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Abstract

To account for the findings obtained in voluntary task switching, this article describes and 

tests the chain-retrieval model.  This model postulates that voluntary task selection involves 

retrieval of task information from long-term memory, which is then used to guide task selection and 

task execution.  The model assumes that the retrieved information consists of acquired sequences 

(or chains) of tasks, that selection may be biased towards chains containing more task repetitions 

and that bottom-up triggered repetitions may overrule the intended task.  To test this model, four 

experiments are reported.  In Studies 1 and 2, sequences of task choices and the corresponding 

transition sequences (task repetitions or switches) were analyzed with the help of dependency 

statistics.  The free parameters of the chain-retrieval model were estimated on the observed task 

sequences and these estimates were used to predict autocorrelations of tasks and transitions.  In 

Studies 3 and 4, sequences of hand choices and their transitions were analyzed similarly.  In all 

studies, the chain-retrieval model yielded better fits and predictions than statistical models of event 

choice.  In applications to voluntary task switching (Studies 1 and 2), all three parameters of the 

model were needed to account for the data.  When no task switching was required (Studies 3 and 

4), the chain-retrieval could account for the data with one or two parameters clamped to a neutral 

value.  Implications for our understanding of voluntary task selection and broader theoretical 

implications are discussed.

Keywords: voluntary task switching, task selection, cognitive control, random generation
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A Chain-Retrieval Model for Voluntary Task Switching

1. Introduction

Goal-directed behavior relies on a determination to achieve the current goal, whilst being 

adaptive to changes in the environment.  This balance between goal persistence, on the one hand, 

and goal flexibility, on the other hand, is achieved by means of executive control (e.g., Logan & 

Gordon, 2001; Norman & Shallice, 1986).  Executive control processes are required to ensure that 

behavior consistent with the goal is produced, while remaining sensitive to changes in the 

environment.  Such changes may require a shift to another goal, in which case the system must be 

flexible enough to release the previous goal and install a new one adapted to the environmental 

change.  The present study focuses on an essential feature of such cognitive flexibility, namely the 

processes underlying the behavioral choice between different goals or tasks.

Task switching has been the preferred paradigm to study such flexible changes in the 

laboratory (see Kiesel et al., 2010; Monsell, 2003; Vandierendonck, Liefooghe, & Verbruggen, 

2010, for reviews).  Many studies have shown that task switching comes with a cost, which is 

indicated by longer reaction times and higher error rates on task-switch trials than on task-repeat 

trials.  This switch cost has been attributed to task-set reconfiguration processes, interference, or 

both (e.g., Allport, Styles, & Hsieh, 1994; Mayr & Kliegl, 2000; Meiran, 1996, 2008; Rogers & 

Monsell, 1995; Waszak, Hommel, & Allport, 2003).  In most task-switching studies, participants are 

instructed when to repeat and when to switch.  Behavioral flexibility, however, also involves the 

possibility to choose voluntarily for a particular course of action or for a particular goal.  Such goal-

selection or task-selection processes can be examined with the voluntary task switching (VTS) 

procedure (Arrington & Logan, 2004, 2005).  This procedure seems to tap into the same behavioral 

mechanisms that are studied in the traditional task-switching procedures as testified by the finding 

that task switch costs are driven by top-down (Arrington & Logan, 2005; Mayr & Bell, 2006) as well 

as bottom-up factors (Arrington, 2008; Arrington & Rhodes, 2010; Mayr & Bell, 2006; Yeung, 2010).  

Importantly, the VTS procedure was designed to allow voluntary choice or selection of a particular 

task or task goal by giving subjects the freedom to select and execute the task of their choice on 

every trial.  This makes it an interesting procedure because it not only provides the usual task-
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performance measures, such as the switch cost, but also enables investigation of the 

characteristics of the task choices made over a series of trials.  The latter feature allows for the 

study of processes involved in choosing or selecting a task to be performed.  Understanding the 

processes underlying voluntary choice of courses of action is of paramount theoretical importance. 

even though thus far not so much is known about these processes.  

Previous research using the VTS procedure has shown that people tend to repeat the same 

task more often than expected on the basis of chance (Arrington & Logan, 2004).  This is known as 

the task-repetition bias, and consists of a preference of task repetitions over task switches.  This 

repetition bias becomes weaker when more time is available to select a task (i.e., when the 

response-stimulus interval (RSI) increases; Arrington & Logan, 2005).  This observation suggests 

that choosing to perform a task depends—at least to some extent—on endogenous (top-down) 

time-consuming task selection processes (see also e.g., Arrington & Logan, 2005; Arrington & 

Yates, 2009; Liefooghe, Demanet, & Vandierendonck, 2009).  However, bottom-up factors clearly 

play an important role as well, especially when the amount of time available to select a task is 

small. This has been shown in several ways: the task repetition bias is affected by priming due to 

stimulus repetitions (Mayr & Bell, 2006), stimulus availability (Arrington, 2008), previously learned 

stimulus-task associations (Arrington, Weaver, & Pauker, 2010; Demanet, Verbruggen, Liefooghe, 

& Vandierendonck, 2010), processing efficiency (Arrington & Rhodes, 2010), and differences in 

task difficulty (Liefooghe, Demanet, & Vandierendonck, 2010; Yeung, 2010).  Furthermore, the 

presence of a working memory load that interferes with endogenous control processes increases 

the task-repetition bias in the presence of stimulus repetitions (Demanet et al., 2010).  In sum, task 

choice seems to result from an interaction between exogenous (bottom-up) influences and 

endogenous (top-down) cognitive control operations.

The present study aims to contribute to our understanding of the processes involved in task 

choice by elaborating and testing a model of task choice in a context in which participants 

voluntarily and frequently switch between tasks.  When participants are free to select any of a 

range of tasks for execution, in the absence of specific constraints, task switches are rarely 

selected.  In a study of Kessler, Shencar and Meiran (2009), for example, proportions of 
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spontaneously selected switches were rather low (between 0.04 and 0.13).  Because the switch 

cost is measured by comparing repetition and switch trials, for statistical reasons a less skewed 

distribution of switches and repetitions is needed.  In order to approach a more balanced 

distribution, instructions in VTS typically stress that the tasks should be selected (and performed) 

about equally often, and that tasks should be selected independently from the previous trial so as 

to form an unpredictable series of choices.  This is usually clarified by the coin-tossing metaphor 

(imagine that on each trial, a coin with one task name on one side and the other task name on the 

other side is flipped to decide which task to perform).  These instructions have been frequently 

used in VTS and result in distributions with 20 to 50 percent switches.  

