982) Rank Dependent Util-

ity model (RDU) which later led to the modification of the Original Prospect The-

ory model and the development of the Tversky and Kahneman (1992) Cumulative

Prospect Theory model (which we explore in the next section). In the RDU model,

attitudes towards risk are characterised by both the curvature of the utility function,

and the shape of the probability weighting function, while there is evidence that

the two components are not strongly correlated (Qui and Steiger 2011; Toubia et al.

2013). Therefore, given the extensive empirical evidence of the existence of non-EU

preferences, it is crucial to take both components into consideration, when one in-

vestigates the existence of gender differences in risk preferences. We do so by using

the data from Baillon, Bleichrodt, and Spinu (2020).

2.4.1 Decision Task and Data

Objective of this experiment was to identify the reference point that subjects are us-

ing when they make choices under risk. Each experimental task involved a choice

between two paired lotteries again, A and B. An optimal design was employed to

construct the questions of the experiment in a way that they would satisfy the fol-

lowing 5 criteria: (1)the questions must be diverse in terms of number of outcomes

and magnitudes of probabilities involved, (2)the questions within each choice must

have nonmatching maximal or minimal outcomes, (3) the questions must be diverse

in terms of relative positioning in the outcome space, (4) they must have similar ex-

pected value to avoid trivial or statistically noninformative choice situations, and;

(5) they must be “orthogonal” in some sense to maximise statistical efficiency. The

number of the outcomes within each lottery varied between tasks, from 2 to 4 out-

comes, all in the gains domain (strictly positive). An example of a task is provided

below:

A =


135, with probability 0.55

290, with probability 0.35

329, with probability 0.10

B =



159, with probability 0.05

259, with probability 0.55

359, with probability 0.10

409, with probability 0.30
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The order of the tasks was randomised, and there was a total of 70 tasks per subject,

with varying payoff and probability levels, generating a rich dataset for structural

estimations. There are in total data from 139 subjects (49 females).3 The experimental

population consisted of students in Moldova, and the payoffs were expressed in the

local currency. To incentivise the experiment, each subject had a one-third chance

to be selected among all the subjects, to play out one of their choices for real. The

experiment involved high stakes with payoffs up to a week’s salary.

2.4.2 Theoretical Framework and Econometric Specification

As mentioned before, the RDU model consists of two components, the utility func-

tion and the probability weighting function, which transform every objective prob-

ability p to the decision weight w(p) in the interval [0, 1]. We again assume a CRRA

utility function, while for the probability weighting function, we assume the widely

used Tversky and Kahneman (1992) function of the form:

w(p) =
pγ

(pγ + (1 − p)γ)1/γ
(2.8)

where γ is the probability weighting parameter. The form of the function is inverse-S

shaped for γ < 1, indicating overweighting of low probabilities and underweighting

of moderate and high probabilities. To evaluate the RDU of a lottery, we first need to

rank the outcomes of the lottery from the best to the worst, such that x1 ≥ x2, · · · ,≥

xn. The decision weight associated with each outcome is given by:

π(x1) = w(p1)

π(x2) = w(p1 + p2)− w(p1)

· · ·

π(xn) = 1 − w(p1 + p2 + · · ·+ pn)

3For our analysis we use the data from 136 subjects as there were missing data on the gender of 2
subjects, and 1 subject had missing data.
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The RDU of lottery A is then given by

RDU(A) =
N

∑
n=1

π(xn)
xn

1−r

1 − r
(2.9)

We assume the same stochastic function as in Equation 2.3, by replacing the ex-

pected utility with the corresponding Rank Dependent Utility, and we form the

log-likelihood function as in Equation 2.4 for the MLE estimation. As there are no

multiple treatments, we control only for gender differences by introducing a gender

dummy for all the parameters (r, γ, ξ, giving in total 6 parameters to estimate).

For the HB model, on top of the specifications for r and ξ, which are exactly the

same as in the EU case, we need an additional specification for the γ parameter.

This parameter must be positive, with a lower bound equal to 0.279 to ensure the

monotonicity of the function. For the MSLE estimation, we need to estimate the

parameters of the two distributions for r and γ, namely the means µr and µγ and

their standard deviations σµ and σγ
4.

2.4.3 Results

Table 2.3 reports the results from all the three inference methods. The results are

quite similar to what is usually observed in this literature. The estimated risk co-

efficient r is between 0.360 and 0.480, indicating moderate risk averse preferences,

while the estimate for the probability weighting function is equal to 0.586 and 0.621,

indicating an inverse-S shape of the function. While these results are quite uniform

and the estimates look quite close in terms of magnitude and statistical significance,

there are contradictory results regarding the presence of gender effects. Assuming

heterogeneity only at the gender level (MLE) fails to capture any kind of effects for

any of the parameters, while a same pattern is observed when MSLE is used to es-

timate the model. Nevertheless, when HB is used, one can infer that there is a sig-

nificant difference between males and females in the way objective probabilities are

transformed. With an estimate of γ equal to 0.705 (compared to 0.621 for men), it

4In the framework of MSLE, the coefficient vector θ is assumed to be normally distributed, across
the population, with mean equal to a vector b and covariance matrix W. To maintain a manageable
number of parameters, we assume that the off-diagonal elements of W are equal to zero and estimate
the variance of each distribution. Allowing for correlation between the parameters led to worse per-
formance of the model.



2.4. Risk Preferences and Rank Dependent Utility 45

seems that women tend to exhibit lower probability distortion. Again, the effect of

the different estimation methods on the precision parameter ξ is similar as in the Ex-

pected Utility case (the noise in the estimates decreases when more flexible inference

methods are introduced).

TABLE 2.3: Estimates using the Baillon, Bleichrodt, and Spinu (2020)
data.

MLE MSLE HB

r 0.479∗∗∗ 0.424∗∗∗ 0.360∗∗

s.e. 0.032 0.038 0.029

rFEMALE -0.025 -0.030 -0.054

s.e. 0.111 0.203 0.099

σr - 0.291∗∗ -

s.e. - 0.122 -

γ 0.598∗∗∗ 0.586∗∗ 0.621∗∗∗

s.e. 0.016 0.251 0.029

γFEMALE 0.050 −0.060 0.084∗

s.e. 0.032 0.244 0.049

σγ - 0.943 -

s.e. - 0.821 -

ξ 0.121∗∗∗ 0.076∗∗∗ 0.083∗∗∗

s.e. 0.001 0.007 0.010

ξFEMALE 0.041 -0.003 0.026∗∗∗

s.e. 0.044 0.013 0.005

The Table reports estimates from all three inference methods: Maxi-
mum Likelihood Estimation (MLE), Maximum Simulated Likelihood
Estimation (MSLE) and Hierarchical Bayesian (HB). For each param-
eter θ, the Table reports the point estimate for the MLE, the mean of
the distribution µθ for the MSLE, and the mode of the posterior distri-
bution for the HB. Standard errors are reported (standard deviation

for the HB). ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The analysis above provides an example of the implications of ignoring hetero-

geneity between (as well as within) participants. While a basic MLE estimation pro-

vides no evidence of any kind of gender differences, allowing for a more informative
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approach reveals the existence of such differences. In the next section, we extend our

analysis to one of the most important domains of decision theory under risk, that of

loss aversion.

2.5 Risk Preferences and Loss Aversion

In this section we focus on the three components that characterise risk preferences

in the losses domain, as these are articulated in the Tversky and Kahneman (1992)

Cumulative Prospect Theory (CPT) model. The CPT model adopts a similar ap-

proach to the RDU model, on the way it handles monetary payoffs and probabilities,

with the additional feature of loss aversion, the concept that “losses loom larger than

gains”. The results from the literature are mixed. Some studies find that women are

more less loss averse (see Schmidt and Traub, 2002, Brooks and Zank, 2005), others

that males are more loss averse (Booij, Van praag, and Kuillen, 2009), others that

there is no difference (Harrison and Rutström, 2008), and others with a mixed result

(Bouchouicha et al., 2019). As Bouchouicha et al. (2019) argue, currently, there is no

consensus of what is the appropriate definition of loss aversion in the literature5.

Nevertheless, for the sake of the example, we will focus on the CPT definition of loss

aversion, while our approach can be extended to alternative definitions.

2.5.1 Decision Task and Data

To estimate a CPT specification when losses are present, we use the data from Bou-

chouicha et al. (2019) which is a subset from the data used in Vieider et al. (2015).

There are in total observations of almost 3000 subjects, from 30 countries, on deci-

sion making under risk and ambiguity, in both the gains and losses domain. As

our focus is on small samples, we use only the USA data. This set includes the

choices of 95 subjects (47 females) in 12 choice tasks (6 in the gains domain, 5 in the

losses domain, and 1 in the mixed domain to identify the loss aversion parameter).

While there are available data on a larger set of risky tasks (28 tasks), we follow Bou-

chouicha et al. (2019) and use only the smaller subset for two reasons: (1) this set

5See Schmidt and Zank (2005) for the various definitions of loss aversion.
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of tasks includes only 50:50 gambles, which allows the estimation of a functional-

free probability weighting function, and; (2) estimating a structural model from a

small set of observations per participant is one of the strengths of the Hierarchical

approach, and this dataset allows to test the limits of this approach.

All tasks are in the form (x, y), representing the prospect of getting the monetary

payoff x with probability 50% or y with the residual probability, with x and y being

positive, negative or zero, depending on the task (Table 2.4 lists the 12 tasks). The

subject had to express her certainty equivalent for each of the tasks. For the mixed

domain prospect, the amount l was elicited, that would make the subject indifferent

between a 50:50 gamble of (20,l) and the status quo of zero. The experiment was

incentivised and an endowment equal to the largest possible loss was provides to

the subject, to cover for potential losses.

