
Noname manuscript No.
(will be inserted by the editor)

Optimized Parameter Search for Large Datasets of
the Regularization Parameter and Feature Selection
for Ridge Regression

Pieter Buteneers · Ken Caluwaerts ·
Joni Dambre · David Verstraeten ·
Benjamin Schrauwen

Received: date / Accepted: date

Abstract In this paper we propose mathematical optimizations to select the op-
timal regularization parameter for ridge regression using cross-validation. The re-
sulting algorithm is suited for large datasets and the computational cost does not
depend on the size of the training set. We extend this algorithm to forward or back-
ward feature selection in which the optimal regularization parameter is selected for
each possible feature set. These feature selection algorithms yield solutions with a
sparse weight matrix using a quadratic cost on the norm of the weights.

A naive approach to optimizing the ridge regression parameter has a com-
putational complexity of the order O(RKN2M) with R the number of applied
regularization parameters, K the number of folds in the validation set, N the
number of input features and M the number of data samples in the training
set. Our implementation has a computational complexity of the order O(KN3).
This computational cost is smaller than that of regression without regularization
O(N2M) for large datasets and is independent of the number of applied regulariza-
tion parameters and the size of the training set. Combined with a feature selection
algorithm the algorithm is of complexity O(RKNN3

s) and O(RKN3Nr) for for-
ward and backward feature selection respectively, with Ns the number of selected
features and Nr the number of removed features. This is an order M faster than
O(RKNN3

sM) and O(RKN3NrM) for the naive implementation, with N � M
for large datasets.

To show the performance and reduction in computational cost, we apply this
technique to train recurrent neural networks using the reservoir computing ap-
proach, windowed ridge regression, least-squares support vector machines (LS-
SVMs) in primal space using the fixed-size LS-SVM approximation and extreme
learning machines.

P. Buteneers
Electronics and Information Systems, Ghent University,
Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium
Tel.: +32 9 264 33 68
Fax: +32 9 264 35 94
E-mail: pieter.buteneers@ugent.be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55890580?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Pieter Buteneers et al.

Keywords Cross-validation · Feature Selection · Ridge Regression · Reg-
ularization Parameter Optimization · Computationally Efficient · Model
Selection

1 Introduction

Linear regression is often used in machine learning to find an approximation of a
desired output using a linear combination of its input features. It minimizes the
sum of squared errors of the approximation. Ridge regression (RR) or L2 regular-
ized linear regression [1] adds an additional term to the loss-function proportionate
to the L2-norm of the output weights. The regularization parameter defines the
relative cost of the weight magnitude and the sum-squared-error on the output.
Finding a good regularization parameter is important to avoid overfitting on the
training data. As the total cost is a non-convex function of the L2-norm, cross-
validation is usually applied to optimize this parameter, which is often time con-
suming. For small datasets many algorithms have been proposed to speed-up the
optimization process [2,3]. However the computational complexity and memory
use of these techniques scale quadratically with the size of the dataset.

Feature selection [4] is a regularization technique which avoids overfitting by
removing redundant features. Validating each possible combination of features is
for most common tasks intractable. Therefore a forward or backward approach
is mostly used to find a near to optimal set of input features. In forward feature
selection (FFS), features are progressively added onto larger and larger subsets
until no further performance increase is achieved. In contrast, backward feature
selection (BFS) starts with a set containing all features. In every iteration, the
removal of each feature is evaluated and the removal that cased the largest decrease
in validation error is eliminated from the subset. The algorithm is repeated until
there is no further improvement. Forward algorithms are generally faster and result
in fewer features but backward algorithms often achieve a better performance
because they tend to better preserve constructive relationships between seemingly
irrelevant features [4].

RR does not automatically yield sparse weights as opposed to Lasso [5] or L1
regularized regression. However, many publications show the advantages of RR [6–
8] or even linear regression [9] with sparse input features. In [7] and [9] a fast
algorithm for feature selection with small datasets was proposed. The algorithm
by Pahikkala et al. in [8] also combines feature selection with the optimization
of the regularization parameter. However, none of these algorithms are suited for
large datasets since their computational complexity and memory use still scale
quadratically with the size of the dataset.

In this work, we propose mathematical optimizations for cross-validation on
large datasets that allow for the optimization of the regularization parameter in
combination with FFS and BFS on the regression input features. We also extend
these algorithms to make them compatible with class reweighted RR (CRRR),
which is optimized for classification tasks with unbalanced datasets. We apply
our technique to reservoir computing (RC) [11], windowed RR, fixed-size least-
squares support vector machines (FS-LS-SVMs) [12] and extreme learning ma-
chines (ELMs) [13]. For RC and windowed RR we apply it to an epileptic seizure
detection system presented in [14]. For FS-LS-SVM we apply it to the UCI Adult

Title Suppressed Due to Excessive Length 3

dataset as described in [15] and the Heat Exchanger task as explained in [16],
and for ELMs it is tested on several regression datasets used in [9]. A Python
implementation is freely available as part of the Oger Toolbox1 [17].

