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A B S T R A C T   

Overcrowding is a major phenomenon affecting travel experience in urban public transport, whose negative 
impacts can be potentially mitigated with real-time crowding information (RTCI) on public transport vehicle 
departures. In this study, we investigate the willingness to wait (WTW) with instantaneous RTCI to avoid the in- 
vehicle (over)crowding the passenger faces, focusing specifically on urban crowding context (i.e. bus and tram 
systems). We conduct a stated-preference survey in Krakow (Poland), where we examine the choice probability 
between boarding now a more crowded vehicle vs. waiting at the stop for a less-crowded PT departure, and 
estimate a series of discrete choice models. 

Results show that 50–70% of respondents consider skipping a first departure which is excessively overcrowded 
and 10–30% would skip a vehicle with moderate standing crowding on-board. Acceptable waiting times typically 
range between 2 and 13 min, depending on crowding level and propensity to arrive on-time, but may even 
exceed 20 min in individual cases. These findings indicate that RTCI can induce a substantial WTW, affecting 
travel behaviour. We discuss its implications for mitigating service disruptions and demand management pol-
icies, including prospective support for public transport recovery in the aftermath of covid-19 crisis.   

1. Introduction 

Passenger overcrowding is an important phenomenon affecting 
travel experience and performance of public transport (PT) networks. 
The finite capacity of PT systems may become eventually outstripped by 
ever increasing PT transportation demand, especially in urban areas. 
This leads to overcrowding, which has significant consequences for the 
perceived quality of PT service (Tirachini, Hensher, & Rose, 2013) and 
whose vast economic costs are yet often underestimated in cost-benefit 
analyses (Batarce, Muñoz, & de Dios Ortúzar, 2016; De Palma, Lindsey, 
& Monchambert, 2017). 

An increasing interest in ‘soft’ travel demand management (TDM) 
solutions offers opportunities to utilise more effectively the available 
system capacity and mitigate the impacts of overcrowding. Reliable and 
useful real-time information, available from data collected by the ITS 
(Intelligent Transport Systems) in PT networks, can increase passengers' 
awareness about current travelling conditions, help them make more 
informed choices (Fonzone & Schmöcker, 2014; Islam & Fonzone, 2021) 

and potentially the best travel decisions possible (Noursalehi, 2017). 
Moreover, estimating and predicting current and future passenger vol-
umes in the PT network can help in application of real-time strategies 
that facilitate better passenger load distribution among PT vehicles 
(Ceder, 2015; Gavriilidou & Cats, 2019) and thus shift network towards 
optimum state (van Essen, Thomas, van Berkum, & Chorus, 2016). It is 
thus key to understand how information on crowding levels impacts user 
behaviour in urban PT services. 

1.1. Literature review 

Crowding is an influential travel choice factor in PT networks 
(Tirachini et al., 2013; Whelan & Crockett, 2009). Passenger reactions to 
crowding range from route, modal and temporal shifts towards more 
complex changes in trip frequency, trip destination, trip chains or even 
cancelling the journey altogether (Gentile & Noekel, 2016; Tirachini 
et al., 2013). Passengers may be willing to pay (Whelan & Crockett, 
2009) or make an extra detour (Kim, Hong, Ko, & Kim, 2015) to avoid 
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overcrowding, and even to travel upstream first in order to get a seated 
place in the desired travel direction (Tirachini, Sun, Erath, & Chakirov, 
2016). Experience of overcrowding is all the more important given 
passengers' tendency to disproportionally remember negative travel 
experiences (Abenoza, Cats, & Susilo, 2017), especially once travel 
conditions exceed a certain discomfort threshold (Börjesson & Rubens-
son, 2019). An important undesired effect induced by overcrowding 
experience pertains to increased perceptions of travel time unreliability 
and the associated risk of late arrival at the destination (Tirachini et al., 
2013). These concerns are especially likely to be exacerbated by the 
unavailability of accurate and timely travel information and resultant 
uncertainty (Kattan & Bai, 2018). 

Effects of overcrowding disutility are quantified using value-of- 
crowding measures (Li & Hensher, 2011), i.e. as an equivalent of 
travel attribute – journey time, monetary fare or generalised travel cost – 
that passengers are willing to trade-off against the overcrowding expe-
rience. A common approach is to estimate the so-called temporal 
crowding penalty (Batarce et al., 2015; Tirachini et al., 2013). Tradi-
tionally, crowding valuations are primarily obtained through stated- 
preference (SP) experiments where respondents exercise trade-offs be-
tween travel times, crowding levels, and other attributes in hypothetical 
choice scenarios, with multiple studies published in this field (Bansal, 
Hurtubia, Tirachini, & Daziano, 2019; Batarce et al., 2016; Haywood & 
Koning, 2015; Kattan & Bai, 2018; Kroes, Kouwenhoven, Debrincat, & 
Pauget, 2014; Li, Gao, & Tu, 2017; Li & Hensher, 2011; Preston, 
Pritchard, & Waterson, 2017; Rudnicki, 1999; Tirachini et al., 2013; 
Tirachini, Hurtubia, Dekker, & Daziano, 2017; Wardman & Whelan, 
2011; Whelan & Crockett, 2009). Their findings underpin the signifi-
cance of disutility imposed by on-board overcrowding, with maximum 
travel time multipliers usually in the range of 1.4–1.8 for seated pas-
sengers and 2.1–2.5 for standing passengers, though studies with 
different methodological assumptions report even higher estimates, up 
to 2.5–3.6 (sitting penalty) and 3.2–5.8 (standing penalty) (e.g. Tira-
chini et al. (2017); Bansal et al. (2019)). An alternative, yet not always 
feasible approach involves revealed-preference (RP) studies, where 
crowding penalties are evaluated by processing real-world travel re-
cords, e.g. smartcard data transactions (Batarce et al., 2015; Hörcher, 
Graham, & Anderson, 2017; Tirachini et al., 2016; Yap, Cats, & van 
Arem, 2018). These studies report maximum travel time multipliers due 
to overcrowding as oscillating between 1.1 and 1.7 (sitting penalty) and 
1.5–2.0 (standing penalty). In a broad overview, state-of-the-art con-
cerns mostly the evaluation of crowding penalty as a function of in- 
vehicle travel time, or total journey time. Such crowding multipliers 
reflect how much extra time a passenger is willing to spend travelling 
on-board an uncrowded vehicle, compared to a shorter travel time on- 
board an overcrowded vehicle. 

However, overcrowding may also be directly traded-off with waiting 
time. This is the case for instance in the event of denied boarding. 
Waiting time due to denied boarding imposes a substantially greater 
disutility, even 3.5 times higher than nominal waiting time disutility 
(Cats, West, & Eliasson, 2016). Furthermore, passengers may deliber-
ately choose to accept additional wait time if boarding a later trip could 
imply lower on-board crowding conditions. The notion of willingness- 
to-wait (WTW) to avoid (or reduce the negative effects of) over-
crowding has been hitherto explored in a few studies, mostly conducted 
within the SP setting (Kim, Lee, & Oh, 2009; Kroes et al., 2014; Yu, Li, 
Kong, Wang, & Wu, 2015; Preston et al., 2017; Kattan & Bai, 2018, 
Shelat et al. (2022a, b)). Below we summarise the main implications of 
these studies:  

• The study of Kim et al. (2009) from Seoul analysed the effect of 
hypothetical bus occupancy information on stated choices between 
the next two bus departures. They found that propensity to wait for 
the less-crowded bus is likely to be higher in case of non-commuting 
trips, seats' availability, longer journey time and for selected user 
groups (elderly people, white- and blue-collar workers etc.).  

• Kroes et al. (2014) find that WTW in Paris metro system is primarily 
determined by crowding level of the first incoming PT departure. SP 
estimates show the share of PT users willing to wait additional few 
minutes vary from 12% (if the first train has minor crowding) to 75% 
(if the first train is severely overcrowded, while second train has 
seats available).  

• Yu et al. (2015) investigate the WTW with bus crowding information 
among bus passengers in Dalian (China). However, their SP survey is 
conducted during the morning peak-hour only and does not consider 
the impact of certain trip and population characteristics upon the 
WTW rate, such as propensity to arrive on-time.  