TABLE 2.4: The tasks from Bouchouicha et al. (2019)

Gains Losses Mixed

(5,0) (-5,0) (20,-l)

(10,0) (-10,0)

(20,0) (-20,0)

(30,0) (-20,-5)

(30,10) (-20,-10)

(30,20)

2.5.2 Theoretical Framework and Econometric Specification

We model preferences assuming a CPT decision maker. We employ a power utility

function as before, of the form:

u(x) =


x1−r

1−r , if x ≥ 0

−λ (−x)1−r

1−r , if x < 0

with r the risk coefficient, and λ the parameter of loss aversion. The status quo of

zero is assumed as a reference point. We assume a common parameter for r for

gains and losses, for two reasons: (1) there is extensive empirical evidence of no
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difference between the two domains (see Fox and Poldrack 2009), and; (2) to avoid

any potential identification issues of the loss aversion parameter (see Wakker, 2010).

As mentioned before, since only 50:50 gambles are used in the analysis, there is no

need to specify a functional form for the probability weighting function. Therefore,

we introduce two parameters to estimate, wg and wl , which represent the probability

weighting for gains and losses respectively. Summarising, a prospect L = (x, y) can

be evaluated as:

U(L) = wsu(x) + (1 − ws)u(y)

with s ∈ {g, l}, while for the mixed prospect L = (x, l), the prospect is evaluated as:

U(L) = wgu(x) + wlu(l)

The certainty equivalent ĉe for a prospect L is then given by:

ĉe = u−1[wsu(x) + (1 − ws)u(y)]

To form the likelihood function we need a different approach to the one used in the

previous sections. In particular we assume that a decision maker states her certainty

equivalent with some noise. The observed certainty equivalent of a subject in a task

i is equal to cei = ĉe + ε i, where ĉe is the theoretical optimal certainty equivalent,

for a set of behavioural parameters, and ε ∼ N (0, ξ2) with ξ being the standard de-

viation of the Fechner error (see Hey and Orme, 1994). We assume that this error

is domain-specific (for mixed gambles we use the error for losses) and we also take

into consideration a contextual error Wilcox 2011 by making the parameter ξ to be de-

pendent on the difference between the best and the worst outcome of each prospect.

That is, ξi = ξ|xi − yi|. The loglikelihood function for N subjects and I tasks is then

given by:

LL(θ) =
N

∑
n=1

I

∑
i=1

ln[ψ(θn, Li)] (2.10)
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with θ a vector of behavioural parameters to be estimated, Li a task i and ψ the

contribution to the likelihood function given by:

ψ(θn, Li) = ϕ

(
ĉeni − ceni

ξnis

)

where ϕ is the standard normal density function. For the MLE estimation, we fol-

low Bouchouicha et al. (2019) and we assume heterogeneity of the parameters at the

gender level, and the domain level for the decision weights and the precision pa-

rameters. We need to estimate 12 parameters in total (r, λ, wg, wl , ξg, ξl along with

the controls for gender).

For the HB model, the specification of the likelihood function remains the same

as in the MLE case. We specify distributions for the six parameters as above, with the

decision weights constrained to the interval [0, 1] and the loss aversion parameter to

the interval [0, 10], while for the MSLE, we estimate the parameters of the distribu-

tions for the risk attitude, the loss aversion and the probability weighting for gains

and losses.

2.5.3 Results

Table 2.5 reports the estimates from the three inference methods. Three points are

worth to mention: (1) there is significant loss aversion in this sample with a λ param-

eter statistically significant ranging between 1.596 and 1.672, (2) the risk coefficient

is not statistically different than zero for the MLE and the HB cases, indicating a lin-

ear utility function, (3) the probabilities in the gains domain are distorted more that

the probabilities in the losses domain (for instance, the decision weight of 0.5 is esti-

mated to be 0.426 for gains and 0.478 for losses in the MLE case), and; (4) the control

coefficient for gender differences is insignificant for all the major parameters of in-

terest, in the MLE case with the exception of the noise parameter. Once again, using

MLE techniques, one can conclude that there are no gender differences in the way

females and males perceive monetary outcomes, transform probabilities to decision

weights or perceive losses. Focusing on the more flexible methods of MSLE and HB,

two points are interesting. First, the estimates of the mean, for all the parameters,

are remarkably close between the two methods reinforcing the result of Huber and



50 Chapter 2. Risk Preferences, Gender Effects and Bayesian Econometrics

Train (2001). Nevertheless, when gender effects are considered, while both methods

find differences in the loss aversion parameters between the two groups, the MSLE

methods fails to detect any gender effects in the key parameter or risk attitude. A

potential explanation for this result could be the larger estimate of the precision pa-

rameter (a lower value indicates more precise estimates).

In this additional example, we provide further evidence that as the model com-

plexity increases, by ignoring heterogeneity at the subject level, it may lead to incor-

rect inference regarding the difference between different demographic groups. Both

methods that allow for this kind of heterogeneity (MSLE and HB) managed to detect

the existence of such effects. Nevertheless, the results are not uniform. To identify

which method is the most appropriate to use, in the next section we report the re-

sults of an extensive simulation exercise were we compare the performance of each

of the methods.

2.6 Exploring the Advantages of HB Modelling

In the previous sections, we have shown that the identification on gender effects

largely depends on the adopted inference method. We have provided a rigorous

comparison of the representative agent model against two alternative methods that

allow for extensive behavioural heterogeneity, even when the available sample size

is small. Given that all three methods result is quantitatively different estimates, it

raises the question of which method should one adopt. In this section we aim to

provide an answer to this question, by means of an extensive Monte Carlo simu-

lation exercise. Several studies have focused on the comparison between classical

and Bayesian estimates, providing support on the latter (see for example Nilsson,

Rieskamp, and Wagenmakers, 2011 or Gao, Harrison, and Tchernis, 2020). Here we

repeat a similar exercise, suitably adapted to our objective of identifying gender dif-

ferences in the elicited behaviour.

The main goal of this simulation study is two-fold. First, we want to confirm

whether all estimation procedures are able to accurately recover the true parameter

values from simulated data. Secondly, we test whether the inference methods under
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TABLE 2.5: Estimates using the Bouchouicha et al. (2019) data.

MLE MSLE HB

λ 1.596∗∗∗ 1.672∗∗∗ 1.615∗∗∗

s.e. 0.099 0.112 0.113
λFEMALE 0.321 0.430∗∗∗ 0.398∗∗∗

s.e. 0.211 0.141 0.136
σλ - 0.467∗∗∗ -
s.e. - 0.044 -
r -0.133 0.146∗∗ -0.026

s.e. 0.07 0.061 0.019
rFEMALE -0.011 -0.061 −0.082∗

s.e. 0.115 0.083 0.041
σr - 0.000 -

s.e. - 0.053 -
wg 0.426∗∗∗ 0.433∗∗∗ 0.444∗∗∗

s.e. 0.019 0.023 0.017
wgFEMALE -0.009 -0.032 -0.037

s.e. 0.031 0.031 0.056
σwg - 0.38∗∗∗ -
s.e. - 0.051 -
wl 0.478∗∗∗ 0.467∗∗∗ 0.501∗∗∗

s.e. 0.019 0.022 0.010
wl FEMALE 0.007 -0.010 -0.011

s.e. 0.031 0.031 0.037
σwl - 0.436∗∗∗ -
s.e. - 0.048 -
ξ 0.173∗∗∗ 0.178∗∗∗ 0.097∗∗∗

s.e. 0.007 0.012 0.012
ξFEMALE 0.028∗∗∗ 0.000 0.051

s.e. 0.012 0.000 0.261
ξl 0.150∗∗∗ 0.112 0.063∗∗∗

s.e. 0.006 0.008 0.007
ξl FEMALE 0.033∗∗∗ 0.000 0.055

s.e. 0.011 0.000 0.311
The Table reports estimates from all three inference methods: Maxi-
mum Likelihood Estimation (MLE), Maximum Simulated Likelihood
Estimation (MSLE) and Hierarchical Bayesian (HB). For each param-
eter θ, the Table reports the point estimate for the MLE, the mean of
the distribution µθ for the MSLE, and the mode of the posterior distri-
bution for the HB. Standard errors are reported (standard deviation

for the HB). ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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consideration, are equally efficient in detecting gender effects. To make the simu-

lation as general as possible, we focus on the Bouchouicha et al. (2019) design and

the CPT model, which satisfies the conditions for which researchers usually resort

to pool their data (a relatively large number of parameters to estimate using a rel-

atively low number of data points per subject). For our exercise, we simulate data

of 100 subjects which we then estimate using each of the three inference methods:

MLE, MSLE and HB.

We assume that gender differences exist only in two of the model’s parameters,

the coefficient of loss aversion and the risk coefficient6. The parameters used in the

simulation, are normally distributed across the experimental population with mean

θn and standard deviation σθ . In the simulation we set the gender difference in the

risk coefficient to be small but significant (mean of 0.500 for males and 0.600 for fe-

males) with a standard deviation equal to 0.057. The loss aversion is set to 1.648

for males and 2.013 for females8 with a standard deviation of 0.100. The probability

weighting coefficient for gains wg is set equal to 0.540 while the probability coeffi-

cient for losses wl is set equal to 0.510. We assume no heterogeneity by setting the

standard deviation equal to 0 for the weighting parameters and we also assume a

common Fechnerian error for gains and losses. We conducted the simulation for

three different levels of noise by setting the value of the error term equal to 0.130

(low noise), 0.150 (medium noise) and 0.200 (high noise). We report the results of

the medium noise specification as they are the most representative9. For each sim-

ulation, we generate the data of the 100 artificial subjects by drawing parameters

from the relevant distributions that were described above. This dataset was then es-

timated using each of the methods. Table 2.6 reports the results of 100 simulations.