2 Ridge Regression

Ridge Regression minimizes the following loss function:

floss = ||XtWt −Yt||2 + λ||Wt||2, (1)

where Xt represents the input data from the training set, Yt the desired output
on the training data, Wt the output weights and λ the regularization parameter
that adds an extra cost to the squared norm of the output weights. For mathemat-
ical convenience and since each desired output requires a different regularization
parameter, we assume only 1 desired output throughout the rest of this work.
Minimizing Equation (1) results in the following equation for the output weights:

Wt,opt = (XT
t Xt + λI)−1XT

t Yt. (2)

If the optimal regularization parameter is known, calculating the optimal weights
is of the order O(N2M + N3) [18], with N the number of input features and M
the number of data samples in the training set.

To find the optimal regularization parameter λ, a list of possible λs is created
and cross-validation is applied to select the optimal λ. If the training and validation
sets are representative for the test set, one can assume that when the validation
error is minimized the test error gets reduced. The loss function on the validation
set is defined as follows:

floss,v,λ = ||XvWt −Yv||2, (3)

where Xv represents the validation data and Yv the desired output on the valida-
tion data. Typically an output weight matrix is trained for each training set and
each value of the regularization parameter and then the validation error is calcu-
lated using Equation (3). If R represents the number of regularization parameters,
K the number of validation sets and M the number of data points in the training
set, the computational complexity of this procedure is of the order O(RKN2M).

2.1 Covariance method

For large datasets, with N �M , the computational cost of Equation (2) is of the
order O(N2M). To speed up the optimization of the regularization parameter we
can rewrite Equation (3) as follows:

floss,v,λ = WT
t X

T
vXvWt − 2WT

t X
T
vYv + YT

v Yv

= WT
t (XT

vXvWt − 2XT
vYv) + YT

v Yv

= WT
t (AvWt − 2Bv) + cv, (4)

1 The Oger Toolbox can be downloaded from http://www.reservoir-computing.org

4 Pieter Buteneers et al.

where Av denotes the covariance matrix of the validation data, Bv the cross-
covariance vector of the validation data and the desired output and cv the covari-
ance number of the desired output. Since each output is considered independently,
these covariance matrices have dimensions NxN , Nx1 and 1x1 respectively.

Following the technique presented in [19] to optimize the regularization pa-
rameter for FS-LS-SVMs, the covariance matrix A on the training and validation
set combined can be calculated as follows:

A = XTX

=

(
Xt

Xv

)T (
Xt

Xv

)
= XT

t Xt + XT
vXv

= At + Av.

Following a similar analogy for B, Wt can be rewritten as follows:

Wt = (At + λI)−1Bt

= (A−Av + λI)−1(B−Bv). (5)

The covariance matrices, which need to be calculated to find the optimal weights
using Equation 2, can be calculated for each validation set before starting the
validation procedure. One matrix inversion is needed per possible regularization
parameter to compute the Wt matrix. This is of order O(N3) in a typical imple-
mentation [18]. Calculating the covariance matrices and optimizing the regulariza-
tion parameter now becomes of the order O(N2M +RKN3), with R the number
of regularization parameters. We will refer to this technique as the Covariance
Method.

2.2 Eigen method

We can reduce the computational cost of determining Wt using the eigendecom-
position of the real and symmetric covariance matrix At = A−Av = CtDtC

T
t :

Wt = (CtDtC
T
t + λI)−1(B−Bv)

= (CtDtC
T
t + Ct(λI)C

T
t)−1(B−Bv)

= Ct(Dt + λI)−1CT
t (B−Bv). (6)

Although applied differently, the eigendecomposition has been used to reduce the
computational cost in [20] and [21]. If for each validation set the following matrices
are calculated beforehand, the computational requirements for each λ are further
reduced:

BCt = CT
t (B−Bv)

ACv = CT
t AvCt

BCv = CT
t Bv.

For each λ we then calculate:

WCt = (Dt + λI)−1BCt. (7)

Title Suppressed Due to Excessive Length 5

Since both D and I are diagonal matrices and BCt is a vector, the previous cal-
culation can be done element-wise and is thus of the order N . If we integrate this
in Equation (4) we get:

floss,v,λ = WT
Ct(ACvWCt − 2BCv) + cv.

ACv is a square matrix of dimension NxN and the other matrices are vectors of
size N , so this is a vector-matrix multiplication of the order O(N2). It eliminates
the matrix inversion of Equation (5) for each value of the regularization parame-
ter which is of the order O(N3). However, one eigendecomposition (O(N3) [22])
needs to be computed for each validation set. Using this approach, optimizing the
regularization parameter is of the order O(KN3 +RKN2). If R < N the order of
the algorithm is O(KN3) and thus independent of the number of values for the
regularization parameter R that are tested. If KN < M , which is mostly the case
for large datasets, this is in fact lower than the computational cost of Equation 2.
Finding the optimal regularization parameter and calculating the optimal output
weights is then of the order O(N2M). This means that optimizing the regulariza-
tion parameter adds little to no computational cost to RR for large datasets.

