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To all those who feel lost. 

“It is sometimes said that scientists are unromantic, that their passion to figure out robs the 

world of beauty and mystery. But is it not stirring to understand how the world actually works — 

that white light is made of colors, that color is the way we perceive the wavelengths of light, that 

transparent air reflects light, that in so doing it discriminates among the waves, and that the sky 

is blue for the same reason that the sunset is red? It does no harm to the romance of the sunset 

to know a little bit about it.”

(C. Sagan) 

-

“There ain't no such thing as a free lunch” 

(Popular adage, but often attributed to R. Heinlein) 
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ABSTRACT 

Small celestial bodies such as asteroids and comets are abundantly present in 

the Solar System, yet their surfaces remain largely unexplored. Achieving regular 

access to these surfaces would have a major impact on capabilities such as 

planetary defence and in situ resource utilisation and lead to significant scientific 

insights.  

However, missions close to small celestial objects remain challenging in at least 

two aspects: technically, due to weak gravity fields, complex operational 

environments and latency from long communication times, and commercially, 

with the applications still being few and cost-ineffective.   

A potential solution to reducing development and operational costs and obtaining 

robust, scalable operations, could be using small, camera-only spacecraft with 

an elevated degree of autonomy. Enabling a camera-based autonomy requires 

building appropriate computer vision pipelines. All computer vision pipelines start 

with the detection of features - salient patterns within the scene. This thesis 

presents multiple methods and tools enabling the appropriate selection and 

management of different features for autonomous navigation in proximity to 

asteroids.  

To that end, relevant contributions developed during this work consist of:  

 The development of a software toolbox for prototyping and testing optical 

navigation technologies through a parametrisable synthetic 3D visual 

environment;  

 An analysis of the response of feature detectors to internal factors (e.g., 

feature model) and external factors (e.g., illumination). This response, 

once known, can be used for designing the system or to obtain situational 

awareness    

 An assessment of the response of template matching methods when the 

template (model) does not perfectly match the observed target (asteroid, 

with illumination).  
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Through the above contributions, it was shown that considering environmental 

cues and the perception model helps in achieving robust camera-only navigation 

processes.  

This capability could lead to small satellites autonomously exploring hundreds or 

thousands of small celestial objects or be employed on more powerful spacecraft 

for redundancy.    

Keywords:  

Computer Vision, Optical Navigation, Feature Detection 
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1 INTRODUCTION 

1.1 Scope of the Thesis 

This thesis presents multiple approaches developed to enable appropriate 

selection and management of observables for visual autonomous navigation 

workflows in proximity to small celestial bodies.  

In particular, the research question addressed here is whether it is possible to 

predictively identify regions within a celestial target where adequate computer 

vision feature detection techniques will perform well and regions where they will 

inherently fail to find observables. As the detection of features represents the 

starting point of almost every computer vision workflow, the capability to predict 

the features’ behaviour would have significant implications in developing robust 

algorithms and procedures. For example, predictive identification of suitable and 

non-suitable observables could then be used to optimise the possible 

navigational trajectory for approaching a celestial target or the navigation 

software.  

The vision of this approach is to ultimately use a single monocular camera for 

navigation. 

The doctoral degree was kindly sponsored by Thales Alenia Space.  Thales 

Alenia Space’s interest was to investigate new navigation approaches for 

landing. These approaches were required to be:  

 Extendable, meaning that they could be redeployed to different targets 

and/on different spacecraft without having to fundamentally redesign the 

mission and the payload.  

 Robust, meaning that their behaviour would be only weakly susceptible 

to external factors and perturbations, and possess safeguards against 

failures or anomalous behaviours.  

This context shaped the scope of the study and the methodology presented. 

Within this set of requirements, it was jointly agreed to focus on small celestial 

bodies as a study case, to develop foundation work for the core package.  
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This is because landings on small celestial bodies both present some unique 

challenges (e.g., weak gravity, rapid illumination change) providing interesting 

research and engineering problems and represent a target class destined to 

become of increasing commercial importance in the next decades. Particularly 

significant within small celestial objects are near Earth objects (NEOs), low 

gravity celestial objects devoid of atmosphere with orbits that bring them close 

to Earth. 

This proximity makes them more accessible than equivalent bodies located 

further into space (e.g., Oort cloud objects): NEOs offer the possibility to 

achieve frequent deployments at a low ∆� (propellant) expense [1] and can 

provide new potential opportunities for numerous technical and scientific 

developments. 

The current trends within the space sector imply that most of these future 

missions will be operated by private entities, focused primarily on generating a 

profit. The business-oriented paradigm of the last decades of space is referred to 

by a multitude of different labels. Common labels are “Space 4.0”, “NewSpace”, 

or “Commercial space” [2,3]. Driving down the cost of exploration will induce 

higher returns on close-up operations. At one point, ideally, this process will be 

cost-effective and widely accessible to smaller entities and startups, similarly to 

what has been observed for LEO, thus driving an exponential increase in 

capability. The ability to investigate in situ resources and explore asteroids is a 

function of the cost of the space probe, its subsystems and the cost to operate 

them.     

In this thesis, three characteristics are deemed necessary to address the need 

for cost-effective commercial asteroid exploring probes.  

- The first characteristic is that navigation methods should be able to 

operate on platforms with limited onboard resources, such as little 

available processing power or constrained sensing capabilities. These 

platforms can be small probes, restricted by their limited form factor, or 

large probes which can operate in a resource-constrained mode.  
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- The second characteristic is that navigation methods should be self-

contained and able to operate autonomously, with no need for operators.  

- The third and last characteristic is that navigation methods should possibly 

be standardised.  

These characteristics enable deployments in time-critical settings at distances 

with a large communication delay and the operation of large fleets at low 

development and operational costs.   

Finally, two enabling technologies are seen as requirements to develop 

spacecraft with those three characteristics and address technological and 

budgetary constraints.  

- The first requirement is represented by camera-only navigation. Camera-

only navigation aims to enable navigation through a single sensing 

element, a monocular visible camera. Cameras are passive electro-optical 

sensors, that are low-cost and with a minimal impact on SWaP (Size, 

Weight and Power) budgets even in redundant configurations.  

- The second requirement is represented by an approach to selecting 

optical features that can enable camera-only navigation. This approach is 

here labelled "invariant-oriented perception". This relies on the postulate 

that processes based on the identification of phenomena or criteria that 

have a high probability to be consistently present will favour the optimal 

prediction of related features within different use-cases scenarios. 

Invariant-oriented perception aims to generate robust, standardised 

navigation processes by carefully selecting what is observed and tracked 

in visual methods. Visual methods should focus on entities and processes 

that do not depend on the targeted NEO’s characteristics. Techniques 

targeting invariants would ultimately open the way to generalised 

navigation for approach and landing operations, using standardised and 

scalable methods. This paradigm aims to offer a response to the limits of 

hyper-specialisation. In this way, novel missions would require at most 

fine-tuning of well-known methods rather than the development of new 

navigation packages.  
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The latter is, in particular, a necessity around asteroids, which show a large 

variety of shapes, and surface and illumination conditions. While camera-only 

navigation by itself could exist without the second requirement, focusing its 

workflows on invariants would mitigate the risks concerning the absence of 

features or features with poor quality.  

The overall scope of the thesis is, ultimately, to lay the groundwork for scalable 

camera-only navigation in proximity to asteroids enhanced by the perception of 

invariants. The following sub-sections will introduce the key elements on which 

this thesis is based and that are important to understand the context surrounding 

the methodology of this work. Namely, they will describe the reason for which this 

thesis focuses on NEOs, the navigation particularity that relates to this type of 

celestial target, the sensing requirement, and why we propose a camera-only 

navigation approach. 

1.2 Near Earth Objects 

There has been a growing international interest in space missions targeting small 

celestial bodies. Asteroids, comets, and meteoroids constitute the majority of the 

celestial objects in the Solar System. This large cardinality is also associated with 

a large variance in the physical characteristics within this category of objects, 

which greatly vary in sizes, shapes, spin states, etc [4]. Therefore, commonly 

these objects are split into subpopulations using their orbital characteristics. 

For example, important orbital regions are represented by the Asteroid Belt 

(objects between Mars and Jupiter), the Kuiper Belt (objects from the orbit of 

Neptune at 30 AU to 50 AU from the Sun) or Near-Earth Objects (NEOs, objects 

orbiting in proximity to the Earth). 

This thesis focuses on NEOs, which, more formally, are defined as objects having 

a perihelion � < 1.3 ��. For reference, Mars’ orbit is roughly 1.5 �� from the Sun. 

There is a further condition on the orbital period � for Near-Earth Comets (NECs):    

� < 200�, to only include short-period comets. However, the majority of NEOs 

are asteroids. Near-Earth Asteroids can be further classified into NEAs into 

groups (Amor, Apollo, Aten, Atira) using their �, their semi-major axes �, and their 
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aphelion distance Q [5]. There are more than 20000 NEOs asteroids, 

representing roughly 3.33% of all the asteroids in our Solar System [6]. 

NEOs have sizes ranging from a few meters to the size of 1036 Ganymed, 

considered the largest NEO with a diameter estimate of roughly 38 km [7]. Trilling 

et al. [8] report an estimate of 10�.�NEOs with a size larger than 10 m, and 

Lupishko et al. [7] report that the number of objects with a size � > � is distributed 

according to a power law of the type  

�(� > �) = ���� ( 1-1 ) 

With the exponent b in the range of 1.65-2.00.  

The density values of NEOs are available only for a restricted number of objects, 

making it difficult to infer a distribution: for example, Dotson et al. [9] attempt to 

determine it by using meteorites.   

The density highly depends on the internal structure, which ranges between the 

two extrema cases of rubble pile (clusters of multiple smaller rocks, low density) 

or monolithic (single block of material, high density).  

Most NEOs originated in the Asteroid belt, and one out of 5-6 NEOs (15-20%) is 

believed to be part of a binary system [10].  

NEOs are a particularly significant of small celestial objects due to their proximity 

to Earth, which implies that they can be accessed and studied more easily than 

other objects further away, and that, conversely, they can more easily represent 

a threat to Earth. Due to the former, NEOs are a prime candidate for science and 

commercial missions. In particular, for scientific scopes these celestial bodies 

contain numerous valuable chemical and mineral resources that have not been 

altered by any geological or Aeolian process and which could contain critical 

information about the history of the Solar System [11].  Moreover, asteroids can 

be extremely rich in commercially valuable resources, and these can be exploited 

both locally by opportunistic probes or to bring back rare materials to Earth. For 

example, there are estimates that asteroid 16 Psyche (from the Main Belt) could 

contain gold for a value of 700 quintillion dollars [12].   
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Yet, as the latter, NEOs need constant monitoring as they can pose an existential 

threat to humanity due to their proximity. Therefore, in-depth knowledge about 

them is fundamental to mounting a rapid planetary defence response. Indeed, 

there is a subset of NEOs labelled potentially hazardous objects (PHOs), 

identified by a condition on the minimum orbit intersection distance (< 0.05 AU) 

and by one on the absolute magnitude (≥ 22). The condition on the magnitude 

translates to a condition on size, with an absolute magnitude of 22 corresponding 

roughly to a body with a radius of 70m. According to Rumpf et al. [13] it is 

sufficient for an asteroid to have a size of 18 m to start causing fatalities.  

In general, to classify the hazard posed by an asteroid there are two scales: the 

Torino scale, used for communications with the public, and the Palermo scale, 

used within the scientific community. For example, the Torino scale assigns to 

each object a value from 0 (not dangerous) to 10 (certain, destructive impact); 

this value describes the chance of impact and the energy associated to it [14].   

1.3 Navigation and Sensing 

Achieving the scientific or technical goals for some missions targeting NEOs, 

such as predicted space mining missions or some approaches to planetary 

defence, depends on physical interactions with the celestial body at a certain 

stage of the mission. In other words, eventually, the spacecraft has to touch the 

target’s surfaces. Examples of these goals include sample acquisitions [15][16], 

impact missions for planetary defence [17], and resource mining for in situ 

resource utilisation (ISRU) [18][19] or subsequent utilisation of the materials on 

Earth [20].  

To guarantee mission success in such a delicate mission phase, where the probe 

or its payload can be destroyed or lost, the development of Guidance, Navigation 

& Control (GN&C) frameworks for NEO-targeting missions must be robust to 

multiple complex external factors. Navigation is necessary to timely and precisely 

detect a difference between operational conditions and guidance-defined nominal 

conditions and trigger a control action to correct the trajectory. The output of 

Navigation, in particular, is an estimation of a set of parameters characterising 
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the pose of the platform. For clarity, the pose is defined as the integration of 

attitude and position information. These characterising parameters can be linear 

or angular positions, velocities, accelerations, and more.  

The generally weak and complex gravitational fields of asteroids lead to unstable 

orbits and fast divergence of errors. Being these fields hardly predictable from the 

ground, and being them generally associated to nontrivial distributions of masses, 

the probe can find itself operating in a largely unknown environment. As 

navigation ensures the prompt reaction of control mechanisms to conditions and 

perturbations bringing the spacecraft out of its nominal course, it plays a critical 

role in the proximity of NEOs, as it safeguards missions against the escape orbits 

and impact conditions.  

A fundamental part of a navigation architecture is represented by the sensors, 

bridging the external world to the computational capabilities available onboard 

the probe. A core design choice in satisfying the three identified drivers of 

autonomy, scalability and limited usage of resources implies choosing an 

appropriate navigation sensor.  

Navigation on Earth has a millennia-long history, encompassing methods and 

technologies as diverse as eyes looking for constellations, compasses, and 

futuristic quantum methods. In recent years, large-scale navigation capabilities 

have often been actively provided through signals actively generated by 

distributed systems. A typical example of this is represented by the Global 

Navigation Satellite System (GNSS). The widely used GPS (Global Positioning 

System) is an instance of GNSS. In GPS, carefully timed signals from a 

constellation of satellites are used to triangulate the receiver’s position. GNSS 

has become so pervasive that the lack of it defines a navigation class by itself, in 

GNSS-denied environments [21,22]. Deep space missions represent a typical 

example of operations in a GNSS-denied environment.  

Duckworth and Baranoski [23] have presented a high-level classification of 

approaches to geolocation and navigation in GNSS-denied environments, based 

on the underlying sensing modality. These are: direct measurements (e.g., GPS), 

inertial or dead-reckoning, and environmental correlation.
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Duckworth and Baranoski consider the third approach, environmental correlation, 

only as a form of map or template matching. By doing so, their list omits at least 

another instance of environmental correlation, where the correlation is operated 

incrementally, as is the case with a process that will be introduced later in the 

thesis, geometric visual odometry. In visual odometry, the matching is operated 

frame-by-frame between features detected within the scene.  

Among the potential sensing approaches, monocular cameras appear to be the 

ideal payload to provide navigation capabilities under the three system 

constraints listed in section 1.4. This is because of the very nature and the 

characteristics of these sensors, as well as the nature of the output data they 

provide. Indeed, cameras are versatile and optimal for most budgets (as mass, 

energy, and cost); images provide a data structure that enables the extraction of 

a large variety of information, from simpler to higher levels of interpretation. 

Moreover, the same data used to obtain navigation information can also be used 

to obtain situational awareness [24] and/or perform hazard detection (such as the 

identification of dangerous boulders [25] or exceedingly steep slopes[26]), unlike 

inertial or dead-reckoning methods.   

Typical operations on images comprise scene segmentation, object detection, 

identification or recognition, feature detection, and noise removal and can be 

based on intuitive heuristics to more advanced algorithms. Some of these 

concepts and techniques will be elaborated further in Chapters 2, 4 and 5.  

A camera-based navigation solution is here labelled as optical navigation. Optical 

navigation used to be a human-driven process during its early development. As 

an example, the Apollo missions carried on board a telescope and a sextant to 

allow astronauts to manually perform optical navigation tasks [27].  

Nowadays, this is no longer a completely human-centric process thanks to 

advances in computing and computer vision. Yet, there are still some very 

complex tasks that require the expertise of human operators.  

However, these analyses are largely computer-assisted and leverage the 

advancements in computer vision algorithms.  
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Indeed, it is now possible to program software autonomously exploiting camera 

images to perform a multitude of different tasks. These range from reconstructing 

information about the motion of the probe to analysing the surface of the target, 

to obtaining a relative pose with respect to other elements involved in the process. 

Artificial intelligence (AI), especially in its machine and deep learning forms, has 

already proven in specific contexts and configurations to be more reliable and 

accurate than a human operator. An important choice when deploying the AI for 

a sensor is the engineering of the features to be processed and tracked.   

AI identifies a technical field only loosely defined, and no commonly agreed-upon 

definition of AI exists. The forms of AI, exploited within the scope of this thesis 

relate to perception and computer vision, specialised in visible cameras. 

Currently, the state-of-the-art appears to be represented by learning-based 

methods. The methods investigated within this work, however, will not exploit 

learning-oriented methods such as Deep Neural Networks [28].  

This is because of two reasons. The first is that these methods are still difficult to 

certify and deploy in space settings. The second is that these tools could greatly 

improve the results of the paradigm presented within this work, but only at a later 

stage, when processes, data and metrics have clearly been defined and outlined. 
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1.4 Camera-only Navigation and Invariants 

It has been noted that in the proximity to an asteroid it is important to seek visual 

features which are reliable and consistent across a broad spectrum of different 

scenarios. Additionally, it was also noted that the performance and the efficacy 

of observables are a function of the available sensing capability. 

Indeed, monocular cameras and their navigation models possess intrinsic 

limitations. These sensors provide information up to a scale and suffer from 

instabilities induced by illumination and the propagation of small inaccuracies 

within detections. These issues are generally addressed through methods having 

a heavy impact on SWaP (Size, Weight, and Power) budgets, such as additional 

sensors, or computational heavy methods. An example of this is the ALHAT 

landing package [22], developed by NASA’s Johnson Space Center (JSC), Jet 

Propulsion Laboratory and Langley, who envisioned three active laser sensors, 

hence requiring a lot more processing and energy resources to operate than a 

single camera. For reliability, complexity and this would be difficult to be 

affordable for small players.   

The hypothesis addressed in the thesis is that adequately taking advantage of 

opportune visible features in the proximity of an asteroid could enable camera-

only autonomous navigation workflows. These workflows would lay the 

groundwork for cost- and energy-effective proximity missions, eventually 

enabling widespread access to landing capabilities. This is because 

computationally light, camera-based, non-specific algorithms could then be 

redeployed as customisable plug-and-play building blocks of a modular toolset 

into low-cost platforms, which could then be mass-deployed around asteroids. 

This could be seen as an attempt to scale up HERA and DART missions, part of 

the Asteroid Impact & Deflection Assessment (AIDA) mission [29], which carry 

smaller CubeSats to assist them in their missions – either to perform post-impact 

flybys (for DART) or to carry similar activities and eventually land (HERA).  

Ideally, the set of priors required for these operations would be constrained to a 

limited set of parameters, available without extensive scientific campaigns. This 

condition on priors ensures that the constraint on resources needed is maintained 
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throughout the whole framework, that the resource usage is not simply moved 

upstream from the satellite to ground systems and that the costs are consistently 

low, due to the minimal hardware/sensing package proposed and the reduction 

in operational costs.  

Various invariant features are explored in this work (see Error! Reference 

source not found. for an artistic representation of two of them) as follows: 

a. The first are deployable physical structures, with a well-defined shape and 

known size. In this work these are represented as extendable cubes, but 

they could be envisioned as landers or rovers themselves. The 

standardised prior information about their shape can be exploited in 

multiple ways. At far range, these deployable infrastructures would provide 

strong features in environments with potentially little visible features. At 

closer range, this design standardisation would enable accurate pose 

estimation and scale reconstruction.  

b. The second is the response of algorithmic processes to variations in 

illumination on the surface of the observed object, here an asteroid. In this 

work, this response is analysed by recording the quantity of available 

optical features as a function of the Sun phase angle for a circular 

Equatorial motion.  

c. The third is the dynamically equivalent equal volume ellipsoid (DEEVE) of 

the celestial body. The DEEVE enables the reduction of the real mass 

distribution of the body to an ellipsoid, a uniform mathematical structure 

that can be easily treated if certain conditions are met.  

d. The fourth is the heuristic intrinsic to feature detection models, which 

enables a consistently efficient selection of features to track.  Detectors of 

visual features identify a pixel patch as a feature according to an internal 

algorithm. Knowledge about the shape that most strongly excites the 

detector's internal processes assists in determining whether such shapes 

would be largely available in the operational environment or not.   

Lastly, during the development of this project, a fifth additional method was 

suggested. in line with the invariant-observation principle. However, this method 
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is not camera-operated, and thus will not be addressed within the thesis as it 

relies on the observation of dust transportation cycles on a NEO. This is tracking 

the motion of dust over airless bodies to perform hazard detection. Dust 

winnowed by direct solar illumination settles in permanently shadowed zones or 

topographic depressions. Both surface features might be critical for landing. 

Since the behaviour of dust requires the body to be airless, this would represent 

an invariant physical process. 

Figure 1-1 - An artistic representation of a mothership deploying a CubeSat and an 

artificial landmark, and dust moving over an asteroid (Illustration by Katrine Lyck) 

From a purely technical perspective, the design of both the probes operating 

around NEOs and the probes' autonomous navigation system must address the 

constraint induced by the (complex) environmental factors.  

Beyond purely technical requirements, however, there is currently a strong push 

to achieve commercial-oriented, cost-effective systems (e.g., a classic example 

being SpaceX[30]). In this paradigm, labelled "NewSpace", systems must be 

adequately de-risked; however, de-risking cannot be implemented through over-

engineering, which would lead costs only to be transferred somewhere else in the 

design, development and deployment process.  
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Important factors enabling the design and possible deployment of commercial 

missions are: reductions in launching costs, the availability of Commercial Off 

The Shelf (COTS) components, the miniaturisation of hardware, and the 

development of complex software enabled by novel powerful small-scale 

processors.  

The work carried out during the thesis led to individuating three key drivers for 

the development of a commercially oriented navigation system. This tries to take 

into account bottlenecks, availability of material, cost, and reliability, These 

system constraints are: 

 Autonomy, which leads to reduced operation-related costs and enables 

the large-scale deployment of fleets in formation flying. It also allows 

probes to operate at large distances where communications times would 

have a much larger order of magnitude than operational times.  

 Deployments on resource-constrained platforms, which allows setting an 

operational baseline which can be mass-deployed at a low cost while still 

being able to pursue its mission goal on a broad variety of platforms. These 

technologies may also act as a contingency or secondary navigation 

method for non-resource constrained probes.  

 Standardisation of software and hardware (possibly with open standards), 

which would enable modularity, cross-platform reusing, ease of stocking 

and maintenance, and easy introduction of COTS. 
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1.5 Organisation of the Thesis and Contributions 

The thesis is composed of six chapters which contextualise the scope of the 

research and the gaps aimed to be closed, present the tools developed to support 

the methodology of the proposed approaches, and ultimately introduce results 

and discussions about the obtained findings.  

Chapter One: introduces the research questions addressed in the thesis work 

and makes a case for it. In particular, the focus of this chapter is on explaining 

the need for camera-only navigation, and invariant-oriented perception.  

Chapter Two: provides further background information on deep space landings 

and visual-based navigation for small celestial objects. This helps in 

contextualising the scope of this research from a historical and engineering 

perspective. 

Chapter Three: discusses the materials and methods developed and used 

throughout the thesis. It introduces, the ASP (Action, Scenario, Perception) 

triangle methodology, the formalisation of a design approach which underlies a 

large part of the results presented in the thesis and of the built software tools.  

ASP triangles are a design paradigm that emerged while trying to address the 

multifaceted navigation problem in a systemic way. To support and analyse in a 

data-driven manner the innovation developed by applying the ASP thinking 

process to relevant use-cases, the lack of accessible data and the need to control 

most parameters of the experiments induced the compelling necessity develop 

appropriate software simulation tools. These are integrated software tools for 

trajectory generation, synthetic image generation, estimation, and filtering, 

collected in a package labelled THALASSA.  

Chapter Four: provides the first set of technical results, with a focus on managing 

the limb-fitting process in limb-based navigation. Within the scope of this work, 

this technique is employed in the spectrum of altitudes for which the target is 

clearly bigger than background stars but does not completely occupy the field of 

view of the camera. The limb method applied within this work approximates non-

trivial spin-top NEO shapes to ellipsoids. Through these experiments, it was 
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possible to see that errors in this estimation approach are clustered within well-

defined regions around the target. 

Chapter Five: is concerned with navigation based on the detection of computer 

vision features. These methods exploit opportunistic patterns detected within 

visual data and are techniques meant to support mid-range and close-range 

navigation. Feature-based navigation can operate at any altitude provided that 

some highly recognisable structures on the target are available to be observed. 

Specifically, this chapter will present results concerning three invariants that can 

affect or be propagated within feature-based processes. These invariants are 

concerned with increasing the robustness of the target process. 

Chapter Six: provides ideas and directions to further expand on the ideas 

presented in the thesis, and the envisioned future work. This chapter has a 

twofold scope.  The first part of the chapter relates to research, presenting open 

methodologic considerations and highlighting scientifically interesting points that 

could not be addressed due to time constraints. The second part relates to 

engineering and development, providing possible directions and requirements for 

implementation and deployment, and highlighting the to move the results to a 

higher TRL.  

Scientific contributions achieved during the development of the thesis and 

presented in the different chapters are listed below:  

 Optimization of feature-based navigation through non-computational 

optimizers acting at a feature’s level: 

o Environmental augmentations [31] (“NAV-Landmarks: Deployable 

3D Infrastructures to Enable CubeSats Navigation Near Asteroids”, 

Conference Paper, Peer Reviewed) also connected to the 

principles of AI standardisation and warehousing. 

o Methods to understand the heuristic of optical feature detectors 

using genetic algorithms [32] (“Countermeasure Leveraging Optical 

Attractor Kits (CLOAK): interpretational disruption of a visual-based 

workflow”, Conference Paper, Peer Reviewed) enabling efficient 

selection and interpretation of the underlying perception model. 
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o Heuristic filters and tools focusing on the response to illumination 

[33] (“Perception fields: analysing distributions of optical features as 

a proximity navigation tool for autonomous probes around 

asteroids.”, Conference Paper, Peer Reviewed). 