Under the constrained instructions, voluntary task choice seems similar to free and 

independent selection of events and responses, which has traditionally been studied in the human 

random-generation literature.  In a typical random-generation experiment, participants are 

requested to generate sequences of outcomes that would be obtained by repeatedly tossing a coin 

or throwing dice.  Furthermore, the heuristics of availability (Baddeley, 1996) and 

representativeness (Rapoport & Budescu, 1997) seem to underlie random event-generation and 

voluntary task choice (see  Arrington & Logan, 2005, p. 699).  This suggests that independent 

selection of tasks and independent selection of events are based on common underlying 

processes.  

In view of all this, our purpose was to develop a model that not only accounts for voluntary 

task choice behavior but also for independent event selection.  Although this may seem 

straightforward, the model must be able to account for some differences between voluntary task 

selection and independent event generation.  A first important difference between the selection of 

tasks and the selection of events is that patterns of task selection show a repetition bias (see 

above), whereas other patterns of event selection typically show an alternation bias which is  a 

tendency to generate more alternations than repetitions and to produce more frequently short runs 

of repetitions of the same event (Lopes, 1982; Lopes & Oden, 1987; Neuringer & Allen, 1986; 

Rapoport & Budescu, 1992; Treisman & Faulkner, 1987; Wagenaar, 1972). A second difference 

concerns the context in which selection of tasks and events takes place.  In VTS, the selected task 
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has to be applied, whereas no further consequences are associated with the selection of an event.  

Because in VTS the selected task has to be executed, bottom-up factors that are external to the 

process of task selection, such as stimulus repetition priming, may directly influence the selection 

process (Demanet et al., 2010; Mayr & Bell, 2006; Orr & Weissman, 2011).  Furthermore, 

variations in the demands placed on top-down control during the execution of a task may equally 

affect the selection process.  If the selected task is likely to result in a performance error or takes 

more time to execute, the probability of selecting this particular task may become smaller.  The 

experience that a particular task is easier (i.e., fewer errors and shorter RTs)  than another one, 

may affect the decision to repeat that task or to switch to the other task (Liefooghe et al., 2010).  

Similarly, task repetitions are likely to be perceived as easier than task switches (also in VTS, 

Arrington & Logan, 2005), which could explain the preference for task repetitions over task 

switches. The preference for selecting the easier tasks or choosing task repetitions is a case of 

going for the least mental effort (Botvinick, 2007; Hull, 1943), which can be defined as “a 

preference for activities or strategies that minimize cognitive demand” (Botvinick & Rosen, 2009, p. 

835).  

 Thus, our model assumes that task selection and event selection are based on the same 

selection mechanism.  However, these mechanisms are biased by events external to selection, 

namely experience-based preferences for particular tasks or events, and bottom-up triggered 

intrusions leading to repetition of the same task or event.  Such biases are more likely to occur in 

VTS than in event selection, because participants have to execute the selected tasks in the VTS 

paradigm.

2. Modeling task selection processes

For the mechanism common to task and event selection, already existing models of event 

selection may provide a useful basis.  Some of these models use Markov chains to account for 

biased event selection (Budescu, 1987; Vandierendonck, 2000a).  Such models—in particular 

those that can predict perseverations—could be useful to describe what goes on in VTS.  

However, it will become clear later in this article that these models are insufficient to account for 

task-choice processes. A completely different type of model was proposed by Rapoport and 
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Budescu (1997).  It is most explicit in specifying the processes involved in selection.  According to 

this model, people do not represent all possible combinations of events that may occur when 

generating sequences of independent events, but only the events that are believed to be 

representative of the situation at hand.  This particular feature may be considered as a bias in 

conceptualization of the situation; it can also be interpreted as a consequence of limited cognitive 

capacity to overview all possibilities.  This model further assumes that events are selected while a 

monitoring process follows retrospectively within a window of a particular width (capacity 

constraint) whether the part of the generated sequence within that window deviates from 

independence.  When the monitoring process detects a deviation from this subjective idea of 

independence, the next event will be selected so as to restore the personʼs conception of statistical 

independence within the window.  This model provides an excellently fitting description of some 

forms of independent event selection.  However, because task selection in VTS has been shown to 

be susceptible to bottom-up intrusions (e.g., Arrington et al., 2010; Demanet et al., 2010; Mayr & 

Bell, 2006), application of the model of Rapoport and Budescu to task choice in VTS leads to some 

difficulties.  The intruding bottom-up events, which essentially consist of repetitions of the same 

task executed on the previous trial, should show up in the window of generated tasks, and 

consequently, the monitoring mechanism should detect these occurrences as deviations from the 

personʼs conception of statistical independence (representativeness).  This should then result in a 

corrective action, namely the selection of as many task switches as needed to restore the 

sequence, and an alternation tendency would still be present in the end.  Clearly, the problem 

arises because the monitoring mechanism of the model inspects retrospectively the recent window 

of the sequence.  The problem does not arise, however, if the generation mechanism would elicit 

prospectively the presence of repetitions by selecting series of independent events in advance.  In 

what follows, we describe a model of task selection in VTS that replaces the retrospective 

monitoring mechanism in the Rapoport and Budescu (1997) model by a mechanism that selects a 

sequence of events in advance.
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2.1.  Modeling assumptions

The model proposed here builds on the idea of Rapoport and Budescu (1997) that when 

humans freely select independent events, they do not consider all possible combinations of events; 

instead they rely on the representativeness of the sequence, which means that they prefer 

sequences that are balanced (equiprobable events) and that the order in which events appear is 

representative of randomness (unsystematic orderings).  In line with the considerations regarding 

the differences between event and task selection, we further adopt the hypotheses that (1) task 

performance difficulty affects the outcomes of the task-selection mechanism (Liefooghe et al., 

2010; Yeung, 2010) and (2) that bottom-up events such as repetition priming compete with the top-

down task-selection processes (Demanet et al., 2010; Mayr & Bell, 2006).  First, we describe the 

event/task selection mechanism.  Next, we discuss how the outcome of this mechanism can be 

modified by task difficulty and bottom-up events.