Applying the eigenvalue decomposition to an ill-conditioned matrix results
in numerical errors [22]. This can be avoided by adding λmaxI, with λmax the
largest regularization parameter, to the covariance matrices [22] and subtracting
it afterwards from the eigenvalues Dt.

3 Feature selection

Since RR does not in general yield sparse input features, it is often combined with
feature selection [6–8]. If there are N input features to the RR algorithm and if
Ns and Nr represent the number of selected and removed features in a forward or
backward algorithm, respectively, naive implementations have a complexity of the
order O(RKNN3

sM) and O(RKN3NrM).

FFS and BFS can also be achieved by performing the operation described in
the previous section on sub-matrices of the covariance matrices. Simply removing
the row and column n for the NxN matrices and the row n for the Nx1 matrices,
where n is the feature to be removed, will already be more efficient than the naive
implementation. Selecting the best set of features and regularization parameters
in this way, results in a complexity of the order O(N2M+KNN4

s) and O(N2M+
KN4Nr) for the FFS and BFS respectively. In the following sections we will show
how this can be further reduced. We start with BFS because it is conceptually
easier.

3.1 Backward feature selection

Because the n-th element on the diagonal of At is inversely proportional to the
sensitivity of the output on the n-th input [23,24], one can remove a feature by
setting the n-th diagonal element to∞. If u is a vector containing zeros except for
the n-th element which is equal to 1, we can calculate the reduced matrix inverse

6 Pieter Buteneers et al.

using the Sherman-Morrison formula [25] as follows:

A−1
r = lim

γ→∞
(At + γuuT)−1

= lim
γ→∞

(
A−1
t −

A−1
t γuuTA−1

t

1 + γuTA−1
t u

)

= A−1
t − lim

γ→∞

(
γA−1

t uuTA−1
t

1 + γuTA−1
t u

)

= A−1
t −

A−1
t uuTA−1

t

uTA−1
t u

.

If we replace A by its eigen-decomposition in the previous equation we get:

A−1
r = CD−1CT − CD−1CTuuTCD−1CT

uTCD−1CTu

= C

(
D−1 −

D−1CT
(n,:)C(n,:)D

−1

C(n,:)D−1CT
(n,:)

)
CT ,

with C(n,:) the n-th row of C. If we introduce this in equations (6) and (7) we
find that the output weights with a removed feature become:

WCtr = WCt − (D + λI)−1CT
(n,:)

C(n,:)WCt

C(n,:)(D + λI)−1CT
(n,:)

.

Because D is a diagonal matrix and WCt and C(i,:)
T have dimension Nx1, this

equation is again of the order O(N). Testing the exclusion of 1 feature is thus of the
same order of complexity as testing one ridge-regression parameter, O(N2). If this
is tested for each of the K validation sets, each of the R regularization parameters
and, in the worst case, each of the N features, this becomes O(RKN3), which
is of higher than that of the eigenvalue decomposition. We need to repeat this
process Nr+1 times, with Nr the number of removed features, to find the optimal
set of features. The combined complexity of the BFS and regularization parameter
optimization is thus O(RKN3Nr). This results in a training algorithm with overall
computational complexity O(N2M +RKN3Nr).

3.2 Forward feature selection

When a feature is removed, the n-th row and column of the inverse of the reduced
covariance matrix A−1

r , are all zero, with n the index of the removed feature.
When features are added we can thus start from the matrix Ar. If we want to add
a feature to this matrix we need to compute Ae = Ar +Aa, where Aa is a rank 2
matrix that contains all zeros except for the elements missing in Ar to create the
covariance matrix with the added feature Ae. Because Aa is symmetric and has
rank 2 it can be decomposed in Aa = URUT , with U of dimension (Ns + 1)x2
and R of dimension 2x2, with Ns the number of already selected features. If the

Title Suppressed Due to Excessive Length 7

last row and column of Ar corresponds to the missing features, the elements of U
and R can be easily determined as follows:

R =

(
0 1
1 0

)
UT =

(
0 1

A(n,1:Ns)
1
2A(n,n)

)
,

with A(n,n) the n’th diagonal element of A and A(n,1:Ns) the elements correspond-
ing to the already selected features on the n’th row of A. Using the Sherman-
Morrison-Woodbury formula [22] we can now determine the inverse of Ae as fol-
lows:

A−1
e = (Ar + URUT)−1

= A−1
r −A−1

r U(R−1 + UTA−1
r U)−1UTA−1

r

= C(D−1 −D−1CTU(R−1 + UTCD−1CTU)−1UTCD−1)CT

= C(D−1 −D−1CT
U (R−1 + CUD

−1CT
U)−1CUD

−1)CT ,

with the eigenvalue decomposition of Ar = CDCT and CU = UTC. If we intro-
duce this in equations (6) and (7) we find that the output weights with an added
feature become:

WCte = WCt − (D + λI)−1CT
U (R−1 + CU (D + λI)−1CT

U)−1CUWCt.

