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a b s t r a c t 

Numerous studies in the literature have already shown the potential of biometrics on mobile devices for 

authentication purposes. However, it has been shown that, the learning processes associated to biometric 

systems might expose sensitive personal information about the subjects. This study proposes GaitPriva- 

cyON, a novel mobile gait biometrics verification approach that provides accurate authentication results 

while preserving the sensitive information of the subject. It comprises two modules: i) two convolutional 

Autoencoders with shared weights that transform attributes of the biometric raw data, such as the gender 

or the activity being performed, into a new privacy-preserving representation; and ii) a mobile gait veri- 

fication system based on the combination of Convolutional Neural Networks (CNNs) and Recurrent Neu- 

ral Networks (RNNs) with a Siamese architecture. The main advantage of GaitPrivacyON is that the first 

module (convolutional Autoencoders) is trained in an unsupervised way, without specifying the sensitive 

attributes of the subject to protect. Two experimental studies have been examinated: i) MotionSense and 

MobiAct databases; and ii) OU-ISIR database. The experimental results achieved suggest the potential of 

GaitPrivacyON to significantly improve the privacy of the subject while keeping user authentication re- 

sults higher than 96.6% Area Under the Curve (AUC). To the best of our knowledge, this is the first mobile 

gait verification approach that considers privacy-preserving methods trained in an unsupervised way. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The use of biometrics on mobile devices is currently one of 

he most popular authentication approaches [1,2] . In particular, be- 

avioural biometrics, which are based on the way subjects perform 

ctions such as writing [3] and walking [4] , allow the recognition 

n a passive way through smart devices, for example, using the ac- 

elerometer and gyroscope data [5,6] . 

Despite the popularity of mobile behavioural biometrics, the 

ata acquired can contain a large amount of personal and sensitive 

nformation such as demographics (e.g., gender, age, ethnicity, etc.) 

r the activity the subject is performing (e.g., walking, sitting, etc.) 
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7] . As a result, this technology might be considered as an invasion 

f personal privacy. 

Privacy is a concept that has been defined in numerous ways 

8] , one example of which is the recent General Data Protection 

egulation (GDPR) of the European Union [9] . This defines per- 

onal data as “any information relating to an identified or identi- 

able natural person”. Within this set of data, there is a subgroup 

alled sensitive data which includes “racial or ethnic origin, polit- 

cal opinions, religious or philosophical beliefs, trade union mem- 

ership, genetic data, biometric data for the purpose of uniquely 

dentifying a natural person, health data or data concerning the in- 

ividual’s sex life or sexual orientation”. The automatic processing 

f such data without the explicit consent of the subject for any 

pecific purpose is prohibited. 

The main contributions of this study are: 

• A novel mobile gait biometrics verification approach, GaitPriva- 

cyON, that provides accurate authentication results while pre- 

serving the privacy of the subject. Fig. 1 represents the gen- 

eral diagram of our proposed approach. It comprises two mod- 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Diagram of GaitPrivacyON, which comprises two modules: i) two Autoencoders that are in charge of removing automatically the sensitive data; and ii) a gait verifi- 

cation system. Time signals extracted from the accelerometer and gyroscope sensors of the mobile devices are considered as input to GaitPrivacyON. X e : Enrolled sample, X t : 

Test sample, ̂  X e : Transformed enrolled sample, ̂  X t : Transformed test sample. 
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ules: i) two convolutional Autoencoders with shared weights 

that transform the biometric raw data into a new privacy- 

preserving representation (e.g., gender or activity), and ii) a mo- 

bile gait verification system based on a combination of Con- 

volutional Neural Networks (CNNs) and Recurrent Neural Net- 

works (RNNs) with a Siamese architecture. 
• An in-depth quantitative analysis of GaitPrivacyON over three 

popular databases in the field of gait recognition, MotionSense 

[10] , MobiAct [11] , and OU-ISIR [12] , achieving accurate verifi- 

cation results (higher than 96.6% Area Under the Curve, AUC) 

while reducing the recognition rate of sensitive data to ∼50% 

AUC. 
• To the best of our knowledge, this is the first mobile gait ver- 

ification approach that considers privacy-preserving methods 

trained in an unsupervised way. 