In line with the view of Arrington and Logan (2005), the instantiation of the task-selection 

mechanism calls upon the availability heuristic.  This heuristic was used in studies of independent 

event selection and entails that the selected tasks are retrieved from long-term memory (cf. 

Baddeley, 1996).  Because most studies of task switching use only two tasks, here we restrict the 

development of the model to situations in which there are two tasks.  Selection of one task (say 

task A) on one trial may prime retrieval of the same task again on the next trial (which affects again 

availability; e.g., Baddeley, Emslie, Kolodny, & Duncan, 1998).  In order not to end up in long and 

dependent series of the same task, the tendency to select task A must occasionally be suppressed 

in order to allow selection of the other task (B) and achieve more ore less independent events (see  

Mayr & Bell, 2006). Soon, participants could then learn that they could work with short series of 

tasks, such as AABB, ABBA, and ABAB, to generate task sequences.  Because of the large 

amount of mental effort required on each trial to select a new task independently and to avoid 

repetitions by priming while being engaged in executing the tasks, participants will be motivated to 

learn action sequences that are less effortful.  Working with short sequences diminishes the 

burden of checking independence of the selected tasks on each trial.  We propose, therefore, that 

during the early stages of the experiment, the participants learn to select such short sequences by 
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retrieving a sequence from long-term memory (LTM) on the basis of the task names (cf. Schneider 

& Logan, 2007).  Initially, it may be necessary to produce the sequences one element at a time.  As 

practice progresses, the sequences are stored in LTM as a chain of task names and participants 

would soon use such sequences to guide task-selection behavior.  

These chains are continuously applied throughout the experimental session, but their 

selection from LTM is biased by a number of factors.  The following assumptions are central to the 

development of the model.

(1) Subset of chains.  In accordance with the central hypothesis of Rapoport and Budescu 

(1997), only a subset of all possible two-task sequences of a certain length are stored (the 

example above shows the subset for sequences of length 4): each of these sequences is 

balanced so that each of the two tasks is equally frequent.  Due to these characteristics, these 

sequences are biased towards an alternation bias as predicted by the model of Rapoport and 

Budescu (1997).

(2) Preference for ʻeasierʼ chains.  The application of the generated chain of tasks to the 

targets may have implications for preferences among chains such that tasks that elicit fewer 

errors and that are executed more swiftly (easier tasks) are preferred to tasks that lead to 

more errors or that require longer response times, i.e., tasks that are more difficult (Liefooghe 

et al., 2010).  Similarly, some transitions between tasks are easier in that they take less time 

and evoke less errors; these ʻeasierʼ transitions are preferred to difficult transitions.  As task 

switches are generally more difficult than task repetitions, we assume that the experience of 

differences in difficulty between tasks or between task transitions will bias the selection of 

chains from LTM towards chains that are on average easier.  Because the switch cost is a 

general phenomenon in task switching, in the model we will only consider the preference for 

chains that can be executed with less effort, namely the chains with less switches (cf. the law 

of least mental effort; Botvinick, 2007; Botvinick & Rosen, 2009).  This principle leads to a 

preference of chains like AAABB (only one switch) over AABAB  (three switches).  It is also 

possible to further distinguish between switches that are easier and those that are more 
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difficult (Kessler et al., 2009; Yeung, 2010), but in the present paper we will ignore these as 

well as the difficulty differences at the level of tasks.  

(3) Limited working memory capacity.  In order to monitor the produced sequence of events, 

the model of Rapoport and Budescu (1997) assumes that a window of the sequence is 

maintained in short-term memory.  Our model does not call on monitoring processes, but there 

is still a window of generated events that has to be maintained in working memory to guide 

task selection over the next trials. We assume, therefore, that the size of this window is 

constrained by working memory capacity (e.g., Baddeley et al., 1998; Baddeley, 1966).  Such 

constraint is also evident in the experiment on the task span reported by Logan (2004b) which 

revealed that the task span (the number of tasks that could be remembered and correctly 

executed) was essentially not different from the memory span (the number of tasks that could 

be remembered).  This proposal is also consistent with the findings reported by Bryck and 

Mayr (2005) which suggest that verbalization of sequential information in task switching is 

critical for maintenance of sequential courses of actions or sequential plans.  These and other 

studies (Baddeley, Chincotta, & Adlam, 2001; Emerson & Miyake, 2003; Miyake, Emerson, 

Padilla, & Ahn, 2004; Saeki & Saito, 2009) strongly indicate that working memory forms a 

basis for task switching without implying that shortage of working memory capacity would 

completely disrupt task-switching performance.

(4) Coupling chains.  Thus far we propose that short chains of tasks are retrieved from LTM.  

After using a chain to guide task execution on the series of targets presented, a new chain 

must be retrieved.  The issue here is how the new chain is coupled to the previous one.  

Given that priming may violate representativeness of the produced sequence (cf. supra), this 

can be achieved in three different ways.  One possibility is that the next chain is concatenated 

to the previous one (e.g., AABB followed by ABBA leads to AABBABBA).  In the example, the 

end (B) of the first chain is coupled to the head (A) of the second chain, resulting in a task 

switch.  If the second chain started with a B, a repetition would have occurred. Ideally, each 

time a new chain is selected, this would occur independently taking into account the 

preference for the easier chains.  Thus repetitions and switches would be added in a balanced 
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way.  However, such a balance is difficult to achieve because the last task executed may 

prime chains that begin with the same task (cf. supra).  To ensure a balance of repetitions and 

switches, top-down control over such repetition priming would be needed.  A second 

possibility avoids the need for top-down control, so that the last element of the chain primes 

chains that begin with the same element.  Combined with simple concatenation, this would 

result in the addition of a repetition at every chain junction.  This systematic addition of a 

repetition between every pair of chains would result in an overall sequence that violates the 

representativeness principle that lays at the basis of each individual chain (Rapoport & 