 An iterative coevolutionary approach to design the macro-components of 

an AI [34] (“ASP Triangles: Sketching the Artificial Intelligence of a Mobile 

Platform”, Conference Poster). 

 Development of a MATLAB/Blender hybrid plug-and-play prototyping and 

testing environment for developing a fully visual-based workflow (open 

source in the future by moving from MATLAB to Python). Modules for 

trajectory generation, estimation, and filtering with the goal of trajectory 

reconstruction (https://github.com/MarsZDF/THALASSA). 

 Analyses of illumination-aware far-range optical navigation [35] 

(“Autonomous Visual Trajectory Reconstruction in the Proximity of Small 

Celestial Objects”, Conference Poster).

 Unconventional computing: observing the dust around airless bodies, such 

as asteroids, to use these target objects as self-referential Hazard 

Detection and Avoidance computational units [36] (“Monitoring Dust 

Motion Around Airless Celestial Bodies: Characterizing Suitable Landing 

Zones”, Conference Paper). 
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2 CONTEXT

This chapter presents state-of-the-art and background concepts for navigation in 

proximity to asteroids, with a particular focus on close proximity for landing and 

optical navigation. 

2.1 Landing in Space

Touching down with a spacecraft on the surface of extraterrestrial bodies is within 

the scope of various space mission types, ranging from local exploration to the 

collection and analysis of local material to impacts attempting to change the orbit 

of the target. Whereas most landings in space have happened on large gravity 

bodies, the majority of the more than one million bodies within the Solar System 

is represented by asteroids [37]. 

For mission requiring a touchdown, the landing mission stage is extremely critical, 

as the high speed involved can result in a complete loss of the spacecraft due to 

structural loads from impacts, and there is often very little margin to maneuver 

and react.

Moreover, in the case of low-gravity targets even non structurally destructive 

speeds might lead to dangerous circumstances. This is due to the low escape 

velocities of these celestial bodies. If the speed of the probe immediately after 

the impact is comparable to escape conditions, and if the craft is not anchored 

properly to the ground, the rebound can lead the probe to either bounce towards 

an unfavorable spot or into space. 

To land in a safe way, means to ensure that the accelerations involved in the 

speed reduction process and in the touch down do not damage structures and 

payloads, and to ensure that the landing area is free from dangers (such as steep 

slopes and large boulders). 

Navigation provides knowledge of the spacecraft’s speed and position with 

respect to the ground, which assists in maintaining the speed profile always, while 

scene/situation awareness provides information about what is around the probe.  
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When the operational distances are large (the local dynamic is much faster than 

the time taken by a signal to reach the probe from the ground) or the operational 

environment is extremely complex it is necessary to introduce an element of 

autonomy In order to provide the probe the capability to act or react within 

the short timeframe and safeguard the goal of the mission and which 

otherwise can hardly be accomplished as fast through remote operation.  

2.1.1 Landing Approaches 

In general, it is possible to distinguish between two landing approaches, 

depending on the speed with which the landing craft impacts the ground: soft and 

hard landings. High speed, often destructive, landings are labeled hard landings. 

When the chosen landing approach is a hard landing, the landing probe is defined 

as an impactor. Hard landings are rarely intentional on Earth but take place more 

frequently in space settings. An intentional impact landing might be selected for 

multiple reasons. Impactors might be chosen for their simple design, as 

opportunistic mission extensions, to estimate some local property of the target 

body, or to transfer an appropriate amount of momentum. The latter has been the 

case for Deep Impact mission, where an impact was used to excavate and study 

the nucleus of the comet Tempel 1 [38]. 

Performing a soft landing implies gradually reducing the speed of the craft and 

making it as close as possible to zero only when the craft is close to the 

touchdown point. A prematurely induced null velocity leads to the ballistic fall of 

the craft; and again, non-null velocities at touchdown generate loads proportional 

to the residual speed. Within the scope of this thesis, the focus will be on probes 

operating a soft landing, due to the stronger requirements for robust navigation.  

To be successfully and reliably achieved, soft landings require highly complex 

architectures. The crafts landed in this way require sensing to understand when 

to begin the deceleration and how to perform it, and control mechanisms and 

intelligence to act on the sensors’ outputs. For example, typical triggers for the 

payload operating the slowdown are range or velocity [39]. Both triggers have 

different implications on the final landing condition. It is here worth mentioning 
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that an important visual descriptor of the landing conditions is represented by the 

so-called “landing ellipse” [40]. The landing ellipse represent the bidimensional 

region projected on the ground where the simulations predict with a certain 

degree of accuracy that the lander will touch down. Generally, the chosen level 

of confidence is 3�, or 99.7%. Multiple technical parameters and atmospheric 

(when an atmosphere is present) and gravitational perturbations influence the 

shape of this ellipse, centered on the expected landing spot. In addition to 

technologies enabling speed reduction while in the air, at times surface 

mechanisms damping and absorb the strength of the impact (e.g., airbags), or 

providing anchoring and stabilization might be necessary. These systems 

operating on the ground or in its proximity weakly affect the landing ellipse.  

The first probe landing on a non-terrestrial surface performed a hard landing. This 

was the Soviet “Luna 2” which impacted the Moon on the 13th of September 1959. 

The first lunar soft landing was once again performed by a Soviet craft, the “Luna 

9” [41]. To do so, the probe used thrusters and inflatable airbags. The trigger of 

the airbag inflation; a second trigger was provided at 5 meters above the ground 

level from a sensor registering contact with 

Over the years soft landings have been enabled by multiple technologies related 

to perception, navigation, and speed reduction. The characteristics of these 

technologies are extremely different depending on whether the landing target 

possesses a sensible atmosphere - the envelope of gaseous layers surrounding 

a celestial body – or not. The presence of an atmosphere is associated to high-

gravity bodies, but not every high-gravity celestial object can develop or maintain 

an atmosphere. A soft-landing approach on a celestial body surrounded by an 

atmosphere is necessarily different from one on an airless celestial object. This 

is because atmospheres induce a force opposing motion known as “drag” over 

the falling body, which aids in reducing speed. However, the velocities at play 

from an orbital entry, might lead to speeds much larger than the local speed of 

sound, which is well-defined in an atmosphere. These conditions are labeled 

“hypersonic condition”. A craft moving in hypersonic conditions is subject to 

multiple complex thermo-fluid dynamics phenomena - in particular, extreme 
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thermal flows. In a hypersonic regime thermal control is operated through 

aerodynamic design, heat shields and appropriate descent profiles. However, 

navigation capabilities are severely impaired during this period.   

Moreover, a gravity well capable of holding an atmosphere, is necessarily strong, 

inducing larger forces and shorter operational timescales. The latter point is 

critical when designing the on-board processing unit and the number of 

operations that must be handled during entry, descent, and landing. However, 

this strong gravity removes the concern about the probe bouncing away from the 

first landing spot.   

The presence of an atmosphere also has important implications on the 

operational environment close to the surface and during the descent towards the 

ground and on the observable elements for computer vision pipelines.  

As examples, atmospheres influence conditions the type of existing geological 

features [42], allow the existence of vertical thermal profiles, filter the size of 

impactors reaching the surface and slow them down [43], determine the surface 

transport and deposition phenomena [44], constrain the portion of the 

electromagnetic spectrum capable of reaching the surface, enable a pressure 

build-up and the permanence of chemical species in liquid and gaseous forms, 

and many other things. 

2.1.2 Landing on Airless Bodies 

Whereas landings on bodies with atmospheres can employ solutions highly 

specialised to the presence of a fluid, the vast majority of celestial bodies viable 

for landing do not possess an atmosphere. When this type of celestial objects is 

chosen to be visited within a mission, there are major implications on the design 

of the landing strategy. Moreover, it is also possible to expect important 

engineering difference once the probe has landed on the surface. However, 

addressing surface operations is out of the scope of the thesis. Compared to 

landings on bodies with atmospheres, characteristics of landings on airless 

bodies are: 
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 The absence of an atmosphere implies a lack of friction to aid in the 

slowdown. This implies that it is not possible to slow down the probe 

through parachutes, and no drag forces are present 

 No thermal shielding is required to survive the descent 

 Whereas no thermal shielding is required, the temperature on the surface 

of airless bodies might be too elevated for surface operations when these 

celestial objects are too close to the Sun [45] 

 Aeolian perturbations do not affect the trajectory of the probe 

 Features observable and available on the surface  

 Differences in available lighting 

Again, the lack of an atmosphere does not provide any insight on the gravity of 

the body. However, no NEO possesses an atmosphere, and therefore all the 

landing conditions considered in this thesis will address airless bodies. The low 

gravity of NEOs, moreover, makes the pressure generated by solar radiation 

(SRP) a potentially significant perturbation when compared to local gravity, 

whereas SRP is the force generated by the Sunlight photons exchanging 

momentum with a surface of the spacecraft.  
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2.1.3 Past Landings on Small Bodies 

The first decades of landing operations in astronautics have been completely 

dominated by the selection of large gravity landing targets. Then after the lunar 

Apollo missions, landing itself, for a while, appeared to become a mission type of 

minor relevance. It was only around the beginning of this millennium that this 

mission type started to become extremely significant again. The first time a 

synthetic device touched down on the surface of a body significant within the 

scope of this work, concerned with low gravity objects, was in 2001, when the 

probe NEAR Shoemaker [46] landed on 433 Eros, a Near Earth Asteroid (NEA). 

This was rapidly followed by several others missions: the Hayabusa mission to 

the asteroid Itokawa in 2005 [47], and the Deep Impact impactor to the comet 

9P/Tempel 1 in the same year [48]; the Philae lander of the Rosetta mission to 

the comet 67P/Churyumov–Gerasimenko in 2014 [49], the Hayabusa2 mission 

to the asteroid Ryugu in 2018 [50], and more recently the OSIRIS-REx probe to 

the asteroid Bennu in 2020 [51]. Moreover, many more missions to similar small 

targets are expected to take place in the near future [52], [53]. The targets of 

these missions alone highlight a broad variability in the geological and 

morphological properties of these targets, and they represent only a handful of 

the roughly 25000 Near Earth Asteroids [54] that are currently known. However, 

not only NEAs are becoming accessible: the whole access and interaction 

paradigm is completely changing, largely due to the commercialization of space.  

2.1.3.1 Excessive Speed at Landing on Small Bodies: The Issue of 

Rebounding  

To further explain why landing on small bodies might be critical beyond the 

destruction of the payload, it is possible to use the example of the lander deployed 

during the Rosetta mission. Rosetta was a European Space Agency (ESA) 

targeting mission the comet 67P/Churyumov–Gerasimenko (Figure 2-1). 

The spacecraft of the mission includes an orbiter, Rosetta, and a lander, named 

Philae (Figure 2-2). Rosetta and Philae were launched on the 2nd of March 2004 

and reached the comet on the 6th of August 2014 - roughly 10 years later. Philae 

was deployed on the 12th of November, at a distance from 22.5 km from the 
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barycentre of the comet [55] – a distance of more or less five times the extension 

of the largest lobe of 67P/Churyumov-Gerasimenko.  

Figure 2-1 - The comet 67P/Churyumov-Gerasimenko. Image by ESA/Rosetta/NAVCAM. 

Figure 2-2 - A still from the movie "Chasing A Comet – The Rosetta Mission", showing 

Philae within Rosetta before deployment. Image by DLR.
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Philae then successfully reached the surface of the comet and impacted it after 

a seven-hours long ballistic descent. The design of the lander included two 

mechanisms providing anchoring capabilities to Philae, ensuring that it would 

securely be held in place upon touch down. However, none of the devices in this 

anchoring package - two anchoring harpoons, ice screws, and a cold-gas thruster 

– worked as planned [56]. Because of these failures the probe started bouncing 

away from the designated landing spot and touched down on the ground three 

times. The speed of the probe after the first rebound was 0.38 cm/s [57]. This 

speed after the impact is critically comparable to the escape speed of 

67P/Churyumov-Gerasimenko, where the escape speed is defined as the 

minimal speed that a body must possess to leave the gravity well generated by 

an object. For the target comet the escape speed has an order of magnitude of 

0.5 m/s [58], comparable to the rebound speed of 0.38 cm/s and leading to a large 

displacement after the first leap. These undesired hops led the lander to settle in 

adverse surface conditions, with little solar illumination [59], insufficient to power 

the probe or recharge its batteries. These zones would be exceptionally critical 

for camera-only operations, as cameras could extract little to no information about 

them. Moreover, areas with weak or absent Sun illumination would prevent any 

solar powered probe from being able to operate, as has been the case for Philae. 

Without atmospheric scattering or reflection, airless body are more prone to 

presenting surface zones of permanent shadow [60–62]. More in general, airless 

body present a different surface illumination type than bodies with atmosphere, 

with stronger environmental contrasts, extremely hard shadows and, potentially, 

highly reflective dusty material – all critical elements for cameras.    

Ultimately, it took almost two years to locate Philae using Rosetta’s camera [63]. 

The necessity to maintain robust navigation capabilities is again and further 

highlighted through the circumstances of Philae landing. Monitoring the speed of 

the probe enables predicting if a lander will bounce; monitoring the pose allows 

reconstructing, potentially in close-to-real time, the location of the final 

touchdown.     
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2.1.4 Future Landings on Small Bodies 

At the time of writing, more missions to small celestial bodies have either been 

proposed, planned or launched without yet reaching their targets, capitalising on 

the successes of previous missions and the heritage technologies developed 

through them.  

Beyond scientific purposes, these missions are also driven by the urgent need to 

develop readily available planetary defence systems and by the search for more 

sustainable ways to extract resources for Earth application and deep space ISRU.   

Missions which have not yet reached their target objects and with a landing 

component, thus relevant within the scope of the thesis, are:  

 DART: DART [29], which stands for Double Asteroid Redirection Test is a 

mission testing planetary defence capabilities against NEOs. DART scope 

will be pursued through an impact on its target, Dimorphos, the satellite of 

the small binary asteroid Didymos. The expected outcome of the impact is 

for Dimorphos to reduce its orbital distance from Didymos.  

The DART mission has two spacecraft components: the DART impactor, 

and LICIACube, a 6U CubeSat operating post-impact flybys at a minimum 

distance of 55.4 km [64]. DART was launched on the 24th of November 

2021 and will reach its target in late September/early October 2022.  

 Hera: DART is part of a broader space collaboration, labelled AIDA 

(Asteroid Impact and Deflection Assessment). Within the scope of AIDA 

there is a second mission named Hera, developed by the European Space 

Agency (ESA) [65] which is expected to be launched in October 2024. The 

goal of Hera is to monitor the efficacy of the DART impactor by analysing 

the changes on Didymos. Hera, like DART, has multiple spacecraft 

components: the main spacecraft and the cubesats Juventas [66] and 

Milani [67]. Juventas and Milani could attempt a landing on the surface of 

the asteroid at the end of their life.  



26 

 ZhengHe (planned to be launched in 2024): ZhengHe is an asteroid 

sample return mission that is being developed by CNSA (China National 

Space Administration) [68]. ZhengHe is set to target a NEA (469219 

Kamoʻoalewa) [69] and a comet (311P/PANSTARRS).  The spacecraft will 

collect regolith from Kamo’oalewa using a process labelled ‘anchor-and-

attach’, differing from the ‘touch-and-go’ used on board OSIRIS-Rex and 

Hayabusa2. 

In addition to these planned missions, there also are multiple planned flybys to 

small celestial objects; such as Lucy[70], Psyche[71], DESTINY+ [72], NEA Scout 

[73], Camilla [74] – also potentially including an impactor.   
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2.2 Navigation for Landing

This section provides insights about navigation solutions enabling landings on 

low-gravity airless bodies. The section is broken down into four subsections. The 

first subsection provides an overview of the six missions that in the previous years 

have touched down, both with soft and hard landings, on the surface of small 

celestial bodies. This information is presented through a table containing general 

information about the missions. The second subsection contains details about 

future missions to small celestial bodies. The third subsection presents 

information concerning payloads and methods for proximity optical navigation. 

Lastly, the fourth subsection builds upon the first three and supplies a second 

table exploring the landing-oriented navigation methods of the various missions 

discussed of interest. 

2.2.1 Past Landing Missions 

This subsection reports and discusses the approaches that aided in achieving 

proximity navigation for the six missions listed below in chronological order:  

 NEAR Shoemaker (launched in 1996, landed in 2001) 

 Hayabusa (launched in 2003, landed in 2005) 

 Deep Impact (launched in 2005, impacted in 2005) 

 Rosetta (launched in 2004, landing in 2004) 

 Hayabusa2 (launched in 2014, two touchdowns in 2019) 

 OSIRIS-REx (launched in 2016, touched down in 2020) 

Three of these missions were deployed by NASA (NEAR Shoemaker, Deep 

Impact and OSIRIS-REx), two by JAXA (Hayabusa and Hayabusa2) and one by 

ESA (Rosetta). For some of these missions the lander is represented by the main 

craft itself, either performing a touch-and-go manoeuvre on the ground or 

effectively landing. Some other missions carry one, or multiple, deployable 

landers. The information concerning these missions is organised in Table 2-1

which consists of four columns presenting the main characteristics of these 

missions. These four columns are: Mission Name, Mission Architecture, Landing 

Target, and Launch Date. Mission Name reports the name of the mission, 
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uniquely identifying it. Mission Architecture reports information about the 

spacecraft involved in the mission, its role, and its operational approach. Landing 

Target specifies the target upon which the landing took place. The name of the 

celestial body is followed by an (A) if the target is an asteroid, or by a (C) if it is a 

comet. It is worth noting that some missions might perform a tour-like mission, 

visiting multiple celestial bodies before reaching the one where surface 

operations are performed. Lastly, Launch Date reports the date in a 

DD/MM/YYYY format. It was preferred to report the launch date over the landing 

date to identify the technological landscape in which the development of the 

probe took place.  

Table 2-1 - An overview of mission performing a touchdown on small celestial bodies 

Mission Name Mission Architecture Landing Target 
Launch 

Date 

NEAR Shoemaker
 Orbiter, repurposed into 

a lander  
433 Eros (A) 17/02/1996

Hayabusa

 Touch-and-go sample 

acquisition probe 

 Lander (MINERVA)  

25143 Itokawa (A) 09/05/2003

Rosetta
 Orbiter  

 Lander (Philae) 

67P/Churyumov–

Gerasimenko (C)
02/03/2004

Deep Impact
 Flyby spacecraft (Orbiter)

 Impactor 
Tempel 1 (C) 12/01/2005

Hayabusa2

 Touch-and-go sample 

acquisition probe; two 

touch-downs 

 Landers/Rovers 

(MINERVA-II-1: Rover-

1A (HIBOU), Rover-1B 

(OWL); MINERVA-II-2: 

Rover-2; MASCOT) 

162173 Ryugu (A) 03/12/2014
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OSIRIS-REx
 Touch-and-go sample 

acquisition probe 
101955 Bennu (A) 08/09/2016
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2.2.2 Future Landing Missions 

Future landing missions appear to be moving more and more towards distributed 

architectures where motherships collaborate with smaller CubeSats providing 

ancillary capabilities.  

Table 2-2 - An overview of future mission performing a touchdown on small celestial 

bodies 

Mission Name Mission Architecture Landing Target 
Launch 

Date 

DART 
 Impactor 

 Post-impact flyby cubesat
Dimorphos (A) 24/11/2021

Hera

 Flyby spacecraft 

 Two flyby cubesats with 

the potential to land at 

their EOL 

Dimorphos (A)
10/2024 

(planned)

ZhengHe

 Anchor-and-attach 

sample acquisition probe 

 Nanolander 

 Nanoorbiter 

469219 

Kamo’oalewa (A) 

311P/PANSTARRS 

(C) 

2024 

(planned)

2.2.3 Optical Navigation Methods   

This subsection provides technical insights into optical navigation (OpNav).  

The broad range of altitudes swept while descending towards the target makes it 

necessary for the on-board intelligence to be able to operate in different 

navigation modes, dependently on what optical observable is instantaneously 

available. Therefore, employing optical navigation to perform a complete landing 

requires the integration of multiple technologies - making an even stronger case 

for modular developments.  
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Over the years many algorithmic models have been developed to exploit for 

navigation opportunistic (not known a priori) visual information available in space 

and in the proximity to the ground. This section presents the two most common 

architectures for the enabling camera hardware, and some OpNav methods 

considered important within the scope of this thesis.   

2.2.3.1 Camera types: CCD and CMOS 

In the modern world, digital cameras represent a ubiquitous piece of technology, 

integrated in a multiplicity of portable electronic devices. Nevertheless, digital 

cameras represent a fairly recent invention, with the first commercial releases 

being less than half a century old. The sensor enabling the first digital optical 

acquisitions is called “CCD” (Charged Coupled Device). CCD was invented in 

1969, and its development has proven so important that it has granted a Nobel 

prize to its inventors, Boyle and Smith, 40 years later, in 2009 [75]. 

During the 1990s another image sensing technology emerged as an alternative 

to CCD: Complementary Metal-Oxide-semiconductor, or CMOS. CMOS were 

developed by Eric Fossum [76] at NASA’s Jet Propulsion Lab, and therefore 

represent a technology created with space applications in mind.  

CCD and CMOS appear to currently be the most widespread image sensing 

technologies. Both sensors create a representation of the external world by 

capturing and storing electromagnetic (EM) radiation. Within the scope of this 

thesis is of interest radiation within the visible portion of the EM spectrum, which 

is carried by photons with wavelengths roughly between 400 and 700 nm [77]. 

Cameras perform these acquisitions passively – i.e., they do not introduce any 

EM radiation within the scene. This is one of the limitation of cameras: they 

require a light source to operate - or external devices such as flashlights. 

However, being passive sensors makes them excellent from a power-expenditure 

point of view, maintaining their energetic consumption low.  

The environmental radiation is acquired and stored using discrete grids of light-

responsive elements labelled pixels (standing for Picture Elements). Specifically, 

when photons impinge on these elements, they are activated and generate an 
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electric signal proportional to the intensity of the incoming light. This intensity is 

then translated to an intensity within the digital representation. The difference 

between CMOS and CCD sensors lies in the site where the electric signal is read 

– the pixel itself for CMOS, and the edge of the detector for CCD [78].  

The behaviour of the two sensors is slightly different. CCD sensors perform better 

in conditions of scarce light; however, CMOS sensors behave better in the 

presence of very bright objects. CCD sensors are generally more expensive and 

consume more power than comparable CMOS sensors. However, CCD sensors 

are generally more reliable because they are better understood, having a higher 

degree of technological maturity, and often produce higher resolution outputs. 

Ultimately, the decision on depends on the application and on the constraints and 

requirements of the mission. 

2.2.3.2 Computer Vision Features  

Most of the developments discussed within the thesis target the perception of 

computational constructs known as features. Many computer vision processes 

rely on features or use them as starting point of workflows. Examples are image 

alignment and stitching, structure from motion, object recognition [79], and of 

course motion estimation. Indeed, a multitude of optical navigation designs 

relying on prominent external structures and patterns have been proposed for 

proximity operations [80–83]. The digital representation of these observables 

defines a feature, and the algorithms searching and selecting features in the 

images are deemed feature detectors. Features, then, generally require to be 

identified and matched across subsequent frames to return localisation 

information. An example of this process specialised to visual odometry method is 

shown in Figure 2-4. The matching stage operates through unique descriptors 

associated to features by algorithms labeled feature descriptors. Analysis of 

description and matching is out of the scope of this work.   
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Figure 2-3 - The detection/matching process across different views. Image by Lounis 

Chermak. 

As noted beforehand, the complex environment around asteroids can be rather 

disruptive for a feature detection and matching process. Features might not be 

stable enough under the complex illumination conditions, and their appearance 

could rapidly change because of the possibly fast, complex rotational dynamics. 

Moreover, stable large-scale features like craters might be completely absent 

from asteroids [80]. Generally, it is impossible to retrieve from Earth accurate 

knowledge about the identity and distribution of features within operational 

scenarios involving NEOs. Hence information about locally available features 

becomes accessible only when the terrain becomes resolvable to the sensors of 

the mission: in other words, generally, when proximity operations are already 

taking place. This means that it is difficult to calibrate the navigation algorithms 

and payloads before launch to specific local conditions or structures, as for 

example large boulders.  

However, the presence of unique surface elements and patterns can generally 

be expected. The scope of this chapter is to identify commonalities between the 

detections of local opportunistic patterns and exploit them as invariants to enable 
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robust camera-only operations. This is achieved both through adjustments on the 

internal perception model and by acting on the operational environment.  

Concerning the feature perception model, two standard approaches to feature 

detection are significantly relevant throughout the thesis. These are Harris-

Stephens corners and SURF (Speeded-Up Robust Features). SURF is a 

proprietary algorithm, therefore in line with an open science philosophy also an 

open source alternative, ORB (Oriented FAST and Rotated BRIEF), will be 

discussed.    

The Harris-Stephens detector is the oldest of the three feature detectors largely 

used within the thesis. This feature detector is specialised to corners as seen in 

the image gradient. The algorithm was introduced to the scientific community in 

1988 by Chris Harris and Mike Stephens at the Alvey Vision Conference [84] as 

an improvement of edge tracking methods. Figure 2-4 shows Harris-Stephens 

corners detected over a Bennu’s picture. Heuristically, Harris-Stephen’s detector 

classifies interest points within the image using a sliding patch. This classification 

is operated by analysing the average intensity variations returned when the patch 

is slightly shifted around in various pre-defined direction. This operation assigns 

the pixel patch at the centre of the sliding process to one of three possible 

classes. If the change is negligible regardless of the shift, the region is “flat”, i.e., 

it presents weak changes in intensity. If the change is highly directional, the patch 

is centered on an edge, with translations across the edge causing large changes. 

Lastly, if the change is large in any direction, the region is a corner, i.e., the 

connection of edges.  
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Figure 2-4 - Harris-Stephens corners detected over a Bennu simulation.

SURF was presented in 2006 - eighteen years after the Harris-Stephens detector 

- by Herbert Bay, Tinne Tuytelaars, and Luc Van Gool at the ECCV (European 

Conference on Computer Vision) [85]. As noted before, the name SURF 

represents an acronym, standing for “Speeded-Up Robust Features”. The 

“Speeded-Up” part within the name of this feature detector name refers to the 

optimality of its computational time when compared to other detectors that had 

been developed before SURF. SURF is often mentioned paired with SIFT of 

which it often seen as a faster version. Both SIFT and SURF are defined as ‘blob’ 

detectors. SIFT (Scale Invariant Feature Transform) was presented by David G. 