The remainder of the paper is organised as follows. 

ection 2 summarises previous studies in the field. Section 3 ex- 

lains all details of our proposed GaitPrivacyON approach. 

ection 4 summarises the databases considered. Sections 5 and 

 describes the proposed experimental protocol and results, 

espectively. Finally, Section 7 draws the final conclusions. 

. Related work 

.1. Mobile gait biometrics 

Gait biometric recognition allows individuals to be authenti- 

ated based on the way they walk. It is a unique characteristic 

mong individuals due to the specific arm swing amplitude, step 

requency and length [13] . This characteristic can be easily de- 

ected in several ways. One of them is from Inertial Measurement 

nits (IMU), e.g., accelerometer and gyroscope [13] , which enables 

ait biometrics authentication from mobile devices. An example of 

his was presented by Mantyjarvi et al. [14] . Gait biometrics data 

aptured by the accelerometer was used in a template matching 

nd cross-correlation framework, achieving together, 7% of Equal 

rror Rate (EER). Many researchers followed this method, propos- 

ng new studies in the literature as described in the review of 

prager and Juric [15] . 

In recent years, Deep Learning (DL) approaches have domi- 

ated the field of gait recognition, being possible to extract more 

iscriminative and robust features. Gadaleta and Rossi created in 

adaleta and Rossi [16] one of the first systems based on DL us- 

ng CNNs. The authors used universal feature extractors for gait 

iometrics recognition with misclassification rates of < 0.15%. Their 

esults showed that CNN-based systems learn more useful statisti- 
31 
al features, achieving better performance than previous methods 

ith pre-defined and often arbitrary features. 

In addition, RNNs is one of the most powerful DL techniques 

or temporal sequences [17,18] . Ackerson et al. proposed a new ap- 

roach in which the OU-ISIR dataset was used [19] . The authors 

eveloped one of the first approaches to use a type of RNN, Long 

hort-Term Memory (LSTM), achieving an EER of 7.55%. 

Another interesting approach was proposed by Zou et al. [20] . 

n hybrid DL model combining CNNs and LSTM for more robust 

eatures was created. The proposed model brought together the 

dvances of CNNs (extracting convolutional maps with more dis- 

riminative features) and RNNs (processing features as temporal 

equences). Mobile devices in the wild were considered, with 118 

ubjects and data extracted from the accelerometer and gyroscope, 

btaining an accuracy of 93.7%. 

.2. Privacy-preserving methods 

Privacy-preserving concerns are becoming increasingly impor- 

ant nowadays due to the new privacy laws and regulations. There- 

ore, many researchers have extensively studied the field in the last 

ecade [8] . 

In the human-activity recognition field, Iwasawa et al. pro- 

osed a model with an adversarial subject classifier and a reg- 

lar activity-classifier based on CNNs [21] . The authors managed 

o privatise the subject’s discriminative information by 40% while 

eeping accurate activity recognition performance. Malekzadeh 

t al. [10] presented a feature learning architecture that provides 

rivacy-preserving data transmission and a new dataset for activ- 

ty and attribute recognition collected from motion sensors. Their 

ystem was based on Generative Adversarial Networks (GANs), 

chieving a 45.8% reduction in accuracy in the gender classification 

ask while the activity recognition task only decreased by 1.37%. 

hang et al. proposed a new framework for activity recognition 

nd privacy-preserving of sensitive data [22] . The authors wanted 

o avoid the need for a massive collection of sensitive data for 

odel training. For this purpose, an unsupervised learning train- 

ng for the privacy-preserving task was performed. The framework 

as treated by a transformation of the data together with a noise 

ddition consisting of an Autoencoder and a CNN. Results of 56.79% 

ccuracy were achieved for gender classification while the activity 

ecognition task remained almost untouched. 