Budescu, 1997).  There is a third possibility that does not have the drawback of the previous 

one.  It shares the priming assumption of the previous possibility, but when the last task of the 

chain is reached (the last task to be executed), this task is not executed but instead primes 

the chains starting with the same task.  In other words, arriving at the last task (A), this task 

primes chains that start with an A, and thus chains such as ABBA, ABAB and AABB may 

become active.  This simplifies selection of a chain as only half of the chains stored in LTM are 

activated.  One of these is selected, and used to guide behavior in the following trials.  For 

example, at the end of the chain BBAA, the chain ABAB may now be selected, resulting in the 

execution of BBA(AA)BAB, where the task between parentheses is executed only once as it 

was used to prime the next chain.  Because only the last of the three possible chain coupling 

methods guarantees maintenance of the representativeness of the composite sequence 

without the need for extra assumptions about top-down control, this coupling is preferred in 

the present modeling.

2.2.  Elaboration

These assumptions are now elaborated in a framework that defines a family of formal 

models.  We will define three parameters, m, b, and r, which express quantitatively the operation of 

underlying processes.

The first parameter, m, expresses the chain length that the person prefers.  As explained 

above, the chain length is partly constrained by available working memory capacity, but as will 

become clear later on, other factors also affect chain length. Nevertheless, based on assumption 3 
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above (limited working memory capacity), the parameter m specifies the length of the chains 

stored in and retrieved from LTM.  We assume that the minimum length is 3.  Chains of two 

elements are of course possible, but chains of this length do not allow enough variability: only AB 

and BA are balanced sequences, and because such sequences do not contain repetitions, a 

repetition bias based on experience with the easier repetitions cannot develop (see assumption 2: 

preference for easier chains).  Therefore, we adopted 3 as the lower limit.  Furthermore, because 

many studies show that working memory span is limited to about 5-6 elements (e.g., Atkinson & 

Shiffrin, 1968; Baddeley, 2007; Baddeley & Hitch, 1974), we adopted 6 as the maximum limit; 

Table 1 displays the sequences that are possible at each of the lengths 3-6.  The sequences 

considered are balanced in the sense that the two tasks occur m / 2  times in the sequences with 

an even length and occur minimally m / 2  times and maximally m / 2 +1  times in odd numbered 

sequences.  This way, both tasks will be selected approximately equally often.  At the same time, 

sequences show, on average, a tendency to alternate, which is shown in Table 1 in the column 

labeled “# Rep”.  We assume that all the sequences of the personʼs preferred length m are stored 

in LTM.

---- Table 1 about here ----

The second parameter, b, is related to the strength of a chain in accordance with assumption 

2 (preference for easier chains).  In order to model the variability in the retrieval of chains, each 

chain is supposed to have an associative strength that specifies its likelihood of being retrieved.  

The associative strength is a common way to represent effects of learning (e.g., Anderson & 

Lebiere, 1998; Bush & Estes, 1959; McClelland & Rumelhart, 1986; Rescorla, 1988; Rumelhart & 

McClelland, 1986). In situations where feedback is explicitly provided, the associative strength of a 

memory trace is changed in accordance with the feedback.  If the memory retrieval is “correct” or 

leads to a positive outcome, its strength is increased; if the retrieval is “incorrect” or leads to a 

negative outcome, the strength is decreased.  In task selection no explicit feedback is provided.  

However, implicit feedback still remains present because behavioral consequences of task 

execution may be used to strengthen a chain.  Thus chains with more task repetitions may be 
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experienced as easier so that these chains are strengthened more frequently, and the degree of 

strengthening will be larger the more repetitions the chain contains.

To implement the idea of chain strength or chain weight, w, we define a parameter 0 < b < 1, 

which is the bias of a repetition in the stored sequence (1 - b is the likelihood of a switch).  The 

value of b  determines the weight (w) of the chain by the simple multiplicative rule w = bR (1− b)S , 

where R and S are respectively the numbers of repetitions and switches in the chain.  With a given 

value of b, the larger the proportion of repetitions in the chain, the larger the weight of the chain 

becomes.  With a fixed number of repetitions in the chain, the larger b, the larger the weight of the 

chain will be.  In other words, b represents an acquired bias towards more repetitions.  This way, 

the consideration is implemented that experience with execution of the tasks (repetitions are easier 

than switches) will influence the retrieval of task chains.  The parameter b indicates the probability 

of a single element within a sequence of tasks and w defines the overall strength of a sequence.  

The sequence AABB, for example, contains two repetitions and one switch: thus w = b2 (1− b) .  

Each time a new chain has to be selected, the chains compete for being selected by producing an 

amount of activation that is proportional to their strength.  Using Luceʼs choice rule (Luce, 1959), 

the probability that a particular sequence i with weight wi will be selected, depends on the relative 

degree of activation with respect to the total amount of activation of all chains.  Let W be the sum 

of the weights w of all the sequences in the set, the probability to select a particular sequence i 

with weight wi is then wi /W .  The underlying process is thus simply based on competition of the 

alternatives for selection.

Whereas b expresses a bias towards chains with more repetitions, its value determines the 

probability (p) of top-down selection of a repetition.  For example, for chains of length 3 as 

described in Table 1, if b = 0.5 (i.e., repetitions and switches have an equal weight), the overall 

likelihood of a repetition, p = .33, because 1/3 of the transitions within this set are repetitions.  If the 

value of b were 0.7, the weights of the three chains would be respectively 0.21 (0.7 × 0.3), 0.21 

(0.7 × 0.3), and 0.09 (0.32). Given the weight of the first chain (0.21) and the fact that half of the 

events in that chain are repetitions, the weight of a repetition in that chain is 0.21 × 0.5.  The 
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overall probability of a repetition, p, would thus be (0.21 × 0.5 + 0.21 × 0.5)/(0.21 + 0.21 + 0.09) = 

0.41.  The set of chains intrinsically constrain the maximum value of p; for example, in the set of 

chains with size 3 (2 transitions), p can never become larger than 0.5 (when b approaches 1) 

because each chain always contains at least one switch.  The longer the chain, the larger p can 

become.