• In another study, Preston et al. (2017) report stated WTW among 
British Rail commuters with information on seats available in a later, 
less-crowded train. Findings underline the importance of trip pur-
pose, as WTW is likely to emerge among travellers with arrival time 
flexibility (leisure trips) or those concerned about travel time pro-
ductivity (business trips). Average acceptable waiting time oscillates 
between 8 and 23 min, with estimated value-of-crowding multipliers 
for a 30-min journey ranging from 1.3 (time-critical trips) to 1.5–1.7 
(other trip purposes).  

• A study performed for a light rail transit system in Canada (Kattan & 
Bai, 2018) investigates waiting probability when respondents have 
information only on the first train (due now) being overcrowded. The 
stated WTW increases with infrequent system usage, perceived un-
reliability of ATIS system, respondents' age and longer journey time. 
Estimated probability of waiting for the second train, whose 
crowding level remains unknown in the SP experiment, ranges be-
tween 45% (commuter trips, peak trips) to 65% (non-commuter 
trips, off-peak trips).  

• Recently published studies provide also first insights into the impacts 
of COVID-19 pandemic upon rising PT (over)crowding impedance 
and waiting time valuations. In a SP survey conducted among Dutch 
train passengers, Shelat, Cats, and van Cranenburgh (2022a) distin-
guished 2 population classes, i.e. ‘infection-indifferent’ and the 
newly emerged ‘COVID-conscious’ travellers. The latter group is 
significantly more sensitive to infection risk and crowding discom-
fort. The unit WTW rate is calculated for these groups respectively as 
about 1 and 8 [mins] of acceptable waiting time per reduction of 1 
person on-board. Such values suggest a substantial increase in the 
WTW in relation to information provisioned on train crowding levels 
and the associated infection risk. Among personal traits, it is 
observed that females and elderly users exhibit greater crowding 
impedance due to COVID-19 impacts (even 20–50%), while high- 
income and commuting users are more resilient to these concerns 
(Aghabayk, Esmailpour and Shiwakoti, 2021; Basnak, Giesen, & 
Muñoz, 2022). Post-COVID-19 crowding valuations are also likely 
higher for train modes and longer-range trips (ca. 25% higher than 
pre-pandemic levels) than for bus modes and short-range trips (ca. 
5%) (Cho & Park, 2021; Shelat, Van De Wiel, et al., 2022b)). 

Passengers' WTW phenomena can be potentially facilitated and 
passengers can be stimulated to act upon it by providing information on 
current and future on-board passenger loads. This is nowadays 
increasingly feasible by means of generating and disseminating real- 
time crowding information (RTCI) (Gentile & Noekel, 2016; Jenelius, 
2020). The RTCI systems are still in their early practical deployment 
stages, mostly confined to limited-scale information on individual train 
carriages' loads (e.g. London (Schmitt, 2017), Stockholm (Zhang, 
Jenelius, & Kottenhoff, 2017), Sydney (Susan, 2018), Tokyo (East Japan 
Railway Company, 2021)), bus occupancy loads (Seoul – (Seoul 
Metropolitan Government, 2017)) and travel apps supplied with ex-
pected crowding information based on historical user feedback (e.g. 
Moovit (Moovit Inc, 2021), Google Maps Transit (Google LLC, 2021), 
JakDojade.pl (City-Nav LLC, 2021)) coupled with real-time weighting 
data (e.g. Dutch railways (Nederlandse Spoorwegen, 2021), Singapore 
buses (Singapore LTA Land Transport Authority, 2021)). These 
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developments are accompanied by an increasing scientific interest, with 
studies devoted to developing simulation models (Drabicki, Kucharski, 
Cats, & Szarata, 2020; Noursalehi, 2017; Nuzzolo, Crisalli, Comi, & 
Rosati, 2016), prediction algorithms (Jenelius, 2018; Jenelius, 2019; 
Jenelius, 2020; Więcek, Kubek, Aleksandrowicz, & Stróżek, 2019) and 
empirically examining RTCI impacts in pilot trials (Zhang et al., 2017). 
Recently, RTCI provision has been gaining momentum as operators aim 
to tackle the ramifications of the (on-going) covid-19 pandemic crisis for 
perceived travel safety. This has been witnessed in several RTCI systems 
in the US, e.g. in Boston (MBTA (Massachusetts Bay Transportation 
Authority), 2021), San Jose (VTA Valley Transportation Authority, 
2021) and Washington D. C. (WMATA Washington Metropolitan Area 
Transit Authority, 2021). 

To conclude the review, we conclude that despite recent research 
advancements, the literature still contains major research gaps with 
regards to the impact of RTCI on passengers' travel behaviour – specif-
ically, the instantaneous boarding decisions referred to as the WTW 
phenomenon. Firstly, the majority of state-of-the-art studies on PT 
(over)crowding valuations concerns the trade-offs against journey (in- 
vehicle) times, and as such they are not directly relevant for WTW 
quantification purposes. Secondly, the WTW valuations have been 
hitherto mostly deduced in the context of longer-distance, regional rail 
trips, where seat availability and/or the possibility to work whilst 
travelling seem to play an important role. In contrast, short-range, urban 
PT trips may involve different choice considerations, comfort trade-offs 
and sensitivity towards overcrowding. Finally, SP studies do not provide 
a complete description of how passengers trade-off the value of RTCI 
against waiting disutility with regards to trip and population charac-
teristics, especially in the urban PT context (e.g. WTW vs. propensity to 
arrive on-time). 

Arguably, the WTW can be transformed in actual travel behaviour – 
i.e., in waiting for PT departures further in time – by disseminating RTCI, 
especially in high-frequency PT services. It remains unknown, though, 
what might be the perceived value (utility) of RTCI in instantaneous 
boarding choice context and what factors influence the WTW with 
crowding information on next departures in urban PT networks. 
Consequently, this hampers the development of analytical support for 
the assessment of RTCI systems using PT network models and/or cost- 
benefit evaluation tools. 

1.2. Objectives and contribution 

This study is devoted to the analysis of passengers' willingness-to- 
wait to avoid overcrowding in the presence of real-time crowding in-
formation in urban public transport. Our research questions are as 
follows:  

1. What is the stated WTW among urban PT users with RTCI for a later 
but less-crowded departure of the same bus/tram line?  

2. What factors – in terms of trip- and individual-related characteristics 
- explain the WTW to avoid overcrowding with RTCI?  

3. What are the implications of WTW for travel demand management 
strategies, also in the context of covid-19 impact upon PT sector? 

To address these questions, we conduct a stated-preference survey 
among urban PT (i.e. bus and tram) users in the city of Krakow (Poland). 
The survey experiment examines their response to the hypothetical RTCI 
for their current trip context. In a series of choice experiments, urban PT 
users are asked to indicate their preference between departing now - in 
higher crowding conditions – vs. waiting for the next bus/tram depar-
ture - which is less-crowded. Based on these, we estimate a series of 
discrete choice (mixed logit) models that describe the WTW with RTCI. 

The main contribution of this paper is the quantification of passen-
gers' stated WTW for a less-crowded vehicle under provision of RTCI. 
Modelling outputs allow for measuring the WTW probability in form of 
discrete choice models and deriving the acceptable wait time thresholds 

and crowding multipliers. Our findings reveal the prospective impor-
tance of RTCI in instantaneous boarding decisions, as passengers are 
willing to trade-off (on average) an extra waiting time of 2–13 [mins] to 
avoid the risk of on-board overcrowding. Furthermore, up to 50–70% of 
all respondents would consider waiting further at the stop for a less- 
crowded departure with RTCI. We also observe that urban PT users 
place higher emphasis on avoiding the risks of excessive overcrowding 
in the first place, such as denial-of-boarding risk, while seat availability 
seems to be of secondary importance. Using a simplified example, we 
illustrate how the obtained findings can help with assessing the potential 
impacts (and benefits) of WTW behaviour stimulated by RTCI access. 

The WTW with RTCI could not only improve the users' travel expe-
rience and counteract the negative PT overcrowding impacts, but also 
comprise a useful travel demand management strategy. In hindsight, its 
implications may be even more paramount in the context of the post- 
covid-19 recovery of PT sector. The discussion of the prospective 
applicability of our findings will follow in the final part of this paper. 

The remainder of this paper is organized as follows. Section 2 pre-
sents the methodological framework of this study, comprising of a SP 
survey design and a discrete choice model formulation. In section 3, we 
report and discuss the survey and model estimation results. We conclude 
with section 4, summarising main factors influencing the WTW with 
RTCI, discussing the research and practical implications of this study 
and pointing the future research directions. 