Lowe at the ICCV International Conference on Computer Vision in 1999 [86]. The 

main advantage of SIFT over corners features is that SIFT can remain stable and 

detectable also under scaling transformations. This property is inherited by 

SURF, with both algorithms operating a search on multiple scales. While SIFT 

and SURF have not been the first scale-invariant models (the concept itself was 

introduced by Lindeberg in 1994 [87]) they can certainly be considered among 

the most successful contributions in that respect.  
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Corners, indeed, are weakly suited to provide robust information in scale-

changing contexts. Due to a constant patch size at different distances from the 

target, a corner might get ‘merged’ within an edge, resulting in the loss of finer 

scale features, or expanded and broken down into edge components. It is 

important to take this into account since the continuous altitude change in 

proximity operations for planets and primitive bodies often leads to hardly 

negligible scale changes in the observables. Thus, when possible, this limitation 

should be taken into consideration.  

Lastly, ORB is a feature detector and descriptor, constructed from the integration 

of multiple prior technologies, collated and augmented. It was presented at the 

2011 International Conference on Computer Vision (ICCV) by Ethan Rublee, 

Vincent Rabaud, Kurt Konolige and Gary Bradski [88]. The authors of ORB have 

presented it as an alternative to SIFT and SURF, achieving equal performance 

with respect to the former and improved performance at a lower computational 

cost with respect to the latter. Moreover, another advantage of ORB is that it can 

be freely used, unlike both SIFT and SURF which are patented algorithms in 

some countries.  

The detection stage of ORB is based on a FAST (Features from Accelerated 

Segment Test) detector [89], which employs a rasterized circle of points with a 

radius of three pixels, centered on the one of interest [90]. The metric employed 

by the ORB process is the one defined for the Harris-Stephens detection process. 

ORB natively employs a BRIEF descriptor; however, addressing descriptors is 

out of the scope of this work. FAST, like Harris-Stephens, represents a corner 

detector. As the backronym in the name suggest, one of its strong points relies in 

its speed, a property which is preserved in ORB. This computational efficiency 

makes it optimal for real-time operations.  
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2.2.3.3 Optical Navigation 

In line with the camera-only requirement, only three elements are assumed 

exploitable for navigation within this work: 

 The monocular camera itself 

 Prior information 

 Geometric and textural features observed within the camera.  

Therefore, navigation technologies can be classified according to either what is 

observed, or what knowledge is required to return estimations from the 

observables. Focusing on the features, within the scope of the thesis is of 

particular interest the set of technologies returning a navigation estimate by 

observing elements on the ground, commonly labelled Terrain Relative 

Navigation (TRN). This is because during landing the feature exploited in TRN 

are well resolvable within the camera. Johnson and Ivanov [91] present TRN 

methods as: “These approaches sense the terrain during descent and augment 

the inertial navigation by providing, in real-time, position or bearing estimates 

relative to known surface landmarks”. The sensors enabling TRN need to be able 

to create a representation of the external world within the on-board intelligence. 

This capability is commonly provided by electrooptical (EO) sensors such as 

lidars or cameras [92].  

Albeit focusing on Lunar pinpoint landing, Johnson and Montgomery [92] identify 

three approaches to TRN:  

 Global position estimation 

 Local position estimation  

 Velocity estimation 

Most of the techniques discussed in the thesis are tested against reference 

values for position: therefore, a discussion on the techniques oriented towards 

velocity will not be provided. The difference between global and local position 

estimation lies in the reference frame that the position is described in. In global 

positioning, the position is retrieved in a global coordinate system; in local 

positioning the coordinate system is specific to the landing site. Regardless of 

this distinction, in all the four camera-based approaches for positioning described 



38 

by Johnson and Montgomery some prior data about the landing site are required. 

These four techniques are:  

1. Matching the pattern of craters to an off-line database. Generally, authors 

try to identify craters rather than boulders or similar element due to the 

larger size of craters (availability over a longer range) and their stability to 

perturbations 

2. Matching SIFT (Scale Invariant Feature Transform[86]) features to an off-

line database 

3. Onboard Image Reconstruction for Optical Navigation (OBIRON) 

4. Image to map correlation  

Tian and Yu [93] suggest using craters for TRN on asteroids; however, again,  as 

noted by Cocaud and Kubota generalising what had been observed on Itokawa, 

larger scale features such as craters could either be completely absent from small 

NEOs or too scarcely available to be reliably used as the starting point of visual 

workflows. Moreover, possessing a database of surface information cannot be 

taken for granted. This is because a phase constructing data assets concerning 

features on the ground may not be feasible for some mission architectures. This 

is also what makes critical the second approach as described by Johnson and 

Montgomery:  the need for a database. SIFT represents a classical feature 

detector, and the approach described within the reference has two stages. Within 

the first stage features are detected, described, and their descriptors are stored 

in a database. Within the second stage the landing probe acquires a picture, 

generate a set of descriptors for the patterns detected as features within the 

image and performs localisation by comparing the features in the landing image 

to the one in the offline map.  

Examples of solutions to the limitation induced by the need for offline data might 

be found in in visual odometry [94], or in an approach to TRN discussed by 

Christian et al. [95]. In these methods features are matched online between the 

outputs of sequential acquisitions rather than to a database.  

Visual odometry (VO) represents a very successful approach to exploit features 

to reconstruct a platform’s egomotion through subsequent visual acquisitions. At 
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the core of a VO process, optical features are identified and matched across 

consecutive images to return localisation information. Its functioning was 

envisioned by Hans Moravec in his PhD work [96], but it received its name in a 

paper by Nistér, Naroditsky and Bergen [97], and has found applications in many 

fields, albeit rarely in a monocular camera configuration. These uses range from 

navigation of the Mars Exploration Rovers [98] to navigation of aerial vehicles 

[99] to self-driving cars [100]. Main requirements for the applicability of VO 

approaches are that features are available, stable (i.e., don’t change their 

appearance over time) and that the motion and acquisition are such that a 

population of features can be observed across subsequent frames. A plausible 

implementation of the VO process could be the one shown in Figure 2-5. 

Figure 2-5 - A possible VO process

The process operates on sequences of images and can used both offline and in 

real-time applications. Within each image all the optical features with a quality 

metric �� above a certain threshold, let it be ���, are detected, described, and 

stored. These features are then matched across different views, and a RANdom 

SAmple Consensus (RANSAC) search [101] can be used to prune outlying 

matches. From the matched points it is possible to estimate the motion of the 

platform by reconstructing matrices describing the geometric structure underlying 
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two – or more – images. This reconstruction is operated using methods such as 

the five [102] point algorithm or the eight point algorithm [103]. The number of 

points in the name of these algorithms refers to the minimum number of points 

needed to extract a solution.  

However, in some conditions the requirement for a minimum number of points, 

can lead to a scarcity of detected features, making it impossible to perform motion 

reconstruction. This is extremely relevant within section 5.2.2 which addresses 

extrema points in computer vision. These points can capture all the attention for 

some feature detectors, and if their number is sufficiently low, they can effectively 

starve the detection process and bring navigation to a halt.   

In many implementations of VO, the last step of the process uses computational 

optimisers such as Bundle Adjustment (BA) to increase the robustness and the 

accuracy of the estimation [104]. One of the scopes of this thesis is to offload the 

heavy computational requirements of these methods to the environment and to 

design choices where the intelligence is coevolved with the operational scenario.  

The third method for TRN discussed by Johnson and Montgomery is OBIRON. 

OBIRON, stands for OnBoard Image Registration for Optical Navigation, and was 

developed to provide close-range navigation capabilities for the Hayabusa 

mission [105]. The workflow of OBIRON begins by reconstructing a model of a 

target object using a technique known as stereophotoclinometry [106]. In 

stereophotoclinometry, the digital elevation model of an object is built using 

images of the object, by combining stereophotogrammetry (shape-from-multiple-

views) and photoclinometry (shape-from-shading). This workflow requires at least 

three pictures per region, acquired from different perspectives, which are then 

used along with a set of priors about the observer’s position and attitude to 

reconstruct the shape and the albedo of the target and the spacecraft pose.  

Therefore, OBIRON requires to capture a set of specific information about a 

target to be deployable. To do so, the probe is required to spend some time 

orbiting its target to acquire a sufficient number of pictures and allow for the 

ground processing of them. 
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This approach appears in antithesis with the paradigm of the thesis, aimed at 

developing generalised algorithms requiring minimal prior information. 

OBIRON is often mentioned in pairings with the AutoNav package.  AutoNav is a 

foundational autonomous optical navigation in deep space. It was developed by 

JPL to fly on board the Deep Space I (DSI) mission [107], and then employed on 

multiple other spacecraft visiting small bodies [108,109]. Among the technological 

trajectories suggested by Riedel et al. [48] to extend the functionalities of AutoNav 

capitalising on the initial development, there are two which are particularly 

significant. The first is evolve it to target different types of celestial object, as 

natural satellites, or planets; the second involves including additional Guidance 

and Control capabilities, to obtain a full AutoGNC package. The development of 

a complete, nonspecific, autonomous GNC would indeed represent a huge 

technological milestone for missions with opportunistic landers. 

Lastly, image to map correlation [92], mentioned here for completeness: “This 

correlation approach compares a descent image directly to an orbital image of 

the landing site. First the descent image is rectified to the same scale and 

orientation as the map and a patch of the image is correlated with the map.”.

Current trends for navigation exploiting ground features involve using AI 

frameworks such as artificial neural networks (ANNs) and deep neural networks 

(DNN). Indeed, solutions have been studied and presented to the scientific 

community, particularly for feature selection [110–112]. However, ANN and DNN 

are mainly trained using simulated images, and thus possibly unable to capture 

and be robust towards natural effects. Moreover, ANN and DNN are difficult to 

certify for space applications, and often require significant computational 

capabilities to be deployed. Because of all this, neural networks have been flown 

on very few missions, and never in deep space.  
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2.2.4 Navigation in Landing Missions 

Many navigation solutions have been studied or employed to operate in proximity 

to the surface of extra-terrestrial bodies (e.g. X has been used on the 

Moon/Mars). Generally, these methods employ a mixture of sensing capabilities, 

fused or non-fused, ranging from inertial, to Electrooptical sensors (of which 

cameras, and thus optical navigation, are a subset) to human controllers.  

The table below presents the approaches used in the past six missions who have 

already touched down on a small celestial body and that will be used in future 

missions.  

Table 2-3 Navigation approaches for missions landing on small celestial bodies 

Mission Name Navigation Strategy to Touchdown 

NEAR Shoemaker 

Radiometric data through the DSN; camera-based matching of 

visual landmarks (craters) stored off-line; laser altimeter ranging 

[113]. Landing was operated through four reductions in ∆� [114].  

Hayabusa 

The pinpoint landing for a touch-and-go for the Hayabusa mission 

relies on two sensors - a laser rangefinder and a wide-field optical 

camera - and on the deployment of a fiducial marker [45]. The 

rangefinder is used for controlling the vertical motion. The 

horizontal motion is controlled through visual data, by constraining 

the velocity to maintain the marker centered within the camera 

output.   

It appears that MINERVA did not require any landing-oriented 

navigation, but only navigation for surface mobility [115]. 

Deep Impact 

The navigation payload carried by the impactor consisted of an 

IMU, a high-precision star tracker, and a CCD camera labelled 

impactor targeting sensor (ITS) [116].  Navigation along the impact 

trajectory was achieved employing visual data within AutoNav 

algorithms [117].  

Rosetta Philae did not possess any landing GN&C capability [49]. 
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Hayabusa2 

Hayabusa2 employed two sets information during the low-altitude 

proximity phase the output of an altimeter and of the target marker 

(TM)-tracking process [45].  

For the last phase of the landing sequence, where the mission 

requires an elevated degree of accuracy on the landing position the 

mission improves the strategy employed by Hayabusa. A target 

marker is used as an artificial topographical feature, and used to 

reconstruct the spacecraft position rather than only control its 

velocity.

OSIRIS-REx

OSIRIS-REx carries a wealth of navigation sensors. During 

proximity operations OSIRIS-REx navigated through star-based 

centroiding, and natural feature tracking (NFT). In this case, NFT 

extracts landmarks from digital terrain maps generated through 

stereophotoclinometry (or “shape-from-shading”) [118].  

DART

To impact on Didymos DART will employ proportional navigation 

[119]. Proportional navigation is based on properties of the line-of-

sight and is used to maintain a target and an impactor on a collision 

course.

Hera

Milani: In nominal conditions, the Milani CubeSat is set to navigate 

to the ground using a combination of OpNav, LiDAR and radio 

tracking capabilities [120]. 

Juventas: In nominal conditions, the Juventas CubeSat is set to 

navigate to the ground primarily through an inter-satellite link with 

Hera, assisted by camera and laser rangefinder [66] 

ZhengHe No document appears available on the topic at the time of writing.
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3 SOFTWARE AND METHODOLOGY 

3.1 Introduction 

This chapter presents the software, the tools and the methods that have enabled 

the definition, construction, and analysis of the proposed camera-only processes 

throughout the thesis.  

These are the developed software tools, organised in a modular package labelled 

THALASSA, and the ASP (Action, Scenario, Perception) design principle. 

THALASSA is a complete prototyping framework based on state-of-the-art 

models and algorithms that was developed to carry out t and can be considered 

among the core contributions of the thesis. The ASP design approach is a 

formalisation of an iterative coupled design approach used to develop perception 

approaches which include considerations about the environment and the 

platform’s behaviour. 

The name THALASSA is an acronym, standing for “Technologies for Hazard 

Avoidance and Landing for Autonomous Spacecraft with Situational Awareness”.

THALASSA is a modular prototyping environment developed during the doctorate 

with the general scope of developing, testing, and eventually deploying 

autonomous navigation technologies. The package has been developed to be 

able to control as many aspects as possible of the simulations. This approach is 

in line with the need to consider the interaction and propagation of every design 

choice highlighted within the introduction. In this work THALASSA is used to 

define the dynamical behaviour of all the elements appearing in the environment 

of the simulation (Sun, target, landing probe); to simulate an image generation 

process; and, ultimately, to reconstruct the trajectory the probe is moving on 

through visual estimation.  

Within this thesis, the object used to simulate a target in THALASSA has been in 

almost every case the asteroid 101955 Bennu, the target of the OSIRIS-REx 

mission. This is due to three factors. The first is that Bennu can be considered 

representative of a whole class of asteroid shapes, often labelled ‘spin-tops’. For 
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example the target of the Hayabusa2 mission 162173 Ryugu [121], is visually 

rather similar to Bennu (see Figure 3-1).  

The second reason leading to the choice of Bennu is that albeit it possesses a 

nontrivial geometric shape (as opposed to e.g., a sphere) it remains nearly 

ellipsoidal (effectively close to a superellipse) – see Figure 3-2. This shape 

characteristics enables an initial translation of optical navigation methods 

developed for high-gravity objects.  

Lastly, the third factor leading to the choice of Bennu as a principal target is that 

the OSIRIS-REx mission has generated as a science product a shape model with 

a surface resolution of 75 cm [122]. This 3D CAD model is available in both an 

STL and an OBJ format, meaning that it can easily be deployed in most graphic 

engines. The only section where another asteroid appears as a target is in 

chapter 5, within the discussion concerning perception fields. In that section 

another asteroid is introduced in the visual simulation with the goal of having a 

control reference. This additional celestial body is the contact binary NEA (8567) 

1996 HW1 [123].  

Figure 3-1 - On the left, Ryugu (Image by ISAS/JAXA, Hayabusa 2). On the right, Bennu 

(Image by NASA/Goddard/University of Arizona). 
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Figure 3-2 - The discrepancy between a three-axis ellipsoid and Bennu's actual shape 

There are two versions of THALASSA which have been employed through the 

thesis, a beta version, and a THALASSA 1.0. The beta version is mostly manually 

operated and employs Unreal Engine 4 (UE4) as a core graphics engine. 

THALASSA 1.0 employs Blender as a graphics engine, and automatically 

generates images starting from a CSV file containing information about the 

camera pose and the Sun position. In both cases, computations, analyses of the 

data and visualisation tasks are operated within MATLAB. Future work will be 

concerned with using Python rather than MATLAB to make the tool completely 

reliant on open-source software.  

While still highly experimental, THALASSA 1.0 can be found at @GitHub. 
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3.2 Action Scenario Perception (ASP) Triangle 

This section presents ASP triangles, a design tool that was used to support and 

enable the innovation processes reported in this thesis. They explicitly formalise 

and facilitate a design paradigm that we labelled ‘coupled design’, focused on 

developing the on-board intelligence of a mobile autonomous platform. ASP 

triangle are not a software per se but enabled the consistent and systemic 

development of all the software tools used within the thesis. 

The thesis focuses on optical features in computer vision pipelines; therefore, 

within this work ASP triangles capture the idea that the observable elements 

within a scene are a function of many interdependent factors, such as what is 

present within the operational environment, the chosen sensors and the model 

used to interpret and represent the sensor’s data, the mobility of the probe - 

enabling the observability of different locations and perspectives, and the 

timescales of all the processes. To operationalise this heuristic, these criteria 

were summarised in a three-elements model as motion, scenario, and 

perception. The intelligent behaviour is assumed to emerge from the interaction 

of these three coupled macro elements characterising the probe and the mission 

context. These are Action, Scenario and Perception, encapsulated in the 

acronym ASP (see Figure 3-3):  

 Action denotes any physical change induced on the platform, its sensors, 

and its actuators by internal or external factors 

 Scenario describes the environment within which the platform operates, 

considered up to a certain degree a designable entity 

 Perception concerns the acquisition and initial manipulation of information 

enabling AI processes. 

To define an optimal computer vision approach, these three elements cannot be 

considered as stand-alone entities, but need to be treated systematically. This is 

because if the computational elements are designed and deployed without 

considering the actual operational conditions, there might be significant 

discrepancies between the internal models and the world, leading to large errors 

or critical failures. These differences could in a first instance be addressed 
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through the introduction of algorithmical overheads, as additional sensing 

capabilities or computational optimisers. For example, attempting to exploit an 

environmental feature that cannot be properly perceived using the on-board 

sensors or that cannot be consistently observed due to orbital constraints would 

result in suboptimal, if operational at all, navigation processes.   

Moreover, the design approach of the complete navigation package cannot 

neglect the interactions and emergent properties arising during operations. 

To obtain optimal visual acquisition methods, through ASP Triangles we suggest 

a development and testing process structured as a continuous coevolution of 

environment, perception and motion elements, until a satisfactory configuration 

is reached. The couplings and interactions are analysed two-by-two (e.g., 

environment and perception or motion and perception), and the optimisation is 

structured as an iterative process. However, in line with the need for 

standardisation, important for reducing costs and increasing reliability, one or 

more of these elements could be artificially made independent of the operational 

cases and maintained constant between missions. A potential example of this, 

which has been studied in this thesis, is represented by artificial navigation 

markers used as target features to standardise the visual operational 

environment. In this case, the environmental element to be observed would be a 

constant, and the development process could refer to a class of missions, rather 

than a single one. This would lead to a leaner design process, and enable fast 

deployments, with important consequences for readiness and the management 

of launch windows.  

Each vertex of the triangle represents an aggregate of subcomponents that can 

be manipulated in some form. Moreover, each of these vertices can be seen as 

the composition of two layers: representation and structure. Structure describes 

the physical properties of the vertex, representation its necessarily approximated 

model within the AI.  

The main inspiration for this paradigm comes from the field of aeroelasticity. 

Aeroelasticity is an engineering discipline, succinctly described by Wright and 

Cooper [124] as: “Aeroelasticity is the subject that describes the interaction of 
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aerodynamic, inertia and elastic forces for a flexible structure and the phenomena 

that can result.”. In 1946 Collar introduced a triangle model to illustrate the 

coupling of these forces, with each vertex of the triangle representing one force 

[125]. The systematic study of aeroelasticity has allowed researchers to identify 

and prevent or control a multitude of catastrophic emerging behaviours, as flutter. 

Coradeschi and Saffiotti [126] introduced a triangle-like model with similar 

vertices to the ASP triangle in 2006 to explain the operation of a symbiotic 

robotics system. The symbiotic robotic triangle, however, appears associated to 

explaining a behaviour, rather than designing it, and includes human as part of 

the autonomous entity’s operations.  

The value of ASP triangles lies in helping designers consider the couplings and 

interactions between the three ASP components during the design process and 

include these effects in the developed intelligence. Specifically, they are a 

graphical representation of the decisional structure underlying a plausible 

iterative process that could lead to the final, operational architecture. The goal of 

this approach is to achieve a continuous iterative coevolution process, 

harmonising and optimising the interplay between co-operating factors.  

Figure 3-3 An ASP Triangle 
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To use an ASP triangle, the designer selects a starting vertex and designates it 

as level 0. All the decisions and adjustments falling under the sphere of influence 

of that element are taken and made, and their underlying rationales registered. 

The designer then selects the remaining two vertices, promotes them to level 1, 

observes the effect of the level 0 decisions on them, and evolves them 

consistently with the augmented set of constraints. A new starting vertex is then 

selected from any of the two level 1 ones, and the process of adaption/selection 

is iteratively repeated until a satisfying architecture configuration has been 

reached. Figure 3-4 graphically shows this methodological flow. 

Figure 3-4 Methodological Flow for design based on ASP Triangles 

From this, it is possible to interpret all the contributions of the thesis using this 

paradigm. In this optics, the contribution of section 4 describes how for a fixed 

Scenario, the Action and the Perception strategies must be adapted to obtain 

optimal results. Artificial visual landmarks are a way of modifying the Scenario for 

a given Perception process. It was however observed that this augmented 

Scenario is critical under some Perception models. This brought the landmark 

choice to a level 1. In level 1, Perception was selected as the core element, 

allowing to study the propagation of these fixed Scenario conditions. This analysis 

led to investigate extreme values in perception.
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3.3 THALASSA 

For fully autonomous spacecraft, even in simple models, the interdependency of 

parameters can generate unforeseen emergent behaviours or lead to anomalies 

or uncertainties. For example, the same object under different lighting conditions 

and in a different context can induce extremely different responses in a computer 

vision pipeline (in an ASP paradigm, this could be Perception as a function of the 

Scenario).  

Hence, in designing the GN&C system, it is important to consider the complete 

operational context and processes. Therefore, the analyses of perception and 

navigation operated in this work have the scope of testing the behaviour of a 

complete frameworks or algorithmic process through simulated relevant 

conditions. These include the spacecraft motion near irregular bodies or changing 

illumination conditions. These necessities led to the development of a software 

package named THALASSA. 

THALASSA was developed to have five distinct modules, labelled blocks. These 

are Path, Sensor, Estimation, Filtering and Decision. The last block refers to 

control actions and processes, and will not be addressed in this work, which is 

oriented towards testing the behaviour of estimation and perception algorithms. 

The scope of each block is to transform a set of values to return one or more 

collections of structured data in output. These outputs can for example be 

images, matrices of state information, point clouds. When available for the 

chosen mathematical model, the instance-specific covariance matrix is returned 

as a product of the block; when a closed formulation is absent the covariance can 

be estimated through an adequate number of Monte Carlo runs. To the five 

previously mentioned specialized blocks it is important to add adapter blocks, 

performing data transformations enabling interoperability between different 

blocks and software.  

To facilitate a rapid design and experimental process, the blocks of THALASSA 

are developed to adhere to a plug and play paradigm. This is reflected in the 

definition of the variables and data structures, which remain fully parametric and 
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consistently defined throughout the whole framework. The implementation of 

THALASSA 1.0 within Chapter 4 is shown in Figure 3-5. 

Figure 3-5 Implementation of THALASSA within Chapter 4 

The Path block generates the trajectories of the spacecraft. These orbits can be 

obtained either by solving the ordinary differential equations (ODEs) of a chosen 

dynamical framework with some opportune initial conditions or from historical 

data (e.g., benchmark datasets). The Path block yields the nominal reference 

trajectory, where nominal refers thereafter to the true states of the spacecraft. A 

subset of points along this trajectory within the observational timeframe 

represents the states where sensor acquisitions are operated by the associated 

sensor blocks – see Figure 3-5.  

The Sensor block simulates acquisitions of a sensor. These acquisitions are 

constructed by fusing information on position and attitude with a sensor model 

and information on the environment.  

The Estimation block processes a single type of data, augmented with ancillary 

information. For example, in Chapter 4, the process is limb-fitting operated on 

camera outputs. Each of these outputs is augmented using information about the 

relative attitude of the Sun, the target, and the probe. It is worth noting that 
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Sensor/Estimation blocks can easily be simulated as noise models applied on the 

nominal trajectory.  

The Filter block is deployed with the goal of integrating multiple information to 

estimate an unknown set of variables. Using again Chapter 4 as an example, a 

batch Nonlinear Least Square (NLS) algorithm [127] is employed to reconstruct 

the orbit the probe is moving on, from the Cartesian positions retrieved using the 

Estimation block. The NLS method was chosen because of its ease of 

implementation, and because its behaviour is well-understood. The latter allows 

focusing on the effects of the geometric approximation rather than on secondary 

effects induced by the filtering process.  

3.3.1 Path 

All the orbits studied in this work are obtained solving a system of ODEs with 

given initial conditions ��  = [��, ��, ��, ��
�, ��

�, ��
�], without any additional 

perturbation or actuation. Hence, within the thesis all the orbits are ballistic, and 

defining a motion model equals to defining a mass distribution inducing a 

gravitational potential. The vector �� defines the nominal or true trajectory and is 

propagated to a specific time ����. Observations are then taken and processed 

at a time interval ∆�, starting at the initial ��.  

3.3.1.1 Motion Model 

In particular, the chosen gravitational model is one with a constant density: 

therefore, the trajectory generation process is a function of the geometry of the 

target and its orientation in the inertial space. The analysis focuses on a three-

axis ellipsoid geometry with some properties equivalent to that of the complexly 

shaped asteroid Bennu. This can either be rotating or fixed.  

From a gravitational model and boundary conditions descend motion models. 

Within the process it is possible to identify two motion models: the “real” one, 

defining the nominal trajectory of the probe, constructed within the Path block, 

and forecasted ones, determined by Estimation and Filter blocks. In this case 

both employ a constant-density, three-axis ellipsoid gravitational model.  
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Within the Path block this was selected over less approximate solutions, like a 

polyhedron model, to avoid introducing any discrepancy between the 

mathematical structure underlying the real trajectory and the forecasted one. 