The third parameter, r, is related to bottom-up priming.  This parameter is introduced because 

several studies have shown that bottom-up events, such as stimulus repetitions (Demanet et al., 

2010; Mayr & Bell, 2006), stimulus availability (Arrington, 2008), and processing efficiency 

(Arrington & Rhodes, 2010) affect task choice in voluntary task switching.  The probability r , then, 

represents the likelihood of a bottom-up event overruling planned or intended task selections.  We 

assume that with an unknown probability events occur that activate a tendency to repeat the same 

task.  On trials on which a repetition is intended, this parameter has no effect, but on trials on 

which a switch is intended, this leads to a conflict between the tendency to switch to another task 

and the tendency to repeat the previous task.  On some trials this conflict will be resolved in favor 

of the intended action (switch), on other trials, the triggered repetition will win the competition; we 

assume the latter occurs with a probability r.  Importantly, in combination with the b parameter, this 

r parameter could account for the task-repetition bias typically observed in VTS.  Several choices 

as to what happens with the already selected chain are possible; in the present model, the primed 

repetition overrules the current event in the selected chain, and execution of the retrieved chain 

continues after the intrusion.  The reason for implementing an overruling mechanism in the model 

is based on the rationale that the intended task (i.e., the task specified in the chain) has been 

selected, but then loses the competition with the primed task repetition. In testing the model, other 

possible choices will also be considered.

Thus far this chain-retrieval model specifies that short balanced sequences (chains) avoiding 

too many repetitions are stored in memory, and have a strength that determines the probability of 

being selected.  This model has three important distinctive characteristics.  First, the model 

specifies a selection mechanism that is based on retrieval of short chains of events from LTM (see 

Table 1).  Because the chains stored in LTM are in agreement with the representation bias 
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specified by Rapoport and Budescu (1997), the produced sequences deviate from statistical 

independence without the need for a retrospective monitoring mechanism to guarantee this.  

Second, because the model allows the selection mechanism to be sensitive to the difficulty of the 

transitions (the b parameter coupled to strengths of chains on the basis of the relative difficulty of 

the task transitions), it may be useful to predict the characteristics of the sequence of task names 

as well as the characteristics of the sequence of transitions1.  The advantage of this feature will 

become clear in the application of the model to the data.  The third characteristic of the model 

allows that bottom-up events in the form of task repetitions could gain control over task selection 

(with a probability r).  This is in line with the nature of the bottom-up events reported in the 

literature (Demanet et al., 2010; Mayr & Bell, 2006; Vandamme, Szmalec, Liefooghe, & 

Vandierendonck, 2010).

The fundamental assumptions adopted allow for some freedom of implementation in a 

formalized model, which suggests that it is possible to build similar models with slightly different 

implementations of some assumptions.  Appendix B contains an overview of variations in the 

implementation and how they fare when used to fit actual data.  As these variations do not result in 

better fits and predictions, we do not consider them in the main text.  The purpose of the present 

investigation was to test the usefulness of this framework and its formalization.  Because the 

framework generates a series of hypotheses about processes involved in selection of independent 

events as well as voluntary task selection, an exhaustive test of all these hypotheses is beyond the 

scope of this article.  For that reason, we focus on testing how well the presented model can 

account for voluntary task selection and independent-event selection performed by participants in 

experimental settings.  In a first study, the model is applied to data of 17 participants in voluntary 

task switching based on the standard procedure (Arrington & Logan, 2004).  In a second study, the 

model is applied to data of 80 participants in a voluntary task switching study based on the double 

registration procedure (Arrington & Logan, 2005).  This second study is also used to test the 

assumption that the length of the sequences stored in LTM depends on experience over trials, and 

the simplifying assumption that task selection over an experimental session is quite stable.  The 
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third study presents a fit of the model to a situation where a response hand is selected for 

execution of one single task, and the fourth study presents a fit of the model when participants are 

required to independently generate events instead of tasks.  In each case, we describe the 

experiment and its results, and then we apply the model to the reported data.

3. Study 1

As a first test of the modeling, we focus on the task choice data of an experiment that has 

been published before (Liefooghe et al., 2009). This experiment used the standard method of 

voluntary task switching, where one single key-press informs about the task selected and the 

categorization of the target (Arrington & Logan, 2004, 2005).  This version of the procedure has 

been shown to be very sensitive to bottom-up triggered repetitions (Demanet et al., 2010; Mayr & 

Bell, 2006).  Because the study has been published, we briefly describe the methods and only 

report the results that are relevant for the present purpose.

3.1. Method

Eighteen first-year psychology students of Ghent University participated for course 

requirements and credit.  They were assigned to one of two between-subjects conditions, a 

condition with an RSI of 100 ms or a condition with an RSI of 1000 ms. Nine other students in the 

original study were assigned to a within-subjects condition.  These participants were not included 

in the present study, because the RSIs were varied randomly from trial to trial, leading to 

confounding of the manipulation with other factors affecting task choice.  Data for one subject (in 

the RSI-100 condition) were not included in the present analysis, because the proportion of 

selections of one of the tasks amounted to .85.

Stimuli consisted of letters (A, E, B, or D) surrounded by a geometric figure (circle, ellipse, 

square, or rectangle) to which either a letter categorization task (consonant  vs. vowel) or a form 

categorization task (quadrangle or ellipsoid) could be applied.  A keyboard was used to register the 

responses.  The form task was performed with the left hand (keys f or g) and the letter task was 

performed with the right hand (keys j or k).

Participants were tested individually on a PC with a 17-inch color monitor running Tscope 

(Stevens, Lammertyn, Verbruggen, & Vandierendonck, 2006).  Instructions of Arrington and Logan 
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(2004) were used. In each condition, participants received one practice block and four blocks of 64 

test trials each. A trial started with presentation of the stimulus in the center of the screen until a 

response was given within a response deadline of 3000 ms.  Immediately after the response or 

when the response deadline was attained, the stimulus disappeared.  After an incorrect response, 

the screen turned red for 200 ms before the RSI started (100 ms in one condition; 1000 ms in the 

other).