D is a diagonal matrix, WCt has dimension Nx1, CU has dimension Nx2 and
R has dimension 2x2. Hence, this expression, when evaluated in the right or-
der, has complexity O(2Ns) = O(Ns), with Ns the number of selected features.
Thus testing the addition of 1 feature or testing 1 regularization parameter has
complexity O(N2

s). The eigenvalue decomposition for each validation set has com-
plexity O(KN3

s). After that, one needs to test the addition of, at most, N features
and R regularization parameters for each validation set, which is of the order
O(RKNN2

s). To find the optimal set of features, this process needs to be repeated
Ns + 1 times. Finding the optimal features and regularization parameter using
FFS is thus of the order O(N2M +KN4

s +RKNN3
s) = O(N2M +RKNN3

s).

4 Class reweighted ridge regression

CRRR was introduced by Toh in [10] to achieve better classification results using
a reweighted form of regression. As opposed to equation 1, CRRR minimizes the
following loss function:

floss = ||Rt(XtWt −Yt)||2 + λ||Wt||2,

with Rt a diagonal matrix that reweights all positive examples by a factor 1√
nt,pos

and all negative samples to 1√
nt,neg

with nt,pos and nt,neg the number of samples

in the training set in the positive and negative class, respectively.

8 Pieter Buteneers et al.

To use CRRR in combination with the proposed algorithm it suffices to cal-
culate covariance matrices, XTX, Xv

TXv, XTY, Xv
TYv and Yv

TYv, inde-
pendently for each class. The positive and negative covariance matrices can be
combined using the following formula:

A =
1

npos
A+ +

1

nneg
A−,

with A+ and A− respectively the positive and negative covariance matrix. After
calculating the covariance matrices the rest of the previously described algorithms
can be executed.

5 Experiments

To show the gain in computational efficiency, we test the previously described
algorithms on a 2.6 GHz Intel Core 2 Quad with 8 GB of RAM. The performance
is evaluated on four different machine learning techniques and several tasks from
literature.

For RR without feature selection we compare the naive implementation, the
implementation that makes use of the covariance matrices and the implementation
that uses the eigen-decomposition. To evaluate the combination of RR and feature
selection we tested the covariance method and the eigen-decomposition combined
with the Sherman-Morisson technique for both FFS and BFS. The naive imple-
mentation was not tested for feature selection since its computation time was more
than 100 days for the classification tasks. Since L1 regularized regression is the
default technique for sparse regression in literature, we compare our technique
with the least angle regression (LARS) algorithm [5], a fast implementation of
the LASSO paradigm2. We also show the performance of optimally-pruned linear
regression (OP-LR) [9], a sparse regression technique that uses LARS for feature
ranking, typically used in OP-ELMs. For completeness we also implemented an
L2-regularised version of OP-LR using our algorithms, which we call optimally-
pruned RR (OP-RR). For each of the tasks and algorithms the fixed computational
cost of the algorithm, the added time to optimize the parameters and feature set,
the condition number of the covariance matrix, the percentage of removed input
features and the test error are given.

5.1 Reservoir computing applied to epileptic seizure detection

Feed-forward neural networks are known for their generalization properties and
ability to learn complex relationships between input features and outputs with
limited training. Recurrent neural networks add recurrent connections and thus
time information to these networks, resulting in a dynamical system that can find
relationships between the desired output and the input history. Traditionally all
interconnection weights between the neurons in an recurrent neural network are
trained. In contrast, RC makes use of a randomly created neural network, called
a reservoir, from which only a single linear output is trained, often using RR.

2 We used the scikits.learn toolbox available from http://scikit-learn.sourceforge.net

Title Suppressed Due to Excessive Length 9

Table 1 Results using RC applied to epileptic seizure detection. The fixed computational
cost, optimization time, percentage of removed features, error and variance on the error are
given using leave-one-time-series-out or in this case 23-fold cross-validation and 60 values for
the regularization parameters. The training set consisted of 345 000 samples and the reservoir
consisted of 200 neurons. The condition number of the covariance matrix is 8.3 · 1011.

RC
RR FFS BFS

LARS
OP

naive cov. eig. cov. eig. cov. eig. LR RR
tfixed 20s 20s 20s 2m 20s
topt 10h 13s 1.0s 5m 4m 1.2d 6m 5m 3m 4m
% rm 0 0 0 98 98 36 36 98 3 45
e (%) 4.8 4.8 4.8 4.7 4.7 4.2 4.2 4.9 4.3 5.1
std 3.3 3.3 3.3 3.4 3.4 2.9 2.9 3.9 3.0 3.8

That way the long training time and stability issues of regular recurrent neural
networks are avoided without losing the desired generalization abilities. For more
information on RC we refer to literature [11].