In the gait biometrics verification field, Garofalo et al. devel- 

ped a Siamese CNN framework [23] . The authors decreased the 

1-score in the gender recognition task from 73% to 52% while los- 

ng from 90.93% to 85.28% of accuracy in the gait verification task. 

n adversarial learning technique was used. 
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Several techniques have also been applied to the image field 

ut at the feature representation level. Therefore, these approaches 

ould also be adapted for time signals. Terhörst et al. proposed an 

nsupervised approach based on similarity-sensitive noise trans- 

ormations [24] . That approach added noise to the feature repre- 

entations. Experiments showed how attackers with prior knowl- 

dge about the privacy mechanism (added cosine noise) decreased 

he accuracy of gender estimation performance with logistic re- 

ression ∼17%. Identity recognition performance only increased 

y ∼5% EER. In [25] Incremental Variable Elimination (IVE) algo- 

ithm was proposed. The model was used to suppress binary and 

ategorical attributes in biometric templates. The model, through 

ecision tree training, managed to decrease the gender Correct 

verall Classification Rate (COCR) by 20% but only increasing the 

ER in the identity recognition task by 1.4%. Morales et al. cre- 

ted SensitiveNets [26] . Its main purpose was to set aside sen- 

itive information in decision-making in order to ensure fairness 

nd transparency. It was tested on feature representations of face 

mages by defining and minimising its own loss function. Sensi- 

iveNets achieved representations that reduced the gender and eth- 

icity classification tasks to 54.6% and 53.5% respectively, decreas- 

ng recognition task accuracy only 2.6%. 

The previous gait verification approaches presented in the lit- 

rature can preserve specific sensitive attributes [23] , but they re- 

uire a large volume of labelled data for training. On the contrary, 

aitPrivacyON considers unsupervised learning for the privacy pre- 

erving of the subjects without specifying the sensitive attributes 

o protect. Therefore, this avoids any model inference and pro- 

ides greater protection than the models presented in the litera- 

ure. Also, this approach allows the hiding of all sensitive attributes 

sing a single transformation. 

. Proposed approach: GaitPrivacyON 

Fig. 1 shows the general diagram of the proposed privacy- 

reserving approach. Six time signals are originally acquired from 

he mobile device as raw data comprising the three axes of the 

ccelerometer and gyroscope. GaitPrivacyON considers a Siamese 

rchitecture that is used to learn the similarity between two dif- 

erent biometric templates from the same (genuine) or different 

impostor) subject [27] . GaitPrivacyON comprises two modules: i) 

wo convolutional Autoencoders with shared weights that trans- 

orm the biometric raw data into a new privacy-preserving rep- 

esentation ( Section 3.1 ); and ii) a mobile gait verification system 

ased on the combination of CNNs and RNNs with a Siamese archi- 

ecture ( Section 3.2 ). For the training, we adapted the key aspects 

resented in the image style transformation field [22] . The details 

re explained in Section 3.3 . GaitPrivacyON is an improved adapta- 

ion of the approach presented in Zhang et al. [22] . We clarify next 

he main changes: 

• GaitPrivacyON is based on gait biometric verification while the 

approach presented in Zhang et al. [22] is based on activity 

recognition. As a result, our approach focuses on verification 

(1:1) rather than identification (1:N). 
• Regarding the Autoencoders considered in GaitPrivacyON (see 

details in Section 3.1 ), while TransNet only has a single Autoen- 

coder, two Autoencoders are considered in GaitPrivacyON, shar- 

ing their weights through a Siamese architecture. In addition, in 

order to extract more discriminative features and improve the 

training, we have considered batch normalization and increased 

the complexity of the network using more convolutional layers. 
• The Gait Verification System proposed in GaitPrivacyON (see 

details in Section 3.2 ) has several differences com pared with 

LossNet [22] . LossNet is based only on convolutional layers. The 

system presented in this work considers both convolutional and 
32 
recurrent layers following the state of the art in gait biometrics 

[20] . This improves the performance of the system and makes 

our system more robust. 