3.2. Data analysis

The analysis focuses on the series of task choices and task transitions.  As the task choices 

and the transitions within the sequence of tasks are binary events, the sequence of events can be 

expressed as a series of binary digits (0 or 1).  A sequence of tasks is a series of task names; 

using the letters L (letter categorization) and F (form categorization), an example of a series of 

selected tasks may be LLFLFFL.  Similarly, the letters R (repetition) and S (switch) can be used to 

describe a sequence of transitions (RSSSRS in the example).  To convert the sequence to binary 

values, L can be recoded as 1 and F as 0 (or vice versa) and R can be coded as 1 and S as 0 (or 

vice versa).

Such sequences of random events are often summarized by using a runs statistic, which 

yields a proportion of the runs of the same event at a series of lengths.  The runs statistic 

(Sternberg, 1959a; see also Vandierendonck, 2000a), can be defined as follows

 rk =
1

N − k +1
xi

i=1

N − k+1

∑ xi+1…xi+ k−1  (1)

where N is the number of events in the complete sequence and rk is the proportion of runs with 

length k in which xk = 1.  Consider a sequence like “0110111010100011”, where the target outcome 

is coded 1.  The number of runs of length 1 equals the number of 1s in the sequence, which is 9 

(code 1 occurs 9 times).  Runs of length 2 consist of two consecutive 1s; there are four such 

groups of 1s in the sequence.  Runs of length 3 consist of three consecutive 1s; there is only one 

such group.  By dividing these counts by the number of possible runs of a particular length, a 

proportion is obtained for each length.  Although the runs statistic captures large deviations from 
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independence, it is not particularly sensitive in detecting very small deviations from independence 

because the values become smaller as the run length increases (see example).  However, the 

statistic is useful because it captures deviations from statistical independence in both directions: 

when there are more repetitions, there will be fewer short and more long runs, and when there are 

more alternations, the opposite pattern will occur (relatively more short and less long runs).  

In addition to the runs statistic, we used the autocorrelation statistic (Sternberg, 1959a; see 

also Vandierendonck, 2000a), which is very sensitive to deviations from independence, and 

therefore useful to make a more fine-grained analysis of the data.  This statistic expresses the 

tendency for pairs of events in the sequence to correlate with each other.  The pairs of events that 

are considered can be close together or further apart (short or long lag).  The autocorrelation 

statistic lag k (ck) is defined as

 ck =
1

N − k
xi

i=1

N − k

∑ xi+ k ! (2)

The correlation expresses the probability that both elements in the pair (separated by lag k) 

are the same.  When lag is 1, for example, the autocorrelation expresses the probability that the 

current event is the same as the previous one.  Considering the example we had before 

“0110111010100011”, the autocorrelation lag 1 looks at all occurrences of two consecutive 1s; 

there are 4 of these.  Actually, by definition this is the same as runs of length 2.  The 

autocorrelation lag 2 looks at two occurrences of a 1 separated by another (not relevant) outcome.  

The triplets to consider are 011, 110, 101, 011, 111, 110, 101, 010, 101, 010, 100, 000, 001, 011 

and there are only four cases out of these 14 where the first and the third element are both 1.  The 

autocorrelation statistic is a measure that is sensitive to statistical dependencies based on learning 

to repeat an event: the autocorrelation will tend to be larger when a learning process governs the 

production of the events in the series (Sternberg, 1959a, 1959b).  Application of the statistic 

requires that one task is coded 1 and the other 0.  By applying the statistic twice to the sequence 

of task choices, once with Letter coded as 1 (Form 0) and once with Form coded as 1 (Letter 0), 

the joint outcome specifies all correlations in the data.  This joint outcome is complementary to all 
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tendencies to alternate instead of to repeat.  Hence, the statistic applied in this way is sufficient to 

describe all deviations from independence.

3.3.  Results

The data analysis will be performed in two steps.  In the first step, the analysis focuses on 

the sequence of task choices; in the second step, on sequences of transitions.  Although the 

transitions are derived from the sequence of task choices, due to the regrouping of successive 

events in terms of repetition or switch, the second analysis may detect different statistical 

properties within the sequence.  Inspection of the sequence of transitions may, for example, clarify 

whether a bias to repeat tasks as seen in the task analysis is a local phenomenon or a more global 

phenomenon.  If the repetition bias is local, task repetitions will occur in only one or a few 

subsequent transitions, soon interrupted by a switch.  On the contrary, when the repetition bias is 

more generalized, long as well as short series of task repetitions will occur.  Performing these two 

analyses, then, may reveal information about the sequence of tasks that would otherwise remain 

undetected. Within each type of analysis, the results of the runs and the autocorrelation statistic 

are reported separately. 

In the task-based analysis, both tasks were selected equally often and the proportions of 

runs decreased at the same rate in both tasks. Run proportions were on average smaller (i.e., less 

repetition bias) in the condition with long RSI (see Figure 1, top-left).  In the autocorrelation data, 

the size of the correlation varied with lag with lower values at lags 2-4 than at the other lags (see 

Figure 1, bottom-left).  Even though, the autocorrelations depended only marginally on RSI, the 

effect on lags 2-4 was stronger in the long RSI condition.  The autocorrelation findings confirm a 

repetition tendency at lag 1 followed by a tendency to alternate at lags 2-4; as this alternation 

tendency was stronger in the long RSI condition, the tendency to repeat tasks was stronger in the 

short RSI condition.

In the transition-based analysis, repetitions were reliably more frequent than switches and 

this difference was maintained at all run lengths (see Figure 1, top-right).  Repetitions were also 

more frequent at short than at long RSI.  This clearly confirms the presence of a repetition bias 

which is stronger at short RSI.  The autocorrelations were lower at lag 1 than at the other lags and 

! Modeling Voluntary Task Switching 19



were stable from lag 2 on (see Figure 1, bottom-right).  This difference did not interact with 

transition type but it did interact with RSI.  The fact that autocorrelations tend to be lower at lag 1 

indicates that although repetitions are more frequent overall, an immediate repetition of the same 

transition is lower than on average at other lags.

These findings are described with more statistical detail in the following paragraphs 3.3.1 and 

3.3.2.  Readers who prefer to skip these details can do so and move on directly to the discussion 

of the results in section 3.4.