2. Method 

We first present the data collection describing survey experiment 
design (2.1). Thereafter, we present the methodology adopted for esti-
mating choice models and obtaining the WTW valuations (2.2). 

2.1. Stated-preference (SP) survey 

To design our stated-preference (SP) survey, we first conducted a 
series of focus-group surveys among PT users, and used them to 
conceptualise (and refine) our main survey questionnaire. Respondents 
were also asked about their preferences and interpretations of various 
crowding information schemes. As a result, we obtained a descriptive 
RTCI classification scheme rated as the most favourable and under-
standable, which will form the basis of our stated-choice experiment. 
The output RTCI scale classifies the crowding on-board the urban bus 
and tram vehicles in 4 levels as shown in Table 1. Each RTCI level is 
associated with distinctive travel (dis)comfort expectations and behav-
ioural responses (travel decision) as specified by focus-group re-
spondents. The RTCI scheme in our study is comparable with descriptive 
classification of on-board crowding assumed in other works in this 
research field, usually plotted on a 3-level to 6-level scale (Batarce et al., 
2015; Jenelius, 2020; Kim et al., 2009; Kroes et al., 2014; Więcek et al., 
2019; Zhang et al., 2017). 

The main survey questionnaire contains 14 questions in total, 
divided into following parts:  

1. Introduction to survey and (brief) explanation of its objectives. 
2. Current PT trip context – trip purpose, time-criticality (i.e. pro-

pensity to arrive on-time), frequency of travelling along this route 
(per week), in-vehicle journey time and service frequency.  

3. Choice experiments - WTW with hypothetical RTCI for the next two 
departures of the current urban trip.  

4. Socio-demographic characteristics. 

The questionnaire is designed as a field survey to be conducted 
among passengers waiting at the bus and tram stops. 

In the choice experiments, we present respondents with hypothetical 
choice scenario for their current urban PT trip context (Fig. 1). The RTCI 
display in our SP survey is an example of crowding information 
conveyed in real-time to urban PT travellers, resembling e.g. state-of- 
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the-practice pilot RTCI solutions (cited in the Subsection 1.1. above). 
Passengers are asked to choose between two alternatives which involve 
either boarding first PT departure (due to depart now) or skipping the 
first option and waiting for the second PT departure instead. Each 
alternative is characterized by two attributes: i.e., on-board crowding 
conditions (i.e. RTCI level) and waiting time, ceteris paribus. Combi-
nation of crowding conditions of the two trips can result in the following 
cases: 

• Case (A): First departure: moderately crowded (RTCI level 3); Sec-
ond departure: seats available (RTCI level 2). 

• Case (B): First departure: overcrowded (RTCI level 4); Second de-
parture: moderately crowded (RTCI level 3). 

• Case (C): First departure: overcrowded (RTCI level 4); Second de-
parture: seats available (RTCI level 2). 

Waiting time for the second departure is assumed to be 5 min or 10 
min. All other trip characteristics – i.e. on-board journey time, time- 
criticality, trip purpose etc. – remain the same for both alternatives, as 
specified earlier by respondent in the second part of the survey (see 
previous paragraph). This design, in conjunction with the in-situ 
surveying method, aims to additionally accentuate the influence of 
contextual setting upon respondents' decisions (i.e. trip conditions are 
‘palpable’ for them), as compared to the conventional methodology of 
the off-line SP surveys. 

In total, the SP experiments contain 6 possible choice scenarios. 

Hence, it was designed as panel survey and each respondent was asked 
to answer the whole scenario set. To ensure that the survey could be 
credibly completed by respondents interviewed at PT stops within a 
short amount of time, we had to limit the number of examined choice 
scenarios. Pilot results from focus groups indicated a negligible differ-
ence in respondents' perceptions and choices if crowding on-board the 
second departure is described as either RTCI level 1 or RTCI level 2. 
Therefore, scenarios involving the lowest crowding conditions (RTCI 
level 1) were not eventually considered in the survey. 

2.2. Choice modelling 

We adopt the random utility maximization (RUM) theory, estimating 
a series of discrete choice models which describe the probability P(i) of 
choosing an alternative i characterized by its utility Ui from a given 
choice set. Within the RUM paradigm, the individuals' objective is to 
maximise their utility when performing choices. The utility Ui of an 
alternative i consists of the systematic Vi and random error ε utility 
components (Eq. 1): 

Ui = Vi + ε (1) 

The setup of our experiments implies a binary choice context, i.e. the 
set consists of two alternatives i, j. Since the random error component ε is 
independent and identically (i.i.d.) Gumbel distributed, the choice prob-
ability P(i) of an alternative i is given by the following formula (Eq. 2): 

Table 1 
Survey design – focus-group results. Respondents' interpretations of a descriptive 4-level RTCI representation scheme for bus and tram vehicles (urban PT trips).  

RTCI level interpretation behavioural response 

1. 
• >50% of seats available  
• plenty of uncrowded space  

• would choose this trip ‘at-ease’  
• would find a double seat easily  
• expect a comfortable trip  

2. • individual seats (ca. 10–20%) available  
• no standing crowding  

• would take this trip  
• not 100% sure to find a seat  
• (students) would prefer to stand inside, even with seats available  

3. 
• all seats taken  
• moderate crowding, but no overcrowding  
• can move inside, but not 100% freely  

• would take this trip  
• expect a ‘comfortable’ standing place  
• expect some discomfort  

4. 
• all seats taken, uncomfortable standing conditions  
• severely overcrowded  
• hard to move or grab a hold inside  

• unless in a hurry – would consider different travel options  
• expect substantial discomfort  
• expect denial-of-boarding risk  

Which of these departures 

would you choose?
20
10
YES
home  work
2 - 4

no seats available,
but can stand comfortably

seats available

[  ] departure 1 - NOW [  ] departure 2 – WAIT

Fig. 1. Illustration from the SC experiment – sample question.  
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P(i) =
eVi

eVi + eVj
(2) 

The alternatives correspond to urban PT departures (runs) that the 
respondent can choose from (and board) at a given stop. The utility 
formulation that we adopt here is analogous to the approach presented 
by Preston et al. (2017). The first departure (due now) is set as the base 
alternative and its utility Vdep1 is assumed as reference value fixed to 
zero, i.e. Vdep1 = 0. The second departure (due later) is defined by utility 
Vdep2 that essentially represents the willingness to wait (WTW) utility 
(Eq. 3), i.e. relative (dis)utility of deliberately skipping the first depar-
ture and waiting for the second departure, given the provisioned on- 
board crowding information. The WTW utility is evaluated as a sum of 
the vector of choice explanatory variables X = (x1, x2, …, xn), weighted 
by their corresponding taste preference parameters β = (β1, β2, …, βn) as 
follows: 

Vdep2 = V(WTW) =
∑

βn*xn (3) 

This WTW formulation represents in a generic way how various 
choice variables (attributes) contribute to a relative increase (or 
decrease) in waiting utility. Variables in the vector X may include both 
trip-related attributes referring to the specific choice context, as well as 
socio-demographic attributes of the respondent. Explanatory variables 
(attributes) xn are mostly included in form of dummy attributes δn, equal 
to 1 if the attribute n is valid in that particular choice scenario, and 
0 otherwise. This implies that the βn parameter reflects the overall (dis) 
utility value related to the attribute n (if δn = 1). Additional choice at-
tributes xn are included as time attributes tn, i.e. wait time and in-vehicle 
journey time valid in the respective choice scenario. In these cases, βn 
value represents a unit incremental (dis)utility rate per additional 
minute of travel time. 

We consider several alternative WTW formulations, based on the 
mixed binary logit specification. The basic WTW model (Eq. 4) is 
comprised of two key attributes in our experiments: 

• utility of crowding difference between the first and the second de-
parture, denoted by RTCI system: βs

RTCI * δs
RTCI, where δs

RTCI refers to 
specific choice scenario s (thus, for each record only a single δs

RTCI 
value is non-zero):  
o case (A), i.e. reduction from RTCI level 3 to RTCI level 2: δ3-2

RTCI = 1,  
o case (B), i.e. reduction from RTCI level 4 to RTCI level 3: δ4-3

RTCI = 1,  
o case (C), i.e. reduction from RTCI level 4 to RTCI level 2: δ4-2

RTCI = 1,  
• (dis)utility of wait time (in [mins]) for the second departure: βwt * twt. 