.1. Autoencoders 

Fig. 2 (orange colour) provides a graphical representation of the 

roposed module. It comprises two convolutional Autoencoders 

ith the same architecture and shared weights. The inputs of each 

re: enrolled sample ( X e ) and test sample ( X t ), and the outputs:

ransformed enrolled sample ( ̂  X e ) and transformed test sample ( ̂  X t ), 

espectively. The architecture of both is composed of a sequence of 

 × 3 convolutional filters, coupled with ReLU activation functions. 

n the encoder, after each convolutional layer, batch normalization 

nd 1 × 2 max-pooling layers are used to decrease the size of 

he activation map. In the decoder, after each convolutional layer, 

 deconvolutional layer is used with 1 × 3 strides of the convolu- 

ion. The activation function of the last convolutional layer is linear. 

n GaitPrivacyON, the loss of the main task ( L task ) is in charge of

raining the Autoencoders to extract useful transformed data ( ̂  X ). 

his loss is considered together with the loss of content ( L content ), 

esponsible for retaining authentication information, and the loss 

f style ( L style ), which removes sensitive data by introducing uni- 

orm random noise ( N s ). 

.2. Gait verification system 

Fig. 2 (green colour) provides a graphical representation of 

he architecture proposed for gait verification ( ϕ). In particular, 

e have adapted the approach originally presented by Zou et al. 

20] to our specific case (privacy-preserving gait verification). It 

s based on a novel Siamese architecture with two inputs: trans- 

ormed enrolled sample ( ̂  X e ) and transformed test sample ( ̂  X t ). 

he inputs are reshaped including one new dimension. Unlike the 

ethod proposed in Zou et al. [20] , the architecture is composed 

f a sequence of 1 × 3 two-dimensional convolutional filters, cou- 

led with ReLU activation functions. After 3 convolutional layers, 

atch normalization, 1 × 2 max-pooling, and dropout with a prob- 

bility of 0.5 are used. A reshaping layer is included to return to 

he shape of the time domain signals followed by a bi-directional 

STM layer with 50 units. The dense layer has a size of 400 with a

igmoid activation function. 

.3. Training 

GaitPrivacyON is trained following the idea proposed in the im- 

ge style transformation field [28] . One image can be divided into 

wo parts: i) the content , i.e., what is in the image, and ii) the style ,

.e., how the image is illustrated. In our particular application of 

ait biometrics verification, the content is the unique information 

hat allows to verify the identity of the subject whereas the style 

s the sensitive information of the subject that can be considered 

or other purposes not related to the authentication. This sensitive 

nformation may include the person’s gender, age, ethnicity, or the 

ctivity the subject is performing while using mobile devices [21] . 

Following this idea, three different loss functions have been 

onsidered from the work presented in Zhang et al. [22] : task loss 

 L task ), content loss ( L content ), and style loss ( L style ). 

The task loss ( L task ) helps the system to maintain its useful- 

ess in the main task of gait verification. We consider a categori- 

al cross-entropy that compares the transformed data ( ̂  X ) with the 

iometric raw data ( X). The task loss can be defined as: 

 task (Y a , ̂  X ) = −Y a log(ϕ( ̂  X )) (1) 

here Y a and ϕ( ̂  X ) are the label and the predicted probability of 

he gait verification task, respectively. 
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Fig. 2. Architecture and training losses ( L content , L style , L task ) considered in GaitPrivacyON. X e , X t : Raw time signals; ̂ X e , ̂  X t : Transformed time signals; N s : Random noise; Y a : 

label of the gait verification task. 
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The content loss ( L content ) measures the content (i.e., the authen- 

ication information) that the transformed data ( ̂  X ) and the bio- 

etric raw data ( X) have in common. For this aim, we use the

uclidean distance to compare the feature maps provided by the 

 -layer of the ϕ network when using both the biometric raw data 

nd the transformed data as input. In our case, we use the feature 

aps obtained behind Conv3_1 layer in Fig. 2 . This was decided 

xperimentally. The content loss is defined as: 

 

i 
content (X, ̂  X ) = 

1 

C i H i W i 

∥∥ϕ i ( ̂  X ) − ϕ i (X ) 
∥∥2 

2 
(2) 

here i is the layer and C i × H i × W i is the shape of the feature

ap obtained after this layer. Comparing feature maps ensures 

hat the content of the biometric raw data and the transformed 

ata are similar but do not have to be identical. 