In particular, we report the mean and the standard deviation of the point estimates,

in the case of MLE, the mean of the distribution means in the case of MSLE, and the
6We make this assumption in order to keep the simulation as simple as possible. Of course this

analysis can be extended to any of the parameters of the model (i.e. probability weighting function,
noise coefficient) since empirically, gender effects are observed in all components of preferences.

7We confirmed that the statistical significance of the two distributions is indeed significant based
on a two-sided t-test (p<0.000).

8Since we transform the parameters to be drawn from a log-normal distribution, the values of loss
aversion correspond to exp(0.500) for men, and exp(0.700) for women.

9Bouchouicha et al., 2019 using this dataset, estimate the noise parameter to be equal to 0.170.
For our simulations, we are using a noise parameter of 0.150, which is in the middle of the interval
between the low noise parameter (0.130) and the empirically observed parameter (0.170). We delegate
the estimates from the low and high noise simulations to the online Appendix (see Tables B.1 and B.2).
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mean of the posterior means of the distributions in the case of HB.

TABLE 2.6: Mean and standard deviations of the parameters.

Parameter True value MLE MSLE HB

λ 1.648 1.575 1.637 1.657

s.e. - 0.056 0.062 0.067

λFEMALE 0.365 0.698 0.374 0.389

s.e. - 0.132 0.118 0.129

σλ 0.100 - 0.081 -

s.e. - - 0.046 -

r 0.500 0.538 0.500 0.493

s.e. - 0.019 0.031 0.025

rFEMALE 0.100 0.064 0.105 0.108

s.e. - 0.034 0.031 0.032

σr 0.050 - 0.046 -

s.e. - - 0.014 -

wg 0.540 0.559 0.543 0.536

s.e. - 0.013 0.014 0.014

wl 0.510 0.528 0.510 0.510

s.e. - 0.014 0.013 0.014

ξ 0.150 0.153 0.150 0.148

s.e. 0.007 0.005 0.006

The Table reports estimates from the simulation exercise on the three
inference methods : Maximum Likelihood Estimation (MLE), Max-
imum Simulated Likelihood Estimation (MSLE) and Hierarchical
Bayesian (HB), for the medium level of noise. For each parameter
θ, the Table reports the mean of the point estimates, in the case of
MLE, the mean of the distributions in the case of MSLE, and of the
posterior mean of the distributions in the case of HB. Standard devi-

ations in parentheses.

We first focus on the parameter recovery performance of each of the methods.

The first column of the Table reports the true values of the coefficients that were used

in the simulation. Compared to the true value, it is apparent that the MLE estimates

have the worst performance in terms of precision. First, most of the parameters
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deviate significantly from the true value, compared to the other two methods. Then,

in terms of gender effects, there is significant overestimation of the difference in

loss aversion where the parameter is estimated to be almost twice the true value

(0.698 compared to the true value of 0.365) while there is underestimation of the

difference in the risk coefficient (0.064 compared to the true value of 0.100). As far

as the MLE and MSLE estimates are concerned, both are remarkably close to each

other and both have recovered the true parameters with quite high precision. The

first conclusion from this simulation exercise is that if one is interested in the mean

values of the parameters of different groups, then both MSLE and HB are equally

good in recovering unbiased parameter values compared to the MLE.

We now turn to the identification of gender effects. For each of the simulations,

we generate the 95% confidence interval (credible interval in the case of HB) to test

the statistical significance of the estimate. When we focus on the gender effect for

the risk coefficient, the MLE estimate is statistically significant for 55% of the simu-

lations, the MSLE for 66% while the HB for 96%. Similarly, when we focus on the

loss aversion parameter the MLE estimate is statistically significant for 53% of the

simulations, the MSLE for 67% while the HB for 89%. Table 2.7reports the frequency

with which statistically significant gender effects were detected, for each of the three

inference methods, and for each of the three levels of noise (low, medium and high).

The Table confirms the pattern that higher levels of noise lead to lower detection

levels of gender effects, with MLE having the worst performance, HB the best, and

MSLE in the between.
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TABLE 2.7: Identification of gender effects.

rFEMALE

ξ = 0.130 ξ = 0.150 ξ = 0.200

MLE 62% 55% 36%

MSLE 82% 66% 59%

HB 98% 96% 76%

λFEMALE

ξ = 0.130 ξ = 0.150 ξ = 0.200

MLE 63% 53% 37%

MSLE 81% 67% 50%

HB 97% 89% 66%

The Table reports the rate of success of each inference method to iden-
tify gender effects for each of the three levels of noise, for the gen-
der specific parameter for risk attitude (rFEMALE) and loss aversion

(λFEMALE) are statistically significant, at the 5% level.

Our results mirror the conclusions of Huber and Train (2001). In this study the

authors compare classical and Bayesian estimates by providing a comparison be-

tween MSLE and HB. They show that both methods result in virtually equivalent

conditional estimates of the parameters. Then, they provide a list of differences be-

tween the two methods including (1) the difficulty of MSLE to locate the maximum

of the likelihood function; (2) the computational burden that the variance-covariance

matrix poses to the estimation of the MSLE parameters, and; (3) the identification is-

sues that the classical approach faces compared to the Bayesian estimation. Our

simulation shows that when the identification of differences between different pop-

ulations is the objective, then HB is the clear winner as the most appropriate infer-

ence method. This result can be attributed to the way each of the methods handles

uncertainty in the estimates and the fact that the estimate of the unobserved hetero-

geneity in the MSLE estimates is much noisier (larger standard errors) compared to

the HB ones.

To investigate the role of the sample size in the detection of gender effects, we

ran some additional simulations for the MSLE methods, varying the sample size.
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Assuming a fixed level of noise (ξ = 0.150), we repeated the simulation exercise for

N = 200 and N = 500 and again we report the rate of success to identify gender ef-

fects for the risk attitude (rFEMALE) and the loss aversion (λFEMALE) gender specific

parameters10. When the sample size is equal to 200, the risk (loss aversion) coef-

ficient is significant for 89% (90%) of the simulations, while when the sample size

increases to 500, the risk (loss aversion) coefficient is significant for 93% (94%) of the

simulations. This analysis further highlights the advantages of the HB modelling

since this inference method needs only half of the sample that MSLE needs in order

to achieve the same detection rate of success in the case of loss aversion, while it

needs only one fifth of the sample that MSLE needs, to reach the same success rate,

in the case of the risk coefficient.

2.7 Concluding remarks

In this study, we focus on gender differences and compare the inference made by

three econometric methods, Maximum Likelihood Estimation, Maximum Simulated

Likelihood Estimation and Hierarchical Bayesian modelling, on three representa-

tive domains of risk preferences. We show that when all the data are assumed to

come from a representative agent, and assume heterogeneity (gender differences

or any other demographic differences) at a very basic level (e.g. all black females

have the same level of loss aversion), valuable information might be ignored, and

therefore, distorted conclusions may be drawn. Nevertheless, opting for a more

flexible approach, and taking into consideration both the individual variation and

the population-level characteristics, the inference about individual risk preferences

is massively improved, and significant differences are captured.

In particular, we compare the representative agent modelling approach, to two

more flexible and informative methods of parameter estimation that allow one to

simultaneously make inferences at both the individual subject and the experimen-

tal population level. We compare the frequentist and the Bayesian methods, by

analysing the data using Maximum Simulated Likelihood Estimation techniques

(MSLE), as well as Hierarchical Bayesian (HB) econometric modelling. We use data

10The estimates are delegated to the online Appendix (see Table B3). There, it can be seen that as the
sample size increases, the standard errors decrease, which allows for better identification of the effects.
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from three representative studies on decision making under risk and we study Ex-

pected Utility preferences, for a simple analysis of risk attitudes, Rank Dependent

Utility preferences, to incorporate probability weighting, and Cumulative Prospect

Theory, to investigate loss averse behaviour. We show that by ignoring heterogene-

ity at the subject level, it may lead to incorrect inference regarding the difference

between distinct demographic groups.

Recent research on Hierarchical Bayesian modelling has shown that MLE esti-

mates are both susceptible to overfitting and dominated by outliers (Nilsson, Rieskamp,

and Wagenmakers, 2011, Murphy and Brincke, 2018), while Bayesian modelling im-

proves the robustness of the estimation, by shrinking the parameters towards the

group’s mean. This method allows the robust estimation of preferences, and it is

particularly useful, especially when one has a limited number of data points from

each subject, as is often the case with field studies, or when additional tasks are used,

along with the main experimental design, to control for particular preferences. With

the aid of an extensive simulation exercise, we show that Bayesian methods are bet-

ter placed to capture differences between groups, and this result can be attributed to

the way that each of the methods handles uncertainty in the estimates.

In this study, we do not argue in favour of any particular preference functional

or model, nor we claim that there is a uniform pattern of gender differences. In our

analysis, we opted for the models and the preference functionals that are often as-

sumed in this literature. These models acted as “vehicles” to illustrate the machinery

behind both estimation techniques, and this approach could be extended to any al-

ternative model. Our main objective is to warn researchers on the dangers of small

sample datasets and ignoring heterogeneity of the subjects. Of course this method

could be extended to other important fields of decision making such as ambiguity

preferences, time preferences or social preferences. Even more, as Gao, Harrison,

and Tchernis (2020) highlight, HB methods are particularly useful when one is inter-

ested in joint estimation of perhaps non-correlated preferences (e.g. joint estimation

of risk and time preferences) where the need of robust estimates is important at the

individual level.
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Chapter 3

Disentangling the Effect of

Time-Pressure on Risky-Decision

Making

3.1 Introduction

Pressure is a naturally occurring part of most people’s everyday life, appearing in

places such as time limits for exams, coursework or work project deadlines or com-

peting as part of a sports competition. As a result of having to perform an activity

under pressure, an individual may become flustered and not perform as well as they

would if they were carrying the same task without the pressure existing (De Paola

and Gioia, 2016). However, there could be situations where this pressure allows in-

dividuals to thrive and may perform better, such as in some athletes in competitions

or students cramming before an exam.