V(WTW) = β3− 2
RTCI*δ3− 2

RTCI + β4− 3
RTCI*δ4− 3

RTCI + β4− 2
RTCI*δ4− 2

RTCI + βwt(μ, σ)*twt (4)   

The extended WTW model (Eq. 5) accounts for a combination of trip- 
and individual-related attributes. Here, we include choice attributes that 
are found to be relevant after the statistical analysis of our survey 
sample. In addition to the basic WTW model, these include the impact 
upon WTW (dis)utility due to:  

• trip frequency (δcommute = 1 if respondent performs this journey at 
least twice a week),  

• age (δage50–65 = 1 if respondent is between 50 and 65 years of age; 
δage65plus = 1 if >65 y/old),  

• time-criticality (δtimecrit = 1 if respondent has to arrive before a 
specified time at the destination),  

• in-vehicle journey time (tivt in [mins], remaining from this stop): 

V(WTW) = β3− 2
RTCI*δ3− 2

RTCI + β4− 3
RTCI*δ4− 3

RTCI + β4− 2
RTCI*δ4− 2

RTCI + βcommute*δcommute

+ βage50− 65*δage50− 65 + βage65plus*δage65plus + βtimecrit*δtimecrit

+ βivt*tivt + βwt(μ, σ)*twt

(5)   

The choice of mixed logit model is advantageous and superior to the 
employment of conventional (linear) multinomial logit (MNL) model in 
our study. The mixed logit includes panel data effects, accounting for 
possible correlations between different observations of the same 
respondent. It also assumes that there is an unobserved heterogeneity 
across respondents. We capture these by means of mixing density 
applied to the wait time (dis)utility parameter βwt = βwt (μ, σ), which 
becomes here a normally distributed value, characterized by mean and 
standard deviation. This enables us to investigate the impact of taste 
variations with respect to the WTW utility among our sampled 
population. 

Next, estimated choice model parameters are used to compute wait 
time thresholds and crowding multipliers related to WTW for each RTCI 
scenario s. By dividing the marginal utility of RTCI by the marginal 
utility of wait time, we obtain the threshold wait time in [mins] tsWTW, 
that can be interpreted as an acceptable trade-off for the necessity to 
wait for the second departure in order to experience lower on-board 
crowding later on (Eq. 6) – as we elaborate further in the subsection 
(3.3.): 

ts
WTW =

⃒
⃒
⃒
⃒
βs

RTCI

βwt

⃒
⃒
⃒
⃒ (6) 

Based on these, we can compute the value-of time crowding multi-
pliers CMs

WTW. The WTW crowding multiplier specification is akin to the 
concept of marginal rate of substitution between 2 alternatives, 
commonly used in monetary valuations of travel attributes (the notion of 
WTP - willingness-to-pay) (Tirachini et al., 2017). Assuming that pas-
sengers are willing to wait for tsWTW [mins] to board a less-crowded trip 
of the same in-vehicle journey time tivt [mins] to their destination, the 
WTW crowding multipliers correspond to the travel time disutility ratio 
between boarding an overcrowded departure now (tivt) vs. waiting and 
boarding a less-crowded departure later (tsWTW + tivt). Thus, the CMs

WTW 
values are a function of the (remaining) in-vehicle journey time tivt and 
acceptable wait time tsWTW for a given RTCI scenario s (Eq. 7). The 
CMs

WTW rate is essentially interpretable as total travel time multiplier of 
the first (overcrowded) departure, relative to the total travel time 
associated with the second (less-crowded) departure (Preston et al., 
2017). Such formulation yields WTW crowding multipliers adequate for 
application e.g. in PT assignment models and cost-benefit analysis. 

CMs
WTW =

tivt + ts
WTW

tivt
(7)  

3. Results 

In this section, we first present the descriptive statistics of passenger 
survey results (3.1). We then report the results of a series of discrete 
WTW choice model estimations (3.2) in form of extended and base 
mixed logit specifications. Finally, estimation outputs are used to 
calculate the acceptable wait time thresholds and crowding multipliers 
with RTCI (3.3.). 

3.1. Descriptive statistics 

The survey was carried out in March and April 2019 in the city of 
Krakow, the second-largest city in Poland with city population of 750 k 
inhabitants (ca. 1.4 m in the metro area). The core of the urban PT 
system in Krakow is composed of tram and bus network, which are the 
dominant PT modes in the city, used for about half a million trips on a 
daily basis. This urban PT network consists of approx. 24 tram lines and 
84 bus lines (plus 65 ‘feeder’ bus lines in the agglomeration area). Peak- 
hour headways range between 5 and 15 [mins] for all tram lines and 
main bus services (MPK Krakow, 2022). The internal layout of bus and 
tram vehicles typically implies an enlarged standing space, offset by 
reduced seating area. 

The SP survey was carried out on portable tablet devices, face-to-face 
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among passengers waiting at bus and tram stops. As surveying locations, 
we (randomly) chose 8 inner-city PT stops with relatively high passenger 
volumes, and conducted surveys during the daytime (both during peak 
and midday off-peak hours). About 75% of interviews involved PT ser-
vices with headways of 5–10 [mins], and not >15 [mins] in ca. 93% of 
cases. Time required to fill the survey did not exceed 3.5–5.0 [minutes], 
with response rate oscillating around 50%. Completion rate was ca. 94% 
and thus a total of 377 valid questionnaires were collected. Favourably, 
such figures imply that a majority of interviewees were able to complete 
survey on-time without missing their next incoming PT departure. 

Sampling strategy aimed to reflect the typical demand pattern of 
urban PT users in Krakow. Eventually, about 75% of answers were 
collected from users who are <40 years old. This overrepresentation of 
younger population is attributable to a lower response rate among older 
users, who – despite extra surveying efforts - were more reluctant to 
participate in the survey. Nevertheless, about 10% of survey sample are 
aged 65 and over. Gender split also shows (roughly) equal proportions, 
with a 52% share of female participants. Table 2 presents the summary 
of sample characteristics. 

An overview of the choice experiment results (Fig. 2) shows that 
WTW is a relevant phenomenon that clearly rises in magnitude with 
higher crowding conditions. In the moderately crowded case (A), 
boarding the first vehicle (departing now) is the most popular option, 
but still 12 or 30% of respondents indicate that they would wait for a 
less-crowded departure, depending on required wait time (10 or 5 min, 
respectively). Then, a rise in overcrowded conditions in case (B) clearly 
influences respondents' attitudes, with WTW rising to 45–75% of all 
respondents. Interestingly, in case (C), where the first vehicle is still 
overcrowded but the second one has seats available, results are similar 
to those observed in the case (B). Improving comfort conditions in the 
second departure does not seem to provide an additional incentive to 

reconsider choices, however, with WTW rising by merely 1–3%. For the 
sake of brevity, we will therefore omit case (C) in the remainder of this 
subsection, and report survey results only for the moderately crowded 
case (A) (first departure - RTCI level 3) and overcrowded case (B) (first 
departure - RTCI level 4). 

A detailed summary of reported WTW rates in context of main choice 
factors is presented in Table 3. Among these, a key issue affecting the 
WTW pertains to trip purpose and propensity to arrive on-time at the 
destination (i.e. trip time criticality (Fig. 3)). Respondents are more 
likely to wait for a less-crowded vehicle in case of home-bound trips (e.g. 
evening commute) and leisure trips. In contrast, they are more deter-
mined to board the first vehicle for trips originating at home, especially 
obligatory ones (i.e. commuting to workplace or school / university). 
Further on, we observe a limited influence of in-vehicle journey time on 
passengers' choices (Table 3), manifested mainly through slightly lower 
WTW for short trips, i.e. <10 min. Trip frequency is loosely associated 
with willingness-to-wait: regular users (commuters) who travel on a 
given PT route at least twice a week are less inclined to consider waiting 
for a less-crowded departure. A possible explanation is that they are 
more likely to encounter overcrowding and may become eventually 
more accustomed to the travel discomfort imposed by it. 

Among demographic factors, we find that respondents above 50 
years of age show greater willingness to avoid (over)crowding in their 
departure choices (Table 3), already in the moderately crowded case 
(RTCI level 3). The WTW rate rises even further among users of 65 years 
of age and over. As many as 60–90% of them will opt to wait additional 
10 min to avoid higher crowding in the first departure. This stands in 
stark contrast to younger respondents (below 50 years of age), where the 
corresponding figure is on average between 5% - 40%. No relation is 
observable for gender though, with fairly uniform WTW levels among 
females and males. 