The style loss ( L style ) is responsible for maintaining the trans- 

ormed data ( ̂  X ) unstyled, thus avoiding the extraction of any 

ensitive information automatically. For this purpose, we want to 

odify the style of the data by uniform random noise ( N s ) with

ange [ −20, 20] as done by Zhang et al. [22] . We consider the

ram matrix ( G ) to measure the style differences between feature 

epresentations. Random noise is introduced as the new domain, 

voiding using any information from the sensitive data for its pro- 

ection, creating an unsupervised learning framework. For this aim, 

oth the transformed data and the random noise are fed into the 

rained gait verification system with the weights frozen. After that, 

he Gram Matrices of the feature maps obtained as output of the 

 -layer are compared. The Gram Matrix can be defined as: 

 i (X ) c,c ′ = 

1 

C i H i W i 

H i ∑ 

h =1 

W i ∑ 

w =1 

ϕ i (X ) h,w,c ϕ i (X ) h,w,c ′ (3) 

here the shape of ϕ i (X ) is C i × H i × W i and the shape of its Gran

atrix ( G 

ϕ 
i 

) is | C i | × | C i | . ϕ i (X ) can be interpreted as C i dimensional

eatures for each H i × W i point, where c and c ′ are two different 

imensions. 

The style loss measures the dissimilarity in style using the 

robenius squared norm of the difference of the Gram matrices of 

he transformed data ( ̂  X ) and the random noise ( N s ). In our case,

e have decided to use the feature maps obtained behind Conv2_1 
33 
n Fig. 2 . The style loss can be defined as: 

 

i 
style ( ̂

 X , N s ) = 

∥∥G 

ϕ 
i 
( ̂  X ) − G 

ϕ 
i 
(N s ) 

∥∥2 

F 
(4) 

here F denotes the Frobenius squared norm. By using deeper lay- 

rs, the extracted features will be more similar. 

The final loss function of GaitPrivacyON ( L total ) would be a 

eighted sum of the losses L task , L content , and L style : 

 total = αL task + βL content + γL style (5) 

here α + β + γ = 1 . 

. Databases 

.1. MotionSense database 

The MotionSense database [10] comprises accelerometer and 

yroscope data collected with an iPhone 6 s. A total of 24 sub- 

ects with information on gender, age, height, and weight, were 

btained. The data was acquired while the subjects performed 4 

ifferent activities (walking up and down stairs, jogging, and walk- 

ng). All the subjects had the mobile phone fixed in the front 

ocket of the trouser. 

.2. MobiAct database 

The MobiAct database [11] comprises accelerometer, gyroscope 

nd magnetometer data collected using a Samsung Galaxy S3. A to- 

al of 56 subjects performing the same 4 activities (walking up and 

own stairs, jogging, and walking) were captured. Data on gender, 

ge, height, and weight of the subjects were acquired. Unlike the 

revious database, subjects had a free choice of placement of their 

evice, simulating a realistic scenario. 

.3. OU-ISIR database 

The popular OU-ISIR database [12] is considered in this study. It 

omprises accelerometer and gyroscope data collected from three 

nertial measurement units and a Motorola ME860 around the 

aist of the subject. In total, 744 subjects with gender and age 

ata were captured. All subjects performed 4 activities (two flat 

alking, slope-up walking, and slope-down walking). 
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Table 1 

Architecture of the gender and activity inference systems. Prob: Probability; m: number of signals; SAC: Sensitive Attribute Classes. 

Layer Input size ( H × W × F ) Kernel ( H × W ) Padding Activation Prob 

Conv1_1 m ×100 × 1 1 × 3 Valid ReLU –

Conv1_2 m ×98 × 16 1 × 3 Valid ReLU –

Batch_1 m ×96 × 16 – – – –

Pool_1 m ×96 × 16 1 × 2 Valid – –

Drop_1 m ×48 × 16 – – – 0.5 

Conv2_1 m ×48 × 16 1 × 5 Valid ReLU –

Batch_2 m ×44 × 32 – – – –

Pool_2 m ×22 × 32 1 × 2 Valid – –

Drop_2 m ×22 × 32 – – – 0.5 

Dense_1 m ×100 – – – –

Batch_3 m ×100 – – – –

Drop_3 m ×100 – – – 0.5 

Dense_2 m ×SAC – – – –
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. Experimental protocol 

GaitPrivacyON considers two main tasks: i) gait biometrics veri- 

cation, and ii) privacy-preserving information, for which auxiliary 

achine learning systems must be implemented to detect the sub- 

ect sensitive information, in our case, the gender and activity of 

he subject while using the mobile device. The specific details of 

he architecture are included in Section 5.1 . 