To show the time gain achieved with the proposed training technique and
the performance of feature selection in combination with RC, we tested it on an
epileptic seizure detection task using the detection system presented in [14]. It
uses one wavelet feature extracted from EEG as input for a 200 neuron reservoir.
The training set consists of 23 time-series of 5 minutes or 15 000 samples from
23 different subjects. To improve classification results we use CRRR to train the
reservoir. Table 1 shows the test error given as balanced error rate (BER)3 with the
standard deviation over the 23 subjects in the test set. The optimization times were
achieved using leave-one-time-series-out or in this case 23-fold cross-validation for
60 values of the regularization parameter. Because of the high correlation between
subsequent data points, leave-one-time-series-out is the most suited way to perform
leave-one-out cross-validation for time-series [3].

5.2 Windowed ridge regression applied to epileptic seizure detection

To apply RR on time-series windowed RR is often used. The input vector, which
typically contains the current input samples, is then extended with a windowed
representation of the past input samples. To test windowed RR in combination
with the presented algorithms we apply it to the same epileptic seizure detection
dataset as used in the previous section. Instead of 1 wavelet feature we now extract
4 different wavelet features from the EEG. Each of these features resulted in 3000
samples per validation set. As input we use the last 5 seconds, or 50 samples, for
each of these 4 features. The results for leave-one-time-series-out cross-validation
and a set of 60 regularization parameter values are given in Table 2. Since 4
features are used instead of 1, the test error is not comparable with the previous
experiment.

3 The average between the error on the sensitivity and the specificity

10 Pieter Buteneers et al.

Table 2 Results using windowed RR applied to epileptic seizure detection. The fixed com-
putational cost, optimization time, percentage of removed features, error and variance on the
error are given using leave-one-time-series-out or in this 23-fold cross-validation and 60 values
for the regularization parameters. The training set consisted of 69 000 samples and contained
200 feature vectors. The condition number of the covariance matrix is 6.9 · 104.

windowed RR FFS BFS
LARS

OP
RR naive cov. eig. cov. eig. cov. eig. LR RR
tfixed 3.9s 3.9s 3.9s 6s 3.9s
topt 2h 13s 1.0s 1.4h 41m 1.8d 6m 4s 1.5m 1.8m
% rm 0 0 0 67 67 56 56 74 80 80
e (%) 10.1 10.1 10.1 8.3 8.3 8.2 8.2 5.1 8.8 7.7
std 7.1 7.1 7.1 4.2 4.2 3.3 3.3 2.3 5.8 4.7

5.3 Fixed-size least-squares support vector machines applied to the Adult dataset

In contrast to the more common SVM, the LS-SVM uses a quadratic loss-function
instead of the hinge loss and is conceptually easier, as training is reduced to solving
a set of linear equations [12]. A disadvantage of this approach is that LS-SVMs
do not result in sparse solutions. Especially with large datasets the computational
demands of training LS-SVMs can be high. To cope with large datasets FS-LS-
SVMs were introduced in [15]. Instead of choosing all the data points as support
vectors, only the N data points that result in the largest Renyi entropy are se-
lected. Using these data points a Gramm-matrix K̃ is constructed and a Nyström
approximation is made using the eigendecomposition of K̃:

K̃ = CDCT

This allows the creation of a feature vector x in primal space for a given data
point u using the following formula:

x(i) =
√
N

N∑
j=1

C(i,j)

D(j,j)
k(u, Ũ(j,:)),

where x(I) is feature i of data point x and k(u, Ũ(j,:)) is the kernel function of
the input vector u and the j-th selected data point. This formula can be used on
the entire training set U to generate the input data X. For more details on this
process we refer to [12] and [19].

We apply the FS-LS-SVM approach to the UCI Adult dataset as described
in [15] and the heat exchanger task as described in [16]. The first task is a classifi-
cation task and the second is a regression task. The LS-SVM-LAB Matlab toolbox4

was used to determine the optimal subset and to calculate the features in primal
space, our algorithms were used for training. The results of this experiment us-
ing 10-fold cross-validation and a set of 50 possible values for the regularization
parameter are given in Tables 3 and 4, respectively.

4 Available at http://www.esat.kuleuven.be/sista/lssvmlab/toolbox.html

Title Suppressed Due to Excessive Length 11

Table 3 Results FS-LS-SVM’s applied to the UCI Adult dataset. The fixed computational
cost, optimization time, percentage of removed features and misclassification error are given
using 10-fold cross-validation and 50 values for the regularization parameters. The training set
consisted of 16 281 samples and contained 400 feature vectors. The condition number of the
covariance matrix is 9.1 · 104.