3.3.1.  Focus on tasks.

For the analysis with focus on the letter task, the 4 x 64 task selections of each participant 

were coded 1 when the letter task was selected and 0 otherwise (form or no selection).  Similarly, 

for the form task, the selections were coded 1 when form was selected and 0 otherwise.  In only 

one participant, about 1.5% of the trials were non-selections; in the other participants, no non-

selections occurred.  Anyway, due to the coding, non-selections did not contribute to the run length 

or the autocorrelation data.

These binary data were used to calculate the proportion of runs of lengths 1-8 and 

autocorrelations at lags 1-82.  Per statistic, the multivariate general linear model was applied to the 

data on the basis of a 2 (RSI: 100 or 1000 ms) x 2 (Task: letter vs. form) x 8 (Lengths or Lags) 

factorial design with repeated measures on the last two factors.  For all analyses, α = .05, unless 

otherwise mentioned.  

3.3.1.1. Runs.  On average, the selection proportions of letter and form were both .50. Run 

proportions depended on RSI and run length only.  Proportions of runs decreased with run length, 

F(7,10) = 870.46, ηp2 = 1.0.  Run proportions were smaller when RSI was long (.10 for long 

versus .16 for short RSI).  Neither task (.14 vs. 13), nor any of the interactions attained significance 

(smallest p > .20).  This shows that there was a tendency to repeat tasks more at short than at long 

RSI.  Figure 1 (top-left) displays the runs proportions as a function of RSI, task, and run length. 

---- Figure 1 about here ----
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3.3.1.2. Autocorrelations.  The autocorrelations are shown in Figure 1 (bottom-left) as a 

function of RSI, task, and lag.  Only the effect of lag was reliable: F(7,10) = 4.10, ηp2 = 0.74.  The 

effect of RSI was marginally significant, F(1,16) = 3.10, ηp2 = 0.16.  Figure 1 shows that the 

correlations start high, drop off at lags 2-4 and stabilize from lag 5 on.  This pattern is more clearly 

present at longer RSI, though.  Analysis confirmed that overall autocorrelations were higher at the 

first than at the other lags, F(1,16) = 27.68, ηp2 = 0.63.  A contrast between the autocorrelations at 

lags 2-4 and lags 6-8 was not reliable overall (F < 1), but it interacted with RSI, F(1,16) = 4.69, ηp2 

= 0.23, such that the difference between lags 2-4 and lags 6-8 was larger in the condition with the 

long RSI.  These findings show that there is a rather strong repetition tendency (autocorrelation) at 

lag 1, but that in lags 2-4 in the long RSI condition, the autocorrelation is rather weak.  This 

suggests that the repetition bias is stronger at short RSI.  

3.3.2.  Focus on Transitions.  

In the sequential analysis of the transitions, repeating the same task was coded 1 and 

changing the task or failing to select a task was coded 0; in the calculation targeting on switches, 

changing tasks was coded 1 and repeating the same task or failing to select a task was coded 0.  

In all other respects, the same data-analytic method was used as for the analysis focusing on task 

selections.  In order not to overload the report with an enumeration of statistical tests, the 

outcomes of this analysis are presented in Table 2; only the effects that are central to our main 

purpose are reported in the text.

---- Table 2 about here ----

3.3.2.1. Runs.  Transition runs are shown in Figure 1 (top-right) as a function of RSI, 

transition and length.  Clearly, repetitions (M = 0.63) were more frequent than switches (M = 0.37) 

and they also differed  (.17 vs. .06) at all lengths.  Run proportions were larger on short (M = 0.14) 

than on long RSI (M = 0.10).  Interactions of transition and length and RSI and length were reliable 

(see Table 2).  The dominant presence of repetitions confirms the repetition bias already observed 

at the level of tasks.  Repetitions were repeated more often than switches especially at short RSI.

---- Figure 1 about here ----
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3.3.2.2. Autocorrelations.  Figure 1 (bottom-right) displays the transition-based 

autocorrelations as a function of RSI, transition, and lag.  Lag correlations were larger for 

repetitions (M = .41) than for switches (M = .15).  They also varied over lags.  Transition and lag 

did not interact, but transition was involved in an interaction with RSI, as displayed in Figure 1.  

Finally, also the interaction of RSI and lag was significant (Table 2).  In contrast to the task-based 

autocorrelations, the transition-based autocorrelations seem quite stable, except that they were 

lower at lag 1 (M = .26) than at other lags (M = .29), F(1,16) = 13.00, ηp2 = 0.45.  This contrast 

explains the major part of the variance among the means per lag: r2 = .82.  Repetitions are 

selected more often than switches and therefore repetitions also tend to be repeated more than 

switches.  However, for both, repetitions and switches, this tendency is smaller at lag 1 than at 

longer lags, where transitions rather show a pattern of independence, but repetitions are still 

repeated more than switches.

3.4.  Discussion

These analyses confirm the repetition bias that has been reported in the literature (e.g., 

Arrington & Logan, 2004; Mayr & Bell, 2006), as well as the finding that this bias is stronger at 

shorter RSI (Arrington & Logan, 2005).  The autocorrelations of the task choices show that the 

repetition bias is strong at all lags except lags 2-4.  Transition autocorrelations are stable from lag 

2 on and indicate in fact that the repetition tendency of both repetitions and switches is a global 

phenomenon, except for lag 1 which suggests a local tendency to repeat the previous transition 

less often than average.  This pattern of findings is not consistent with existing perseveration 

models (e.g., Vandierendonck, 2000a), as they predict a decrease of autocorrelation over lags.