For Chapter 4, this choice would have mirrored the one analysed in this work for 

the Estimation block, potentially introducing secondary effects that could have 

interacted with the results within the scope of this study. For Chapter 5 this degree 

of realism would be unnecessary. This approximation, however, remains to be 

addressed in future work. 

The chosen equivalent geometry was Bennu’s Dynamically Equivalent Equal 

Volume Ellipsoid (DEEVE) [128],  which is defined as the ellipsoid with constant 

density having the same volume of the body it describes, and moments of inertia 

in the same proportions. This is the three-axis ellipsoid shown in Figure 3-2. 

In this specific case, the radii of the DEEVE have an extension of �� = 259 �, 

�� = 251 �, �� = 234 �, and its density, which is constant, has a value equal to 

1190 �����.  Moreover, the rotational period � is considered equal to the real 

one of Bennu, � =  4.29 ℎ [129]. The reference frame of this ellipsoid is defined 

consistently with that of the CAD model retrieved from a 

NASA/Goddard/University of Arizona repository [122]. This has the shortest 

radius aligned along the � axis and the longest radius along the � axis. The 

definition of these parameters is sufficient to construct a closed-form gravity 

potential approximating the gravity well of the target [4] Given a point � outside 

the ellipsoid, the set of equations describing the potential in the point �(�), written 

using a notation analogous to the one employed by Scheeres [4], is 

⎩
⎪⎪
⎨

⎪⎪
⎧ �(�) = −
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� + κ�(��
� + κ)

( 3-1 )

The only value not yet explained in the above set of equations is �(�), which 

represents the largest real root of the equation �(�, κ) = 0. The partial derivatives 
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of �(�), needed to define accelerations and to fill state transition matrices can 

easily be retrieved from Scheeres [4] and will not be reported here.  

3.3.2 Sensor 

The Sensor block receives inputs from Path blocks. These inputs are used to 

generate readings at every point of interest of the trajectory for the chosen 

sensor, which in this case is a monocular visible camera.  

3.3.2.1 Sensor: Blender 

Blender, as mentioned before is the graphics engine utilised within the second 

iteration of the THALASSA package. This section describes how workflows are 

implemented within Blender.  

The first step of the data construction process requires defining all the reference 

frames employed within the study, to fully describe the poses of all the objects 

involved. Let �(��) be the point in ℝ� representing the camera position at the �-

th time step, and �(��) be the point in ℝ� towards which the camera is pointing its 

boresight at the �-th time step. Within this work the camera will be assumed to 

be consistently pointing towards the centre of the target; therefore �(��) ≡

{0, 0, 0} ∀�; therefore, the boresight is aligned instant by instant with −�(��).  

There are three basic reference frames of interest within a Blender sensor block 

this work. These three are:  

 The Target-Centered, Target-Fixed (����) frame 

 The Visual Reference Frame (���)  

 The Camera Reference Frame (���)  

To these, a second ���, labeled ����, is added, for convenience during the 

visual simulations. A superscript indicates the reference frame a generic 

quantity � is defined in. Therefore, ��  is defined in ����; �� in ���; ��  in ���

and  ��� in ���� Moreover, generally VRF  

��� is the global coordinate system intrinsically defined within the simulator 

employed for the Sensor module, in this case Blender v2.82. Since all the 
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construction data from the Path stage imported in the visual simulator need to be 

defined in ��� to be used, it is convenient to explicitly maintain this ancillary 

system. Moreover, generally ��� can be treated as a proper inertial reference 

frame and used as a reference for all the moving and rotating elements.   

The target-centered, target-fixed frame ���� is defined as the reference frame 

having the origin coincident with the origin of the mesh used to represent the 

target, and axes rigidly attached to the geometry of this mesh. As the 3d models 

representing the targets are often products supplied or retrieved from an external 

provider, for the sake of reproducibility there is little interest at this stage in 

altering the barycentre position and the axial orientation from the native ones. 

Therefore the one pre-defined by the provider and attached to the STL file [122] 

will be accepted, considered as standard axes, and labelled according to the 

convention mentioned in the previous subsection. The motion of the satellite is 

defined and studied in this coordinate system. It is important to observe that in 

these conditions the illumination is changed through the apparent motion of the 

Sun-like light source.  

Lastly, for convenience in developing the workflow, two reference frames are 

associated to any camera, let them be ��� and ����. The former, ���, 

represents the camera reference frame employed in the estimation algorithm, the 

latter within the Sensor block. For the � − �ℎ time-step, ��� is defined by three 

axes {�� , ��  , ��  }. These axes are defined as:  

 �� represents the transversal component of the reference frame. It is 

aligned with the orbit normal, and is obtained from the unit position vector 

���(��) and the unit velocity vector ���(��) as ��(��) = ���(��) × ���(��); 

 �� represents the radial component of the reference frame and is aligned 

the direction of the boresight. Since �� is considered to be identically equal 

to {0, 0, 0}, ��(��) ≡ −��(��);   

 �� represent the out of plane component of the reference frame, completes 

the right-handed tern of vectors and is obtained as ��(��) × ��(��). 

When a simulated camera is added to a graphic engine, the former is introduced 

as an object with its own local reference frame, to exploit the full 6 DoF of rigid 
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body motion. This intrinsic orientation is engine-specific and even with all the 

rotation angles set to zero cannot be expected to match either ��� or ���.  

For example, Blender v2.82 creates a camera with the boresight aligned with 

its −��, while Unreal Engine 4 generates a camera with a boresight along 

its +��, with both VRF completely differing from each other. Therefore ���� is 

introduced to operate on the “as-spawned” cameras, and to retrieve the 

transformations necessary to rotate the camera object in the graphic simulation 

in such a way that the optical and the dynamical data consistently model the same 

scenario. For the reference frames employed in this work, to transform a column 

vector from ��� to ���� in Blender it is sufficient to employ the rotation matrix 

��
�� = �

1 0 0
0 −1 0
0 0 −1

� ( 3-2 )

This rotation matrix can be thought as a global adapter between the complete 

process and the specific visual simulation environment, the associated code 

portion as a THALASSA adapter block. 

Observations—For each trajectory an observation is performed every ∆� hours, 

starting from a time �� and up to a time ����.  

The environment has two parameters of interest, the surface characteristics of 

the target, and the light source. The former represents the simulated response to 

light of the material and its colour within the graphics engine. These were 

maintained to the default values assigned by Blender upon importation. 

Regarding the latter, even though Blender could potentially fully accommodate a 

more complex Sun behaviour, within this work it was chosen to constrain the 

position of the source of illumination within the scene to the equatorial plane. 

Moreover, the orientation of the bundle of parallel light rays is forced to be parallel 

to the segment connecting the light source to ��  =  {0, 0, 0}�.  

From these assumptions it was possible to define the motion of a Sun like light 

source within Blender. For simplicity, the axial tilt of Bennu was set to 0°, therefore 

the light source is constrained to move within Bennu's equatorial plane. This 
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means that instant by instant the position of the Sun position is well-defined by 

only one parameter, its angular position on the equator ϑ.   

Ultimately, from the dense nominal trajectory supplied by the path module, a 

subset of points is extracted employing the above time-based sampling condition. 

These � points define observation conditions and are introduced in Blender using 

a .csv file. This file is constructed so that all the � rows have the structure shown 

in Table 3-1.  

Table 3-1 - A generic row of the .csv input file

Column 1 2 3 4 5 6 7 

Element X Y Z �� �� �� �

The first three columns represent the Cartesian coordinates of the camera, in 

meters, the columns from 4 to 6 contain the angles describing the attitude of the 

sensor in radians, and, lastly, the seventh column contains the angular position 

of the Sun.  
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Figure 3-6 - A view of the target object in Blender 

3.3.2.2 Sensor: Unreal Engine 4 

The version of the Sensor block presented in this subsection represents a 

component of THALASSA’s first version (Beta). Compared to the Sensor block 

deployed using Blender, this version represents a much less sophisticated tool. 

The Blender-based block allows to perform most operations automatically 

through the initialisation of a few initial parameters. On the other hand, within the 

UE4 block most operations are performed by the user. This, however, is not due 

to the limitations of UE4, but rather a design choice driven by the different volume 

of image needed when the two blocks were developed.   

In particular, the Sensor block employing UE4 was developed to analyse the 

effect of NAV-Landmarks within a Visual Odometry framework. The limited 

amount of test trajectories, and the few images per trajectory implied that this 

choice was not cumbersome on the experimenter. 
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It is worth noting that the reference frame defined within MATLAB or Blender 

differs from the one defined within Unreal Engine: namely, whereas the formers 

are right-handed, the latter is left-handed. 

Within the first iteration of the Sensor block, three equally plausible development 

alternatives were evaluated: PANGU [130], the Simulink 3D Animation toolbox 

[131] and Unreal Engine 4. The choice, ultimately, fell on Unreal Engine 4 [132] 

(specifically, UE4.22.3). At first this selection might appear counterintuitive: 

PANGU is optimized to simulate scenes of planets and asteroids, and the 3D 

Animation toolbox can be easily integrated with the rest of the MATLAB-

developed code. However, UE4 offers complete and direct control over the 

scenario and the cinematography, thus allowing more precise experimental 

operations. Moreover, within the context of this application UE4 is the only 

software of the three which is completely free. Thus, using it to develop tools and 

models promotes to the rest of the community a more accessible and flexible tool 

to construct, improve or expand their own models.  

The visual model representing Bennu was constructed again starting from the 

NASA-Goddard-University of Arizona CAD model with a resolution of 75 

centimetres [122].  

It was deemed superfluous to model the background stars, as within the scope 

of this work, given the closeness to the surface, the magnitude of the target 

dominates the visual field, masking all the other, faint, objects. The same principle 

was applied within Blender-based studies.  

Lighting, however, plays an important role in this simulation. Since the Sun can 

be considered a light source at infinity, it can be represented as a bundle of 

parallel light beams and modelled within the simulation as a “Directional Light”.  

The direction of this light is chosen originating at −∞ and parallel to the X axis 

defined in the Unreal Engine reference frame, here labelled ���. Therefore, the 

terminator will be oriented along ���, with the sunlit area belonging to the 

negative ��� region. The light intensity is selected heuristically, concurrently with 

some characteristics of the asteroid surface, trying to keep the target 
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chromatically and visually like the one observed in pictures. Lastly, to obtain the 

colour of the light, the concept of colour temperature, mapping the temperature 

of a black body expressed in K into the RGB colour space is employed. The 

effective temperature of the Sun 5780 K [133]. A table listing Kelvin to RGB 

conversions [134] lists the hex value #fff0e9 as the colour associated to 5800 K, 

the temperature in the table which better approximates the Sun’s 5780 K. The 

representation of #fff0e9 in RGB is the triplet (255, 240, 233), shown in Figure 3-

7.   

At the moment there does not seem to exist a comprehensive package validated 

by the community mapping surface properties. Therefore, they are treated as a 

set of smaller heuristic problems. The first one addressed is represented by the 

radiative properties of the surface. From Lauretta et al. [129] it can be observed 

that the geometric albedo of Bennu is extremely low, having a value of 

4.4% (0.04). Therefore, the surface is modelled as a matte material (Roughness 

factor =  1), completely lacking specular reflections (Specular factor =  0). The 

albedo value, moreover, offers an important information to heuristically constraint 

the colour.  The value of 0.04 is in fact roughly that of fresh asphalt [29]. This 

suggests a very low grayscale value, which was selected as 1 16⁄  of the 8-bit 

scale. This is the RGB value of (15,15,15), corresponding to a normalised RGB 

triplet of (0.058, 0.058, 0.058). The colour obtained from (15,15,15) can be 

observed in Figure 3-8. Ultimately, the visual result of the complete scenario is 

the one seen in Figure 3-9.  

The landmarks require a similar process to be visually characterized. In particular, 

they are assumed to be expandable structures with an aluminium coating. From 

an online colour repository [135] it is possible to retrieve a RGB value associated 

to Aluminium, equal to (214, 214, 214), which, normalised, results in 

(0.839, 0.839, 0.839), seen in Figure 3-10. This material will be characterized as 

metallic (Metallic factor =  1) with Specular and Roughness factors =  0.5. 
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Figure 3-7 - The colour chosen for Sun illumination, RGB = (255, 240, 233) 

Figure 3-8 - The colour chosen for the asteroid surface, RGB = (15, 15, 15) 

Figure 3-9 - The look of the asteroid in the simulation 
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Figure 3-10 - The colour chosen for the landmarks, RGB = (214, 214, 214) 

3.3.3 Estimation 

The Estimation block is tasked with operating on the images generated by the 

Sensor block. Algorithms within the Estimation block retrieve an estimation of the 

state vector of the probe (or a portion of it) or extract cognitive insights from the 

sensor data.  

Chapter 4 and Chapter 5 contain in-depth descriptions of the corresponding 

Estimation blocks. The estimation algorithms of Chapter 4 employ a limb-fitting 

algorithm, whereas the estimation processes of Chapter 5 consider the use of 

feature-based methods.  

3.3.4 Filter 

Within the scope of this work, the Filtering block pools multiple sensor 

observations, and their corresponding levels of confidence, generating an 

estimation of the probe trajectory.  

This block is absent from the techniques of Chapter 5. This is in line with the 

principle that algorithmic optimisation techniques should be replaced by methods 

intrinsically stabilised by appropriate observable selection. Moreover, navigation 

techniques such as visual odometry can perform a visual reconstruction 

incrementally, without having to fit observations to a model through a filtering 

method.   

In Chapter 4 the estimations are collected in a Nonlinear Least Squares (NLS) 

framework [127]. The scope of the Filter block in Chapter 4 is to transform a 
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collection of independent position estimates into a trajectory within the chosen 

gravitational model.  

The NLS process requires an initial guess for the trajectory of the spacecraft, to 

begin the iterative process of residual minimization. The Filtering block generates 

a first guess, or a-priori knowledge of the spacecraft motion, by corrupting the 

true nominal trajectory �� with error randomly extracted from a Gaussian 

distribution. This first guess is then referred as the reference trajectory ����, which 

is iteratively improved in accuracy through the NLS process. Below the algorithm 

and its implementation within this work are presented, consistently using a 

notation borrowed from Wiesel [127].  

3.3.4.1 Overview of NLS Algorithm 

Out of all the � camera acquisitions, a number �� ≤ � is used within the filtering 

process. This is in line with the contribution of this work, suggesting that only a 

subset of the acquired data points should be used.  

For each considered time step �, the input data estimated using camera 

observations are organised in a vector, labelled �. In this case, this is the 3�1

array ���
�(��) returned by the OpNav process. For each of these �(��), a 3�3

covariance matrix �(��) is assumed available. �(��) is here obtained analytically 

from the estimation model.

The NLS process is initialized by propagating the initial reference trajectory ��(��)

to the times � of each observation, thus obtaining ����
� (��) and the state transition 

matrix �(��, ��) for each observation time ��.  

For each time step � the difference between the estimated data and the reference 

observation transformed to the same reference frame of �(��) defines the so-

called residual vector �(��), where 

�(��) = �(��) – �(����(��), ��) ( 3-3 ) 

To summarise, for each instant where a camera observation is both acquired and 

used to correct the available reference trajectory, five elements are required as 
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input data. These are: the array of reference values at that instant ����
� (��); the 

corresponding array of observed values  ���
�(��) and the uncertainties associated 

to them �(��); the state transition matrix relative to the reference trajectory 

�(��, ��) and, lastly, all the parameters required to transform the reference values 

into a mathematical form enabling a direct comparison with the observations. In 

this case, the last input is simply the rotation matrix G(∙) = ��
�  converting data 

from ��� – in which the reference states are defined – to ���. 

3.3.4.2 NLS Process 

This section briefly explains how the set of inputs of the NLS process is used to 

construct its outputs. The NLS process returns a correction to the initial state 

vector for the desired model, and the covariance associated to this updated initial 

state. Let these be, respectively, � �����(��) and the covariance matrix ��. 

To obtain � �����(��) and �� it is necessary to construct two ancillary elements 

for each timestep ��. These are the residual vectors (Equation ( 3-3 )) and the 

observation matrix �� =  ���(��, ��). Also employed here are the covariance 

matrices �(��) providing information on the level of confidence of the 

measurement at ��.  

Once the three sets have been structured for every considered timestep, �� is 

obtained as 

�� = �� ��
���

����

�

�

��

( 3-4 )

�� is then used to determine the correction to the initial state vector, through the 

formula  

∆���� = �� � ��
���

����

�

( 3-5 )
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Which ultimately leads to  

� �����(��) = ����(��) + ∆���� ( 3-6 )

While the values in Equation (3-4) and Equation (3-6) represent the sought 

outputs, it is important to also store the residuals of the process. This enables to 

verify that if convergence is achieved the solutions are not merely a result of the 

mathematical process but physically meaningful.  

3.3.4.3 Implementation Details 

As it can be seen from the Equations from (3-4) to (3-6) the implementation of 

the Nonlinear Least Squares algorithm is rather straightforward. Therefore, the 

main concern for implementation appears to be on setting up the input data 

structures, in particular the state transition matrix �(��, ��). To obtain �(��, ��) it 

is necessary to solve a matrix differential equation involving the Jacobian of �̇ – 

that is, the matrix �(��). �̇ contains the velocity and acceleration components of 

the probe. The already available information allows to obtain the gravitational 

potential and the linear acceleration experienced by the platform in the 

considered point, and their first derivatives with respect to the components of �. 

This because these are function of the standard gravitational parameter and of 

the position of the object only, both of which are assumed known. It is worth noting 

that this work assumes a perfect knowledge of the standard gravitational 

parameter, whereas in real operations this would most likely not be true.  

This work is performed within an asteroid-fixed asteroid-centered reference 

frame, co-rotating with the target. When the chosen reference frame is non-

inertial, as in this case, it is necessary to add additional forces to the potential 

terms. Therefore, it is necessary to also consider within the model the Coriolis 

acceleration, let it be ���, and the centrifugal acceleration, let it be ���. The 

asteroid will be assumed to be in uniform rotation along its Z axis, aligned with 

the inertial Z axis, with a constant rotational speed � (� = �[0,0, 1];  ω̇ =  0). As 

shown below, this assumption simplifies both non-inertial accelerations to 
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��� = 2� × � = 2�[−��, ��, 0] ( 3-7 )

��� = � × (� × �) = ��[−�, −�, 0] ( 3-8 )

Therefore, the complete expression of �̇ is  

�̇ = �
�
�

� =

⎣
⎢
⎢
⎢
⎢
⎡

ẋ
ẏ
ż
�̈
�̈
�̈ ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡

��

��

��

�� −  ����
− ����

�� − ����
− ����

�� − ����
− ���� ⎦

⎥
⎥
⎥
⎥
⎤

( 3-9 ) 

From Equation (3 - 9), it is possible to retrieve �(��)

�(��) = �
0��� ����

�� ��
� ( 3-10 ) 

�� = �

��� + �� ��� ���

��� ��� + �� ���

��� ��� ���

� ( 3-11 ) 

�� = �
0 2� 0

−2� 0 0
0 0 0

� ( 3-12 ) 

Where ���� is a 3x3 identical matrix. 

Knowing �(��) finally allows to solve the matrix differential equation returning the 

sought state transition matrix, �(��, ��)

�̇(��, ��) = �(��)�(��, ��) ( 3-13 ) 

Once �(��, ��) has been obtained all the required elements are available. 

Ultimately, this is the model that is integrated to reconstruct a trajectory from the 

observations.  
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It is worth noting that this model neglects any form of perturbation to the 

spacecraft. An improved approximation, for example, could include solar 

radiation pressure (SRP).  A first order model to do so can be found in Jean, Ng 

and Misra [136], who assuming a perfectly spherical spacecraft simplify a general 

model for the SRP acting on spacecraft operating in the proximity of binary 

asteroids to:  

���� =
2����

�
�� ( 3-14 ) 

Where ���� is the pressure of the solar radiation on a spacecraft, B is the mass 

to area ratio of the spacecraft and ��  is the vector aligned with the Solar radiation.

This is the so-called “cannonball” model, which assumes a purely reflecting 

spacecraft. A cannonball model removes attitude considerations from the model, 

and represents the highest force exerted by SRP over the object. Being this the 

max acceleration that can be induced by the SRP this value can be used to test 

if the gravity acceleration is consistently larger than ���(����) or if the two 

accelerations are comparable.  

González et al. [137] report that for 3U, 6U and 12U platforms the mass to (frontal) 

area ratio is 3.33 × 10��. As these configurations are the most common this will 

be the value introduced in the equation.  

���� can be modelled as  

���� =
��

�
�

��

�
�

�
( 3-15 ) 

With �� being the solar flux at 1 AU, c the speed of light, �� the value of 1 AU in 

meters and R is the distance between the spacecraft and the Sun – which can be 

confounded with the distance between the target asteroid and the Sun 

By substituting all the values, it is possible to obtain:  
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���� = � �
1

�
�

�

= �� �
��

�
�

�
( 3-16 ) 

Reasonable boundaries to map this value for a quick reference, are ���� = 1.3

AU, as per definition of NEO, and ���� = 0.046  AU, the expected perihelion of 

the Parker Solar Probe [138] which will be the closest artificial object to the Sun. 
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4 HORIZON BASED PERCEPTION AND NAVIGATION 

4.1 Introduction  

This chapter introduces the first experimental results of the thesis. It presents 

ideas and results relating to a set of altitudes where the target NEO is significantly 

more prominent than background stars in the image, yet fully contained within the 

field of view of the camera. Within these ranges, optical navigation can use as its 

observable the edge of the target illuminated by sunlight. This altitude is here 

considered to be between roughly 1 km and 2 km, either through purely 

demonstrative acquisition meshes (e.g., spheres sampled with constant angular 

spacing) or circular orbits.   

As noted in Chapter 1 and 2, NEOs present a large variety in 3D shapes, and 

therefore in the geometry of their edges as seen within the on-board camera. In 

line with the arching scope of the thesis, the aim of this chapter is to study 

invariant aspects at the altitudes of interest. Again, an invariant is a common 

underlying element shared by many targets that can serve as the observable for 

a standardised navigation method. Identifying invariants enables developing 

algorithms that function with numerous targets while requiring, at most, a 

restricted number of parameters or information to be provided as a prior. 

The invariance targeted within this chapter concerns using a position estimation 

algorithm always operating on a simple edge shape: an ellipse. Specifically, this 

work presents methods to extend the usage of this position estimation algorithm 

exploiting a standard shape to perform trajectory reconstruction around NEOs. In 

particular, the novelty proposed in thesis concerns how to integrate 

environmental information to make this method more robust without altering the 

algorithm itself. This algorithm was initially developed by Christian and Robinson 

[139] for bodies well approximated by three-axis ellipsoids, but is here employed 

in the proximity of target shapes more complex from a computer vision 

perspective, through apt management of the visual data acquisition strategy. This 

positioning algorithm is computationally light, and it appears that for NEOs it can 

be brought to a camera-only condition.  
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The trajectory reconstruction process reduces a set of unconnected estimations 

to a state vector that can be propagated within the on-board gravitational model. 

This condensed model must possess an uncertainty coherent with the desired 

navigation accuracy. Using an invariant-targeting method builds upon the 

hypothesis that approximating single-lobe convex objects to three axis ellipsoids 

induces an error that is generally within acceptable navigation thresholds. More 

specifically, it has been observed that regions inducing large errors are well-

predicted by information about illumination and coarse information about the 

shape of the target.  

Therefore, the hypotheses enabling this approach and tested within this work are:  

1. The error induced by the reduction to a much simpler shape is generally 

well explained by both the coupling of the reduced and the real shape, and 

the solar illumination conditions 

2. Large errors appear in spatially-bounded clusters.  

This allows predicting critical acquisition regions, which would disrupt or corrupt 

the orbit reconstruction process, and eventually removing data acquired within 

them. This removal ideally maintains all the errors below a desired threshold. 

Modulating the data acquisition strategy over avoidance of critical clusters, 

potentially opens the way to the repeated use of a plug-and-play algorithm for 

multiple missions. This work individuates, spatially maps, and discusses some of 

the conditions inducing large errors. Three acquisition parameters appear 

fundamental in regulating the uncertainty of the output. The first of these is the 

response of the reconstruction algorithm to the observation sampling frequency, 

for observations with given uncertainties. The second is the response of the 

position estimation model to changes in the position of the platform, which is non-

trivial for operations around irregular bodies. The third and last is the effect of 

solar illumination on the localisation process, seen as a function of the Sun phase 

angle φ.  

Propagating this information about error clusters could enable the 

computationally light, camera based and non-specific algorithm to be redeployed 
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without any significant increase in complexity into resource constrained platforms 

operating around asteroids.  

It is evident that the optical estimation algorithms discussed in this section differ 

starkly from the ones discussed in Section 2.2. Indeed, processes close to the 

ground tend to be feature-oriented, while the processes of chapter 4 can be seen 

closer to far-range methods for navigation employed while orbiting large gravity 

bodies [140]. The methods of chapter 4 remain relevant for landing because: 

 The lack of an atmosphere around small celestial objects does not allow 

to distinguish clear approach phases such as Entry, Descent and Landing 

(EDL). Therefore, landing can be intended as extending well beyond the 

last few dozens of meters in the proximity of the ground.  

 Given the small scale of the celestial bodies of interest, techniques 

exploiting the full body as a visual observable can be used up to quite 

close to the surface.    

Within the landing framework presented in this thesis, outputs from the set of 

altitudes discussed within this chapter are particularly important for two reasons:  

1. The first is that since monocular methods are up to scale and not global, 

this output can serve as a starting point to propagate scaled information 

within a global reference frame.  

2. The second reason is that if the orbital information is sufficiently accurate 

its propagation can be used to trigger altitude or velocity-based events. 

4.2 Simulation and Experimental Design 

The simulation is operated within a THALASSA 1.0 framework, specifically with 

the structure shown in Figure 3-5. 