Regarding the training procedure, GaitPrivacyON first trains 

nly the gait verification system using the biometric raw data ( X) 

rom the development dataset. For this first stage, binary cross- 

ntropy is considered for the loss function. After that, we train our 

roposed GaitPrivacyON approach (only the Autoencoders module, 

he weights of the gait verification system are frozen) using the 

ame development dataset. In this second stage, the total loss func- 

ion ( L total ) considered in GaitPrivacyON is a weighted sum of the 

osses L task , L content , and L style , as described in Section 3 . The spe-

ific details of the development and final evaluation datasets are 

rovided in Section 5.2 and Section 5.3 . 

.1. Gender and activity inference systems 

Table 1 shows the architecture of the proposed gender and ac- 

ivity inference systems. Six time signals are originally acquired 

rom the mobile device as raw data, the three axes of the ac- 

elerometer and gyroscope. The input data is in the same shape 

s in GaitPrivacyON. The architecture is composed of a sequence 

f 1 × 3 convolutional filters, coupled with ReLU activation func- 

ions. After some convolutional layers, batch normalization, 1 × 2 

ax-pooling, and dropout with a probability of 0.5 are used. The 

ense layer has a size of 100. For the gender recognition system, a 

igmoid activation function is considered whereas softmax is con- 

idered for the activity recognition system. Finally, cross-entropy is 

sed for the loss function. 

.2. MotionSense & MobiAct databases 

Our approach is trained with accelerometer and gyroscope time 

ignals from both MotionSense and MobiAct databases. A total of 

0 subjects (i.e., 24 from MotionSense and 56 from MobiAct) per- 

orming 4 different activities (walking up and down stairs, jog- 

ing, and walking) are considered in the experimental framework. 

he total database consists of 55 males and 25 females. In both 

atabases the frequency sampling has been normalised to mean 0 

nd standard deviation 1, with a sampling frequency of 50 Hz. Each 

ime signal comprises 100 samples. Also, we consider time win- 

ows of 2 s with an overlapping ratio of 75%. The total database is 

ivided into development and evaluation datasets, which contain 

ifferent subjects with random selection. The development dataset, 

sed for the training of GaitPrivacyON, has 70 subjects (85% of the 
34 
ubjects have been used for training and the remaining part for 

alidation). After training, the remaining 10 unseen subjects are 

sed for the final evaluation. Regarding the gender and activity in- 

erence systems (see Section 5.1 ), we consider the same develop- 

ent and evaluation datasets described before, balancing the num- 

er of male and female subjects to avoid bias (5 males and 5 fe- 

ales in the final evaluation set). All subjects contain the same 4 

ctivities. 

.3. OU-ISIR database 

GaitPrivacyON is trained with accelerometer and gyroscope 

ime signals using the right-position inertial measurement unit, 

s it is more reliable according to Ngo et al. [12] . In the sce-

ario of performing 4 different activities (two flat walking, slope- 

p walking, and slope-down walking), there are 492 subjects avail- 

ble (256 males and 236 females). The data have been normalised 

ith mean 0 and standard deviation 1, with a sampling frequency 

f 100 Hz. Each time signal has a time window of 1 s, which is de-

ned as 100 samples, and an overlapping between time windows 

f 75%. This database is divided into development and evaluation, 

hich comprises different subjects with random selection. For the 

raining of GaitPrivacyON, the development dataset contains 80% 

f the subjects (312 for training and 80 for validation). After the 

raining, the remaining 20% of the subjects (100 unseen subjects) 

re used for the final evaluation. Regarding the gender and activity 

nference systems (described in Section 5.1 ), we consider the same 

evelopment and evaluation datasets described before, balancing 

he number of male and female subjects to avoid bias (50 males 

nd 50 females in the final evaluation set). All subjects contain the 

ame 4 activities. 

. Experimental results 

.1. Gender and activity inference from biometric raw data 

In this first experiment we analyse the ability of machine learn- 

ng systems to infer sensitive information of the user from the bio- 

etric raw data. 