Risk attitudes also play an essential part in our decision-making; for example,

those opposed to risk will require a much larger incentive than others to partake in

any form of gambling or risky activity. However, a person’s attitude to risk may

change in the presence of time pressure. They may become stressed and may make

decisions they would not make otherwise, for example, acting in a more risk-seeking

or reckless way. Several papers in the literature consider the effect of time pressure

on risky decision-making. Most focus on binary choices between two lotteries, such

as a safe and risky gamble. We believe that these kinds of tasks have the limitation of

preventing an individual from fully expressing their preferences and, by extension,
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their attitudes towards risk as we lack information about how closely valued alter-

natives are. We work around this limitation by considering a budget allocation task

in which individuals can choose their preferred gamble and, by extension, control

the level of risk they are exposed to, allowing us to observe their preferences better.

In this paper, we wish to investigate time pressure’s effect on an individual’s

attitude towards risk. We do this by carrying out an experiment where subjects

face multiple budget allocation tasks with and without time pressure. We then

structurally recover an individual’s behavioural parameters associated with risky

decision-making, such as the curvature of a utility function and probability distor-

tion and compare how they differ with and without time pressure to determine how

their attitudes towards risk change. We do this by considering a non-linear least

squares method and see that, on average, an individual is less risk-averse under

time pressure.

3.2 Literature Review

Time pressure has long been understood to impact an individual’s behaviour under

risk. Under time pressure, an indiviudals attitude towards risk may "flip", becom-

ing more risk-seeking for gains and risk-averse for losses (Saqib and Chan, 2015). We

have seen individuals exhibit less risk-averse behaviour under time pressure (Huber

and Kunz, 2007), (Hu et al., 2015), (Madan, Spetch, and Ludvig, 2015), (Nursimulu

and Bossaerts, 2014), (Chandler and Pronin, 2012), (Olschewski and Rieskamp, 2021),

(Hu et al., 2015). We also note there have been some papers with increased levels of

risk-averse behaviour in the presence of time pressure (Ben Zur and Breznitz, 1981),

(Haji et al., 2019). However, different levels of risk may explain this difference in

risk attitude under time pressure (Dror, Basola, and Busemeyer, 1999), where people

have been observed to act more conservatively with low levels of risk and more risk-

seeking with higher risk levels. Other results from the literature on time pressure on

risky decision-making include time pressure resulting in a higher degree of proba-

bility distortion (Young et al., 2012), and increased levels of loss aversion (Kocher,

Pahlke, and Trautmann, 2013). Time pressure has also had an impact on behaviour

in environments such as ambiguity (Baillon et al., 2018), auctions (Haji et al., 2019)
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and game theory (Lindner and Sutter, 2013). We have also seen time pressure im-

pact the real world, such as crossing roads in more dangerous situations (Cœugnet,

Cahour, and Kraiem, 2019).

Outside of risk, several factors also impact an individual’s attitudes towards risk.

These include include age (Mather et al., 2012), religion (Bartke and Schwarze, 2008)

and education (Rosen, Tsai, and Downs, 2003). Other things shown to alter risk atti-

tudes include experiencing traumatic events (Moya, 2018) and the recent pandemic

(Heo, Rabbani, and Grable, 2021).

We also note that there is the notion of a speed-accuracy trade-off, where an

individual can make a decision quickly or accurately. The trade-off relates to time

pressure, where individuals have less time to decide or carry out a task. We can

see this in papers such as Hobbs and Williamson (2003), showing more mistakes in

maintenance under time pressure, in medical diagnostics (Hellyer, 2019),(Betsch et

al., 2004), where we see time pressure, leads to more errors but error rate falls as time

pressure becomes less severe. We can also see that people resort to using heuristics

as time pressure increases (Lewis et al., 2014), (Rieskamp and Hoffrage, 2008).

The paper by Young et al. (2012) considers rank-dependant utility and certainty

equivalence under time pressure, which is a similar premise to what we investigate

in this paper. However, we differ in this paper in several ways to contribute to the

literature differently. For example, our subjects faced both time-pressure and non-

time-pressure tasks, which allowed us to see how time pressure impacted different

individuals’ attitudes towards risk compared to having two groups of subjects. We

also use certainty equivalence in separate ways; we calculate certainty equivalence

from an individual’s behavioural parameters, whereas Young et al. used an indi-

vidual’s self-reported certainty equivalence to recover behavioural parameters (the

reverse of what we are doing). We also do not scale down payoffs; subjects had their

payoffs scaled down to 1/5 of the gambles, which can potentially cause differences

given that subjects will behave differently in high and low-stakes situations (Dror,

Basola, and Busemeyer, 1999). Finally, we also use fewer tasks; they used a large

number of problems in their experiment, which can lead to decision fatigue and

what is called the "Ramsey Trifle Problem", where a slight increase in the increased

average payoff from acting in a more computationally intensive way is not worth
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the increased payoffs1.

We differ from the broader literature by moving away from binary choice exer-

cises and considering a budget allocation choice. We do this as we feel it can allow

individuals to choose their gamble and the level of risk they would be willing to take

and better express their risk attitudes. Compared to binary choices, where we do not

know how strongly preferred the chosen gamble is. We can disentangle the effect of

time pressure on an individual’s behavioural parameters to see which parameters

change, for example, the curvature of a utility function of the degree of probability

distortion.

3.3 Experimental Design

Our experiment is by the experiments proposed in Choi et al. (2007) and Choi et

al. (2014), in which an individual faced a budget allocation problem. They had to

invest tokens into two risky accounts and then receive a payoff based on the number

of tokens invested and an account-specific exchange rate for the chosen account,

randomly selected with a 50-50 chance. We extend this design in several key ways:

1. We have two different sets of tasks for individuals to face, one with time pres-

sure and one without time pressure.

2. We use a wide range of probabilities to cover the whole probability spectrum

and estimate a probability weighting function.

3. A different interface and way to represent the lotteries.

3.3.1 Experimental Tasks

In our experiment, subjects were given 100 tokens to allocate between two accounts.

Each account had an associated price to convert tokens into real money. For exam-

ple, a price of 6 would require investing 6 tokens to receive £1, or the exchange rate

between tokens and real money is the inverse of this price. The two accounts have

a probability of being chosen of P and 1-P and, when selected, will pay out money

1See Abdellaoui et al. (2020) for more information on this.
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based on the number of tokens invested and the exchange rate. For example, ac-

counts A and B have probabilities of being chosen of 0.7 and 0.3 and prices of 5 and

10 (exchange rates of 0.2 and 0.1). If an individual invests 80 tokens into A and 20

into B, they will receive £16 with a probability of 0.7 and £2 otherwise.

The tasks subjects faced in the experiment were randomly generated ahead of

time. The probabilities of accounts being chosen for each round were drawn ran-

domly from a list of probabilities2. Prices were also randomly generated by gener-

ating an integer between 5 and 15. We generated a total of 40 tasks, 20 to be used

under time pressure and 20 without3

Subjects faced 2 rounds of 20 tasks, one of these rounds were performed under

time pressure in which subjects had 15 seconds to make and submit a decision. The

second round of tasks was carried out without time pressure, where an individual

had up to a minute to submit their decision but could not submit for the first 15

seconds to ensure subjects had a longer decision time than under time pressure.

There was a small break between the sets of tasks where subjects were made aware

of the change in decision time. Should an individual not submit within the time, the

currently selected allocation bundle was submitted.

3.3.2 Interface

The interface subjects faced consisted of a few key elements, summarised in the table

below:

TABLE 3.1: Summary of Interface Elements

Element Use

Timer Shows the amount of time remaining in the current task

Slider Selecting how many tokens to allocate to each account

Pie Chart Visualise the probability of each account being selected

Bar Chart Shows the payoffs of each account, and the width represents the probability

Submit Submit the choices and move on to the next task

Text Shows information on rounds, tokens and prices

2The list of probabilities were drawn randomly from 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.25, 0.75,
1/3 and 2/3.

3The set of tasks faced by subjects can be found in the Appendix C.1.
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FIGURE 3.1: Example of the experiments interface

Figure 3.1 above shows a snapshot of what the subjects faced. They can drag the

slider around to control the number of tokens in each account. The slider completely

to the left will allocate all 100 of their tokens into Account 1. Whereas the slider fully

to the right allocated all tokens to Account B. Should the slider be at a point between,

it will result in X into Account 1 and 100-X into Account 2 to ensure all 100 tokens

are used. At the selected allocation, an individual would receive X
p1

if account 1

is selected 100−X
p2

if account 2 is selected. Tokens can also be divided into units of

0.1 to allow for better freedom to express preferences. As the slider moves, the bar

charts change in height and show the payoffs, with the width of the bar chart also

representing the probability (the larger the probability, the wider the bar will be to

scale). Once an individual is happy with their selection, they click the submit button

and move on to the next task. In the example above, Accounts 1 and 2 have prices of

11 and 5 and probabilities of 0.25 and 0.75 of being selected, respectively. The current

allocation, 50 tokens in each, yields payoffs of £4.50 with a probability of 0.25 and

£10 with 0.75.
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3.3.3 Procedure, Incentives and Payments

The experiment was carried out at the LExEL laboratory at Lancaster University

in December 2019. Subjects were predominantly students of the university, drawn

randomly from the pool of subjects that the laboratory has. 51 subjects (mean age

22 and 20 of which were female) were split into 4 sessions, two of these sessions

were randomly selected to have the time pressure tasks carried out first, and the

others had time pressure second. Subjects received a set of written instructions4

which explained what to do and how to use the interface. They could then carry

out 3 practice rounds to ensure they were familiar with the interface, which had

no time limit. Following this, subjects then moved on to the actual experimental

tasks. Subjects were paid a show-up fee (£3), plus the outcome of one task being

randomly selected and played out for its actual value. Once the experiment was

finished, subjects were taken to a separate to sort out payments. For this, they picked

out numbers from different hats and followed this procedure:

1. Either 1 or 2 to represent either the first or second round of tasks.

2. A second from 1-20 to represent which task is used in the selected round of

tasks.