4.2.1 Path 

The Path block employs a three-axis ellipsoid gravitational model to generate 

orbits with a circular initial condition. The orbits of interest for each testing case 

will be discussed in the relevant result sections. 
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4.2.2 Sensor 

The simulated camera has a focal length of � =  9.6 ��, a null skew value, and 

square pixels with a side of 2.7 × 10����. The images returned in output by this 

simulated sensor have a size of 1280x720 pixels. Ultimately, the intrinsic matrix 

of the camera, � is completely constrained from these values. The values of �

and the size of imaging plane have been retrieved from the datasheet of the C3D 

CubeSat Camera, which is a CMOS camera with a TRL of 9 that has already 

flown on CubeSat missions [141].  

All the parameters of the surface have been left unchanged from the STL model 

as introduced in Blender, while the ‘Energy’ parameter of the Sun simulated within 

the computer graphics engine has been set to 30.  

4.2.3 Estimation 

The Estimation block is tasked with operating on the images generated by the 

Sensor block and retrieve a Cartesian estimation of the position from which the 

acquisition was performed. This information is retrieved through, an Optical 

Navigation (OpNav) algorithmic process, originally presented by Christian and 

Robinson [139]. This is a model-based approach exploiting the border of the sunlit 

surface of the target, which constitutes an extremely robust, and stable 

observable. Additionally, this algorithm does not require multiple iterations to 

return an output, and because of this it appeared well-suited for resource-

constrained missions.  

Except for peculiar spatial arrangements, the presence of the Sun generates over 

every object situated within the Solar System an illuminated region, in stark 

contrast with the black background of empty space. The edge of this sunlit region, 

appearing as a curve in the image, represents a discontinuity, either between 

open space and the sunlit region, or between the unilluminated and the sunlit 

regions. The former will be addressed as limb, while the latter as terminator. The 

limb has a broad extension, is easily detectable, and provides a large wealth of 

information.  
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At these altitudes, methods exploiting point-like local visual features (e.g., stellar 

parallax) were neglected because the space regions surrounding small bodies, 

can potentially be dust rich and could lead to ambiguities [139].  

4.2.3.1 Algorithm 

 The chosen OpNav algorithm exploits the limb of the target and was developed 

for spherical or ellipsoidal objects. It operates an estimation of the position of the 

probe, using the outputs of a camera and additional information about the target 

and its attitude with respect to the probe. The algorithm requires a set of priors – 

such as known size and ephemerides of the target and knowledge of the relative 

attitude of the probe. Ultimately, the OpNav bridges the projection of the target 

observed in the image plane of the camera, approximated by an ellipse, to a 

quadric surface describing the object.  

The process is further discussed by the LUMIO team for its mission design 

[142,143] and by Liounis [144]. Furthermore [144] Liounis analyses different 

approaches to perform this estimation, testing it even on two irregular bodies – 

from a computer vision perspective, including Bennu, and presenting a more 

specific approach extending horizon-based techniques to non-ellipsoidal bodies. 

This method does not match the paradigm discussed in thesis, as it would 

reintroduce a high degree of specificity in the workflow.   

It is now worth noting that beyond inducing couplings which are difficult to handle 

within this estimation process, the complex shape of asteroids could also have 

beneficial effects on the overall framework.  

Indeed, it could help transforming the estimation process presented here into a 

camera-only algorithm. The OpNav algorithm requires ancillary information, as 

the attitude, which is considered not retrievable from the camera itself. This must 

be assumed provided by an additional external sensor, as for example a star 

tracker. In the case of position reconstruction from an ellipsoid the attitude 

information is fundamental to introduce constraints reducing the number of 

solutions from infinite to one [145] owing to the infinite degrees of symmetry of 

the shape. Asteroids generally possess a much smaller degree of symmetry 
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when compared to ellipsoids. In addition to this, local features as craters, 

boulders or ridges can further help differentiate between similar portions of the 

surface. Therefore, in the future it would be possible to envision systems 

providing attitude reconstruction through fusion of visual recognition of known 

local landmarks and the instantaneous illumination conditions. 

Using the same notation as [139], the algorithm, for each observation, can be 

summarised as follows: 

a. The shape matrix �� is defined to succinctly describe the quadric equation 

defining the ellipsoid in the TCTF reference frame  

�� =  

⎣
⎢
⎢
⎢
⎡
1

��
�� 0 0

0 1
��

�� 0

0 0 1
��

�� ⎦
⎥
⎥
⎥
⎤

( 4-1 ) 

The matrix of Equation (4-1)Error! Reference source not found. is then 

converted to CRF through the appropriate rotation matrix �� =  ��
� ����

�. 

The newly obtained �� is then decomposed into a product of triangular 

matrices using a Cholesky factorisation process, such that �� =  ��� . 

The triangular matrix � ultimately serves as the basis to transform the 

problem into a more convenient representation subspace, namely one 

where the navigation problem can be solved around a unit sphere. 

b. A set of � limb points is extracted from the ellipse approximating the target 

observed within the acquired image. The coordinates of those pixels, 

(��, ��), � = 1, … , �, are stored in column arrays with the form ��
� = [�� ,

��, 1]. These are pre-multiplied row by row by the matrix �; normalised; 

transposed and ultimately concatenated in a � × 3 matrix, named �. 

c. The matrix � is used in a linear least squares problem to retrieve the 

ancillary vector �, with �� = �. The vector � is a column array with � rows 

containing only entries identically equal to 1. Once � has been retrieved, 
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it can be used to construct the position vector � through the equation � =

 −(��� − 1)��.���. 

4.2.3.2 Implementation Details 

Through the shape matrix of Equation (4-1)Error! Reference source not found.

the Cholesky factorisation process receives in input a three-axis ellipsoid.  

However, since the target is not an ellipse there is no univocal choice for the three 

parameters within the matrix (��
�, ��

�, ��
�). Therefore, in this case within the 

matching problem also lies an optimum problem: finding the set of three values 

which leads to the best fit.  

Nevertheless, addressing this issue is out of the scope of this paper, and the 

same values used to define a 3-axis ellipsoid in the Path stage (Bennu’s DEEVE) 

are used again in Equation (4-1). 

Given a sequence of images, the program loops over each image, and performs 

a rather standard sequence of instructions to retrieve an ellipse equivalent to the 

horizon outline in the image. If defined in a RGB space the images are converted 

to grayscale. The absence of background stars and synthetically induced noise 

make the use pre-processing algorithms weakly relevant in this work.  

The first operation performed on an image is a rotation, defined such that that the 

bundle of parallel rays emitted from the Sun would enter in the image from its left 

edge. To perform this rotation, it is necessary to retrieve the angle representing 

the direction from which solar illumination enters the image, let it be ���
� . To obtain 

���
�  the first step is to transform the Sun direction defined within ����, let it 

be �����
� , to a vector defined in ���. This is done as 

�����
� = ��

� �����
� ( 4-2 )

Simply using a rotation suffices, as in this case only the orientation of �����
�  is of 

interest. �����
�  is then a complete 3�1 vector, defined in ���. To transform it to 

image coordinates, each of its components is divided by the third component, 

obtaining an array of homogeneous coordinates, let it be ����
� . At this point, only 
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the ratio of the first two components of ����
�  is needed. Therefore, these elements 

of ����
�  are not pre-multiplied by the focal length of the simulated camera, albeit 

that would be the formally correct procedure. 

Finally, ���
�  can be retrieved as 

���
� = ����2(�����

� , �����

� ) ( 4-3 )

Since the oblateness of the target is relatively low, and given the distances at 

play, it can be confidently supposed that the rotation phase does not crop off any 

useful region of the image. By rotating the image by −���
�  the direction of the Sun 

illumination within the image is aligned with the vertical axis; an additional rotation 

by ±
�

�
 returns the configuration desired for the edge searching algorithm.  

The ± sign is necessary due to a residual ambiguity resulting from the 

observation geometry. To avoid this ambiguity ever appearing in the process, a 

heuristic safeguard was added to the code. The safeguard acts to understand 

whether after the first rotation the lit region is pointing afterwards or downwards. 

Specifically, once the first rotation has been performed, the code halves the 

image in two equally sized horizontal blocks. It then searches whether the top or 

the bottom block has a higher cumulative intensity. The block with the highest 

overall intensity contains the bulk of the target. Therefore, once this intermediate 

orientation (up or down) is known, the second rotation can be performed 

accordingly.  

Once the image has been rotated, the edge of the overall sunlit region of the 

object is detected using a Sobel edge detector [146] in the rotated image. To see 

an example of this configuration, with the edge extracted, see Figure 4-1. After 

the edge has been extracted, a search is performed a search is performed 

starting from the left edge, which retains only the first point encountered along 

that row and discards all the others. Given that the points on the left are ones 

facing direct solar illumination, barring singular configurations in this way only the 

horizon points are retrieved.  
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Figure 4-1 - The image of an ellipsoid and its Sobel edge in the rotated image. 

Two things were observed concerning the image rotation process. The first is that 

different image rotation methods would generally lead to different navigation 

accuracies. The second is that in the ellipsoid test-case, after being rotated by 

some angles (even as small as 1 degree) some targets would get heavily 

distorted by the rotation process. Namely, the smooth edge would be divided in 

‘slabs’ (see Figure 4-2) introducing artefacts that would translate to discontinuities 

in the detected edge.  

Figure 4-2 - A three-axis ellipsoid distorted by a 1° rotation 

The first point would then fall on the terminator, leading to largely underestimated 

ellipses, and extremely large navigation errors. This required the addition of a 

second heuristic safeguard to remove these spurious points, which would 

degrade the estimation to the point of uselessness in the affected observations. 

This filter removes all the points where the derivative of the X value of the edge 

assumes a value larger than ���
−  3���

.  
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The minus is consistent with the structure of the observation, with the terminator 

always more on the right than the horizon.  

The edge points are then cleaned up of the spurious points using the differential 

method described above, de-rotated, brought back to their original orientation, 

and used to fit an ellipse. The fitting is operated through the direct ellipse fit 

method proposed by Fitzgibbon, Pilu and Fisher [147] with the implementation 

provided by Chernov [148]. This method was chosen because of its tendency to 

underfit the ellipse. This choice might appear dangerous, as underestimating the 

ellipse equals to overestimating the distance, thus making the target appear 

further than it is. However, when specialised to Bennu’s shape it felt more 

appropriate to have the fitted shape generally lying within the imaged target, 

rather than outside. It remains to be seen if a general solution to this issue can 

be found through an optimal choice of an equivalent ellipsoid. The ellipse fitting 

function returns an ellipse that is then sampled by linearly spacing the angle in a 

parametric ellipse representation, using M points (M = 600 in this case). This 

extraction choice might lead to an uneven point distribution along the perimeter 

and approaches to equally space the points along the curve need to be tested in 

the future.  

These � ellipse points constitute the ��
� in the algorithmic scheme described 

before. Given that the rotation matrix is supplied from the Path block, and that the 

shape matrix is a user-supplied information, at this point all the elements to 

operate the algorithm are available. It is worth noting that the noniterative method 

returns both the position and an analytical estimation of its covariance. To retrieve 

the latter, it is necessary to introduce two parameters within the code describing 

the optical system. These are the pixel pitch ��, which is the distance between 

centers of contiguous pixels, and the � in pixels associated to the acquisition of 

a point belonging to the limb. It is generally possible to observe good accordance, 

up to a scale factor, between the predicted covariance and the error. This, 

however, appears to cease to be true in eclipse conditions and, at times, in direct 

solar illumination conditions.  
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4.2.4 Filter 

The filter block collects all the standalone results of the Estimation outputs and 

uses to reconstruct a trajectory using the three-axis ellipsoid gravity model. This 

orbital reconstruction process is operated through a Nonlinear Least Squares 

(NLS) method [127].  

This method was chosen due to being well-known and well-understood. The work 

in the thesis capitalises on the integration of multiple approximated models, with 

a focus on optical navigation. Integrating exploratory methods and experiments 

in optical navigation within well-known workflows allows to focus primarily on the 

result of the processes of interest, without having to consider by-effects and 

interactions from more complex or less explainable methods.  

4.3 Results 

The results of this chapter present the implications of treating the real-world 

complex shape of a spin-top asteroid as an invariant element (a 3-axis ellipsoid) 

on the overall trajectory reconstruction framework. 

4.3.1 Nonlinear Least Square performance results 

This section studies of the effects of a specific observation process on the final 

orbit reconstruction. The Sensor block is here removed from the complete 

process. The Estimation block, instead, is replaced with a process corrupting the 

nominal position values in the state vector ��
�( ��)with fixed gaussian white noise. 

These corrupted values represent the observables used in the NLS Filter. For this 

procedure, four � levels along each axis were selected from plausible values, 

reported in Table 4-1. A circular orbit at 10xRa (2480 m) is used in this section as 

fixed nominal trajectory for the spacecraft.   

Table 4-1 - Error levels for simulated observations 

L1 L2 L3 L4 

� [m] 5 30 75 115 
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�� [�] 15 90 225 345 

�/���� 0.002 0.012 0.030 0.046

For each level acquisitions are extracted for 10 hours using three different 

simulated acquisition frequencies. These are set, respectively, to half an hour, 

one hour and two hours leading, respectively, to 21, 11 and 6 observations. 

These simulated observations are then used to correct through a NLS process 

an initial reference trajectory. The initial reference trajectory is generated by 

corrupting frame the initial state of the nominal orbit using values extracted from 

normal distributions with a standard deviation ���� for position components 

and ���� for velocity components.   

The value of ���� has been set to be the escape velocity at the orbital distance of 

the trajectory considered, therefore it is the escape velocity at 10��, where �� is 

the average radius of Bennu, �� = 248 �. Therefore, ���� = ��
���� =

  0.0628 ms��. ���� on the other hand, is set for each error level to be equal to the 

error of the simulated observation divided by √3. 

The correction process is carried out until the difference of the residuals between 

subsequent NLS iteration is less than one meter, up to a maximum of 10 

iterations. The corrected initial state vectors found at the end of this process are 

then propagated for 10 hours, therefore ���� = 10 ℎ.  

Let now ∆�  be the norm of the difference between the estimated position state 

components and the nominal position state components at a given time step �, 

and let ∆� be the equivalent parameter for velocity.  

∆�� = ����

��������� − ���

�������� ( 4-4 ) 

∆�� = ����

��������� − ���

�������� ( 4-5 ) 
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Table 4-2 and Table IV report, respectively the 1σ retrieved at �� = 0 ℎ and 

���� = 10 ℎ for every combination of � and ∆�  through a Monte Carlo analysis 

with 1000 samples per case. 

Table 4-2 - 1σ error levels for corrected simulated observations at t = 0 h 

1σ(∆�����) L1 L2 L3 L4 

∆�� = 0.5 h 2.29 m 13.3 m 35.1 m 51.9 m 

∆�� = 1 h 3.13 m 18.5 m 45.2 m 68 m 

∆�� = 2 h 3.94 m 23.7 m 59 m 88.9 m 

Table 4-3 - 1σ error levels for corrected simulated observations at t = 10 h 

1σ(∆�����) L1 L2 L3 L4 

∆�� = 0.5 h 2.25 m 14 m 33.8 m 51.4 m 

∆�� = 1 h 3.07 m 18.1 m 45.8 m 69.5 m 

∆�� = 2 h 3.83 m 22.9 m 58.2 m 90 m 

It can be clearly observed that the values in both tables are almost identical. The 

values presented in Table 4-2 and Table 4-3 appear sufficient to describe the 

behaviour of the algorithm because it has been observed through extensive 

experimentation that in these conditions maxima in ∆� appear either in the initial 

or the final state of the trajectory. An example of error evolutions along trajectories 

with the four error levels of Table 4-1 are shown in Figure 4-3. 
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Figure 4-3 - Error evolutions along dense trajectories with the four chosen error levels 

Being  ���� itself an acquisition point, by looking at Table 4-2 and Table 4-3 it 

might be argued that there is only a weak advantage in adding the computational 

and algorithmic burden of a filter. However, it is worth noting a few things. First, 

there is an important correction effect on the velocity. Second, it is possible to 

further improve the accuracy by decreasing ∆t – i.e., increasing the number of 

available samples. Figure 4-4 reports the 1� at �� for �4 cases with ∆� =

 [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5], obtained using 600 trajectories per ∆�. As 

evident from it, this process appears to evolve as a power law. Lastly, through 

the NLS process it is possible to reconstruct a trajectory within the chosen 

gravitational model from a set of unconnected position estimations. This is as 

opposed to incremental algorithms like visual odometry, which require some 

overlap between consecutive acquisitions.  
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Figure 4-4 - 1σ at t = 0 for L4 cases 

By defining the number of observations associated to a choice of ��, ���� and ∆�

as N, using the same data of Figure 4-4 it is possible to obtain  

∆� = ∆�� (�)��.���, ∆�� ∈ ℝ ( 4-6 ) 

From Equation (4-6), the exponent of � is close enough to -0.5 to generally 

consider 

∆� = ∆�� √�⁄ ( 4-7 ) 

4.3.2 Limb-based Navigation around an ellipsoidal asteroid model 

The testing iteration following the purely numerical workflow includes simulated 

visual data, and the complete estimation process.  

This configuration differs from the one defining a complete workflow for two 

reasons. The first is the testing trajectory, which in section 4.3.2 is a segment 

aligned with the �� axis spanning from 4�� to 18��. along which 501 linearly 

spaced observation points are defined. 

The second is represented by the choice of the optical targets. Within section 

4.3.2 the Sensor block is used to simulate two three-axis ellipsoids. Employing 

the OpNav algorithm’s native target enables observing some of the properties 

associated to it without having to account for by-effects induced by the difference 

between the model and the effective target. The two targets constructed are: 
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1. The Dynamically Equivalent, Equal-Volume Ellipsoid (DEEVE) 

associated with Bennu  

2. An ellipsoid with the same proportions as that employed within the 

Christian and Robinson reference paper [139]. Namely, this has the 

largest axis with an extension two times that of the smallest, and the 

intermediate axis spanning the average of the other two. By keeping the 

major axis fixed to Bennu’s DEEVE this gives an object with dimension 

��
� = 259 �, ��

� = 194.25, ��
� = 129.5.  

Figure 4-5 shows a comparison between them at a distance of 4��.  

The axes observed in this simulated descent are �� and ��. Whereas in the first 

case the observed ellipse has an eccentricity equal to � =  �1 − �
���

���
�

�

=  0.36

in the second case this is increased to � = 0.74.  

For each of the 501 poses observed along the trajectory the algorithm generates 

an image in Blender through a centre-pointing camera having the same 

properties as that described in section 4.2.2.  

The results shown below are obtained by decomposing in its axial components 

the estimated VRF position and comparing them to the nominal along-axes 

values. In particular, given an axis �� , � = 1, 2, 3, the error along the �� axis is 

defined as 

∆�� = ��
��������� − ��

������� ( 4-8 ) 

Figure 4-6 shows the axis-by-axis the difference between the nominal and the 

reconstructed position in VRF at each observation position for x, y, and z for both 

targets. All the plotted quantities are expressed as a function of the DEEVE’s 

average radius (�� = 248 �).
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Figure 4-5 - The two target ellipsoids described in section 5.2. On the left the DEEVE, on 

the right the reference-like. 

(a) (d) 

(b) (e) 
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(c) (f) 

Figure 4-6 - Error along each axis for the two test cases studied

It is possible to observe that the error appears to be predominantly distributed 

along the �� axis, which is the along-boresight axis. This is explained with the 

main source of error being an erroneous scale of the fitted ellipse.  

Figure 4-6(a) and Figure 4-6(d) show that the � axis error appears to be directly 

correlated to the range and biased towards slightly positive values, i.e., generally 

∆� > 0. This implies, from Equation 4-8, that ���������� > �������� – i.e., that the 

observed position tends to be larger than the nominal one. This is consistent with 

the behaviour of the ellipse-fitting algorithm, which is prone to underfitting (see 

section 4.2.3.2). An underfitted ellipse has a smaller scale than the one effectively 

present in the image. Under the same acquisition conditions, a smaller ellipse 

implies a larger orbital radius, and therefore a positive along-boresight error 

component, consistently with the shown data.  

The seemingly larger error with respect to those observed by Christian and 

Robinson can be traced back to a few factors. Among these, worth mentioning 

are: potentially different simulated camera systems; difference in target’s albedo, 

texture, structure and relative attitude; lack of a dedicated limb extraction method 

[149] and effects of the rotation algorithms, in particular at a critical Sun phase 

angle.  

It is worth spending a final word of caution regarding the employed image rotation 

method. From the tests performed on the ‘Bicubic’ and ‘Nearest’ built-in MATLAB 

methods, Bicubic appears to be the best choice for Bennu, while Nearest works 
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better for ellipsoids. This constitutes experimental work, which will have to be 

further refined in future work.  

4.3.3 Observation Process 

Due to the overall trajectory reconstruction process largely relying on the 

performance of the optical navigation algorithm, it is critical to possess a thorough 

understanding of the response of optical navigation to different interactions of 

camera pose, target, and illumination. This is done to address conditions inducing 

effects that could disrupt or corrupt the process. By selecting a reasonably low 

amount of acquisition points per trajectory it is easy to detect conditions that put 

a strain on the process.  

For example, doing so in a trajectory with only three observation points, see Figure 

4-7Figure 4-7, highlights three different estimation behaviours. Of these, only the 

central one (labelled 2), is acceptable, while the other two present non negligible 

errors. These are induced by the coupling of different factors.   

The code fits an ellipse to the extracted set of points, employing the chosen 

model. However, since the shape from which the points are extracted is not a 

three-axis ellipsoid, the strength of this approximation depends on the relative 

pose of the camera. In the leftmost acquisition (labelled 3, see Figure 4-8 for a 

close-up), the observable points are asymmetrical with respect to the equatorial 

plane of the asteroid.  
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Figure 4-7 - A test trajectory with three observation points 

This leads to a longer segment and a shorter segment stemming from the central 

angle. Since the two are not balanced, the ellipse-fitting process assumes them 

to be, respectively, a distribution along a major axis and a distribution along a 

minor axis of the ellipse. The ellipse fitted to these points strongly matches these 

extensions and orientations and is therefore much smaller than the target’s 

dimensions in the image (underestimated ellipse). This underestimation leads the 

target position to be estimated further than its real one (overestimated distance). 

The opposite happens in the rightmost acquisition (labelled 1, see Figure 4-9 for 

a close-up) which represents an underestimated position estimate caused by an 

overestimated ellipse. Namely, being the estimated ellipsoid much larger than the 

target object in the image the estimation algorithm suggests a position 

erroneously closer to the target than the actual one.  
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Whereas it might appear that this is caused by the points covering almost three 

‘sides’ (there are a couple of points crawling above the leftmost corner), this effect 

is most likely induced by the sharp almost rhomboidal appearance of the target 

for images acquired in proximity of the equatorial plane.  

A testing approach with such a small number of images is however not optimal 

for a few reasons.  It does not tell anything about the permanence of the 

behaviour in the regions surrounding the critical spots, it mostly relies on luck to 

find anomalous configurations and it is rather time consuming. A better 

exploratory method appears to be foregoing the heuristics of individual 

acquisitions to focus on the group behaviours. 

Figure 4-8 - A close-up of the acquisition labelled 3 
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Figure 4-9 - A close-up of the acquisition labelled 1 

Since the camera orientation law and the camera intrinsic matrix are fixed, with 

respect to camera factors the output data are a function of its position alone. 

Therefore, to obtain knowledge on the spatial response of the process it is 

possible to construct acquisition surfaces and map the response of the algorithm 

along the surfaces. For now, all environmental properties (e.g., illumination, 

target’s attitude, etc.) are maintained constant given an acquisition surface. 

Therefore, once all parameters have been selected, the test case is uniquely 

defined.   

Using this test approach, 5 test cases for the estimation process were defined 

labelled ETC (Estimation Test Cases). To study ETCs it was necessary to build 

spherical meshes of acquisition points around the target at a radius � with an 

azimuthal angular spacing of ∆�� and an angular spacing in elevation of ∆��. Five 

factors were taken into account when developing these test cases. These are 

�,  ∆��, ∆��, the target object and the direction of the Sun,  ϑ. This last factor is 

important because Bennu’s complex geometry leads to complex interactions 

between the shape and the lighting, thus inducing different navigation behaviours 

under different illumination conditions. Ultimately, however, these are reduced to 

four by choosing  ∆�� ≡  ∆�� = �. The five ETCs were defined as shown in Table 

4-4. 
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Table 4-4 - Observation Test Cases 

� ∆�� ≡ ∆�� ������ �

ETC1 5�� 3° Ellipsoid 0°

ETC2 5�� 3° Bennu 0°

ETC3 5�� 3° Bennu 120°

ETC4 10�� 3° Bennu 0°

ETC5 10�� 10° Bennu 0°

Comparing ETC1 and ETC2 allows observing the effect of the incoming Sun 

direction on the results. Comparing ETC1 and ETC3 allows to understand the 

effect of the shape of the target on the results. Comparing ETC1 and ETC4 allows 

observing the effect of distance on the results. Lastly, ETC4 and ETC5 are used 

to understand the information loss induced by downsampling �. Overall, 

observing the results returned by ETCs (Figure 4-10) allows to obtain a good 

grasp of the performance of the algorithm.  

The first results presented in relation to ETCs are the distributions of two scalar 

values describing deviations of the estimated position from the nominal position. 

These two values, H1 and H2, are used to discover whether there is any evident 

trend or bias within the data. For the i-th acquisition, let us label the nominal 

position as ���

������� and the associated estimated position as ���

���������, and let 

‖�‖ be the norm of a generic vector �. The first of the values is the norm of the 

differences between the estimated and the nominal position vector

�1 = ����

��������� − ���

�������� = ∆� ( 4-9 ) 

While the second value represents the differences of the norms of the estimated 

and the nominal position vector 
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�2 = ����

���������� − ����

�������� ( 4-10 ) 

Below, in Figure 4-10, the histograms of �2 and the empirical cumulative 

distribution function (CDF) of  �1 are shown for each ETC.  
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Figure 4-10 - On the left side, in descending order, the empirical CDFs of H1 for ETC1, 

ETC2, ETC3, ETC4 and ETC5. On the right side the histograms of the corresponding H2 

values. 