.1.1. MotionSense & MobiAct databases 

Fig. 3 (top) shows the Receiver Operating Characteristic (ROC) 

urve together with the AUC of the activity recognition system 

solid curve). The proposed system achieves 99.2% AUC, differenti- 

ting the activity (walking up and down stairs, jogging, and walk- 

ng) with precision. 

Second, we analyse the results achieved by the proposed gen- 

er recognition system. The system has two clases: male and fe- 

ale. Fig. 3 (middle) shows the ROC curve together with the AUC 

chieved by the gender recognition system (solid curve). As in the 
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Fig. 3. ROC curves and AUC (%) results on the MotionSense and MobiAct evaluation 

dataset for the two scenarios considered: i) Biometric raw data ( X), and ii) GaitPri- 

vacyON ( ̂  X ). Different parameters ( α, β, γ ) of GaitPrivacyON are tested in order to 

evaluate the results of the main task (gait verification) and the privacy-preserving 

information of the subject (activity and gender recognition). 

c
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6
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t

Fig. 4. ROC curves and AUC (%) results on the OU-ISIR evaluation dataset for the 

two scenarios considered: i) Biometric raw data ( X), and ii) GaitPrivacyON ( ̂  X ). Dif- 

ferent parameters ( α, β, γ ) of GaitPrivacyON are tested in order to evaluate the re- 

sults of the main task (gait verification) and the privacy-preserving information of 

the user (activity and gender recognition). 

r
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p

ase of the activity task, the gender recognition system is able to 

ifferentiate the gender with 99.0% AUC. 

.1.2. OU-ISIR database 

Fig. 4 (top) shows the ROC curve together with the AUC re- 

ult achieved by the activity recognition system (solid curve). Sim- 

lar to the MotionSense and MobiAct databases, the system is able 

o achieve accurate results with 86.0% AUC. Regarding the gender 
35 
ecognition, see Fig. 4 (middle), good results are also achieved with 

8.7% AUC. 

These preliminary results support the ability of machine learn- 

ng systems to infer sensitive information of the subjects from the 

iometric raw data ( X), which might be considered as an invasion 

f the personal privacy. The next experiments analyse the results 

chieved by the proposed GaitPrivacyON approach considering the 

rivacy-preserving domain ( ̂  X ). 
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.2. GaitPrivacyON 

As indicated in Section 3.3 , three different parameters can be 

onfigured in the training process of GaitPrivacyON to control the 

ata transformation and the trade-off between the utility of the 

ait verification (main task) system and the sensitive information 

f the user (activity and gender): α ( task loss parameter), β ( con- 

ent loss parameter), and γ ( style loss parameter). 

.2.1. MotionSense & MobiAct databases 

We first analyse the results achieved in the main task, mobile 

ait verification. Fig. 3 (bottom) shows the ROC curves together 

ith the AUC results of the gait biometrics verification system. 

nalysing the traditional approach, i.e., using the biometric raw 

ata ( X), the gait verification system is able to achieve accurate 

esults with 99.9% AUC over the final evaluation dataset. However, 

s it was commented in Section 5.1 , from this traditional approach 

t is also possible to extract sensitive user information, 99.2% AUC 

or activity recognition and 99.0% AUC for gender recognition. 

The results achieved by GaitPrivacyON in the main task (gait 

erification) can be seen in Fig. 3 (bottom). In general, we can 

ee different AUC results depending on the values of the training 

arameters (including symbols), ranging from 99.6% AUC to 91.0% 

UC. The selection of these parameters affects in the extraction of 

he activity and gender sensitive information. 

Fig. 3 (top) shows the ROC curves together with the AUC results 

chieved by GaitPrivacyON in the activity recognition task (dashes 

urves) when X is replaced by ̂ X . It can be seen how the AUC re-

ults decrease as γ increases, achieving a result close to random 

49.02% AUC) when γ = 0.20. 

A similar trend is also observed for the gender recognition task. 

ig. 3 (middle) shows the ROC curves together with the AUC results 

chieved by GaitPrivacyON in the gender recognition task (dashes 

urves). It can be seen how the AUC results decrease as γ in- 

reases, achieving a result close to random (50.6% AUC) when γ
 0.30. 