3. A final number from 1-100 to represent probability.

4. If the probability number drawn is less than the probability of option A in the

selected task, then receive the payoff from Account A OR B otherwise

For example, if a task was selected in the experiment with payoffs of £10 with a

probability of 0.8 and £5 with a probability of 0.2, if they drew the number 73, A was

selected, and they received £10. The maximum amount a subject could win was £20

plus a show-up fee of £3.

3.4 Theoretical Model

We assume Prospect Theory (Kahneman and Tversky, 1979) to model an individ-

ual’s preferences. This differs from the standard expected utility model by allowing

4Available in Appendix C.1.
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for both the curvature of the utility function and probability distortion. Suppose an

individual is faced with a lottery of X with a probability of P and Y with a proba-

bility of 1-P. Under the standard expected utility model, the utility of this gamble

is given by P ∗ U(X) + (1 − P) ∗ U(Y), where U(.) is the utility function. Under

prospect theory, these probabilities are transformed by a weighting function w(.) to

yield decision weights. to calculate the decision weights and the Rank Dependant

Utilities (RDU), we order a given gamble’s payoffs such as x1 ≥ x2, · · · ,≥ xn. Then

the decision weights can be given by:

πx1 = w(p1)

πx2 = w(p1 + p2)− w(p1)

· · ·

πxn = 1 − w(p1 + p2 + · · ·+ pn)

The RDU of lottery A is then given by

RDU(A) =
N

∑
n=1

π(xn)U(xn) (3.1)

In our experiment, we only have two possible payoffs, which can simplify this to:

If X > Y, then this rank dependant utility is given by:

RDU = w(P) ∗ U(X) + (1 − w(P)) ∗ U(Y)

Similarly, if Y > X, then the rank-dependent utility becomes:

RDU = (1 − w(1 − P)) ∗ U(X) + w(1 − P) ∗ U(Y)

The utility function we consider is the Constant Relative Risk Aversion (CRRA)

function:

U(W) =
W1−ρ

1 − ρ
(3.2)

In this, the parameter ρ represents risk attitude. When ρ = 0, an individual is

risk neutral, and the utility function is linear; when ρ > 0, an individual is increas-

ingly risk averse with an increasingly concave utility function. The function can be

defined for rho < 0, however, we chose not to consider this as it implies risk-seeking
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behaviour. This paper does not consider risk-seeking behaviour as our experimen-

tal design does not allow for this. It would require investing over 100 tokens into

one account and a negative amount (making a loss) into the other. We chose to use

this function for the previous reason above and power functions being shown to

represent preferences effectively (Balcombe and Fraser, 2015b).

FIGURE 3.2: Visualisation of the utility function with ρ = 0.6

For the probability weighting function, we use a two-parameter Prelec weighting

function (Prelec, 1998)5.

w(P) = exp (−((−γ ln(P))δ)) (3.3)

Unlike many weighting functions, this has two parameters. The δ represents the size

of probability distortions. The closer to zero, the more pronounced the "inverse-s-

shape" the function becomes, which larger overweighting of low probabilities and

underweighting of larger probabilities, the closer to one, the more linear. The second

5For robustness, we also consider some other weighting functions proposed in the literature. These
results can be found in Appendix C.4.
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parameter, γ, can be interpreted as a degree of optimism. The smaller γ, the larger

the set of probabilities are over-weighted and the fewer that are under-weighted

FIGURE 3.3: Visualisation of the weighting function with δ = 0.6 and
γ = 0.7

The diagram above shows a visualisation of the weighting function, as δ in-

creases, the closer to 1, the more linear this is, indicating less distortion in proba-

bility. As γ increases, the lower the intersection of the weighting function and the

45-degree line, showing that more probabilities are underweight, and fewer are over-

weighted.

If X > Y, we combine the utility and the weighting functions, and we can calcu-

late the rank-dependent utility to be given as:

RDU = exp(−((−γ ln(P))δ)) ∗ X1−ρ

1 − ρ
+ (1 − exp (−((−γ ln(P))δ))) ∗ Y1−ρ

1 − ρ
(3.4)
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and a similar equation if Y > X:

RDU = (1 − exp (−((−γ ln(1 − P))δ))) ∗ X1−ρ

1 − ρ
+ exp (−((−γ ln(1 − P))δ)) ∗ Y1−ρ

1 − ρ

(3.5)

It is also important to note that we cannot use the drift-diffusion model illus-

trated in chapter one for this analysis. This is due to the Drift-Diffusion model is

currently only suitable for binary choices 6 or some cases of trinary choices, which

is not suitable due to the vast amount of ways that an individual can allocate their

tokens. The second reason for this is for the tasks without time pressure, subjects

were unable to submit their choices for the first 15 seconds of decision tasks. This

would make it difficult to determine how long a decision took if they made it in less

than 15 seconds as they had to wait to submit.

3.4.1 Optimal Solutions

We assume that individuals are utility maximisers, aiming to maximise their utility

given any restrictions. In this case, subjects face a budget restriction, where they

have a maximum of 100 tokens to invest between both accounts. This gives a feasi-

bility constraint of X + Y = 100, where if they invest all 100 tokens into one good,

they receive 100 divided by the price of that account. When maximising their utility,

the bundle chosen will be at the point tangential to the budget constraint and the

indifference curve representing all bundles with the same expected utility.

6We do make sure to save the decision time data for individuals to use for future work where this
is possible potentially.
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FIGURE 3.4: Visualisation of Utility Maximisation

Figure 3.4 above illustrates this tangency point. If a point on the budget curve

will provide less utility for the same level of expenditure and points above and to the

right of this point give a higher level of utility but are unobtainable with the current

budget.

For our experiment and framework, subjects had 100 tokens to invest into the

two accounts, X and Y, with probabilities P and 1-P. The payoff of an account is de-

termined by dividing the number of tokens by the account price. This leads to pay-

offs of X ∗ ex and Y ∗ ey for each account, where ex and ey are 1
px

and 1
py

respectively,

the exchange rate between tokens invested into a given account and the associated

payoffs. The maximisation problem subjects face can then be written as:

max πx ∗ (x∗ex)1−ρ

1−ρ + πy ∗
(y∗ey)1−ρ

1−ρ

s.t x + y = 100

where πx = w(P) if X ∗ ex > Y ∗ ey and πx = 1−w(1− P) if Y ∗ ey > X ∗ ex. Suppose

we assume the weighting function and utility function used above. In that case, we

can maximise this and yield demand equations for accounts X and Y7

7Derivations of these equations can be found in the Appendix C.2.
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X(ρ, δ, γ) =
100 ∗ (πx ∗ e1−ρ

x )
1
ρ

(πx ∗ e1−ρ
x )

1
ρ + (πy ∗ e1−ρ

y )
1
ρ

(3.6)

Y(ρ, δ, γ) =
100 ∗ (πy ∗ e1−ρ

y )
1
ρ

(πx ∗ e1−ρ
x )

1
ρ + (πy ∗ e1−ρ

y )
1
ρ

(3.7)

3.4.2 Considering Time Pressure

In the previous subsection, we have illustrated the model to represent risky decision-

making. We wish to change this to consider how this risk attitude changed in the

presence of time pressure. We can do this by tweaking the behavioural parameters

above to include a dummy variable which allows the behavioural parameters of the

model to take different values on exercises with time pressure and without it. The

specification for the behavioural parameters we consider can be shown below:

θ = θNTP + αTPθTP (3.8)

Where θ is our parameter of interest (ρ, δ and γ). αTP is a dummy variable that takes

a value of 1 if a subject faces time pressure in a particular exercise and 0 on takes

without time pressure. θTP then represents the difference between an individual’s

attitude with and without time pressure. To ensure that an individual exhibits a dif-

ferent behaviour with and without time pressure, we require that at least one of the

time pressure behavioural parameters (ρNTP, δNTP, γNTP) to be statistically different

from zero.

3.5 Estimating the Model

We use a non-linear least squares (NLLS) method to recover the parameters of inter-

est. We fit parameters of interest that minimise the sum of the differences between

individuals observed chosen bundle and the allocation predicted by demand equa-

tions 3.6 and 3.7.

NLLS(θ) =
N

∑
i=1

(X∗
i − XC

i )
2 + (Y∗

i − Yc
i )

2 (3.9)
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Where XC
i and YC

i represent the observed chosen token allocation an individual se-

lects in round i and X∗
i and Y∗

i represent the predicted optimal token allocation from

the demand equations, for a given set of behavioural parameters ρ, γ and δ. N is the

amount of decision tasks subjects faced; in this case, N=40. We estimate these pa-

rameters in R and use the package Rsolnp(Ghalanos and Theussl, 2015), which uses

multiple restarts and starting values in its optimisation strategy. The advantage of

this is that the multiple restarts allow for us to be sure that we have converged to the

global optimal of our equation 3.9 and not a local minimum.