4.3.4 Navigation Charts 

The error described in the previous section (4.3.3), has a strong spatial 

component, which is difficult to characterise employing only scalar values. This 

is addressed by adding another dimension to the graphs and localising the error 

values in a 2d maps presenting ∆� = �(��, ��), thus enabling the analysis of 

regional behaviours of the algorithm in the previous ETCs. These visualisation 

tools are labelled ‘Navigation Charts’ and map the response of the estimation 

algorithm as a function of position. Navigation Charts allow the identification of 

spatial regions critical for operational conditions, and the design of orbits 

minimising the localisation uncertainty for autonomous probes.  Given the large 

number of points within these acquisition surfaces (more than 7000 for � = 3°), 

the distribution of error values can effectively be considered close to a continuum. 

For future developments it could therefore be conceivable to use fuzzy logic [150] 

or continuous empirical laws over the retrieved spectrum to select optimal 

trajectories. These could assign an operational approach chosen from a finite 

number of pre-defined ones using meta-information about the operational state. 

Additionally, Navigation Charts could be used to construct Boolean classification 

tools of the type Go/No Go or Acquisition/No Acquisition. Figure 4-11 shows the 

plot of H1(Az, El), i.e., the navigation chart for H1 for all the five ETCs analysed.   
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Figure 4-11 - The navigation charts mapping H1 for all the five ETCs.  From left to right, 

the upper row contains ETC1 and ETC2, the middle row ETC3, and the last row ETC4 and 

ETC5. 

From these charts, it is possible to observe the emergence of zones of invariant 

response. These zones can be included within a general navigation algorithm 

and provide contextual information regardless of the target’s configuration. For 

regions in eclipse, where visible cameras struggle to operate it is possible to 

assume that the reconstructed trajectories are sufficient to provide triggers to stop 

and restart acquisitions. Some of these critical regions appear to be specific to 

Bennu, while some others appear to be more general and induced by illumination.  
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4.3.5 Trajectory Reconstruction 

This section reports the importance of invariant conditions in the perception 

model when these are propagated within the full trajectory reconstruction 

framework.  

As expected, for Gaussian errors in the estimation process an increase in the 

number of observations leads to a reduction in the uncertainty of the 

reconstructed trajectory (Equation 20). However, section 4.3.3 and section 4.3.4 

have shown that the navigation error around a non-ellipsoidal target is a strong 

function of the position of the probe. The error is a function of position because 

the appearance of the target within the camera output determines how closely 

the target resembles an ellipse in the given acquisition. The appearance of the 

target within the sensor, in turn, is a function of the relative pose of the Sun, the 

target and the sensor itself. This position-connected bias translates to a non-

Gaussian distribution of errors (Figure 12). 

To test whether the same scaling mechanism of Equation 20 emerges from visual 

data acquired around a simulated Bennu, a test trajectory with circular initial 

conditions is defined at � = 10��. Within this trajectory an observation arc is 

defined using, �� = 0 and ���� = �/5, where � is the orbital period at � around an 

object with the same standard gravitational parameter � of Bennu. Ultimately � =

 95.8 ℎ.  

This arc is used to generate Monte Carlo experiments both with ∆� = 1 ℎ and 

∆� = 15 � (� =  600 in both cases). Once again, the experimental process 

consists in using a fixed set of observations to correct an initial prior orbital 

determination. In this case, this prior is randomly generated by corrupting the 

position components of the initial state vector with ���� = 115 √3⁄ � and the 

velocity components with ���� = 0.0628 √3⁄  ms��. Figure 4-13 and Figure 4-12 

report some outcomes of these tests allowing to discuss three noteworthy results.   

The first, shown in Figure 4-12 is that when the results do not diverge to an 

escape trajectory, they converge to a level of at least 2� to the same estimated 
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trajectory. A condition for this convergence is that the estimations used do not 

pose conflicting constraints within the gravitational model.  

This allows to present Figure 4-13 as a meaningful result. Indeed, Figure 4-13 

shows ∆� as a percentage of the orbital radius within a reconstructed trajectory. 

For this trajectory a random initial noisy state is corrected always using the same 

set of observations. This correction converges with a probability slightly higher 

than 2� to the same orbit, as supported by Figure 4-12.  

In particular, Figure 4-13 shows point by point the difference between the 

reconstructed trajectory and the nominal one. The second result of this section 

shown in this figure, is that through the reconstruction pipeline it is possible to 

obtain uncertainties as low as roughly 1% of the orbiting radius, and that it is 

possible to do so with a low acquisition frequency – in line with resource 

constraints. The third result is that, albeit slightly in this case, increasing the 

number of observations increases the uncertainty of the reconstructed trajectory.  

This third conclusion, which might appear counterintuitive, emerges because 

increasing the number of acquisition points does not introduce estimations with 

Gaussian errors, but, rather, errors with a spatial bias varying with continuity 

(Figure 4-11). Hence whereas the error can remain generally low in favourable 

observation geometries, increasing the number of observed points can lead to 

moving through regions of higher uncertainty, and therefore worse reconstruction 

accuracies.  
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Figure 4-12 – Empirical Cumulative Distribution Function of Monte Carlo results (n = 600) 

of ΔR for Δt = 1 h and Δt = 15 s in the initial and final acquisition point (i = 45°, E = -30°, Ω 

= 90°).

Figure 4-13 - ΔR along a dense trajectory for Δt = 1 h and Δt = 15 s
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Concerning the spatial bias, from Figure 4-11 it is possible to distinguish the 

presence of three main critical regions for this navigation approach around 

Bennu. These are, respectively:  

1. Eclipse conditions 

2. Direct illumination conditions 

3. Planes generated by two of the three largest axes of the target (in this case 

aligned with X, Y, Z).  

Eclipse conditions are induced purely by illumination-related effects, and as a 

result, this region appears regardless of the shape of the target (Figure 4-11) and 

can be considered purely invariant. The effects in direct illumination conditions 

are induced by a coupling between the shape of the target and the direction of 

illumination, and generally appear only along specific inclinations. Lastly, critical 

planes are induced by the shape of the target alone. Indeed, when looking at the 

target from one of the planes containing its major axes, the target’s shape 

appears sharp-edged, again leading to overestimated ellipses and thus 

underestimated position estimates (Figure 4-14Figure 4-14).  

Experiments have shown that pruning acquisitions performed within these 

regions from the inputs of the reconstruction process generally improves its 

performance through two mechanisms, one direct and one indirect. The first of 

these is simply connected to a reduction of the 1� level of error, induced by the 

pruning of bad data. As shown in Table 4-2 and Table 4-3 a lower average error 

reduces the error level of the overall reconstruction. The second, on the other 

hand, is connected to the implementation of the covariance algorithm found 

within. The returned covariance matrices generally capture extremely well the 

uncertainty of the points associated to them. However, in critical regions some of 

the exceedingly bad acquisitions have been observed to sometimes be 

associated to almost null covariances. This is for example the case for 

observations with scarce visible target points. When introduced in the NLS 

process, the small covariance is interpreted by the algorithm as an exceptionally 

good estimation, leading the algorithm to over-trust these points which end up 

acting as attractors for the orbit.  
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Figure 4-14 - An Equatorial acquisition and the associated estimated ellipse 

Given that the Sun phase angle is assumed to be known at every acquisition, a 

first heuristic filter to prune data acquired within regions of the first and second 

type can simply be constructed by exploiting information about �. Figure 4-15

shows ∆�(�) for a generic trajectory. The acquisitions in direct Sun conditions 

performs discretely well in this case. However, the conditions in proximity of 

eclipse in Figure 4-15 are consistently critical and tend and converge towards a 

single error value for a range of �. This implies that for a certain interval of values 

of � the process becomes detached from the data and the results can be 

considered systematic effects.  

Figure 4-15 - ∆R(φ) for a complete circular orbit with i = 75°; ∆t = 0.5 h. 
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However, being these critical points clustered as a function of �, a first solution 

is to discard all acquisitions performed in � > 180° −  ��, ��  ∈  ℝ. In the figure, 

the region highlighted as critical is such that �� = 20°.  

An additionally conservative version of this filter could require the pruning of data 

with � such that � < ��, possibly also depending on the inclination value. 

Implementing a pruning mechanism for the third critical region is out of the scope 

of this work. This is because operating on the third critical region would either 

require prior information on position, making the task not invariant-oriented, or a 

way to discern the closeness of the target in the scene to an ellipse, which is 

considered future work. 

As for the reconstruction process, all the factors concerning critical acquisition 

regions could be managed by factors determined through the camera, the 

ephemerides of the target, and local asymmetries and features of the target 

object. This would lead to a fully camera-only trajectory reconstruction framework, 

both in the data processing and in the data acquisition strategy. This camera-only 

algorithm would operate at ranges where scaling can be supplied through three 

parameters: the axes of an ellipsoid. 

Obtaining scaling from such a restricted number of parameters has important 

implications on feature-based monocular OpNav following the whole-target 

phase. Specifically, through trajectories defined in an asteroid-fixed, asteroid-

centered reference frame it is possible to scale monocular approaches and place 

them in a global reference frame. This information on scale and global position 

can simply be injected through propagation of the reconstructed trajectory. 

Moreover, provided that the accuracy of the reconstruction is sufficiently high, the 

reconstructed trajectory can be used to estimate critical conditions such as impact 

and set range and velocity triggers.  

Ultimately, whole-target body represent a fundamental technology to develop full 

camera-only navigation for landing probes targeting NEAs. 
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5 FEATURE BASED PERCEPTION AND NAVIGATION 

5.1 Introduction and Scope 

The previous chapter discussed an approach to optical navigation exploiting the 

edge illuminated by sunlight of the target NEO. The invariance exploited in 

chapter 4 builds upon the reduction of complex geometries to a simple shape. 

Specifically, it is assumed that a certain set of shapes can be approximated with 

a small error to a three-axis ellipsoid, at least in some regions around the body. 

Thus, a single navigation method operating on three-axis ellipsoids can be 

developed. However, this navigation process has a critical intrinsic limitation, 

which constrains the process to have a minimum operational altitude. There is 

indeed an altitude from which the limb extension in pixels becomes so large that 

it is difficult to maintain it consistently and fully within the FoV of the camera. This 

limit distance is determined by the size of the celestial body and by the 

parameters of the spacecraft camera. Once again, owing to the broad variety in 

possible landing conditions it is not possible to provide a priori a precise numerical 

value for this distance. A coarse indicator of this altitude, however, could be 

retrieved using the ground sample distance (GSD). GSD represents the metric 

value of an object having the same extent of the pixel pitch ��, the distance 

between the centre of a pair of adjacent pixels. Despite being a theoretical, ideal, 

quantity GSD can undoubtedly be significant in preliminary design. Assuming 

perfectly square pixels it is possible to write that  

��� =
��

�
ℎ ( 5-1 )

Where � represents the focal length and ℎ the altitude of the camera, which can 

be confounded with that of the spacecraft. A threshold altitude can be defined as 

the point where a reference length of the body divided by the GSD returns values 

close to a characteristic size of the focal plane. When ℎ��� is reached, it is thus 

necessary to switch to a different navigation mode, employing observables that 

can still regularly be seen within the scene. A plausible navigation method in this 

context is feature-based navigation.  
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In feature-based navigation, the pose estimation process exploits opportunistic 

patterns detected within visual data. To return an estimation of the motion of the 

platform, it is generally necessary to track these patterns, appropriately identified 

and labelled, across multiple views. Since visibility issues for the limb arise as the 

probe gets close to the surface, it is possible to assume that in proximity of the 

limit altitude objects and patterns on the ground become resolvable within the 

sensor. Moreover, it is also reasonable to assume that their extent in pixel is non-

negligible. If the characteristic timescales of motion (Action in Chapter 3) and 

perception are similar, and much faster than that of the target’s motion (Scenario 

in Chapter 3) it is also possible to assume that the appearance of these visual 

patterns is stable enough to identify them across subsequent views.  

Therefore, adding feature-based capabilities to a modular navigation package 

enables model-free optical navigation at close range. Although feature-based 

methods extend the operational range, they are still vulnerable to adverse effects 

generating uncertainties. For example, the environment might be devoid of useful 

features, or the patterns available might not be optimal for the feature detector 

implemented in the design phase. Moreover, algorithms exploiting monocular 

cameras tend to return an estimation up to scale. To introduce a scale factor to 

this trajectory it could be possible to propagate prior information about invariants 

occupying the environment (as will be the case for NAV-Landmarks), or from the 

limb-based navigation stage, which returns a scaled trajectory.  

This chapter will address some of these issues by introducing and studying three 

non-computational optimisers that can increase the robustness of feature-based 

processes. Similarly to chapter 4, the goal is to obtain workflows that are robust 

to external variability and perturbations without introducing heavy computational 

overheads. And again, similarly to chapter 4, the development of these ancillary 

tools is connected to the construction of invariants. 
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5.2 Feature-Based Non-Computational Optimisers 

This section introduces three invariant-based concepts that were studied to 

improve the robustness and stability of perception processes without the need for 

additional computational tools.  

5.2.1 NAV-Landmarks 

The scope of this subsection is to present an approach enabling robust camera-

only navigation in small satellites deployed by a mothership. The approach is 

based on introducing standardised Non-cooperative Artificial Visual landmarks 

(NAV-Landmarks) on the surface of the target NEO as a mean to augment the 

capabilities of small satellites. These external elements can be effectively 

regarded as an infrastructure forming an extension of the navigation system. 

They can be assumed to be deployed by the mothership with the same 

mechanism used for the small satellite, and then able to expand on the surface. 

NAV-Landmark would be deployed with two principal scopes: provide robust, 

stable observation targets even in feature-starved environments, and act as a 

mean to recover scale information at close range. Their standardisation allows 

treating them as invariant and to tailor visual navigation strategies over them. 

5.2.1.1 Introduction 

Let assume for now the resource constrained platform to be a CubeSat. 

CubeSats are small satellites designed complying with a particular standard, 

defined by Bob Twiggs and Jordi Puig-Suari in 1999 [151]. The design 

prescription requires this spacecraft to be a small collection of basic “Units” (1U), 

defined as cubes with sides measuring 10.0 �� and a mass smaller than 3.00 ���

(1.33 ��). Typical architectures are 1U, 2U, 3U, 6U and 12U. This restricted 

volume limits the number of resources available on board, substantially 

constraining the level of autonomy achievable by these small satellites. This 

shortcoming might not be a problem when orbiting in proximity to the Earth, since 

human controllers or other forms of navigational support might compensate for it. 

However, this issue becomes critical for deep space missions.  
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While it might be difficult for a CubeSat to carry out a complex mission by itself, 

a winning paradigm to employ this spacecraft might lie in integrating their 

capabilities with either other satellites or some form of infrastructure. This could 

mean either extending the capabilities of CubeSats through cooperation or 

interaction with other entities, or further augmenting more complex probes 

through small satellites employed as external subsystems. An example of the 

latter is represented the two 6U orbital modules making up the MarCO mission 

[152]. These two, MarCO-A and MarCO-B, were used as an additional detached 

communication subsystem for the InSight lander, acting as beyond-LOS orbital 

relays during its entry, descent and landing phase.  

Ultimately, this section explores this idea of CubeSats operating as part of a 

hybrid distributed system, encompassing the landing probe and a set of passive 

beacons serving as navigational aids. In particular, the hypothesis under test in 

this section is that the addition of artificial features to the surface of the landing 

target enhances the accuracy of optical estimations.  

The effectiveness of the deployable markers must be objectively proved and 

quantified to justify their non-negligible impact on the critical mass budget. This 

work will present an analysis of their effect on optical navigation, focusing on 

deployments on NEOs. This because the reduced size of these celestial bodies 

allows for the implementation of a dispersion configuration covering the complete 

target.  

A whole-target coverage approach can be regarded as an inverse-GNSS 

architecture, with an orbiting receiver and a constellation-like infrastructure on the 

ground. The scenario studied contemplates the ballistic deployment of a number 

� of small markers by a mothercraft, implemented before the deployment of a 

CubeSat lander. It is assumed that the markers are foldable devices thus having 

a limited impact on the mass and volume budget while being transported.  

Using artificial markers (also called fiducial markers, or fiducials) as an aid while 

performing visually controlled tasks is a rather common strategy for a broad range 

of operations, either crewed or autonomous. Indeed, typical applications may 
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span from on-orbit proximity operations [153] to UAVs landing [154], from 

navigation of terrestrial robots [155] to underwater applications [156]. The 

function of fiducials is to provide consistent, standardised information and cues, 

used to augment the environment or a target into a cooperative form. A 

cooperative entity provides to the observing payload operative information that 

need little or no processing to be used.  

The presence of fiducials implies that the operative methodology can be 

calibrated on mainly exploiting these elements, known a priori. Fiducial based 

approach, however, have been largely neglected by the space scholars and 

engineers for applications beyond Earth’s orbit. There, coherently with the rest of 

the computer vision community, the research trends appear to be oriented 

towards highly centralised, marker-less solutions (e.g. the ALHAT package [157]) 

or towards high environmental specialisation (e.g. a crater oriented solution 

[158]). The constraints over volumetric and mass budgets are rarely as severe 

as in the space domain and transporting markers could significantly impact them.  

Ultimately, three factors are expected to influence the realisation of fiducial-based 

schemes. These are the mass-to-intelligence costs ratio, the trends concerning 

space exploration strategies, and the development of expandable structures 

[159,160].  

5.2.1.2 State of the Art 

A key to far-reaching, cost-effective space operations could lie in warehousing 

[161]. To establish a warehouse means to structure a repository of modular 

solutions that can easily be integrated and deployed. This work investigates a 

paradigm shift in warehousing, where the repository contains a set of 

infrastructures used to structure the operational environments as default spaces. 

In this initial iteration, this architecture is realised through reference guideposts 

scattered on the target surface of interest: these are the NAV-Landmarks found 

in the title.  
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These features can be deployed at any stage, meaning that the operative 

methodology can be calibrated on operating using principally these elements, 

known a priori.  

Despite the constraints over mass and volume budgets, there have been two 

instances in the last few years where fiducial landmarks have been employed in 

a space mission. Namely, variants of this technology have already been used on 

the JAXA probe Hayabusa [162] and its successor Hayabusa2 [45]. Both these 

probes carried on board, respectively, three and five highly reflective orbs, to 

enable close-range navigation for a high accuracy (pinpoint) autonomous 

landing. For additional robustness, both probes were equipped with a flashlight 

(FLA instrument) to highlight the markers on the surface. The programmed 

markers release altitude had been set to roughly 30 meters in both cases. 

However, the deployment was realized at an altitude of 40 meters for Hayabusa 

[163] and reported to happen at roughly 10 meters from the ground in Hayabusa2 

sources [164]. The features injection strategy envisions them deployed not all at 

once, but iteratively, with the already deployed markers used to increase the 

deployment accuracy of the subsequent ones, ultimately forming a pseudo-

cluster around the desired landing area. The augmentation provided by these 

objects can then be integrated in a wide array of close-range Guidance and 

Navigation strategies [163,165]. 

5.2.1.3 Landmark Design 

This infrastructure approach is believed to be particularly relevant for CubeSats 

due to two main reasons. The first reason is that non-algorithmic optimizers would 

have a much more profound impact on low-budget objects, capable of reaching 

the desired accuracy only through assistive technology. The second reason is 

that a deploying mechanism for CubeSats could be reused for features, if their 

sizes have a comparable order of magnitude. This second argument implies that 

the technological complexity of the mission is not excessively increased.  

An important role of the deployment process is ensuring that the landmarks touch 

down on the surface of the target with a speed less than a critical rebound speed.  
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The design process of the landmarks is mainly driven by mediating between two 

competing constraints:  

1. Stability and reliability in optical acquisitions 

2. Budget constraints  

The former is a factor of merit in improving navigational performance and pushes 

for larger features size; the latter considers the additional load on the mass and 

the volume budget by the features and calls for smaller dimensions. Within the 

scope of this work the presence of surface patterns on the sides of the landmarks 

will be neglected.  

The push for reliability is driven by the need for consistent information for 

navigation. It is possible to subdivide this condition into several secondary 

requirements. In particular:  

 Restricted symmetry:  the landmarks should be built with a limited 

number of axes of symmetry. This condition is important to avoid 

ambiguity: a textureless sphere hardly provides any directional 

information. However, a certain degree of symmetry is desirable, to 

passively reduce the risk of landing configurations of an asymmetrical 

object which might be sub-optimal or ineffective for estimation. 

Nevertheless, keeping the volume of an object constant, as the degree of 

symmetry of the object increases, the length of its sides (features in 

themselves) generally decreases, generating ambiguity 

 High visibility: this driver concerns the capability of the landmark to be 

distinguished from its surroundings within visual data. This characteristic 

can be achieved both in active and passive ways. The former requires 

mechanisms capable of generating light or changing the colour or shape 

of the landmark in reaction to environmental effects reducing visibility. 

Passive methods are achieved through robust design. High visibility does 

not necessarily equal high reflectivity: for example, on a pale-tinted 

asteroid a VANTAblack [166] feature might be the best solution 
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 Stability to displacing perturbations: to be effective as a navigational 

feature, the landmarks must move as little as possible with respect to the 

surface when perturbed. Important parameters controlling this requirement 

are the contact surface at a given instant and the distance between the 

center of mass and the edge of said surface 

 Convexity: the NAV-Landmarks should have convex shapes. These 

geometries both reduce the amount of dark, shadowed, zones and avoid 

the accumulation of surface material which could “camouflage” the 

landmark 

 Shape Retention: features should not be affected by unpredictable 

changes in their appearance upon impact since this would lead template 

matching or scale reconstruction algorithms to failure. 

Budget constraints require more advanced solutions to be properly addressed: 

for example, the expandable structures mentioned in beforehand. It is however 

out of the scope of this work to discuss them.   

Aside from having been used at a different range and within a different 

architecture, Hayabusas’ target markers deviate from the above conditions 

because they do not seem to possess easily observable sides or features. 

Therefore, while at their operational distances they could hypothetically be 

employed for optical scale reconstruction, their gibbous globe-like form might 

generate ambiguity in this process. Cubes, on the other hand, satisfy all the 

above-mentioned constraints. Being Bennu a B Tholen type asteroid [19], to 

achieve high-visibility reflectivity is to be preferred to patterning or colouring. 

Therefore, the simulated features will be highly reflective cubes. The resulting 

object, rendered using the Unreal Engine 4 graphics engine, can be observed in 

Figure 5-1 and Figure 5-2. 
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Figure 5-1 - A 1.5 m cube on the surface in the simulation. 

Figure 5-2 - Close-up of cube on the surface with its shadow. For this example, the light 

has been directed so as not to hit any face along its normal. 

5.2.1.4 Simulation and Experimental Design 

The experiments to study the propagation within the perception process of NAV-

Landmarks have been performed in the beta version of THALASSA. In the beta 

version, as discussed in Chapter 3, Unreal Engine 4 (UE4) is used as a graphics 

engine. It is worth mentioning again that UE4 employs a left-handed reference 

frame, with a specific initial orientation for a simulated camera.  

Three THALASSA blocks have been used within the experiments: Path, Sensor 

and Estimation.  

Path-The Path block generated a trajectory by defining a landing condition and 

backpropagating it within the three-axis ellipsoid gravitational model. This 
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trajectory is then followed from its furthest point from the ground to a certain 

altitude. In particular, the landing condition of interest is a vertical, equatorial 

landing around a nonrotational asteroid. The chosen landing position for the 

probe is �� =  ���
� , ��

�, ��
�� = (−259, 0, 0). The direction of the landing velocity, 

��, is aligned with the local normal at ��, let this normal be ��, due to the 

condition of vertical landing. In these conditions the problem ultimately reduces 

itself to a one-dimensional motion, fully described by the behaviour along the �-

axis.  

A condition on the magnitude of the landing velocity can be implemented through 

��
� (Equation (2-6)), which must not be exceeded if the probe must remain on the 

surface. Thus, a reduction factor � is added to not operate with �� values too 

close to the critical ones, and �� =  ���, � ∈  ℝ�, � < 1. Additionally, it has been 

observed that the longer a trajectory takes to bring the probe to its designated 

target, the more the error committed by the on-board navigation grows. 

Ultimately, � = 0.67  - roughly (2/3) - seems a good compromise between 

estimation stability and the presence of a safety margin, therefore the selected 

landing speed is �� = (0.67)��
�.  

With reference to Equation (2-6), it is possible to see that using the values of 

�� =  282.36 � [129] (the equatorial semi-extension for the asteroid – its largest 

dimension), � =  7.329 × 10�� �� retrieved from [129], and ����� = 0.6 [167]. 

Performing all the required operations it is possible to find that ��
� = 0.310 ����. 

Therefore �� =  0.67(0.310) = 0.208 ����, implying �� = �� ��� =  (0.208, 0, 0).  

These conditions lead to an extremely slow descent: it takes roughly 8 hours to 

move from about 3 kilometers away from the center of the asteroid to its surface. 

The motion of the capsule is followed from  ‖��‖ =  2021.75 � (at �� = 0)

to ‖����‖ =  1107.40 �, for a total time ���� of roughly 2 hours and 35 minutes 

(���� =  9257 �). The time step between two contiguous acquisitions is, therefore, 

∆� = 1028 � = ���� (����� − 1)⁄ .   
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Sensor-Within the Sensor block, the directional light has been selected as coming 

from the – ��� direction. This implies that the landing trajectory observes a side 

of the object under direct solar illumination, and therefore fully illuminated.    

Every image � in the discrete sequence is uniquely identified by a natural number, 

�, and indicated as ��. As a total of 10 images are acquired through the sequence, 

the indexes will range from �� to � ��, with �� being the image acquired furthest 

from the ground.  

Cubes of two sizes are tested: respectively, cubes with a � = 1.00 � side (test 

condition “� •”) and cubes with a � = 1.50 � side (test condition “� •”). The number 

of landmarks employed during these simulations is 4 in one characterization, and 

6 in another. To these, a condition with 0 cubes is added, as a form of control 

experiment. Ultimately, this leads to 5 possible combinations of conditions to be 

tested, namely �� = {�0, �4, �4, �6, �6}. It is worth noting that albeit experiments 

with � = 1.50 � might not be realistic, they provide important information to 

understand the effect of the cubes on navigation. The lower bound to the 

dimension of the landmarks within the simulation is provided by the resolution of 

the target’s CAD model, which, again, is 0.75 m. This because it is of interest that 

a landmark always correlates to structure rather than noise.  