3.2. Choice modelling results 

Following the descriptive analysis of our survey sample, we proceed 
with estimating discrete choice models to describe the WTW phenom-
enon under the prospective provision of RTCI. We select and present 
below the choice models which were found statistically sound and which 
contain choice factors relevant for explaining passengers' preferences as 
stated in our experiment (outlined in Table 3). All models are estimated 
using a tailored script developed in the Python 3.7 software (van Rossum 
& Drake, 2009). 

We begin with an extended mixed logit model as defined in the Eq. 3, 
reporting the results in Table 4. Coefficient values are evaluated against 
the baseline utility of choosing the first urban PT departure, which is 
fixed to zero. Positive values denote choice factors which increase the 
utility of the stated WTW. 

Table 2 
Survey results - descriptive (sociodemographic) statistics of the sample popu-
lation (left) and comparison with the general PT user population in Krakow 
(right), obtained from the 2014 comprehensive travel survey (Szarata, 2015).   

Survey sample 2014 travel survey sample 

Total respondents 377 100.0% 100.0% 

Gender    
Women 198 52.5% 57.6% 
Men 179 47.5% 42.4% 
Age    
18–25 164 43.5% 26.6% 
26–40 118 31.3% 28.7% 
41–50 41 10.9% 11.7% 
51–65 18 4.8% 14.9% 
> 65 36 9.5% 18.1%  

Fig. 2. Survey results – overall stated WTW in each scenario, depending on RTCI and wait time values.  
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As it can be seen in Table 4, the RTCI indicating reduced (over) 
crowding in the second urban PT departure increases the waiting utility 
in all three choice scenarios, albeit to a different extent. Marginal RTCI 
utility βs

RTCI is already positive in case (A), i.e. when the first departure is 
moderately crowded (RTCI level 3). Moreover, it rises sharply (ca. 3.5 
times) in cases (B) and (C), when RTCI allows to mitigate the high 
overcrowding conditions (RTCI level 4) expected on-board the first de-
parture. Interestingly, there is barely any variation in utility coefficients 
between cases (B) and (C), despite the difference in RTCI level of the 
second departure. On the other side, the negative sign of wait time co-
efficient βwt implies an additional disutility imposed by the required wait 
time, which contributes to a decreasing WTW utility. 

In addition to the alternative-specific attributes, certain individual 

and trip attributes are also found to have an impact on the WTW. Age 
strongly influences the WTW utility among respondents: those between 
50 and 65 years of age (βage50–65) exhibit a higher WTW than younger 
respondents, rising further among elderly users above 65 years of age 
(β65plus). An important factor but with an opposite influence upon WTW 
relates to the time-criticality of the trip (βtimecrit). As expected, the need 
to arrive on-time at the destination leads to substantially lower WTW 
utility, as waiting longer at the stop imposes much greater hindrance for 
passengers' trip itinerary. Also, in-vehicle time (βivt) has positive impact 
upon WTW utility, though rather negligible, as it is substantially (ca. 12 
times) lower in magnitude compared to wait time utility. The final 
choice variable relates to the trip frequency (βcommute): WTW utility is 
lower if the current line (route) is used frequently, i.e. at least twice a 

Table 3 
Survey results – descriptive statistics of WTW vs. main choice factors. Values denote the share of respondents' answers 
(sample size n = 377). 

RTCI scenario: case (A) case (B)
sample 

size
(n = 377)Max. acceptable

wait time:

0 -

depart 
now

5 mins
10 

mins

0 -

depart 
now

5 mins
10 

mins

[mins] WTW vs. in-vehicle time

< 10 78% 16% 7% 47% 16% 37% 76
10 – 20 72% 18% 10% 22% 38% 41% 139
20 – 30 68% 20% 13% 21% 26% 53% 111

> 30 61% 18% 22% 28% 27% 45% 51

Need to arrive on-time? WTW vs. trip time-criticality

yes 84% 12% 4% 43% 33% 24% 168
no 60% 22% 18% 15% 25% 60% 209

origin destination WTW vs. trip purpose

home

work 79% 15% 6% 46% 27% 26% 84
education 90% 10% 0% 35% 32% 32% 31

leisure 52% 19% 29% 10% 5% 86% 21
work

home

74% 14% 12% 15% 38% 47% 50
education 64% 31% 5% 22% 26% 52% 77

leisure 31% 17% 51% 6% 17% 77% 35
non-home-based 80% 14% 6% 32% 36% 32% 79

[years old] WTW vs. age

< 25 77% 19% 4% 33% 26% 41% 164
26 – 40 76% 16% 8% 25% 44% 32% 118
41 – 50 73% 22% 5% 35% 19% 46% 41
51 – 65 50% 22% 28% 22% 17% 61% 18

> 65 28% 14% 58% 6% 6% 89% 36
using this PT route

[days / week]
WTW vs. trip frequency

5 – 7 72% 21% 7% 31% 26% 42% 188
2 – 4 77% 15% 7% 28% 34% 38% 110

1 55% 5% 39% 13% 30% 58% 38
< 1 58% 22% 20% 22% 24% 54% 41
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week. However, the corresponding marginal disutility rate is rather low 
compared to other variables. 

The second investigated model is the base mixed logit model as 
formulated in the (Eq. 4), confined to the two variables that define the 
trade-off embodied in our experiment. Applying such formulation yields 
a WTW model which is strictly a function of the trade-off between RTCI 
vs. wait time utilities. 

In Table 5, we report base mixed logit model estimates for the whole 
sample (all trips), as well as for the sample subsets based on trip time- 
criticality. All the obtained estimates are statistically significant at the 
95% confidence level and yield overall satisfactory goodness-of-fit 
results. 

Results are analogous to the extended model (Table 4), reflecting the 
positive contribution of RTCI utility towards the WTW, offset by nega-
tive marginal disutility of wait time. Applying the mixed logit specifi-
cation additionally reveals a considerable variation in the marginal wait 
time disutility value, βwt. Its mean value is twice as high for time-critical 
trips when compared against the non-time-critical trip sample. The 
standard deviation of wait time disutility is equal to approx. 30–40% of 
its mean value. Comparison of mixed logit estimates implies that while 
the marginal utility of RTCI is (broadly) similar in all cases, inclusion of 
trip time-criticality imposes (on average) a twice higher penalty rate for 
each extra minute of waiting time. 

Fig. 3. Survey results – WTW vs. time-criticality.  

Table 4 
Choice modelling results – extended binary mixed logit model of the 
willingness-to-wait with RTCI. Mixing density applied to the wait time disutility 
(normally distributed).   

All trips 

Coefficients Estimate Std. error t-test p-value 

β3-2
RTCI 1.452 0.359 4.04 *** 

β4-3
RTCI 4.812 0.441 10.90 *** 

β4-2
RTCI 4.993 0.515 9.70 *** 

βcommute - 0.482 0.296 − 1.63 . 
βage50–65 0.624 0.476 1.31 . 
βage65plus 1.773 0.443 4.00 *** 
βtimecrit - 1.565 0.223 − 7.03 *** 

βwt 
μ - 0.615 0.051 − 11.96 *** 
σ 0.162 0.026 6.20 *** 

βivt 0.04 0.008 5.27 ***      

initial log-likelihood (LL): - 1380.7    
final log-likelihood (LL): - 783.0    
LL ratio test: 1195.8    
adjusted rho-square: 0.405    
sample size: 377    

Significance codes (p-value): 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘‘1. 

Table 5 
Choice modelling results – base mixed binary logit model of the willingness-to-wait with RTCI. Mixing density applied to the wait time disutility (normally 
distributed).   