FS-LS RR FFS BFS
LARS

OP
SVM naive cov. eig. cov. eig. cov. eig. LR RR
tfixed 1.4s 1.4s 1.4s 1.6s 1.4s
topt 11m 15s 2s 23h 1.3h 4.5d 16m 18s 4m 4m
% rm 0 0 0 44 44 47 47 87 30 11
e (%) 15.0 15.0 15.0 15.0 15.0 15.0 15.0 16.3 28.5 15.0

Table 4 Results FS-LS-SVM’s applied on the heat exchanger task. The fixed computational
cost, optimization time, percentage of removed features and normalized root mean squared
error multiplied by 10 are given using 10-fold cross-validation and 50 values for the regulariza-
tion parameters. The training set consisted of 3800 samples and contained 100 feature vectors.
The condition number of the covariance matrix is 1.7 · 108.

FS-LS RR FFS BFS
LARS

OP
SVM naive cov. eig. cov. eig. cov. eig. LR RR
tfixed 0.008s 0.008s 0.008s 0.009s 0.008s
topt 2m 0.49s 0.046s 5m 29s 28m 8.6s 0.9s 1.1s 2s
% rm 0 0 0 96 96 53 53 97 29 15
e×10 6.20 6.20 6.20 8.15 8.15 6.20 6.20 12.7 9.32 6.87

5.4 Extreme learning machine applied to regression datasets

Guang-Bin Huang et al. proposed in [13] a fast algorithm to train the weights
of the hidden neurons in feed-forward neural networks called ELMs. The weights
from the input to the hidden layer are randomly initialised, and similarly to RC,
only the weights from the hidden layer to the output are trained using regression.
In practise an ELM performs a non-linear mapping ψ of the input vector u to
result in the following formulation for the feature vector:

x = ψ(u)

In [9] an extension to this algorithm was proposed called OP-ELMs which added
pruning of the hidden neurons to the ELM approach. The pruning algorithm, in
this work referred to as OP-LR, first ranks all the hidden neurons using LARS.
The best combination of features is then selected using cross-validation. For more
details on ELMs and OP-ELMs we refer to literature [13] and [9].

OP-ELMs have been shown to render good results on several regression datasets5

in [9]. We used the OP-ELM toolbox6 to generate an ELM with 100 hidden neu-
rons. Our implementations were used to train the linear readout of the network
and evaluate the error. To improve performance direct connections from the input
to the output were added to the processed data. The results of these experiments
using 20-fold cross-validation and a set of 80 possible regularization parameters are
shown in Tables 5 and 6. Since the regression datasets are rather small compared

5 Available at http://www.liaad.up.pt/∼ltorgo/Regression/DataSets.html
6 Available at http://research.ics.tkk.fi/eiml/software.shtml

12 Pieter Buteneers et al.

Table 5 The normalized root mean squared error multiplied by 10, the percentage or removed
input features and the average optimization time for the ELM regression tasks.

ELM
RR FFS BFS

LARS
OP

naive cov. eig. cov. eig. cov. eig. LR RR

Abal
e×10 6.77 6.77 6.77 6.72 6.72 6.65 6.65 7.80 6.74 6.76
% rm 0 0 0 80 80 73 73 92 39 52

Aile
e×10 4.32 4.32 4.32 4.30 4.30 4.16 4.16 8.42 4.24 4.37
% rm 0 0 0 92 92 30 30 95 37 2

Bank
e×10 6.74 6.74 6.74 6.79 6.79 6.73 6.73 6.76 6.76 6.76
% rm 0 0 0 93 93 66 66 72 79 79

Canc
e×10 5.11 5.11 5.11 4.09 4.09 4.76 4.76 5.25 5.76 5.76
% rm 0 0 0 94 94 81 81 92 94 94

Elev
e×10 3.89 3.89 3.89 4.18 4.18 3.89 3.89 4.59 3.97 3.89
% rm 0 0 0 71 71 38 38 72 18 1

Pric
e×10 4.42 4.42 4.42 2.98 2.98 3.86 3.86 189 4.60 4.60
% rm 0 0 0 98 98 77 77 4 76 76

Serv
e×10 5.13 5.13 5.13 4.87 4.87 4.91 4.91 9.91 5.65 5.13
% rm 0 0 0 92 92 78 78 94 88 2

Average topt 7m 0.3s 0.1s 5m 4m 4h 1.3m 0.7s 5s 17s

Table 6 The fixed computational cost, condition number of the covariance matrix, number
of features and the number of samples in the trainings set for the ELM regression tasks.

ELM
tfixed Cond. # feats # samp

RR LARS nr. (N) (M)
Abal 0.016s 0.14s 9.0e11 108 2785
Aile 0.055s 0.52s 6.5e12 131 7154
Bank 0.028s 0.29s 2.3e11 132 4500
Canc 0.0062s 0.060s 1.4e13 117 129
Elev 0.038s 0.47s 1.4e11 115 8752
Pric 0.0060s 0.054s 1.4e18 105 106
Serv 0.0061s 0.035s 1.9e19 103 111

to the classification datasets and because of the high similarity in optimization
time, only average times are given in Table 5.