Concerning the landmarks’ position, Çelik et al. [168] have investigated, albeit for 

a 3-body system, the deployment accuracy for passive ballistic landings on small 

asteroids. In that study the same landing conditions (vertical, equatorial) and 

backpropagation method led to a “butterfly”-like pattern, characterized by a 

central dispersion ellipse and two slightly asymmetric “wings”. The region covered 

by this pattern is roughly of the same order of magnitude of the asteroid’s radius 

itself. Namely, this area stretches for 120° along the longitudinal axis and 20° 

along the latitude extension. This distribution is approximately centered on the 

nominal landing position, with the spread along the latitude increasing with an 

increase in longitudinal distance from the nominal landing position.  

Since all the geometric and dynamical values involved are comparable in both 

instances, these angular diameters are imported to simulate a landing 
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distribution. Considering the worst case and thus ignoring the central build-up, 

landing spots for markers are constrained to lie in one of the “wings”, 

approximated as isosceles triangles with angular size equivalent to the one 

mentioned above. 10 random markers positions have been extracted from 

equivalent planar triangles and then projected on the surface, obtaining the 

results seen in Figure 5-3. 

The simulated sensor is a camera with a focal length of � =  9.6 ��. The 

simulated sensing plane is constructed to be equivalent to a 1240�1080 one (1.3 

MPix), with square pixels with a 5.3 �� side. Therefore, the sensor height will be 

set to ℎ =  6.05 �� and the sensor width to � = 6.94 ��. The effective 

resolution number of the generated images is, however, 664 × 578 pixels. The 

above values have been modelled, with some slight difference, again upon the 

C3D CubeSat Camera [141] also employed in Chapter 4.  

Figure 5-3 - The landmarks (l = 1.50 m) as they appear on the asteroid. 

Estimation-Lastly, the Estimation block performs Visual Odometry through a 

standard implementation. When the images are fed to the processor, Harris-

Stephens corners [84] are detected, described and matched over subsequent 

images.  

Homologous points in consecutive images are then used to construct the 

fundamental matrix through the normalised eight-point algorithm [103]. The 
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robustness of this process is further increased by introducing a RANSAC 

(RANdom SAmple Consensus) routine. Lastly, the fundamental matrix is 

reconstructed to estimate the unscaled relative translation (and rotation) between 

the two views. Rotation and translation are left as they are, and not refined 

through neither a local nor a global optimizer. This process, iterated sequentially, 

provides an estimation of the complete trajectory of the platform as unscaled 

motion direction. It is worth noting that introducing the RANSAC makes the 

process non-deterministic.  

A last testing condition addresses the threshold associated to corners 

acceptance. This is set either to 10�� or 10��. When this is set to 10�� the 

associated test case is labelled with a – minus superscript, e.g., �6�.Figure 5-4

provides a summary of all the testing conditions.  

Figure 5-4 - Test conditions for NAV-Landmarks 

It was previously observed that Harris-Stephens corners may not represent an 

ideal feature choice from an engineering point of view within scale-changing 

contexts. However, choosing them is scientifically significant, as this selection 

allows to introduce an analysis and a discussion about extrema in computer 

vision. 
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Figure 5-5 shows the number of features detected within the first and the last 

image using a few common feature detectors. When a detector’s name is 

followed by 0 the detection is performed in the first acquisition, i.e., the one 

furthest from the ground. When a detector’s name is followed by 9, the detection 

is performed within the 10th acquisition, i.e., the one closest to the ground.  

Figure 5-5 - Features detected in the first and the last image using a few common 

detectors 

Figure 5-5 shows that SURF and FAST always perform badly, while ORB and 

MinEig consistently return an operative number of features.  

It is interesting to note that within the last image the number of detected Harris-

Stephens corners appear to converge towards the number of NAV-Landmarks. 

Indeed, for the case with a small side (� •) the number of detected features is 

similar to that of deployed NAV-Landmarks. These numbers are identical for the 

case with a long side (� •). This, issue, however, stops appearing when the 

minimum threshold is lowered from 10�� to 10��. This behaviour is explained in 

Section 5.4. 
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5.2.1.5 Results 

The output of each step of the VO process are, within the scope of this work, a 

unit vector representing the direction of the estimated displacement, and a 

rotation matrix. This is because the scaling problem has been for now neglected. 

The simulated motion profile is one-dimensional, with a unit value for each time 

step and evolving only along the � axis. Hence, a perfect estimation from the 

time-step � to the time-step � + � would return a displacement only along �, with 

a value equal to (� + �) − � = �.  

This means that in any estimation within this model and reference frame, 

components along the � axis and the � axis are entirely spurious. Hence, 

estimation errors in translation can be associated to these components: if they 

are present, the estimator is not behaving as it should. Moreover, non-roll 

rotations propagate on the same Y and Z components, which can therefore be 

also seen as indicators of rotational errors. From these considerations, it is 

possible to define an error metric, named ∆�
�, and characterized as  

∆�
�= (� − �) − ��

������ ( 5-2 )

Where � and � are the indices of the first and the last image of the sequence 

taken into account, and ��
������ is the cumulative � value of the sequence, with 

the zero placed in the �� condition.  

�∆�
�  is an indicator of the effective error components; therefore normalizing �∆�

�

by (� − �) would return the percentage uncertainty in estimation over the 

trajectory of interest. 

Assuming implicitly � =  1, the values ∆� (� =  5) and ∆�� (� = 10) are presented 

for each case. Since, as already observed, the process contains source of 

randomness, it would be misleading to simply present the outputs for one 

instance: rather, statistical descriptors must be introduced. Namely these will be 

the mean, the average, and the standard deviation of these parameters, 

computed over populations containing 300 samples. The results for {�0, �4, �4,
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�6} are shown in Figure 5-6 and Figure 5-7 and some statistical indicators are 

reported in Table 5-1 and Table 5-2.  

Figure 5-6 - Cumulative Δ5s for s0, s4, s6 and S4. 

Table 5-1 - Statistical indicators for Δ5s for s0, s4, s6 and S4. 

Test 
Case 

∆5

Mean Median 
Standard 
Deviation

S0 0.3235 0.0467 0.5317 

s4 0.2531 0.0527 0.4388 

S4 0.1769 0.0285 0.3686 

s6 0.2530 0.0351 0.4572 
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Figure 5-7 - Cumulative Δ10s for s0, s4, s6 and S4. 

Table 5-2 - Statistical indicators for Δ10s for s0, s4, s6 and S4. 

Test 
Case 

∆10

Mean Median 
Standard 
Deviation

S0     0.5564     0.1529     0.7179 

s4     0.5878     0.2685     0.6597 

S4     0.3970     0.1125     0.5524 

s6     0.5726     0.2106     0.6359 
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The nontrivial shape of the curve with a sharp step around a ∆�, ∆��=  1 value can 

be explained by analyzing the various errors affecting the estimation. The most 

common type of large-scale errors for this process appears to be not estimating 

at all a translation along the � axis. A single missed estimation of this type induces 

a unitary ∆ error, i.e., ∆ = 1. The accumulation of this type of error over multiple 

tests forms the plateau observed in the figures. Therefore, the extended vertical 

regions around natural numbers roughly indicates the likelihood to happen of 

discrete non-detection events. The onset in the curve, instead, relates to the 

general probability of this phenomenon happening at least once.  

From the above figures two things can be observed. The first, is the regularity of 

the profile of the curve. The second is how extreme values are generally 

comparable. This means that the algorithm is behaving consistently in every test 

case. However, the various curves do not collapse to a single profile, but, rather, 

present the same shape translated vertically. The translation is induced by a 

variation of the number of test cases achieving at least an error of ∆. The more 

results have a higher error, the more the curve shifts downwards. Thus, the 

position along the abscissae of the first onset of an exponential behavior is a good 

indicator of the performance of the algorithm. In other words, the more a curve is 

to the left, the better the algorithm is performing.  

As it can be inferred from both the tables and the curves, the �4 landmarks 

provide the best improvement from the �0 case, both for ∆� and ∆��. On the other 

hand, �4 and �6 appear to induce an identical improvement for ∆�, halfway 

between the �0 and the �4 test case, but then present a worse performance than 

�0 for the ∆�� case.  

The test case S6 has not been shown above because using the algorithm with 

the same parameters, would, inevitably, make the program unable to operate, 

and lead to crashes. This can be explained using Figure 5-3 and remembering 

that the VO algorithm requires at least 8 points to operate.  

This effect is most likely induced by the stark differences in grayscale between 

the markers and the background, coupled with a higher number of landmarks in 
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extremely favourable positions, improving the quality distribution of the best 

Harris-Stephens corners. This, in turn, implies that for a broad range of 

acceptance thresholds on the quality of the features there are fewer features 

satisfying the score requirements. In turn, this leads the cardinality of the features 

to be tracked to be critically low, close to the minimum number of points 

necessary as inputs to the algorithm. If this is coupled with a, for any reason, 

perceptionally troublesome points distribution, ultimately not enough features are 

able to be matched between consecutive views to estimate the fundamental 

matrix. This problem, however, might be addressed using a controller operating 

on the required minimum quality of the features.  

To test this hypothesis, the minimum quality parameter is reduced manually from 

10��  to 10��. This means that for a feature to be accepted by the algorithm its 

quality score is at least the best feature’s score multiplied by 10��. These are the 

test cases labelled �6�, �0� and �4�. These are, respectively, �6, �0 and �4 with 

the same reduced value of minimum feature quality. The results are presented in 

Table 3 and 4 and.  

To bridge the two sets of results in an easier way, Figure 5-8 and Figure 5-9 show 

how the �0� and �4� set perform, respectively, against �0 and �4, and �0 and �6. 

The tables show that reducing the minimum quality parameters improves the ∆�

behaviour of the marker-less case �0 to a �4/�6 level. This advantage, however, 

is entirely lost in the ∆�� case. 

In general, what can be observed from these tests is that using lower quality 

features greatly reduces the effect of NAV-Landmarks on navigation 

performances. This is because this reduction introduces many spurious features 

in the process, which corrupt the matching phase and degrade the overall 

accuracy level. From an ASP perspective, this work shows the effects on 

Perception of actions on the structure of the Scenario. 
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Figure 5-8 - Cumulative Δ10s for s0-, s0, S6- and S4. 

Table 5-3 - Statistical indicators for Δ5s for S0-, S4-, S6-. 

Test 
Case 

∆5

Mean Median Standard Deviation 

S0- 0.2649 0.0452 0.4387 

S4- 0.2362 0.0344 0.4766 

S6- 0.2626 0.0412 0.4738 

Table 5-4 - Statistical indicators for Δ10s for S0-, S4-, S6-. 

Test 
Case 

∆10

Mean Median Standard Deviation 

S0- 0.5555 0.1997 0.6979 

S4- 0.4925 0.1305 0.7305 

S6- 0.4832 0.1397 0.6488 
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Figure 5-9 - Cumulative Δ10s for s0-, s0, S6- and s6. 

5.2.2 Extrema in Computer Vision 

This section presents invariants concerning perception models themselves. In 

particular, the perception result shown concerns the patterns strongly exciting 

feature detection models. These extremely good features are a fixed property of 

the algorithm: therefore, knowing them would allow both to select optimal 

detectors for the given operations and to avoid situations that would be critical for 

the underlying perception model.    
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5.2.2.1 Case study 

In the previous section it was observed that under certain circumstances there 

may be an undesired by-effect caused by augmenting the environment through 

a restricted number of artificial elements. This is because these observables are 

specifically designed to induce a strong response in feature detectors. Therefore, 

optical infrastructure has the potential to completely lead the process within 

detection algorithms, sometimes with disruptive effects. Since the adverse effects 

are connected to the strong response, to study these effects equals studying the 

extrema value in a detection process.  

This translates to the principle that a small set of physical objects can be 

propagated within the computational detection and interpretation process to 

manipulate, improve, set back, or neutralise the operations of an autonomous 

platform.  

The possibility to exploit these effects was at first presented through a possible 

defence application. This use case was an electro-optical countermeasure 

affecting unmanned aerial platforms invading a restricted space. The unmanned 

platform is assumed to use feature-based navigation mediated through only one 

feature detector and is affected through its estimation process.  

In this work, an optical attractor (OA) is defined as the collection of pixels inducing 

an exceptionally strong response for a target feature detector, and optical 

attractor kits (OAK) define the physical objects generating OAs. Finally, the 

complete countermeasure approach operating on this principle is termed, as per 

title, Countermeasures Leveraging Optical Attractor Kits (CLOAKs). From this, a 

physical object inducing these pixel structures for defence purposes was defined 

a CLOAK: Countermeasure Leveraging Optical Attractor Kits.  

In particular there are two hypotheses tested within this section: that it is possible 

to retrieve optical attractors, and that they have a significant effect when 

introduced in an image. These hypotheses were tested through static tests on 

SURF implemented with default parameters within MATLAB. 
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CLOAKs act at a feature level. It has been noted before that most computer vision 

processes begin with the detection of features. Thus, the whole optical workflow 

depends on interpreting and manipulating these computational objects. Hence, 

the interpretational process of the artificial intelligence can be manipulated by 

diverting the focus of the detection towards specific regions and then acting on 

this restricted set of observables. Using optical attractors, any optical based 

algorithm relying on features extraction can potentially be disrupted, in a 

completely passive and nondestructive fashion. Within this work this is 

envisioned happening in at least two ways, but many more could follow.  

5.2.2.2 Background 

For a given image �� acquired during ordinary operative conditions, a feature 

detector generally associates a score ��� to each feature ��� detected. The value 

��� characterizes the quality of the detection.  

 After the � features satisfying the boundary conditions have been retrieved, let 

us order their scores in a decreasing order. Let the number �, � = 1, … , �; � ∈  ℕ

indicate the rank of the feature with the score ���. The feature with the highest 

score is labelled “pivot”, and its score is indicated with ��� = ���. Experimentally, 

it was observed that it is generally possible to find three parameters such that 

���(�) is well approximated by a power law over a range of values  

���(�) ≅ ����� + �� ( 5-3 )

As an example, running a SURF detection with all default values over the built-in 

MATLAB demo image termed “concordorthophoto.png“(see Figure 5-10) it is 

possible to retrieve 22435 points, that when ordered have the distribution shown 

in Figure 5-11. To help in visualising where these points might be, Figure 5-12 

shows the 80 strongest SURF features detected within the image of a remarkably 

fluffy cat. A noteworthy exception to this distribution is represented by images 

containing fractals structures where the distribution tends to be stair-like.  
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Figure 5-10 - The picture "concordorthophoto.png". Image from MATLAB 

Scores and pivots are important because their values drive the acceptance or 

rejection of pixel patches as features. Let us illustrate this through the MATLAB 

2019b [169] implementation of SURF and Harris-Stephens corners. It is again 

worth remembering that heuristically the two detectors look for different objects 

(blobs and corners, respectively), both from an algebraic and data perspective; 

however, this will be not a concern within this work. 
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Figure 5-11 - Distribution of the Ordered Quality Score qi of SURF Features in 

"concordorthophoto.png" 

Figure 5-12 - The 80 strongest SURF features (green crosses and circles) detected within 

the underlying image. 
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Let � be a threshold. Moreover, let the subscript � be removed. Without adding 

computational safeguards, within MATLAB Harris-Stephens’ threshold operates 

in such a way that a detected pattern with a score �� is accepted as a feature 

if �� ≥ �� > ����, with �� ≪ 1.  

On the other hand, for SURF �� ≫ 1 and a generic pattern with a score �� is 

accepted if �� ≥  �� >  ��. This means that the score of a feature is higher than 

the fixed threshold, and, by definition, lower than or equal to the pivot. Features 

with a rejection process of the first type are defined Pivot-Led (PL) and features 

with a rejection process of the second type are defined Pivot-Independent (PI).  

These behaviours can easily be visualised by plotting the ordered score values 

�� given two different thresholds for a PL detector and two thresholds for a PI 

detector. Figure 5-13 shows the results for the detection of SURF points with �� =

100 and �� = 1000.  On the other hand, Figure 5-14 shows the results for the 

detection of Harris-Stephens corners with �� = 0.001 and �� = 0.01.  

Figure 5-13 - Semi-logarithmic plot of qi for the detection of SURF points with two 

different thresholds 
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Figure 5-14  - Semi-logarithmic plot of qi for the detection of Harris-Stephens corners 

with two different thresholds 

5.2.2.3 Affecting Visual-based Processes through Optical Attractors 

Using the definition of PL and PI processes, it is ultimately possible to introduce 

the first two approaches enabling the disruption of a visual based process. First, 

a PL process gives the ability to shift and manipulate the whole rejection interval 

by introducing an OA. It can be added that if the rest of the environment is built 

in such a way that the number and quality of the remaining features is kept low, 

it is effectively possible to consistently induce a scarcity of detected features. This 

approach was defined “starving”.  

On the other hand, since the lower boundary in a PI process cannot be externally 

manipulated, it is not possible to exploit it in the same way. Therefore, PI 

processes require a more complex approach, which is defined “herding”. 

Whereas starving is a static technique, herding, is a dynamic technique, requiring 

the scene to change between images. That being said, herding may still be 

considered to be a passive system when there is no activation prompted by an 

external signal. Neglecting for now thermal effects as only solutions for visible 

cameras are considered, as a first iteration it is possible to consider CLOAKs to 

be screens capable of showing a grayscale image. This enables considering 

different OAs interchangeably and is consistent with a dynamic application. 
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Therefore, ultimately, herding could consist in continuously moving OAs between 

the screens, structuring their motion pattern in such a way that the same 

descriptor ends up applying to objects which are continuously shifting position in 

space. As these features represent by design the ones with the highest scores, 

the detector rarely rejects them, thus constantly integrating disruption-inducing 

elements in the process. Beyond the thresholding methods, there are two main 

processes involved in the deployment of a CLOAK. These are the “Extraction” 

and “Injection” phases. The former, extraction, refers to determining optical 

attractors for the given configuration of a feature detector, through either 

heuristics, or optimization techniques. Afterwards, in the injection stage, these 

are introduced within the field of view of the sensor, in such a way that process 

disruption is maximized. 

Within the scope of this study a naïve full version of this workflow is developed 

and analysed, again in MATLAB (v. R2019b). For the extraction stage, search 

and optimization processes known as genetic algorithms [170] are used to 

“evolve” an ideal optimal response to the analysed parametrization of the feature 

detector.  

Figure 5-15Figure 5-15 - The Optical Attractors emerged in the 75x75, 105x105 and 255x255 

square. shows the outputs of this search process with the retrieved optical 

attractors for square pixel patches of different sizes (75x75, 105x105, and 

255x255). OAs can be clearly seen in all the three figures as the cross-like 

structure surrounded by a continuous circle of the opposite colour.  
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(a) (b) 

(c) 

Figure 5-15 - The Optical Attractors emerged in the 75x75, 105x105 and 255x255 square. 

It is worth noting that although it might appear that the OAs shrink with a larger 

image side in pixels, this impression is simply an artefact of the way the features 

are presented, where pictures with an increasing side length in pixels were kept 

at a fixed metric size. 

The shape of the OA depends on the mathematical model underlying the 

detector. As an example, Figure 5-16 shows optical attractors for KAZE features 
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and FAST features. KAZE is a multiscale feature detector. The name of this 

detection algorithm is not an acronym, but, rather, the Japanese word meaning 

“wind” [171].  KAZE’s optical attractor is represented by the object looking like a 

“Moon with a halo”. FAST’s optical attractor is the object resembling a question 

mark in the right-hand side of the picture.  

Figure 5-16 - Optical attractors for KAZE and FAST features 

5.2.2.4 Results 

Figure 5-17 shows the qi obtained within the pixel patches in Figure 5-15 using a 

SURF detector. It is immediately possible to see the three OAs values the in the 

upper left corner.  

To test the injection stage, the 15x15 pixels patch containing the OA from Figure 

5-15c is extracted. As per Figure 5-17 this OA is the one with the highest ��

among the three OAs and obtain a transferable OA. This is an approximation, 

because the shape of the OA appears to be circular, while the selected patch is 

a square. However, it has been observed that this choice does not appear to 

affect the �� in a significant way.  
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Figure 5-17 - Distribution of the Ordered Quality Score qi of SURF Features in GA-

Evolved Patches 

By performing a first proof of concept test, pasting the square OA in random 

places within the test image of Figure 5-10 it is possible to observe two things:  

a. The �� value remains essentially constant in whatever picture and 

position the OA is found. This has not been tested for rotational 

invariance 

b. If the OA is placed on the edge of the image �� reverts to a value 

detected within the picture not containing the OA.  

5.2.2.5 Discussion 

This section introduced a set of ancillary concepts to discuss the effect on 

perception of extrema values in computer vision. These maxima in the perceptual 

response are labelled Optical Attractors, OAs. From an ASP triangles point of 

view, this work showed that when extrema values in optical processes are to be 

expected in the Scenario, appropriate safeguards should be implemented in the 

design of the Perception model.  
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These concepts were discussed through an application, labelled 

Countermeasures Leveraging Optical Attractor Kits (CLOAKs). These 

countermeasures target and exploit visual based autonomous estimation 

processes. CLOAKs are based on the concept of OA.

Two important phases in the operative deployment of optical attractor kits are 

recognised: extraction and injection. Extraction concerns the retrieval of the 

relevant pixel patterns, injection their introduction within a scene. Using a 

simulated extraction/injection process it is shown that it is possible to retrieve an 

optimisation process, and that this feature strongly affects detection. Through 

these results it is possible to introduce an invariant: the digital object strongly 

exciting a feature detector. These pixel patterns can then be used for multiple 

scopes in space applications, from choice of the optimal feature given the 

characteristics of the environment to safeguarding against critical observations. 

5.2.3 Perception Fields 

5.2.3.1 Scope 

The investigations pursued in Section 5.2.2 and Section 5.2.3 stem from issues 

highlighted by the results of the NAV-Landmarks section (5.2.1). Section 5.2.2 

addresses the problem of the number of detected visual features at times 

progressively decreasing as the probe gets closer to artificial landmarks designed 

for maximum visibility. This reduction has been observed to be due to the 

presence of perceptual ‘sinks’, strongly attracting the attention of a detector. To 

explain these sinks, Section 5.2.2 lays the groundwork for a theory of extrema 

detections within feature detection processes. However, for some feature types 

(e.g., SURF features) that effect does not explain the observed scarcity of 

detections. Hence, there must be some other process at play inducing this 

second behaviour.  

Observing the heuristics of the pixel patterns inducing a strong response in a 

SURF detector (Figure 5-15), it is possible to observe that these are distributed 
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patterns, while Harris-Stephens are strongly excited by corners and isolated 

points. The experiments concerning NAV-Landmarks are performed around a 

nonrotating asteroid, and the probe performs a vertical descent with a nadir-

pointing camera. Therefore, the observed side of the asteroid is always under the 

same solar illumination conditions: within the field of view, the target only 

expands.  

Moreover, the constant solar illumination conditions are conditions of direct 

illumination. The studied object is textureless, thus all the features observed 

come from shading, i.e., from the interaction of illumination and the structure of 

the target. Therefore, when the Sun is right behind the probe, it does not induce 

any widespread shadow in the field of view. Therefore, the low number of 

detections of extended features (as SURF or ORB) could be explained by the 

probe moving along the direction of Sun beams, and never reaching a pose 

where structural features from shadow are available.  

Therefore, starting from that observation, it can be hypothesised that by 

increasing the Sun phase angle, the number of available features for a SURF-

like would increase. This hypothesis, if verified, could suggest a new way of 

interpreting features detected in images generated by visible cameras in the 

proximity of small celestial bodies, in particular as a way to passively measure �. 

Ultimately, the hypothesis tested within this section is that trends in the quantity 

of available optical features can be correlated to variations in the angular distance 

from the source of illumination.  

From this, the discussed approach is based on treating properties related to these 

detected optical features as readings of a field – labelled “perception field”. These 

fields are assumed induced by the coupling of the environmental conditions and 

the state of the sensing device.  

Being induced by illumination, perception fields are considered invariant to the 

spectrum of characteristics of NEO targets. Therefore, they represent self-

contained ancillary tools providing context and an evaluation of estimators’ 
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performance while using the least number of priors. These characteristics, make 

perception fields extremely significant around NEOs. This preliminary study 

presents an analysis of the occurrences of perception fields observed in a planar 

motion around two asteroids, 101955 Bennu and (8567) 1996 HW1 in visual data 

simulated within THALASSA 1.0. Ultimately, the comparison of three different 

feature detectors shows distinctive trends in the distribution of the detected 

optical features, directly correlated to the spacecraft-target-Sun angle, confirming 

the hypothesis. 

5.2.3.2 Usage 

At any given stage of a mission, selecting optical features to track that are optimal 

in terms of availability and quality strongly depends on multiple operational 

conditions. Developing a framework automatically performing this selection for 

operations in the proximity of asteroids is a particularly complex task.  

The opportunistic features observable in operations around NEOs are likely to be 

ambiguous (similar to each other) or unstable (self-similarity not preserved over 

time) due to the nature of the landscape on the surface of an asteroid. Moreover, 

the generally fast spin rates induce continuous changes in illumination, further 

aggravating the lack of stability in the visual appearance of the surface features 

within sequences of images. On the other hand, well-defined and large unique 

geological features such as craters cannot be assumed generally available. 

Therefore, building a complete visual pipeline based only on these elements 

would greatly reduce the generality and applicability of the navigation process. 

Following these premises, this work suggests a counterintuitive approach which 

can be used to increase the robustness of feature-based methods, while 

providing an additional navigation tool in resource-constrained conditions. 

Accordingly, bulk information on features is interpreted in a way that is analogous 

to readings of fields for physical quantities, like magnetic or gravitational fields. 

These were defined as ‘perception fields’, readings of quantitative values defined 

for each point in the space surrounding a target body. Perception fields are 
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considered induced by the interaction of the perception model operating on a 

platform, the state of the platform and the state of the operational environment. 

These readings can be used to determine the optimal feature given an orbital 

position, structure ancillary navigation functions, or validate the outputs of 

concurrent processes.  

The rationale behind this idea emerged from the following consideration: while 

lighting conditions can have deleterious effects on individual local structures by 

changing their appearance over time, they conversely induce seemingly regular 

distributions of collective feature properties. This section focuses on presenting 

a correlation induced by illumination observed between the spacecraft-Sun-

target- angle, or Sun phase angle φ, and curves generated by enumeration of 

available features per detector, among the selected ones. Specifically, two 

assumptions were tested, fundamental to understanding if there is the potential 

to integrate this information in navigation processes: 

 For a given set of fixed target conditions, properties associated with optical 

features are distributed as a function of the Sun phase angle.  