All trips Time-critical trips Non-time critical trips 

Coefficients Estimate Std err. p-value Estimate Std err. p-value Estimate Std err. p-value 

β3-2
RTCI 1.828 0.226 *** 2.073 0.350 *** 1.696 0.340 *** 

β4-3
RTCI 5.294 0.333 *** 5.545 0.436 *** 5.105 0.556 *** 

β4-2
RTCI 5.510 0.481 *** 5.755 0.663 *** 5.331 0.776 *** 

βwt 
μ - 0.705 0.060 *** - 1.014 0.099 *** - 0.486 0.007 *** 
σ 0.286 0.045 *** 0.308 0.081 *** 0.184 0.043 *** 

Initial LL: - 1380.9   - 505.4   - 841.8   
Final LL: - 816.5   - 319.3   - 463.6   
LL ratio test: 1128.4   372.2   756.4   
Adj. rho-square: 0.396   0.336   0.427   
Sample size: 377   168   209   

Significance codes (p-value): 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘‘1. 
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3.3. Wait time thresholds and crowding multipliers 

Choice modelling results allow us to estimate the acceptable wait 
time thresholds and the crowding multipliers. The ratio of marginal 
utilities of RTCI and wait time attributes, as formulated in (Eq. 6), yields 
the so-called WTW threshold tsWTW, i.e. waiting time acceptable as a 
trade-off for skipping the first departure, in the event that RTCI system 
indicates the possibility to reduce the exposure to overcrowding by 
waiting for the subsequent departure. Since the wait time disutility is 
parameterized with mixing density, we need first to compute the WTW 
distribution intervals. We perform this by means of Monte Carlo simu-
lations (Sillano & de Dios Ortúzar, 2005) with 100,000 draws of wait 
time utility coefficients βwt(μ,σ) and evaluate the corresponding wait 
time values (Eq. 6). In order to discard the outlier values, we filter out 
the unrealistic wait times |twt| > 50 [mins] which comprise approx. 1.5% 
of the sample. Next, we fit the simulated WTW values to different dis-
tribution functions. The best fit is obtained with the normal distribution 
which is finally assumed for our subsequent modelling objectives. 

Output acceptable wait times tsWTW(μ,σ) evaluated as normally 
distributed parameters are reported in (Table 6). Average wait time 
acceptance ranges between approx. 6–12 [mins] in the overcrowded 
scenario (RTCI level 4 of first departure): higher willingness to wait is 
observed if the trip is non-time-critical (and vice versa for a time-critical 
trip). In case of moderate crowding (RTCI level 3), the mean wait time 
threshold is ca. 4 [mins] for non-time-critical trips and just around 2 
[mins] for time-critical trips. Hence, a much lower WTW acceptance 
range should be anticipated once the risk of overcrowding in the first 
departure is not indicated anymore by the RTCI system. 

We plot the resultant WTW acceptance distributions (for cases (A) 
and (B)) in Fig. 4 for all trips, and in Fig. 5 for trips of distinct time- 
criticality. The presented confidence intervals should reflect taste vari-
ations in WTW acceptance among our respondents, thanks to the in-
clusion of panel and heterogeneity aspects in the mixed logit approach. 

As shown for the aggregate trip sample (Fig. 4), the acceptable wait 
time reaches up to 11 [mins] (moderately crowded scenario (A)) and 
further up to 21 [mins] (overcrowded scenario (B)) in 95% of the cases. 
This dispersion in wait time is also evident for distinguished trip sample 
segments. For time-critical trips (Fig. 5, left), the distribution plots are 
relatively concentrated within a smaller range and do not exceed ca. 12 
[mins], whereas the non-time-critical plots (Fig. 5, right) are much more 
widely distributed, reaching even as much as 20–25 [mins]. While these 
results might seem relatively large at first glance, these are only upper- 
bound values, and the wait time oscillates within the range of 2–15 
[mins] in the majority (ca. 65%) of cases. 

In the final step, we derive the WTW crowding multipliers CMs
WTW 

(Table 7) for an average PT trip duration in Kraków of 20 [mins]. For 
example, a CMs

WTW value of 1.3 implies that the traveller is willing to 
devote an additional 30% of his remaining (total) journey time to wait 
for the next, less-crowded departure. This illustrates that under the 
WTW regime, the perceived travel time of first departure is greater than 
that of second departure as long as the required wait time is shorter than 
6 [mins], i.e. the acceptable threshold tsWTW in such instance. Results 
(Table 7) range from 1.1 (moderate crowding) to 1.5 (high over-
crowding) for the whole trip sample. For time-critical trips, the corre-
sponding rates are between ca. 1.0–1.1 to 1.3, and for non-time-critical 
trips they range from 1.2 to 1.6 respectively. This compares lower to rail- 

Fig. 5. Acceptable wait times, based on modelling estimates – distinguished for time-critical (left) vs. non-time-critical trips (right).  

Table 6 
Simulation results – acceptable WTW thresholds according to base mixed logit model.  

acceptable wait time [mins] - mean, (90% CI) All trips Time-critical trips Non-time-critical trips 

tWTW 

(β3-2
RTCI) 

3.2 
(− 2.5 to 8.9) 

2.3 
(0.1 to 4.6) 

4.2 
(− 1.5 to 9.9) 

tWTW 

(β4-3
RTCI) 

8.9 
(− 0.6 to 18.4) 

6.2 
(1.2 to 11.1) 

12.1 
(1.8 to 22.4) 

tWTW 

(β4-2
RTCI) 

9.3 
(− 0.4 to 19.0) 

6.4 
(1.3 to 11.5) 

12.6 
(2.1 to 23.1)  

Fig. 4. Acceptable wait times, based on modelling estimates – for the whole 
trip sample. 
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based WTW valuations (Preston et al., 2017), where value-of-time 
multipliers for a 30-min regional rail trip range between 1.30 and 1.75. 

Note that the interpretation of our WTW crowding multipliers is 
different from conventional state-of-the-art valuations of in-vehicle 
crowding (e.g. as in the works of Whelan and Crockett (2009); Ward-
man and Whelan (2011); Li and Hensher (2011); Tirachini et al. (2017)). 
Therein, crowding multipliers concern trade-offs between travel options 
of different journey times vs. their on-board crowding levels (which are 
experienced for the whole duration of the trip). Whereas, in the WTW 
context, both alternatives involve the same in-vehicle journey time (but 
different on-board crowding conditions), and passengers exercise trade- 
offs between the currently required waiting time at PT stop vs. expected 
later on-board crowding level. 

3.4. Assessing the potential benefits of WTW with RTCI 

To illustrate how our findings can help assist the appraisal of im-
plications of the WTW with RTCI, we present the following numerical 
example. It relates to a fictitious urban bus stop e, where bus arrival 
times and crowding levels indicate an irregular pattern, resembling the 
well-known bus bunching problem. The RTCI disseminated among 
passengers qr

board intending to board the first, overcrowded bus trip r 
allows a certain share of them to make an informed choice to wait 
instead for a less-crowded, later departure r + 1. 

For the RTCI system to induce travel experience (and welfare) gains, 
the WTW boarding volume qr+1

board,WTW shall be essentially determined 
as the minimum of two variables: 

• The potential WTW volume, i.e. the share of qr
board willing to shift to-

wards departure r + 1. This is obtainable as a probability function of: 
required waiting time twt and acceptable WTW threshold tsWTW in the 
specific scenario s (Table 6, Figs. 4 - 5).  

• The maximum WTW volume, i.e. the max. Permissible volume shift, so 
that on-board crowding conditions of run r + 1 will not exceed the 
currently displayed RTCI level at any downstream stop i. This con-
dition shall ensure that the prior RTCI advice will be fully consistent 
with passengers' subsequent crowding experience. In that vein, the 
max. WTW volume can be computed as a function of: critical on- 

board capacity for a given scenario s, and passenger in-vehicle and 
boarding flows at all downstream stops i = e+1, e+2 … ∈ r. 

Under these conditions, the prospective travel experience benefits 
can be evaluated in the form of perceived journey time (PJT) savings due 
to the WTW with RTCI. These can stem from the two following sources:  

• PJT savings incurred by the WTW boarding volume qr+1
board,WTW. 

Assuming the max. acceptable waiting time for passengers willing to 
wait for the run r + 1 equal to tsWTW [mins], the unit PJT reduction 
ΔPJTs

WTW is essentially the difference between the WTW threshold 
and the actual (required) waiting time twt.  

• PJT savings additionally incurred by the remaining boarding volume of 
run r (qr

board - qr+1
board,WTW). These are the extra travel benefits experi-

enced by remaining passengers who boarded run r and experienced 
less-crowded conditions than originally indicated by the RTCI. This 
might arise e.g. as a consequence of the WTW volume outflux qr+1

board, 

WTW. Such PJT savings will hold true only if the RTCI level antici-
pated whilst boarding run r arriving at stop e is eventually higher 
than the RTCI level experienced whilst on-board the same run r at all 
downstream arrivals at stops e+1, e+2, … The unit PJT reduction 
ΔPJTs

WTW is then equal to the tsWTW rate, i.e. corresponding to the 
equivalent amount of time that passengers would need to spend 
otherwise in order to achieve the same reduction in on-board RTCI 
level. 