3.6 Experimental Results

3.6.1 Parameter Estimates

Despite a majority of the behavioural parameters for time pressure being statistically

different from zero(shown in the table below), we find that the actual distribution of

the behavioural parameters with and without time pressure (θNTP and θNTP + θTP)

to be similar. This is shown by the P-values of Wilcoxon tests of 0.28658, 0.1121

and 0.8845 for ρ, δ and γ respectively8. A possible explanation is that time pressure

impacts people differently, with some becoming more and some becoming less risk-

averse. These individual changes cancel each other out at the aggregate level. There

will also exist a sizable portion of individuals for each group with multiple time

pressure parameters being statistically zero, which can cause these distributions to

be similar. As a result of this, we consider the aggregate distributions to be an un-

suitable way to determine if people are more or less risk-averse under time pressure

and move to consider how individuals’ parameters change.

8Plots of the parameter distributions can be found in Appendix C.3.
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TABLE 3.2: Summary of behavioural parameters

Mean ρNTP 1.37500507

Mean ρTP 0.10864338

Mean δNTP 1.02516864

Mean δTP 0.21754409

Mean γNTP 1.19760454

Mean γTP -0.01214881

Standard Deviation ρNTP 1.3074645

Standard Deviation ρTP 0.6348932

Standard Deviation δNTP 0.6288316

Standard Deviation δTP 0.7745950

Standard Deviation γNTP 0.4718599

Standard Deviation γTP 0.5957599

Statistically Significant ρTP 29

Statistically Significant δTP 35

Statistically Significant γTP 27

No Statistical Significance 8

Table 3.2 above shows a summary of the parameters we recover and whether or

not their time pressure parameter is statistically significant. We can see that most

individuals have at least one of their time pressure parameters statistically different

from zero9. We find 8 subjects in which all the time pressure behavioural parameters

are statistically 0, indicating the same behaviour with and without time pressure.

Considering how these behavioural parameters move under time pressure, it is

difficult to deduce whether an individual has become more or less risk averse when

they experience time pressure. This is because their behavioural parameters might

move in different ways. For example, their utility function becomes more concave

(ρTP > 0), indicating an increased level of risk aversion, and their weighting function

becomes more linear (δTP > 0), suggesting less risk aversion. To tell if an individual

has become more or less risk averse under time pressure, we consider Certainty

9This is shown by a wald test, significant at the 5% level.
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Equivalence as a measurement of risk attitude and how it moves to determine how

their risk attitudes change with and without time pressure.

3.6.2 Considering Certainty Equivalence

Since the behavioural parameters can move in different ways under time pressure, it

becomes difficult to determine if an individual has become more or less risk averse.

We can solve this problem by proposing a theoretical gamble, then using the recov-

ered behavioural parameters, calculate the certainty equivalence of said gamble with

and without time pressure. Certainty equivalence is the minimum money required

to make an individual indifferent between taking the gamble and the certain pay-

off. A lower level of certainty equivalence would indicate an increased risk aversion

as they would prefer to take a lower level of certain money than partake in a gam-

ble. For this exercise, we propose a 50-50 gamble between £10 and £5. We can then

calculate the certainty equivalence of this gamble by finding the amount of money

such that the utility of said money is equal to the expected utility, with and without

pressure, by solving the following equation:

U(CE) = w(0.5)U(10) + (1 − w(0.5))U(5) (3.10)

Substituting our parameters into equation 3.10 and rearranging yields an equation

for certainty equivalence.

CE = [w(0.5)101−ρ + (1 − w(0.5))51−ρ]
1

1−ρ (3.11)

We generate this value for individuals with and without pressure using their

recovered behavioural parameters (θi = θi,NTP without time pressure and θi =

θi,NTP + θi,TP with time pressure). Once these values have been calculated, we can

compare how they differ with and without time pressure to determine when they are

more or less risk-averse. If, under time pressure, the certainty equivalence value we

generate is lower than without time pressure, then an individual requires less money

to be indifferent and is, therefore, more risk averse under time pressure. We consider
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an individual to have a different value for certainty equivalence and, therefore, dif-

ferent risk attitudes if at least one of their behavioural time pressure parameters is

statistically different from 0.

TABLE 3.3: Summary of Certainty Equivalence Results

Mean Certainty Equivalence without Time Pressure 6.8002

Mean Certainty Equivalence under Time Pressure 7.0211

More Risk Averse without Time Pressure 24

More Risk Averse under Time Pressure 13

No Change in Risk Attitudes 8

We can see from Table 3.3 that, on average, a higher level of certainty equivalence

under time pressure suggests that individuals exhibit less risk-averse behaviour un-

der time pressure. When considering individual parameter changes, we can see that

most individuals (24) are more risk-averse without time pressure than when time

pressure is faced. The 8 subjects with no change and in risk attitudes do not have a

time pressure parameter statistically different from zero.
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FIGURE 3.5: Density Plot of Certainty Equivalence

Figure 3.5 above shows the distributions of the certainty equivalence with and

without time pressure. We can see a large peak near 6.5 without time pressure and

closer to 7 when time pressure is faced, suggesting that the distribution is lower

without time pressure. A Wilcoxon test supports this claim, which confirms this

with a p-value of 0.0259.

Overall when considering how risk attitudes change under time pressure, we

suggest from our results that individuals exhibit less risk-averse behaviour under

time pressure than when they have more time to make a decision.
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3.7 Concluding Remarks

We have carried out an experiment considering the effect of time pressure on an

individual’s risk attitudes under a budget allocation task. We do this by recover-

ing behavioural parameters of interest with and without time pressure. Then, we

propose a theoretical gamble and calculate an individual’s certainty equivalence to

this gamble with and without time pressure using the parameters we previously re-

covered. We compare this calculated certainty equivalence with and without time

pressure to determine how individual’s risk attitudes have changed. We find that

our results are in line with the literature, which until this point has solely consid-

ered binary choices, in which individuals act in a less risk-averse manner (for gains)

under time pressure. There are several ways to extend this for future work. For ex-

ample, having a constant probability instead of different probabilities in each round

would allow us to consider revealed preferences and if an individual’s choices re-

main consistent under time pressure. Other ideas include extending this to losses

and ambiguity or having varying degrees of time pressure.
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Conclusion

We have looked at 3 different papers focusing on decision-making under uncer-

tainty. We have shown that time can play a role in decision-making. It can be used

as a substitute for choice data in increasing subject observations. The availability

of time has also been shown to have an impact on individual preferences, with less

time available resulting in decreased levels of risk aversion. We have also shown

that there exist issues with using representative agent models with small datasets

in that you may not be able to recover gender effects and propose a way in which

gender effects can be observed.

There exist several paths for an extension to these papers. For Chapter 1, it would

be ideal to consider an experiment with mixed gambles, utilise other domains such

as ambiguity and time preferences, or alter the model to be able to consider more

than binary choices. For chapter 2, considering other domains such as ambiguity or

time preferences would be natural extensions or applying the framework to the time

pressure experiment in Chapter 3. Finally, for Chapter 3, we aim to perform a similar

experiment with consistent probabilities to rest revealed preferences and move into

other domains, such as ambiguity.

Overall, what ties these papers and the key takeaway is that sometimes using

different methods can lead to higher-quality results. For example, using time as a

substitute for additional data, using a more flexible model to find gender effects and

certainty equivalence to show how risk attitudes change under time pressure.
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Appendix A

Appendix for Chapter 1

A.1 Robustness Checks

For robustness, we consider other specifications, we first consider a second proba-

bility weighting function proposed in Prelec, 1998 w(P) = exp (−((− ln(P))δ)). δ in

this represents the degree of probability distortion. The closer to 1, the less distor-

tion, and the closer to 0, the more probability distortion. We also consider a second

utility function U(W) = W1−ρ

1−ρ . Where ρ represents risk aversion, the higher ρ repre-

sents an increase in risk aversion and risk neutrality at ρ = 0

We perform the same cross-fold validation technique proposed in section 1.8,

changing either the utility function, the weighting function or both.
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TABLE A.1: Robustness Checks

1 2 3 4

Utility Function POWER POWER CARA CARA

Weighting Function TK PRL TK PRL

Mean DDM Accuracy 0.7520415 0.7192152 0.7519902 0.7191441

Mean Logit Accuracy 0.7283764 0.729377 0.7286108 0.730232

Significance 0.006366 0.403 0.01028 0.349

Median DDM Accuracy 0.7685954 0.7207354 0.7686338 0.7207354

Median Logit Accuracy 0.726203 0.7261634 0.7235012 0.7238919

Variance DDM Accuracy 0.002855772 0.002409153 0.00286247 0.002394783

Variance Logit Accuracy 0.003682566 0.00360727 0.003826338 0.003498794

Where POWER, CARA, TK and PRL represent different utility and
weighting functions being used. A utility function of power denotes
U(W) = Wρ

ρ . A Utility function of CARA represents U(W) = W1−ρ

1−ρ . A

weighting function of TK represents w(P) = Pδ
(Pδ+(1−P)δ )

1
δ . A weight-

ing function of PRL represents w(P) = exp (−((− ln(P))δ)). Signif-
icance represents the p-value of a Wilcoxon rank sum test, testing if

the distributions of predicted choices are different.