 It is possible to predict the availability of optical features using in the first 

instance only information about φ and one picture in direct solar 

illumination 

Moreover, as shown in the previous section, the shape of the optimal feature can 

be predicted either analytically or through search/optimisation methods. 

Therefore, once that shape is known, it is possible to infer if a local variation in 

the time series corresponds to the presence of an optimal-like feature. Therefore, 

anomalies in the feature distribution are potentially helpful discriminants to 

resolve ambiguities.  
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5.2.3.3 Simulation 

The The simulation process in this case is needed to generate sets of visual data 

enabling the determination of the curves showing the quantitative distribution of 

features for each observing station. This is done by employing three blocks of 

THALASSA 1.0. These three blocks are a Path block, a Sensor block, and an 

Estimation block.  

The tests are operated around two simulated asteroids representing plausible 

NEO targets, with different shapes and levels of surface resolution. These are 

once again the model of 101955 Bennu with a resolution of 75 cm [122], and a 

coarse model of the asteroid (8567) 1996 HW1 which was generated from 

ground-based observations [123]. These are respectively representative of spin-

top-shaped bodies and contact binary asteroids.  

To avoid defining a lower observational limit considering the point where the size 

of voxels becomes comparable to the distance sampled on the ground for each 

pixel, a smoothing of the models is performed within Blender. This allows avoiding 

the emergence of spurious features induced by voxels occupying more than 1 

pixel. This could be a solution also in a case like the NAV-Landmarks 

experiments, where a lower bound for operations had to be set. The Path block 

is used to generate circular sets of acquisition points around the two targets, while 

an Estimation block is used to perform feature detection and quantify the number 

of features available at a given angular station.  

Most of the design choices concerned the Sensor block. In both cases, the 

surface material was set to be a Diffuse BSDF with an RGB value of R=15, G=15, 

B=15 and a null roughness value. Within Blender the models have the dimension 

reported in Table I, both scaled to have the largest dimension equal to Bennu’s 

largest axis, where for Bennu ���� = 282.5 �. This provided for both cases the 

ability to equally configure acquisition distances, Sun orientation and camera 

models. The final output consisted of images like the ones illustrated in Figure 5-

18 to Figure 5-23. Due to the lack of albedo or texture distributions, it was only 

possible to consider features generated from the interaction of structure and 
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illumination. Accepting this condition appears justified by assuming that features 

induced by textural elements are uniformly distributed. Therefore, their effect on 

the shape of the illumination-related feature distribution curve would be limited to 

variations in amplitude, rather than in shape. 

All the test cases have been generated for static Sun conditions. The field labelled 

‘energy’ of the simulated stellar light source, defining its intensity within Blender, 

is set to 5, specifically to maintain a modestly powerful level of illumination.  

The simulated image acquisition processes are performed at 6 and 12 times 

����,  where 6���� = 1695 � and 12���� = 3390 �, with an angular step of 

1.5°, from 0° to 358.5°, by centre-pointing cameras moving in circles in the X-Y 

plane of the target asteroids. The simulated camera is based on the design of the 

CMOS-based GomSpace NanoCam C1U [172] assumed to be equipped with a 

lens having a focal length of 35 mm, and a focal plane with a resolution of 2048 

x 1536 pixels. Three feature detectors were employed as observables in this 

study: Harris-Stephens corners [84] and SURF [173], which are well established 

in computer vison and aerospace domains and respectively representative of 

pivot led and pivot independent features.   

Table 5-5 - Targets' Dimensions 

X Y Z 

Bennu 565 m 536 m 499 m 

HW1 565 m 222 m 243 m 
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The large number of parameters involved led to choosing only three simple test 

cases. They were used to present preliminary results as a foundation for more 

ambitious future tests in more challenging configurations. The first test case has 

Bennu as a target body; the second test case has HW1 with its longest axis 

aligned with �� (configuration A); the third test case has HW1 with its longest axis 

aligned with �� (configuration B). 

In all three sets of test conditions the Sun direction is set to be coincident with the 

direction of the �� axis, coming from +��.  

Moreover, in all cases, the Sun direction is coplanar with the plane containing the 

motion. 
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Figure 5-18 - A simulated Bennu at ������ at an angular station equal to 25.5 deg 

Figure 5-19 - A simulated Bennu at ����� at an angular station equal to 25.5deg 
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Figure 5-20 - A simulated HW1 in configuration A at ������ at an angular station equal to 

25.5deg 

Figure 5-21 - A simulated HW1 in configuration A at ������ at an angular station equal to 

315deg 
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Figure 5-22 - A simulated HW1 in configuration B at ������ at an angular station equal to 

25.5deg 

Figure 5-23 - A simulated HW1 in configuration B at ����� at an angular station equal to 

25.5deg 
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5.2.3.4 Results  

The The results were generated for Harris features [84] and SURF features [85], 

for Bennu, and for HW1 in two configurations. All the asteroids have been 

oriented with their spin axis normal to the ��-�� plane.   

Harris’ implementation in MATLAB is representative of pivot led features, while 

SURF’s represents pivot independent features. Due to this mechanism, the 

presence of good features within the scene raises the lower threshold for Harris 

corners, pruning bad features. If the general distribution is heavily shifted towards 

containing lower-quality features, the good quality features could induce a 

significant reduction of features available for operations, up to extreme case of 

insufficient features for the task.  

For pivot led features, as the probe progresses from direct Solar illumination 

towards the terminator it is possible to observe two competing mechanisms. On 

one side the shadow generally creates more complex local patterns, inducing a 

larger number of stronger features. On the other side, these stronger features 

lead to the rejection of lower quality features, reducing the number of available 

features.  

Pivot independent features only see the increase in good quality features, and 

therefore generally increase as the probe moves towards the terminator and 

decrease as the probe moves away from it.  

The threshold �� was set to 1000, while the threshold �� was set to both 0.001 

and 0.4. From the even-numbered figures from Figure 5-24 to Figure 5-34 it is 

immediate to observe that the higher the ��, the larger portion of the distribution 

is removed, therefore the more susceptible the process becomes to variations in 

the pivot.  

It can also be noticed that the value of the best metric score is a weak function of 

the distance, but the amount of available features is reduced by a factor of roughly 

3 for Bennu and 2 for HW1.   
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Figure 5-24 - Harris features around Bennu (� =  ����� ) 

Figure 5-25 - SURF features around Bennu (� = ����� ) 



147 

Figure 5-26 - Harris features around Bennu (� = ������ ) 

Figure 5-27 - SURF features around Bennu (� = ������ ) 
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Figure 5-28 - Harris features around HW1 (� = ����� , configuration A) 

Figure 5-29 - SURF features around HW1 (� = ����� , configuration A) 
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Figure 5-30 - Harris features around HW1 (� = ����� , configuration B) 

Figure 5-31 - SURF features around HW1 (� = ����� , configuration B) 
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Figure 5-32 - Harris features around HW1 (� = ������ , configuration A) 

Figure 5-33 - Harris features around HW1 (� = ������ , configuration A) 
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Figure 5-34 - Harris features around HW1 (� = ������ , configuration B) 

Figure 5-35 - SURF features around HW1 (� =  ������ , configuration B) 

The implications of this process are that for pivot led features these mechanisms 

require a case-by-case evaluation. In this instance, the Harris’ Pivot score peaks 

close to direct Solar illumination conditions and the best feature is a corner on 

the limb of the asteroid (see Figure 5-36). This potentially implies that at this 

distance, or in this configuration, the features on the ground become less 



152 

relevant, and the stark contrast between night and the lit face of the asteroid 

provides the dominant set of features leading the Pivot-led process.  

Figure 5-36 - The location of the strongest Harris feature for Bennu at 1.5 deg, �����

However, it can still be appreciated how the local geomorphology induces some 

pivot metric spikes in the HW1 and HW1-Configuration B cases. In some cases, 

these correlate to a drop in the number of available features, while in others this 

does not seem to disturb the underlying distribution. In the first case, the 

distribution of features has to be shifted towards low quality features, and 

therefore the strong pivot introduces pruning. In the second case, the feature 

distribution relies on strong features with high metric scores and is not affected 

by the Pivot score increase.  

HW1 in the first configuration shows results similar to Bennu, as the target 

generally appears as a single-lobe object. However, HW1 in configuration B 

presents peaks associated to both lobes, and this can be observed in the 

associated perception field curve. As a rule of thumb, it could be assumed that it 

is possible to observe one peak per visible lobe.  
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5.2.3.5 Discussion 

By fixing a sensor’s attitude law and internal model, the response of a perception 

model can be considered a function of the operational conditions and the sensor’s 

position. This means that for fixed environmental conditions and sensor 

characteristics this response is a function of the sensor’s position alone. This 

section has demonstrated that by moving the sensor around, the response can 

be mapped as if it were a physical field, similarly to a gravitational one. The 

method suggested is an application of perception fields - i.e., treating some 

quantifiable property of onboard perception models as readings of a physical 

field. Perception fields are seen as a key enabler of robust camera-only 

autonomous spacecraft operations, and thus, cost-effective space  

Considering this, the navigation charts described in section 4.3.4 can be 

interpreted as a particular perception field, induced by a specific estimation (or 

perception) model. The primary components of perception fields appear to be a 

function of illumination. Since illumination does not depend on the target, it can 

be considered a strong invariant element for navigation. 

Feature detectors return features which are essential in most computer vision 

pipelines, such as optical navigation. Therefore, ensuring that features are 

always detectable and of good quality is essential when computer vision 

operations are part of the mission plan. 

This work presented some criteria to select a feature detector given information 

about the Sun phase angle. In general, optimality is a strong function of the 

mission objectives and platform. Here, however, it will be defined in terms of 

feature availability. This becomes even more critical in an architecture where 

monocular cameras represent the only sensing element, mediated through 

software payload.  

In particular, results have shown that for pivot led features there are two 

competing mechanisms determining the number of available features and that it 

is possible to identify three regions:  
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Regions where extremely good features can be detected are generally more 

feature-rich, and that drives up the number of available features. However, in 

some instances, the good feature might be surrounded by low-quality features 

(e.g., a high contrast corner in the limb in direct solar illumination conditions) and 

drive down the number of available features. These effects can be amplified or 

reduced by setting an appropriate threshold 

For pivot independent features, feature availability is directly proportional to the 

quality of the best feature in the scene  

The approach discussed can serve two scopes:  

a) Select optimal visual features given the Sun phase angle and some 

information about the target’s shape. 

b) Reconstruct the position of the probe from the time series of pivot 

independent and pivot led features acquired with known frequency. 
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6 CONCLUSIONS AND FUTURE WORK  

This research aimed to identify and explore pathways to develop navigation 

methods assisting soft landings on Near-Earth Objects performed by resource 

constrained platforms. Landing on the surface of these distant celestial bodies is 

extremely challenging and consequently requires an elevated degree of 

autonomy. As noted by Amini et al. [174], autonomy is a necessity for spacecraft 

operating in unknown environments when the timescale of a task is orders of 

magnitudes smaller than the time required for the signal from a human operator 

to reach the probe. Some aspects of landing on NEOs can be rather benign from 

a navigation point of view: the low gravity implies relaxed timescales of motion, 

and low velocities for ballistic trajectories. However, NEOs are often found at 

distances from Earth having one-way light times of the order of magnitude of 

minutes. Therefore, in critical phases such as landings, robust autonomous 

navigation remains a strong functional requirement due to the substantial ranges 

at play. Moreover, robust autonomous navigation is a design choice also pushed 

by economic consideration, as handling missions through human controllers 

induces significant operational costs.  

Inherently, resource constrained spacecraft cannot afford to employ complex 

sensor packages or deploy computationally intensive algorithms. This intrinsic 

limitation on the on-board resources which can be deployed is critical for missions 

targeting NEOs. NEOs can hardly be characterised from the ground and present 

an extreme variety of characteristics that therefore require to be handled on-line. 

Due to the constrain on resources, safety and robustness must be introduced in 

navigation processes through mechanisms that do not rely on design complexity.  

Addressing these requirements by developing ad-hoc solutions for each target 

would imply massive R&D costs for each mission and would be inconsistent with 

the paradigm explored in this thesis.  
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The hypothesis addressed in this thesis is that it is possible to manage the 

conflicting constraints of resource constrained platforms through two parallel 

processes. The first process is the appropriate selection of the sensing payload. 

Within the scope of this work, this sensing capability was limited to a single visible 

camera, i.e., implementing a (monocular) camera-only approach.  

The second process is the identification of abstract observables or patterns 

enabling vision-based processes that change very little between different targets 

– addressed as “invariants” throughout the thesis. Computational cognition 

processes operating on invariants have been labelled “Invariant-oriented 

perception”. 

Ultimately, the core research question investigated in this thesis is whether 

camera-only invariant-oriented perception is a viable strategy for navigation. A 

positive answer would enable complex operations even for probes with limited 

on-board capabilities, like CubeSats. Through this approach to navigation, the 

introduction of robustness would be shifted away from the addition of 

computational methods towards designs that are intrinsically stable to the 

coupling of factors.  

To illustrate and investigate these principles, multiple results and tools have been 

studied and built capitalising on the underlying arguments mentioned above. A 

central contribution was constructing the modular prototyping environment 

named THALASSA. This software package, developed from scratch throughout 

the doctorate, allowed to perform complex testing procedures over simulated 

visual data. The use of THALASSA provided the ability to study the suitability of 

various invariants introduced at different stages of various navigation processes 

and analyse the effects of invariants on the overall process.  
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Limited results have been investigated, yet they have showed promising results. 

In particular, these concern the applicability of at least one of the core concepts 

(perception fields) to the most common types of NEOs shapes, spin-tops and 

contact binaries. These results have opened interesting new research questions 

and have led to insights which could have important implications on astronautical 

engineering, such as standardised navigation packages for low-cost spacecraft. 

The first invariant analysed is associated to the overall shape of the target 

asteroid. The tests involved using a light localisation method designed for targets 

with an ellipsoidal shape to perform trajectory reconstruction around convex 

asteroids made up by a single lobe. By investigating the OpNav algorithm it has 

been observed that the estimation uncertainty is a strong function of the relative 

pose of the Sun, Bennu, and the autonomous platform.  

This implies that optimal perception can be achieved by modulating the 

acquisition patterns to target only optimal zones. Implementing this OpNav 

approach demonstrated the ability to achieve navigation accuracies up to an 

order of magnitude of 0.01 orbital radii. As the shape exploited in the algorithm 

does not change, this approach can be considered invariant-oriented.  

The acquisition regions performing poorly emerge from interactions between the 

estimation model, illumination, and the shape of the body. For Bennu, these 

appeared to mainly be the regions in the proximity of eclipse conditions, direct 

Sun illumination, and the planes generated by two of the major axes of the target. 

For both these first two conditions of interest, a Sun sensor would suffice to 

provide the information to account for these data in the workflow. For a three-axis 

ellipsoid, instead, these would only depend on the Sun-phase angle. The latter, 

however, could be retrieved from a perception-field like approach.  

At this stage, the development and the heuristic corrections implemented in this 

first set of results require a monocular visible camera, a Sun sensor, and the 

ephemerides of the target. However, the behaviour of illumination can be 

expected to remain universally similar. This means that a robust machine learning 

approach extracting the angular distance from the terminator could consistently 
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provide a first bearing estimation. Coupling the bearing with information on the 

local asymmetries - generally abounding on asteroids, a camera and the target's 

ephemerides could suffice to perform navigation duties. Additional future work 

concerns studying the statistical distribution of errors returned by this model, 

which tends to be non-normally distributed. This implies that to perform further 

Monte Carlo analyses over equivalent systems, suitable statistical populations 

must be determined. 

Moving down from ranges where the full target can be imaged towards the 

ground, within camera-only navigation the navigation observables must transition 

to features on the local terrain. One of the strongest drawbacks of navigation 

techniques mediated through monocular cameras is scale ambiguity. This means 

that motion can be reconstructed only up to a scale factor, unless additional 

sensors or estimations provides context information resolving the ambiguity.  

In limb-based navigation, this information is represented by the asteroid size, and 

its ephemerides. However, the reconstructed trajectory could eventually be 

propagated to the point where observables are changed, thus resolving, at least 

initially, this core issue for the subsequent close-range phase. 

Closer to the ground, scale information in camera-only operations could be 

introduced again through elements with known sizes. In line with the need for 

invariance, in this work these are assumed to be standardised deployable 

infrastructures augmenting the environment to a cooperative state. Thus, the 

second set of results reports the implications on perception of such invariant 

visual elements.  For landings on small celestial objects this approach was 

pioneered by the Hayabusa probes [45]. Within the scope of this thesis, this idea 

has been explored by analysing the effects of the introduction of artificial passive 

landmarks on the surface of a small asteroid on visual odometry performed by a 

landing probe. These landmarks are labelled “NAV-Landmarks”, which stands for 

Noncooperative Artificial Visual Landmarks, and have specific design 

requirements. The effect of NAV-Landmarks has been studied on a camera-only 

probe at a range comprised between two and one kilometres, and again employs 
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only a visible camera to navigate. An early version of THALASSA was used in 

this case to simulate the introduction of the markers on the surface of the Bennu 

model.  

The results of the NAV-Landmarks study were promising. Indeed, it has been 

observed that the landmarks improve the unscaled results of visual odometry in 

most tested cases.  More research on the topic is however needed to clarify and 

explain some unexpected behaviour. Moreover, issues related to perception, as 

the influence of extreme values in the scene were highlighted. Subsequent 

research has therefore focused on dealing with these issues and evaluating the 

optimal observation conditions for a feature detector. Future work will address 

implementing scale reconstruction and comparing the performance of these 

“physical” optimizers with computational optimizers. 

In particular, the analysis of values inducing a strong response is introduced 

through a practical application. This use case is the development of a set of EO 

countermeasures disrupting visual based interpretation processes on-board 

autonomous drones. These countermeasures are called Countermeasures 

Leveraging Optical Attractor Kits (CLOAKs), where an optical attractor is defined 

in this work as the collection of pixels inducing an exceptionally strong response 

for a target feature detector. To properly discuss CLOAKs, it was necessary to 

introduce a wealth of ancillary connected to extrema values in computer vision, 

and to search methods to identify these extrema. Within this work this search was 

operated through genetic algorithms.   

There are multiple lines of work connected to extreme values in perception that 

are expected to be further developed and analysed in the future. The first one 

concerns retrieving optimization-based optical attractors for all the feature 

detectors for which this problem is well-posed. The second one is structuring an 

accurate mathematical search of the highest possible extrema, to validate the 

genetic search, or, eventually, find improved solutions. The third one is 

developing a score to understand how well the given feature detector operates in 

an environment. Lastly, the fourth one is examining if from data on the motion 
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and the observable payload and of the target it is possible to determine the 

structure of the on-board AI.  

Building upon findings from NAV-Landmarks and optical attractors, the last 

research topic explored in the thesis introduced navigation strategies relying on 

quantitative distributions of visual. In particular, the hypothesis tested was that 

trends in the quantity of available optical features can be correlated to variations 

in the angular distance from a source of illumination. Initial results obtained for 

circular, equatorial orbits, demonstrated that the quantity of structural features 

detected around small celestial objects is not random, but rather, follows a 

distribution, primarily induced by the Sun phase angle, and only secondly by the 

local topology. The number of available features therefore defines instant by 

instant a scalar field labelled “Perception field”. This allowed to validate that 

sequential observations of the collective features’ behaviour can be exploited to 

assist either in the retrieval of the probe’s localisation information, or in the 

selection of an optimal detector. Therefore, it appears legitimate to further pursue 

the development of methods where these readings are used to complement or 

improve approaches considering features as distinct units requiring accurate 

labelling and tracking. 

Future work connected to perception fields will involve generating response maps 

using spherical acquisition patterns, as an extension of circular ones. The 

information contained in these maps could then be fed to machine learning 

algorithms, which would be able to reconstruct the altitude and the pose of the 

sensor by comparing the number of available features, the number of available 

surface pixels and the ephemerides of the target. Ultimately, this would potentially 

enable a camera-only, target agnostic solution.  Moreover, the response maps 

could be used as charts to select the optimal feature detector given a trajectory 

and illumination conditions. 

The process through which perception fields emerge also has another 

implication. When the response of perception is a function of three motions 

interacting, and when two of these are known (e.g., through ephemerides) it is 
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possible to filter the priors out from the resulting time series, ultimately relaying 

navigation information.  

Perception fields represent the last use case, and contribution, of the thesis, and 

define an important steppingstone in the study of optical invariants. The reason 

for their importance lies in the fact that every perception model could be used to 

define a perception field. Therefore, invariant elements could be studied as an 

emergent property in this secondary space. Moreover, this field structure, if 

properly constructed, can be well-defined algebraically, thus allowing the use of 

standardised methods of analysis borrowed from other disciplines.  

All the methods and scenarios explored in this work fit within a broad ecosystem 

of solutions and ideas. The common purpose behind the introduction of these 

concepts and tools is laying the groundwork towards the appropriate selection of 

optical features enabling camera-only solutions for autonomous navigation. To 

restrict sensing to such a simple passive sensor, the underlying perception 

models and what is observed by them need to be carefully tailored to elements 

that are largely available, unambiguous and provide multiple layers of 

information, about the sensing platform and its operational environment. To avoid 

a costly development process for every new probe, an additional requirement 

would be for these elements to be shared among most of the plausible 

operational targets.  

Within this work elements that possessing all the characteristics above are 

labelled invariants. The perception of invariants can serve either as standalone 

solutions or be the basis for software with higher data-driven decision-making 

capabilities, such as machine or deep learning.  

Thus, camera-only autonomous probes appear to be an important enabling 

technology for deep space operations. The core reasons for this importance are: 

 From a commercial perspective, camera-only autonomy greatly reduces 

development, deployment, and operational costs. Moreover, these 

methods would be compatible with small low-cost probes, allowing smaller 
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players and developing countries to gain access to the surface of distant 

small objects.  

 Camera-only methods introduce resilience against the failure of more 

complex sensing mechanisms.  

However, the implications of these approaches could extend well beyond the 

space field. Today’s world is increasingly moving towards full connection and 

integration of cyber and physical elements. The computing requirements for 

deep space operations are not too dissimilar from those of small 

computational units operating as standalone units in unstructured 

environments, as for smart city devices, wearables, or drones. When moving 

computing to the edge, in paradigms such as Internet of Things these 

technologies could play a pivotal role in making embodied intelligence 

pervasive and available everywhere.  
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6.1 Future Work  

All the Future work appears to be aligned along three directions. These are: 

1. Improving THALASSA and the other computational tools developed during 

the thesis and structure them into an open-source project. 

2. Extending the knowledge on the methods and approaches presented in 

the thesis and define tests to bring them to higher TRLs. 

3. Introducing novel technologies, algorithms and methods capitalising on 

the criteria and design tools developed in the thesis.   

Improving the developed computational tools will be pursued by operating mostly 

on three factors:  

 Robustness: including computational safeguards against computational 

failures and ambiguous cases, and monitors for data quality and model 

performance quality.   

 Accessibility: generating a better UI, where the user can interact at a 

higher level, streamline the integration between computer graphics 

generation and analytics engine, move all the parts of the pipeline to free 

software in line with an open science philosophy.  

 Functionalities: include additional modules and models within the 

software. These could be less approximate gravitational potential models 

(polyhedron, …), a repository of various flight heritage camera models, 

stronger filtering capabilities (e.g., Kalman), a collection of plug-and-play 

navigation and pose estimation methods, hazard detection modules (e.g., 

slope identifier or dangerous boulders identifier). Potentially this could be 

done in partnership with other entities which could supply information and 

code, and overall structure the project as a large-scale open source one.   

Most of the elements presented within the thesis are laying the groundwork for 

further developments at higher TRLs. There are technologies which are currently 

missing to deploy a fully camera-only navigation toolbox; yet to deploy any of the 

functions described in the thesis even before that stage it will be at least 

necessary to perform:  
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 Obtaining highly accurate covariances through large scale Monte Carlo 

analyses, considering more parameters, operated on improved 

phenomena modelling and larger samples. For example, analysing 

navigation charts at different distances, with different cameras models and 

different outlier rejection mechanisms. 

 Integrate models and tools within complete pipelines, and for each pipeline 

and set of target conditions return means, covariances and other statistical 

descriptors of the errors that can be used for testing and simulation.    

 Perform sensitivity analyses for all the experiments, analyse the 

implications and  the propagation of design choices and uncertainties from 

various sources through consider covariances, and retrieve configurations 

which optimise performance indicators and figures of merit of interest.   

 Perform searches of optimal features for all the existing feature detectors, 

potentially using also different search and optimisation methods.  

 For each navigation pipeline, obtain statistical descriptors about reliability, 

failure rates, and failure modes, and continuously try to introduce 

safeguards against them from a systemic perspective.  

 Experiment with increasingly less approximate models and try to obtain 

charts detailing computational load required vs. accuracy. These charts 

could be useful to rapidly identify the best set of tools given a mission’s 

constraints and objectives.  

To obtain a fully camera-only navigation suite it will be necessary to develop 

multiple novel technologies capable of either replacing capabilities currently 

handled by other sensors (e.g., a vision-only rangefinder instead of a laser one). 

Some ideas in that direction are:   

 Test whether the distance from the object can be predicted as a perception 

field employing the number of visible pixels and information about the Sun 

phase angle.  
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 Explore the possibility to employ ground-generated shape models to 

obtain coarse perception fields that can be used in orbit with little 

corrections.  

 Identifying flexible mathematical models with a small set of parameters 

offering a good compromise between the computational simplicity of 

ellipsoids and the accuracy of complex templates.   

 Trying to understand whether NAV-Landmarks could be created as 

origami-like structures, and what would their constraints be in that sense 

(both for transporting and detection).    

 Exploring the usage of Deep Learning algorithms for tasks ranging from 

non-geometric visual odometry to object detection focused on specific 

observables.  

 Adding astrodynamical considerations to the studies, such as: are there 

orbits maxisiming/optimising the quality of available features for a task?

 Exploring the usage of novel developments in the camera world, ranging 

from AI-mediated lensless cameras [175] to event-based cameras [176]. 

 Exploring the usage of novel mission configurations, for example, 

employing tandems or swarms of satellites, either communicating or 

aware of each other through other sensing mechanisms. 
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