For illustration purposes, we assume fixed inputs in our simplified 
example. Calculation results are presented in Table 8. These show how 
the favourable effects of boarding flows' migration within trip departure 
pairs {r, r + 1} can be quantified to deduce the WTW benefits at the 
specific stop. Estimated PJT savings are then projected into equivalent 
welfare rate w, assuming monetary valuations of travel time equal to 6 
[EUR/h] (ca. 28 [PLN/h]). This numerical example indicates that 
tangible WTW benefits might be already attainable under (relatively) 
minor rates of passenger numbers and waiting times. Notably, the 
middle example highlights the potential of WTW behaviour to yield a 
substantial increase in welfare gains once on-board comfort improve-
ments become valid simultaneously for both runs r and r + 1. 

The purpose of this simplified example is to demonstrate how our 

Table 8 
Projected perceived journey time (PJT) savings ΔPJTs

WTW due to WTW induced by RTCI – numerical example for a fictitious bus stop.  

input – fixed assumptions output – WTW impact 

run trdep 

[gg:mm] 
[RTCI] 
- before 

qr
board 

[pax.] 
time-crit? tsWTW 

[mins] 
qr

board(RTCI) 
[pax.] 

[RTCI] 
- after 

ΔPJTs
WTW 

[mins] 
PJT savings 
[pass-mins] 

welfare gains w 
[EUR] 

r 7:00 **** 30 yes 6 20 ****   3 
r + 1 7:03 *** 10 10 þ 10 *** 6–3 = 3 10 * 3 = 30            

r 7:10 **** 30 
no 12 

10 *** (12) 10 * 12 = 120 
30 r + 1 7:13 *** 10 10 þ 20 *** 12–3 = 9 20 * 9 = 180            

r 7:20 **** 30 
no 12 

20 ****   
4 

r + 1 7:28 *** 10 10 þ 10 *** 12–8 = 4 10 * 4 = 40  

Table 7 
Estimated WTW crowding multipliers for a 20-min journey time.  

travel time multiplier mean, (90% CI) All trips Time-critical trips Non-time-critical trips 

in-vehicle time tivt = 20 [mins] 

CMWTW 

(β3-2
RTCI) 

1.13 
(1.06 to 1.20) 

1.10 
(1.07 to 1.13) 

1.17 
(1.09 to 1.25) 

CMWTW 

(β4-3
RTCI) 

1.38 
(1.20 to 1.56) 

1.27 
(1.17 to 1.37) 

1.53 
(1.30 to 1.76) 

CMWTW 

(β4-2
RTCI) 

1.39 
(1.21 to 1.57) 

1.28 
(1.17 to 1.39) 

1.55 
(1.30 to 1.80)  
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behavioural findings can support the quantitative assessment of the 
prospective benefits of RTCI-induced WTW phenomenon. It should be 
emphasized that a thorough appraisal of WTW effects requires a detailed 
analytical underpinning, in the form of PT simulation models and/or 
real-world observations. Only under such detailed setting the input and 
context variables, as well as attainable equalization of passenger volume 
distribution and travel welfare benefits, can be determined in a reliable 
manner. 

4. Discussion 

In this study, we investigate the stated willingness to wait (WTW) to 
travel inside a less-crowded vehicle in urban public transport (PT) sys-
tems in the presence of real-time crowding information (RTCI). While 
WTW can emerge with future implementation of RTCI on vehicle de-
partures at PT stops and stations, its potential scale and implications are 
not fully examined in current state-of-the-art. To this end, we conduct a 
stated-preference experiment and quantify the phenomenon of WTW 
with RTCI through a set of discrete choice models, acceptable wait time 
thresholds and value-of-time crowding multipliers. 

Our study reveals the prospective utility of RTCI in passengers' 
boarding decisions. Hence, it extends the classical findings on travel 
time and crowding valuations since the certainty value associated with 
the provided RTCI on next departure loads, and how it trades-off against 
(additional) waiting time in an instantaneous contextual setting, is 
internalized in model estimates (Shelat, Cats, & van Lint, 2021). 
Consequently, this reveals the potential of WTW to become a valid travel 
behaviour phenomenon in urban PT trips, especially in overcrowded 
conditions. Ca. 75% of our survey respondents would consider waiting 5 
min for a second, less-crowded departure, and still 45% of them would 
do so when this induces the wait time of 10 min. This is the case when 
the first departure reaches maximum crowding level on the RTCI scale 
(level 4), i.e. conditions on-board imply severe overcrowding and even 
denial-of-boarding risk. For moderately crowded scenario (RTCI level 3 
for the first departure), which refers to ‘comfortable’ standing condi-
tions, the corresponding figures are substantially lower, reaching 30% 
(for a 5-min wait) and 12% (10-min wait), respectively. Interestingly, in 
case when first departure is overcrowded (RTCI level 4), despite further 
reduction in crowding conditions of the second departure (from RTCI 
level 3 down to level 2, i.e. so that seats become available), no signifi-
cant changes in stated choices are observable, with a mere 2–3% rise in 
stated WTW. 

Our study findings reaffirm the state-of-the-art observations on the 
non-linearity of crowding penalties upon travel time and travel experi-
ence valuations (see e.g. references in Section 1.). However, they differ 
from those reported in the relevant state-of-the-art in several important 
regards. Yu et al. (2015) found a greater influence of information on 
crowding level of second departure upon stated WTW (which may reach 
up to 90%) and relatively higher WTW rate emerging already at the 
slightly-crowded conditions of first departure. Firstly, negative impacts of 
bus overcrowding are much more prominent in their case-study area. 
Secondly, comparison of both studies underscores the relevance of se-
mantic and communication aspects in the projected effects of RTCI 
(Saedi & Khademi, 2019). Seemingly, major variations in passengers' 
preferences can be obtained when RTCI is communicated either on a 
lexical scale (not-, slightly- or very-crowded) or a 4-level rating scale, as in 
our study. This forms one of (numerous) interesting paths for follow-up 
research. 

Based on the SP survey results, we estimate a series of mixed logit 
models. Representing the WTW with RTCI as a binary choice problem (i. 
e. depart now vs. depart later). These models show that RTCI utility is 
3–5 times higher in case when first departure is overcrowded (RTCI level 
4) than when it its moderately crowded (RTCI level 3). Furthermore, 
wait time disutility for time-critical trips is twice higher than for non- 
time-critical trips. Depending on the crowding level of the first depar-
ture, acceptable wait times in urban PT trips range on average between 2 

and 4 [mins] (moderate crowding) and 6–12 [mins] (high over-
crowding), with higher values attainable for non-time-critical trips. This 
is lower than SP estimates for regional, longer-distance rail trips (Pres-
ton et al., 2017), which range on average between 8 and 23 [mins]. 
Applying the mixed logit modelling approach, moreover, allows us to 
additionally account for heterogeneity aspects and taste variations in the 
perceived wait time (dis)utility. Maximum wait times may thus reach up 
to even 12 [mins] (moderate crowding) and 25 [mins] (high over-
crowding). Resultant WTW crowding multipliers for a 20-min urban PT 
trip range between ca. 1.0–1.3 for time-critical trips and 1.2–1.6 for non- 
time-critical trips. 

These numerical outputs in form of WTW thresholds and crowding 
multipliers are applicable for the assessment of RTCI effects in cost- 
benefit analysis. In a simplified, numerical example, we demonstrate 
how the appraisal of prospective WTW benefits can be supported by our 
estimation results. In the future, these findings can be embedded in full- 
scale simulation and real-world studies to quantify the RTCI impacts 
upon travel experience. PT assignment models can be particularly 
instrumental in assessing the ramifications of RTCI provision in context 
of real-time PT performance and demand-supply dynamics. First 
research works based on simulation experiments point to the potentially 
promising advantages of the WTW with RTCI in the event of PT service 
disturbances (Drabicki, Kucharski, & Cats, 2022; Wang et al., 2021) and 
network-wide benefits of RTCI inclusion in route or departure choice 
decisions (Nuzzolo et al., 2016; Noursalehi, Koutsopoulos and Zhao, 
2021; Drabicki et al., 2020; Peftitsi, Jenelius, & Cats, 2022). Alas, they 
also observe certain drawbacks such as inaccuracy risks of instantaneous 
crowding information. 