As a result, when the transformed data ( ̂  X ) provided by GaitPri- 

acyON achieves AUC values close to random (50.0%) in the sensi- 

ive user information tasks, it will be assumed to achieve privacy- 

reserving results, as long as the AUC of the gait verification task 

ardly decreases. Therefore, we select as the optimal configuration 

arameters the α = 0 . 40 , β = 0 . 40 , γ = 0 . 20 , as the results in the

ait biometrics verification task barely decrease (3.15% AUC) while 

esults close to random are achieved in both the activity (49.0% 

UC) and gender (57.2% AUC). 

.2.2. OU-ISIR database 

Fig. 4 (bottom) shows the ROC curves together with the AUC re- 

ults of the gait biometrics verification system. Using the biomet- 

ic raw data ( X) of the final evaluation dataset, the gait verification 

ystem is able to achieve accurate results with 97.5% AUC. As in 

he previous case, with this traditional approach it is possible to 

xtract much of the sensitive information such as the activity (86% 

UC) and gender (88.7% AUC). For the OU-ISIR database, the best 

arameter configuration of GaitPrivacyON is α = 0 . 40 , β = 0 . 50 ,

= 0 . 10 . In this case, GaitPrivacyON achieves AUC results close to 

0% for both activity and gender recognition, while keeping a sim- 

lar performance on gait verification compared with the traditional 

pproach, i.e., 97.5% AUC vs. 96.6% AUC. 

.3. Comparison with the state of the art 

Analysing MotionSense and MobiAct databases together, Gait- 

rivacyON is able to decrease the AUC in the gender task (sensitive 

nformation) from 99.0% to 57.2% while reducing the performance 

rom 99.9% AUC to 96.7% AUC in gait verification (main task). 
36 
oreover, using the OU-ISIR database, GaitPrivacyON also achieves 

obust results, decreasing the AUC from 88.7% to 50.1% in gender 

ecognition while keeping similar AUC results in the main task, 

rom 97.5% to 96.6%. In comparison to our work, the approach pre- 

ented by Garofalo et al. [23] using the OU-ISIR database decreased 

he F1-score in the gender recognition task from 73% to 52% while 

orsening the accuracy from 90.9% to 85.3% in the gait verification 

ask. However, it is important to note that their method considers 

upervised learning, while GaitPrivacyON is based on unsupervised 

earning. 

Finally, for completeness, we highlight other approaches fo- 

used on the privacy-preserving of time sequences [22,29,30] , al- 

hough the topic is different, i.e., activity recognition. A similar 

rend can be observed when protecting sensitive information such 

s the age and identity of the person. 

. Conclusions 

This study has presented GaitPrivacyON, a novel mobile gait 

iometrics verification approach that provides accurate authenti- 

ation results while preserving the privacy of the subject. One of 

he main advantages of the approach is that the first module (con- 

olutional Autoencoders) is trained in an unsupervised way, with- 

ut specifying the sensitive attributes of the subject to protect. We 

ave performed an in-depth quantitative analysis of GaitPrivacyON 

ver three popular databases in the field of gait recognition, Mo- 

ionSense [10] , MobiAct [11] , and OU-ISIR [12] . Our model is able to

btain good results, as the gait biometrics verification task barely 

ecrease (3.2% AUC with MotionSense and MobiAct databases and 

.9% with OU-ISIR database) while results close to random are 

chieved in both the activity and gender ( ∼50% AUC) tasks. In 

onclusion, GaitPrivacyON increases the protection of the sensitive 

ata (e.g., activity and gender) with unsupervised learning while 

eing able to maintain the accuracy of the gait biometrics verifica- 

ion task. The proposed GaitPrivacyON approach have been evalu- 

ted with discrete sensitive attributes (i.e., activity and gender) and 

urther experiments are necessary to adapt the method to continu- 

us sensitive attributes (e.g., weight or age). Our approach is based 

n a semi-supervised learning approach and therefore, it requires 

arge amount of labelled data (sensitive attributes). Future work 

ill be oriented to: 1) reduce the amount of data needed to train 

he models using unsupervised approaches; 2) reduce the training 

ime through GPU parallelization. 
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