From A.1, we can see that the Drift Diffusion Model performs better at predicting

choices compared to the logit-errors model when considering a standard weighting

function, regardless of the utility function. However, when we use the Prelec weight-

ing function, we find that the predictive power of both models is roughly identical,

as shown by the similar means, medians and the Wilcoxon rank sum test result. This

suggests that the Drift-Diffusion Model has the potential to be an improvement or

at least equal to that of the logit-errors model.

A.2 Information on Decision Time Data

Here, we include some information on the decision time data of subjects in the ex-

periment
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TABLE A.2: Summary of Decision Time data under Gains and Losses

Gains Losses

Mean Times 7711.446 10665.89

Median 6502 9018.5

Standard Deviation 5474.487 6992.715

FIGURE A.1: Density Plots for decision times under gains and losses

We can see from the table and diagram that subjects took, on average, a sig-

nificantly longer time to decide on losses than tasks considering gains. This could

suggest some difficulty in making these decisions or require more information to

make these decisions.
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Appendix B

Appendix For Chapter 2

B.1 Monte Carlo Simulation

This Appendix presents further results of the simulation in Section 6 when the noise

is low (ξ = 0.130) in Table B.1, and when it is high (ξ = 0.200) in Table B.2.
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TABLE B.1: Mean and standard deviations of the parameters.

Parameter True value MLE MSLE HB

λ 1.648 1.576 1.640 1.648

s.e. - 0.050 0.035 0.035

λFEMALE 0.365 0.696 0.368 0.379

s.e. - 0.117 0.057 0.055

σλ 0.100 - 0.088 -

s.e. - - 0.036 -

r 0.500 0.537 0.500 0.497

s.e. - 0.017 0.023 0.021

rFEMALE 0.100 0.065 0.105 0.107

s.e. - 0.030 0.028 0.027

σr 0.050 - 0.047 -

s.e. - - 0.012 -

wg 0.540 0.559 0.540 0.536

s.e. - 0.012 0.050 0.022

wl 0.510 0.527 0.509 0.506

s.e. - 0.012 0.048 0.023

ξ 0.130 0.134 0.130 0.128

s.e. - 0.005 0.005 0.043

The Table reports estimates from the simulation exercise on the three
inference methods : Maximum Likelihood Estimation (MLE), Max-
imum Simulated Likelihood Estimation (MSLE) and Hierarchical
Bayesian (HB), for the low level of noise (0.13). For each parameter θ,
the Table reports the mean of the point estimates, in the case of MLE,
the mean of the distributions in the case of MSLE, and of the poste-
rior mean of the distributions in the case of HB. Standard deviations

in parentheses.
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TABLE B.2: Mean and standard deviations of the parameters.

Parameter True value MLE MSLE HB

λ 1.648 1.572 1.640 1.670

s.e. - 0.072 0.051 0.054

λFEMALE 0.365 0.705 0.371 0.398

s.e. - 0.173 0.081 0.089

σλ 0.100 - 0.072 -

s.e. - - 0.057 -

r 0.500 0.539 0.500 0.489

s.e. - 0.024 0.031 0.032

rFEMALE 0.100 0.062 0.106 0.111

s.e. - 0.045 0.040 0.041

σr 0.050 - 0.043 -

s.e. - - 0.022 -

wg 0.540 0.560 0.540 0.534

s.e. - 0.018 0.077 0.036

wl 0.510 0.528 0.509 0.502

s.e. - 0.018 0.075 0.038

ξ 0.200 0.202 0.199 0.198

s.e. 0.008 0.006 0.042

The Table reports estimates from the simulation exercise on the three
inference methods : Maximum Likelihood Estimation (MLE), Max-
imum Simulated Likelihood Estimation (MSLE) and Hierarchical
Bayesian (HB), for the high level of noise (0.20). For each parame-
ter θ, the Table reports the mean of the point estimates, in the case of
MLE, the mean of the distributions in the case of MSLE, and of the
posterior mean of the distributions in the case of HB. Standard devi-

ations in parentheses.

B.2 Sample size

Table B3 reports the results of the simulation exercise when the size sample of 100

increases by a factor of 2 (N=200) and 5 (N=200). All the parameter values
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TABLE B3: Mean and standard deviations of the parameters.

True value N=100 N=200 N=500

λ 1.648 1.637 1.640 1.648

s.e. - 0.062 0.029 0.021

λFEMALE 0.365 0.374 0.370 0.368

s.e. - 0.118 0.046 0.031

σλ 0.100 0.081 0.088 0.093

s.e. - 0.046 0.029 0.016

r 0.500 0.500 0.503 0.504

s.e. - 0.031 0.017 0.015

rFEMALE 0.100 0.105 0.099 0.096

s.e. - 0.031 0.022 0.017

σr 0.050 0.046 0.048 0.050

s.e. - 0.014 0.008 0.005

wg 0.540 0.543 0.542 0.542

s.e. - 0.014 0.041 0.029

wl 0.510 0.510 0.511 0.511

s.e. - 0.013 0.043 0.029

ξ 0.150 0.150 0.150 0.150

s.e. - 0.005 0.003 0.002

The Table reports estimates from the simulation exercise using Max-
imum Simulated Likelihood Estimation (MSLE) for three levels of
sample size (N) namely 100, 200 and 500. Standard deviations in

parentheses.
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Appendix For Chapter 3

C.1 Experimental Tasks

These are the 40 tasks subjects faced in the experiment, 20 with time pressure and

20 without, the ordering of the tasks were randomised for each subject so they faced

tasks in a different order. However, each member of an experimental session faced

time pressure or non time pressure tasks first and the other second.
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TABLE B1: Experimental Tasks

Time Pressure Non-Time Pressure

Round px py Probx Proby px py Probx Proby

1 12 7 0.75 0.25 12 12 0.25 0.75

2 6 10 0.3 0.7 9 12 0.4 0.6

3 9 14 0.75 0.25 13 9 0.9 0.1

4 7 15 0.75 0.25 5 9 0.1 0.9

5 13 15 0.5 0.5 12 7 0.3 0.7

6 5 8 0.2 0.8 6 13 0.5 0.5

7 11 11 0.8 0.2 12 10 0.3 0.7

8 11 14 0.8 0.2 10 9 0.5 0.5

9 11 5 0.25 0.75 6 12 0.33 0.67

10 7 9 0.5 0.5 9 15 0.25 0.75

11 14 5 0.75 0.25 15 9 0.67 0.33

12 6 5 0.8 0.2 12 12 0.8 0.2

13 8 6 0.4 0.6 13 8 0.4 0.6

14 12 12 0.67 0.33 10 7 0.75 0.25

15 8 9 0.1 0.9 11 12 0.67 0.33

16 14 7 0.9 0.1 6 9 0.8 0.2

17 10 12 0.9 0.1 5 7 0.33 0.67

18 15 9 0.67 0.33 15 14 0.5 0.5

19 10 5 0.7 0.3 8 7 0.3 0.7

20 5 13 0.9 0.1 8 10 0.6 0.4

We have two sets of instructions for the experiment. One for those who did time

pressure tasks first and ones for two had those tasks second. They are both similar

but both have been included for completion.

Instructions for Subjects with Time Pressure Tasks First



Instructions 

Welcome 

Welcome to this experiment. These instructions are to help you understand what you are being asked to do 

during the experiment and how you will be paid. The experiment is simple and gives you the chance to earn 

a considerable amount of money, which will be paid to you in cash after you have completed the experiment. 

The payment described below is in addition to a participation fee of £3.00 that you will be paid independently 

of your answers. 

The experiment 

This experiment consists of two parts. You will receive instructions on the second part once you have 

completed the first one.  

In the first part of this experiment, you will be presented with a total of 20 questions. Each question is of the 

same form. For each question, you will have 100 tokens to allocate between two different goods, Good 1 and 

Good 2. The questions will vary in two ways: first the price of each good will be different in every question; 

second, the chances of obtaining either of the goods will differ. After you have responded on all questions, 

in both parts, one of them will be chosen at random and played out. ‘Playing out’ a question means that one 

of the two goods will occur (in a way we describe below) with chances as specified in that question, and you 

will be paid the money value of the number of tokens that you allocated to that Good. 

Example of a question 

Imagine the question as shown in the Figure below. The chances of the two goods are: 

Good 1: 70%  

Good 2: 30%.  

The prices of the two goods are: 

Good 1: 10 

Good 2: 5 

Suppose that you make the following allocation: 

Good 1: 80 tokens 

Good 2 : 20 tokens 

In this case you will receive 80/10=£8 if Good 1 will occur, or 20/5=£4 if Good 2 will occur.  

Specifying the Chances 
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Each question will specify the chances for Good 1 and Good2. These may differ from question to question 

but they will always be something out of 100. In the previous example, the chance of Good 1 occurring is 70 

out of 100, and of Good 2 occurring 30 out of 100. If this question were to be played out at the end of the 

experiment, you will be provided with an opaque bag filled with 100 numbered tickets. The bag would then 

be shaken and you would be asked to draw a ticket at random (and without looking into the bag) out of the 

bag. If the ticket has a number from 1 to 70 (70 out of 100), you will receive whatever you have allocated to 

Good 1 (80 tokens) divided by the price of Good 1 (10), that is £8. If the ticket has a number from 71 to 100 

(30 out of 100), you will receive whatever you have allocated to Good 2 (20 tokens) divided by the price of 

Good 2 (5), that is £4. 

For example if you were to draw ticket number 45, then Good 1 would occur and your payment would be 

£11=£8 (your payment from Good 1)+£3 (the show-up fee). 