6 Discussion

Because the big-O notation does not always provide a good estimation for the
real computational cost of an algorithm, we did several experiments on datasets
from literature. From Tables 1 to 5, we can conclude that the algorithms pre-
sented in this paper are significantly faster than the naive implementation and
the covariance method. For the regularization parameter optimization, FFS and
BFS, computation times were improved by one order of magnitude for the small
datasets and up to 4 orders of magnitude for the large datasets. Because of this
reduction in computational cost, feature selection can be executed within a reason-
able time frame for these datasets. Even though for the FS-LS-SVM classification
task, the feature selection procedure required more than 1 hour, this is relatively
short compared to the 14 hours needed to find the subset of 400 data points with
the highest Renyi entropy. From the regularization parameter optimization in the
RC and windowed RR tasks we can also deduct that in this case the calculation

Title Suppressed Due to Excessive Length 13

time is independent of the size of the dataset but scales proportionately to the
number of features.

The results also show that there is no difference between the task performances
achieved by the ‘naive’, ‘covariance’ and ‘eigen’ implementations even for covari-
ance matrices with a high condition number. This is because the same regulariza-
tion parameter is chosen by all methodologies and the same features are removed.
However from Tables 5 and 6 we can conclude that the LARS algorithm under-
performs when the covariance matrix has a large condition number.

As shown in Tables 1 to 5, the combination of feature selection and RR can lead
to better test results. The error is at least equal or better than that of LARS, OP-
LR and OP-RR on most tasks. Usually BFS performs better than FFS. This is due
to the fact that FFS algorithms have difficulty seeing the constructive correlation
between separate features [4]. As a side effect, FFS often yields sparser solutions.
For the FS-LS-SVMs tasks and the Elevator task there is no performance increase
nor decrease using BFS. Tables 3 and 5 show, however, that more than 40% of
the features are removed, which results in a much faster execution time on the
test data. For the seizure detection task using windowed RR we noticed that the
presented algorithms were outperformed by the LARS algorithm, even though
they both removed all time windows of 2 irrelevant wavelet filters. This shows
that L1-regularization is better suited for this task.

Most cross-validation algorithms discussed in literature [2,3,7,8] require that
the full Gram matrix7 fits in the system memory. This matrix has a dimension
MxM which rapidly becomes too large for large datasets. The presented algo-
rithms on the other hand limit the memory use to O(N2) variables, which is
independent of the size of the dataset.

7 Conclusion

Calculating the output weights using RR has a computational complexity ofO(N2M)
with N the number of input features and M the number of data samples in
the training set. To optimize the regularization parameter using cross-validation,
the algorithm presented in this paper adds a computational cost of complexity
O(KN3), with K equal to the number of validation sets. The order is independent
of the number of regularization parameter values R if R < N . For large datasets,
such that KN < M , we can conclude that the additional cost of our algorithm is
smaller than the cost of the original RR algorithm. This is in strong contrast with
the, to our knowledge, most commonly used naive implementation of optimizing
the regularization parameter which has a computational cost of O(RK2N2M).

RR can be combined with a FFS of BFS algorithm to result in a sparse solu-
tion. Optimizing the optimal set of features and selecting the optimal regulariza-
tion parameter results, in a naive implementation, in an algorithm of complexity
O(RKNN3

sM) and O(RKN3NrM) for respectively FFS and BFS. The algorithms
we propose in this paper have a computational complexity of O(RKNN3

s) and
O(RKN3Nr), which is M times faster than the naive implementation and thus
independent of the size of the training set.

7 In our notation the Gram matrix is calculated as follows: XXT .

14 Pieter Buteneers et al.

To show the computational cost of the proposed algorithms and the perfor-
mance of ridge regression in combination with feature selection, we applied them
to different tasks and machine learning techniques from literature. We applied RC
and windowed RR to an epileptic seizure detection task, FS-LS-SVMs to the UCI
Adult dataset and Heat Exchanger task, and ELMs to several regression datasets
from literature. Results show that feature selection results a lower error or at least
a reduction of the number of features needed to achieve the same performance.
BFS often outperforms FFS and even Lasso on all but one task. However, FFS
results in sparser output weights. The regularization parameter optimization algo-
rithm and the feature selection algorithms reduced the computational cost by one
order of magnitude for small datasets and over 4 orders of magnitude for larger
datasets, compared to naive implementations.