Our findings underline how WTW probability is influenced by cur-
rent trip properties and selected individual characteristics. Aside from 
the RTCI and waiting time variables, it is evident that WTW decreases 
for trips involving propensity to arrive on-time. Age is an influential 
choice factor, as we observe a substantial increase in waiting acceptance 
for respondents above 50 years of age, rising even further among those 
aged 65 and over. On the other hand, in-vehicle time (spent on-board) 
has only a limited impact on stated WTW. This seems to reaffirm 
other literature findings, e.g. Preston et al. (2017), and is arguably the 
case especially for urban PT trips with relatively short journey time. 
Also, trip frequency has a negative impact, though limited in magnitude, 
upon the stated WTW. 

It should be stressed that the presented results are strictly charac-
teristic for our survey sample, without any claims regarding their gen-
eralisability and transferability (Table 2). We refrained from weighting 
the survey results, since our principal objective was the research ex-
amination of novel WTW phenomenon on a randomly selected PT user 
sample. Arguably, the resulting WTW time thresholds and crowding 
multipliers might be actually greater, once adjusted for a higher share of 
middle- and old-age travellers and trips featuring arrival time flexibility. 

4.1. Outlook and policy implications 

With this study, our objective was to deliver an enriching contribu-
tion to the state-of-the-art research on development of RTCI systems. In 
the following, we discuss wider, behavioural and practical implications 
for the emerging passenger information solutions. 

Firstly, in terms of designing and conveying the RTCI, distinguishing 
the information on high crowding conditions - i.e. excessive over-
crowding vs. moderate standing crowding - seems to be of primary 
importance in case of high-frequency, urban PT networks, which are 
dominated by short-range trips and prone to episodes of serious over-
crowding (e.g. denial-of-boarding risk). In contrast, quantitative infor-
mation on the available seat capacity might not be as relevant as for 
regional and/or rail transport, especially when vehicle layout arrange-
ment implies greater standing capacity, like for the bus and tram 
network in our case study. Insights from focus-group discussions pre-
sented in this paper also shed more light onto these attitudes and 
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interpretations of descriptive RTCI classification schemes in urban PT 
networks. 

Secondly, the prevalence of WTW phenomenon revealed in our 
stated-preference survey suggests that reliable and timely RTCI provi-
sion can facilitate substantial shifts between different services of the 
same line in congested urban PT networks. These can be beneficial both 
for passengers (reduced overcrowding experience, more informed travel 
choices) and operators (improved service capacity utilization). By 
raising the passengers' awareness of available on-board capacity, RTCI 
can be particularly advantageous in case of passenger load fluctuations. 
Further research attention needs to be devoted, though, to examine the 
achievable effectiveness of WTW with RTCI not just depending on the 
magnitude but also on the variability of passenger flows. 

Finally, this underpins the potential of future RTCI system to become 
a useful travel demand management feature in counteracting service 
disturbances. For example, by encouraging passengers to spread them-
selves out over the next, less-crowded PT departures arriving later, the 
willingness to wait facilitated by RTCI can become a certain soft holding 
strategy that will effectively counteract the notorious bus bunching 
feedback loop (Drabicki et al., 2022). This positive effect will arise 
voluntarily, i.e. in accordance with travellers' objective of maximizing 
travel utility, without resorting to classical, supply-side holding and/or 
control strategies. Hence, the WTW with RTCI might establish a synergic 
interplay between the individual and collective effectiveness, narrowing 
the gap between user-equilibrium and system-optimum conditions. 
Notwithstanding, for such measures to be effective, efforts need to be 
devoted to ensure the trustworthiness of the provisioned RTCI, including 
the consideration of demand-anticipatory techniques. 

Moreover, our findings offer insights relevant in context of the (yet 
on-going) COVID-19 pandemic and its negative impacts upon PT sys-
tems across the world. The necessity of physical distancing policies 
drastically reduces the system capacity, by even as much as 80% 
(Gkiotsalitis & Cats, 2021), while inducing a major problem of unsat-
isfied (and denied) passenger demand. This points to an ever greater, 
prospective role of RTCI in maximizing the awareness of available sys-
tem capacity and mitigating the problem of uneven vehicle utilization. 
On top of that, there are major concerns that negative perceptions of PT 
sector as being unsafe and poorly adapted will persist in the 
post-pandemic times (Tirachini & Cats, 2020). In that vein, future RTCI 
provision can serve as a vital countermeasure, fostering the image of PT 
travel safety by informing and reassuring passengers in real-time about 
reduced (or non-existent) crowding conditions in PT services. 

Our study is subject to several methodological limitations. The 
generality of WTW estimates may be somewhat limited (for longer 
waiting times) due to the setup of our stated-choice experiment, where 
waiting time alternatives were confined to values of 5 and 10 [mins] 
only. This constrain was imposed by the feasibility of our at-stop survey, 
where meaningful answers had to be obtained in a short amount of time. 
Future WTW evaluations could account for additional (and higher) 
waiting time values in stated-choice scenarios. Otherwise, passengers' 
own experience of PT (over)crowding, their perceptions of at-stop 
crowding levels and/or expectations of downstream crowding condi-
tions can also be potentially impactful factors behind the WTW proba-
bility. Though survey respondents were told to assume the validity of 
presented RTCI for the remainder of their journey, the uncertainty 
attached to crowding levels at downstream journey stages may be 
already internalized in their choice preference, yielding potentially lower 
WTW rates. These notions should be investigated in follow-up research. 

Furthermore, the caveats of the surveying methodology should be 
highlighted. There is evidence to suggest that the stated-preference 
approach is prone to overestimation of (over)crowding valuations (e.g. 
Tirachini et al. (2013); Kroes et al. (2014); Hörcher et al. (2017); Yap 
et al. (2018)). Only future, practical advancements with RTCI de-
ployments will allow to validate the WTW results with revealed- 
preferences data and the choices actually made by PT users. On the 
other hand, the emerging research evidence suggests that passengers' 

sensitivity to PT (over)crowding increased by 25% (or even more) as a 
consequence of the COVID-19 pandemic, also among frequent PT users 
(Shelat et al. (2022a, b); Cho & Park, 2021; Aghabayk et al., 2021; Flügel 
& Hulleberg, 2022). Against this new evidence, we reckon that the 
stated-preference WTW time tolerance reported in our study might 
become higher in the aftermath of the COVID-19 pandemic crisis in PT 
sector. 

The prospective research topics also relate to exploring how different 
RTCI representation schemes might influence passengers' choices and 
attitudes, and what is their effectiveness under various circumstances, 
such as for different PT sub-mode, vehicle type (including internal 
layout arrangement, share of seating vs. standing capacity), RTCI utili-
zation rate, local conditions and network congestion levels. A vital 
follow-up notion pertains to investigating how RTCI can influence the 
WTW behaviour already in the pre-trip planning stage and to shape the 
day-to-day adjustments in travel strategies. This will also help to un-
derstand whether the WTW behaviour might contribute towards flat-
tening of the peak-demand curve or defining more cost-effective demand 
pricing policies in the longer perspective. Finally, detailed simulation 
and empirical studies will help quantify the overall, prospective welfare 
benefits of the WTW with RTCI. 
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Basnak, P., Giesen, R., & Muñoz, J. C. (2022). Estimation of crowding factors for public 
transport during the COVID-19 pandemic in Santiago, Chile. Transportation Research 
Part A: Policy and Practice, 159, 140–156. 

A. Drabicki et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S2210-5395(23)00019-6/rf0005
http://refhub.elsevier.com/S2210-5395(23)00019-6/rf0005
http://refhub.elsevier.com/S2210-5395(23)00019-6/rf0005
http://refhub.elsevier.com/S2210-5395(23)00019-6/rf0010
http://refhub.elsevier.com/S2210-5395(23)00019-6/rf0010
http://refhub.elsevier.com/S2210-5395(23)00019-6/rf0010
http://refhub.elsevier.com/S2210-5395(23)00019-6/rf0015
http://refhub.elsevier.com/S2210-5395(23)00019-6/rf0015
http://refhub.elsevier.com/S2210-5395(23)00019-6/rf0015
http://refhub.elsevier.com/S2210-5395(23)00019-6/rf0020
http://refhub.elsevier.com/S2210-5395(23)00019-6/rf0020
http://refhub.elsevier.com/S2210-5395(23)00019-6/rf0020


Research in Transportation Business & Management xxx (xxxx) xxx

13
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