The Experimental Interface 

The computer will tell you in each question the prices of the two goods. The chances of either good occurring 

are shown with the aid of a pie chart. The larger the proportion for one of the goods, the higher the chances 

for this good to occur. You can slide the slider to denote how many tokens you would like to allocate to each 

good. You can see in the screen how much you have allocated to each of the goods. A picture at the bottom 

right indicates the amounts implied by your allocations in money terms, and are represented by the heights 

of the coloured bars. The widths of the coloured bars represent the chance of the goods being realised in 

that question.  The questions are independent of each other, meaning you start with a fresh 100 tokens in 

the start of each question. When you click on ‘Confirm’ or hit the ‘Space’ key you will move onto the next 

question.  

Timing 

You will be given a maximum of 12 seconds to decide; if you have not confirmed your decision by the time 

12 seconds have elapsed, it will be assumed that the last position of the slider reflects your preferred 

allocation. 

Payment 

At the end of the experiment one of the two parts will be randomly chosen for payment. One of the 20 

questions from this part will be randomly selected by drawing a ticket from an opaque bag which contains 

20 numbered tickets. The computer will recover your choices and the details of this particular question. You 

will then draw a ticket from the bag with the 100 numbered tickets to determine which good will occur. 
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Practice Rounds 

To familiarise yourself with the experimental interface and the task, there will be 3 practice questions which 

will not count towards your final payment. Feel free to ask any questions you may have during the practice 

questions.  

Questionnaires 

At the end of parts 1 and 2, there will be 3 short questionnaires collecting various demographics and 

personality data.  

 

 

 

 

 

 

 

 

 

 

 

 

Thank you for participating  

Harry Rolls 

Konstantinos Georgalos  

December 2019 
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Instructions for Subjects with Time Pressure Tasks Second



Instructions 

Welcome 

Welcome to this experiment. These instructions are to help you understand what you are being asked to do 

during the experiment and how you will be paid. The experiment is simple and gives you the chance to earn 

a considerable amount of money, which will be paid to you in cash after you have completed the experiment. 

The payment described below is in addition to a participation fee of £3.00 that you will be paid independently 

of your answers. 

The experiment 

This experiment consists of two parts. You will receive instructions on the second part once you have 

completed the first one.  

In the first part of this experiment, you will be presented with a total of 20 questions. Each question is of the 

same form. For each question, you will have 100 tokens to allocate between two different goods, Good 1 and 

Good 2. The questions will vary in two ways: first the price of each good will be different in every question; 

second, the chances of obtaining either of the goods will differ. After you have responded on all questions, 

in both parts, one of them will be chosen at random and played out. ‘Playing out’ a question means that one 

of the two goods will occur (in a way we describe below) with chances as specified in that question, and you 

will be paid the money value of the number of tokens that you allocated to that Good. 

Example of a question 

Imagine the question as shown in the Figure in the last page. The chances of the two goods are: 

Good 1: 70%  

Good 2: 30%.  

The prices of the two goods are: 

Good 1: 10 

Good 2: 5 

Suppose that you make the following allocation: 

Good 1: 80 tokens 

Good 2: 20 tokens 

In this case you will receive 80/10=£8 if Good 1 will occur, or 20/5=£4 if Good 2 will occur.  
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Specifying the Chances 

Each question will specify the chances for Good 1 and Good2. These may differ from question to question 

but they will always be something out of 100. In the previous example, the chance of Good 1 occurring is 70 

out of 100, and of Good 2 occurring 30 out of 100. If this question were to be played out at the end of the 

experiment, you will be provided with an opaque bag filled with 100 numbered tickets. The bag would then 

be shaken and you would be asked to draw a ticket at random (and without looking into the bag) out of the 

bag. If the ticket has a number from 1 to 70 (70 out of 100), you will receive whatever you have allocated to 

Good 1 (80 tokens) divided by the price of Good 1 (10), that is £8. If the ticket has a number from 71 to 100 

(30 out of 100), you will receive whatever you have allocated to Good 2 (20 tokens) divided by the price of 

Good 2 (5), that is £4. 

For example if you were to draw ticket number 45, then Good 1 would occur and your payment would be 

£11=£8 (your payment from Good 1)+£3 (the show-up fee). 

The Experimental Interface 

The computer will tell you in each question the prices of the two goods. The chances of either good occurring 

are shown with the aid of a pie chart. The larger the proportion for one of the goods, the higher the chances 

for this good to occur. You can slide the slider to denote how many tokens you would like to allocate to each 

good. You can see in the screen how much you have allocated to each of the goods. A picture at the bottom 

right indicates the amounts implied by your allocations in money terms, and are represented by the heights 

of the coloured bars. The widths of the coloured bars represent the chance of the goods being realised in 

that question.  Again, the larger the width for one of the goods, the higher the chances for this good to occur. 

The questions are independent of each other, meaning you start with a fresh 100 tokens in the start of each 

question. When you click on ‘Confirm’ or hit the ‘Space’ key you will move onto the next question.  

Timing 

You will not be able to confirm your decision on any question until at least 15 seconds have elapsed. You will 

be given a maximum of 45 seconds to decide; if you have not confirmed your decision by the time 45 seconds 

have elapsed, it will be assumed that the last position of the slider reflects your preferred allocation. 

Payment 

At the end of the experiment one of the two parts will be randomly chosen for payment. One of the 20 

questions from this part will be randomly selected by drawing a ticket from an opaque bag which contains 

20 numbered tickets. The computer will recover your choices and the details of this particular question. You 

will then draw a ticket from the bag with the 100 numbered tickets to determine which good will occur. 
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Practice Rounds 

To familiarise yourself with the experimental interface and the task, there will be 3 practice questions which 

will not count towards your final payment. Feel free to ask any questions you may have during the practice 

questions.  

Questionnaires 

At the end of parts 1 and 2, there will be 3 short questionnaires collecting various demographics and 

personality data.  

 

 

 

 

 

 

 

 

 

 

 

 

Thank you for participating  

Harry Rolls 

Konstantinos Georgalos  

December 2019 
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C.2 Derivation of Demand Equations

Here we shall show the derivation of the optimal allocation

max πx ∗ (x∗ex)1−ρ

1−ρ + πy ∗
(y∗ey)1−ρ

1−ρ

s.t x + y = 100

First Order Conditions:

πx ∗ ex ∗ (x ∗ ex)−ρ = λ

πy ∗ ex ∗ (y ∗ ey)−ρ = λ

x + y = 100

Rearrange

πxex
πyey

( xex
yey

)−ρ = 1

(
yey
xex

)ρ =
πyey
πxex

y = xex
ey
(

πyey
πxex

)
1
ρ

Put this into the budget constraint:

x + xex
ey
(

πyey
πxex

)
1
ρ = 100

X∗ = 100

1+ ex
ey (

πyey
πxex )

1
ρ

Solve for y:

x + y = 100

Y∗ = 100 − 100

1+ ex
ey (

πyey
πxex )

1
ρ

Can be expressed more tidily as:

X∗ = 100∗(πx∗e1−ρ
x )

1
ρ

(πx∗e1−ρ
x )

1
ρ +(πy∗e1−ρ

y )
1
ρ

Y∗ =
100∗(πy∗e1−ρ

y )
1
ρ

(πx∗e1−ρ
x )

1
ρ +(πy∗e1−ρ

y )
1
ρ

C.3 Plots for distributions of behavioural parameters

Here, we include the density plots for individuals behavioural parameters. For this

we compare the distribution of behavioural parameter θNTP and θNTP + θTP for com-

paring the parameters used for decision making with and without time pressure.
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FIGURE C.1: Density Plot of ρ, the curvature of utility function
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FIGURE C.2: Density Plot of δ, the degree of probability distortion
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FIGURE C.3: Density Plot of γ, degree of probability over or under
weighting

C.4 Considering other Weighting Functions

In order to see if our results proposed above are robust, we compare our Two Pa-

rameter Prelec function (PRL2) with several other functions proposed within the

literature in order to see is we get the same result that a majority of individuals are

more risk averse without time pressure.
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TABLE B2: Other weighting functions to consider

Name Specification

Goldstein-Einhorn (GE) γPδ

γPδ+(1−P)δ

1 Parameter Prelec (PRL1) exp (−((− ln(P))δ)))

Tversky-Kahneman (TK) Pδ

(Pδ+(1−P)δ)
1
δ

We then perform the same procedure as in the main paper, recovering the be-

havioural parameters of interest with and without time pressure, determining what

is significant and finally calculating and comparing certainty equivalence in order

to see how risk attitudes change with and without time pressure. Below we show a

summary of the results for the other weighting functions we consider as well as the

2 Parameter Prelec function for comparison.

TABLE B3: Summary Results for all weighting functions

PRL2 GE PRL1 TK

Mean ρNTP 1.3750 1.3761 1.3532 1.1057

Mean ρTP 0.1086 0.0799 0.0824 -0.1010

Mean δNTP 1.0252 1.1325 0.9121 1.0613

Mean δTP 0.2175 0.0916 0.2027 -0.0087

Mean γNTP 1.1976 0.9890

Mean γTP -0.01215 0.1667

Statistically Different ρTP 29 24 40 43

Statistically Different δTP 35 33 41 42

Statistically Different γTP 27 33

No statistical changes under time pressure 8 7 5 1

Mean Certainty Equivalence without Time Pressure 7.0211 6.9929 6.9798 6.8714

Mean Certainty Equivalence with Time Pressure 6.8002 6.8148 6.9046 6.7913

More risk averse under time pressure 13 12 18 17

More risk averse without time pressure 24 24 25 29

We can see that for all weighting functions, we have the same results, with a

majority of subjects having at least one of their behavioural parameters for time

pressure statistically different from zero. When considering their certainty equiva-

lences with each of these specifications, we can see the same results with a majority
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of subjects being more risk averse without time pressure, as shown by a lower level

of certainty equivalence.
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