Acknowledgement

The work presented in this paper is funded by a Ph.D. grant of the Institute for
the Promotion of Innovation through Science and Technology in Flanders (IWT-
Vlaanderen), a Ph.D. fellowship of the Research Foundation - Flanders (FWO), the
EC FP7 project ORGANIC (FP7-231267), the BOF-GOA project Home-MATE
funded by the Ghent university Special Research Fund, the Interuniversity Attrac-
tion Poles Program (Belgian Science Policy) project Photonics@be IAP6/10 and
the FWO project RECAP.

References

1. A.N. Tikhonov and V. Y. Arsenin. Solutions of Ill-Posed Problems. Winston and Sons,
1977.

2. G. Cawley and N. Talbot. Fast exact leave-one-out cross-validation of sparse least-squares
support vector machines. Neural Networks, 17:1467–1475, 2004.

3. T. Pahikkala, J. Boberg, and T. Salakoski. Fast n-fold cross-validation for regularized least-
squares. In Proceedings of the Ninth Scandinavian Conference on Artificial Intelligence
(SCAI), 2006.

4. I. Guyon and A. Elisseeff. An Introduction to Variable and Feature Selection. Journal of
Machine Learning Research, 3:1157–1182, 2003.

5. B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The Annals
of Statistics, 32:407–451, 2004.

6. X. Dutoit, B. Schrauwen, J. Van Campenhout, D. Stroobandt, H. Van Brussel, and M. Nut-
tin. Pruning and regularization in reservoir computing. Neurocomputing, 72:1534–1546,
2009.

7. F. Ojeda, J. Suykens, and B. De Moor. Low rank updated LS-SVM classifiers for fast
variable selection. Neural Networks, 21:437–449, 2008.

8. T. Pahikkala, A. Airola, and T. Salakoski. Feature selection for regularized least-squares:
new computational short-cuts and fast algorithmic implementations. In IEEE Interna-
tional Workshop on Machine Learning for Signal Processing, 2010.

9. Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse. Op-elm: Optimally
pruned extreme learning machine. IEEE Transactions on Neural Networks, 21:158–162,
2010.

10. K. A. Toh. Deterministic Neural Classification. Neural Computation, 20:1565–1595, 2008.
11. M. Lukoševičius and H. Jaeger. Reservoir computing approaches to recurrent neural net-

work training. Computer Science Review, 3(3):127–149, 2009.
12. J. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle. Least Squares

Support Vector Machines. World Scientific Publishing, 2002.

Title Suppressed Due to Excessive Length 15

13. G. Huang, Q. Zhu, and C. Siew. Extreme learning machine: Theory and applications.
Neurocomputing, 70:489–501, 2006.

14. P. Buteneers, D. Verstraeten, P. van Mierlo, T. Wyckhuys, D. Stroobandt, R. Raedt,
H. Hallez, and B. Schrauwen. Automatic detection of epileptic seizures on the intra-
cranial electroencephalogram of rats using reservoir computing. Artificial Intelligence in
Medicine, 2011. (in press).

15. L. Hoegaerts, J. Suykens, J. Vandewalle, and B. De Moor. Primal space sparse kernel
partial least squares regression for large scale problems. In IEEE International Joint
Conference on Neural Networks, 2004.

16. M. Espinoza, J.A.K. Suykens, and B. De Moor. Least squares support vector machines
and primal space estimation. In Decision and Control, 2003. Proceedings. 42nd IEEE
Conference on, volume 4, pages 3451–3456. IEEE, 2003.

17. D. Verstraeten, B. Schrauwen, S. Dieleman, P. Brakel, P. Buteneers, and D. Pecevski. Oger:
Modular learning architectures for large-scale sequential processing. 2011. (in press).

18. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in FORTRAN:
The Art of Scientific Computing, Second Edition. Cambridge University Press, 1992.

19. K. De Brabanter, J. De Brabanter, J. Suykens, and B. De Moor. Optimized fixed-size
kernel models for large data sets. Computational Statistics & Data Analysis, 54:1484–
1504, 2010.

20. K. Pelckmans, J. De Brabanter, J.A.K. Suykens, and B. De Moor. The differogram: Non-
parametric noise variance estimation and its use for model selection. Neurocomputing,
69(1):100–122, 2005.

21. K. Pelckmans, J.A.K. Suykens, and B. De Moor. Additive regularization trade-off: Fusion
of training and validation levels in kernel methods. Machine Learning, 62(3):217–252,
2006.

22. G. Golub and C. Van Loan. Matrix computations. The Jonhs Hopkins University Press,
1989.

23. P. Holland. Weighted Ridge Regression: Combining Ridge and Robust Regression Meth-
ods. Technical Report 0011, National Bureau of Economic Research, Inc., 1973.

24. D. Allen. The Relationship Between Variable Selection and Data Augmentation and Slow
Feature Analysis. Technometrics, 16, 1974.

25. J. Sherman and W. J. Morisson. Adjustments of an Inverse Matrix Corresponding to
a Change in One Element of a Given Matrix. The Annals of Mathematical Statistics,
21:124–127, 1950.