3.5. Model testing

In this section, we report the results of the model tests performed on the task-selection data 

of this experiment.  First, we will present the results of fitting the chain-retrieval model to the runs 

proportions obtained in the experiment.  In order to show that the chain-retrieval model yields a 

better account than simpler models, also the results of the statistical independence (Bernoulli) 

model and two statistical dependency models are presented.  One of these statistical dependency 

models is the perseveration model (Vandierendonck, 2000a).  It assumes that with probability a the 
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previous event is repeated and if no such repetition occurs, with probability q an event is sampled 

independently from the previous event:

Pr(xi ) = a + (1− a)q    (3),

where Pr(xi )  refers to the probability that a certain event (x) occurs at time i, a represents the 

probability that the previous event is repeated (perseverates) and q is the probability that the 

present event is sampled independently from the previous trial.  The second dependency model is 

the alternation model (Vandierendonck, 2000a).  This model is also based on equation (3), but now 

parameter a represents the probability that an alternation occurs (i.e., the previous event is not 

repeated) and if no alternation occurs, with a probability q an event is sampled independently from 

the previous trial.  

In a next step, the parameter estimations obtained in these fits of the four models will be 

used to predict the autocorrelations in sequences of tasks and sequences of transitions.  After this 

phase of global model testing, more specific tests of the chain-retrieval model will be reported.  To 

that end, each of the free parameters will in turn be clamped to a particular value and the other 

parameters will be estimated resulting in new fits and new predictions.

3.5.1. Model fitting and parameter estimation.  

First, we used the run proportions of the task-based data analysis to estimate the parameters 

of the task-chain retrieval model and the three comparison models.  Because the data of each 

individual participant are sufficient to fit the models, the runs data of each subject were used to 
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estimate the free parameters of the best fitting model for that subject.  The fits per subject could 

then be entered in statistical analyses comparing the merits of the models3.

All model fits were based on maximum likelihood estimation.  The parameters were 

estimated jointly for the letter task and the form task data on the basis of the observed runs 

proportions length 1-10.  The likelihood function to estimate the correspondence between the 

model and the data is:

L =
N − i
ni

⎛

⎝
⎜

⎞

⎠
⎟

i=1

K

∏ pi
ni (1− pi )

N −ni − i ! (4)

where L is the likelihood function, K is the number of lengths considered, pi  is the estimated 

proportion of runs of length i,  N is the total number of observations (number of trials) and ni is the 

number of observed runs of length i.  In order to find the maximum of such function, it is easier to 

take  = lnL , and to minimize − :

− = ln
i=1

K

∑ N − i
ni

⎛

⎝
⎜

⎞

⎠
⎟ ni ln pi − (N − ni − i)ln(1− pi )  (5)

This minimization was performed by means of a univariate search method (Brent, 1973).  On 

each step of the iteration, the current parameter values were used to generate a sequence of 

50,000 task choices.  On the basis of this generated sequence, estimated runs for the letter task 
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were calculated.  Next the sequence was converted (0 was recoded to 1 and 1 to 0) to calculate 

the estimated runs for the form task.  The estimated proportions were weighted as specified in 

formula (5) to yield − . The search procedure would then sample new parameter values and start 

a new step.  This continues until a minimum is obtained.  By performing the estimation jointly for 

the two tasks, the characteristic of random succession of the two tasks is captured in the 

parameter fit.  The search procedure finds a local minimum in a very efficient way.  In order to 

maximize the chance of finding the global minimum, the search procedure was applied ten times 

with random starting values.  In the application for the chain retrieval model, this estimation 

procedure was repeated for each of the values 3-6 of m.  Per participant, the value of the three 

parameters of the best fitting model was then selected.

The top panel of Table 3 displays the fit and the estimated parameters of the four models.  

This table shows that the averaged minimization over all participants was quite good for the chain-

retrieval model but was much worse for the three statistical models (Bernouilli, perseveration and 

alternation).  In order to test whether the difference between the fit of the chain-retrieval model and 

the other models was statistically reliable, Akaikeʼs Information Criterion (Akaike, 1974) with 

correction for the number of observations (AICc, Hurvich & Tsai, 1989) was calculated per subject 

and per model.  The proportion of subjects in which the AICc was smaller for the chain-retrieval 

model than for the comparison model is displayed in Table 3 on the row labeled “Prop(AICc)”.  To 

test whether this proportion was significant, a z-score was calculated in the Gaussian 

approximation to the binomial distribution of proportions; this z-score is also shown in the table 

together with the probability that this would occur under the null hypothesis that both models are 

equivalent.  These tests show that the chain-retrieval model yielded a better fit than each of the 

other three models, except the perseveration model.  In view of this, further tests will have to clarify  

how well the chain-retrieval model captures the data.

---- Table 3 about here ----

3.5.2. Model predictions.  

The estimated parameters of these four models were used to predict the autocorrelation 

statistic for the task data.  Predictions of the models were calculated on a sequence of 50,000 
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generated events on which the likelihood function was calculated given the parameters estimated 

on the runs data. In order to measure the degree of correspondence between the predictions and 

the data, the root mean squared deviation was calculated:

rmsd =
1
K

(
i=1

K

∑ oi − ei )
2

where oi refers to the data points and ei refers to the predicted values.  This measure obtained for 

each of the models is displayed in the middle panel of Table 3, and shows that the prediction of 

chain-retrieval model is better than that of the three other models.  The chain-retrieval modelʼs 

prediction accuracy was compared pairwise with that of the other models.  Table 3 shows the 

proportion of participants performing better on the chain-retrieval model than on each of the other 

models.  The probability of this proportion was assessed by calculating a z-score (also shown in 

the table).  Figure 2 (top-left panel) illustrates that the task-chain retrieval model yielded the best 

correspondence between predictions and data.  When applied to data that are more sensitive to 

deviations from statistical independence than the runs statistic, it seems that the chain retrieval 

model significantly better accounts for these deviations than the other dependence models.

---- Figure 2 about here ----

The estimated parameters of these four models were also used to predict the autocorrelation 

statistic for the transition data.  In order to keep task and transition statistics equivalent in terms of 

number of events, only lags 1-9 were included for the transitions.  The sequence generated for the 

prediction of the task autocorrelations was converted into a sequence of transitions, once with 

focus on repetitions and once with focus on switches.  The rmsd was calculated per subject.  Table 

3 (bottom panel) displays the rmsd and the proportion of participants having smaller rmsd on the 

chain-retrieval model than on the comparison models.  Again, the probability of this observation 

under the null hypothesis is derived by calculating z-scores.  Figure 2 (bottom-left panel) illustrates 

that the task-chain retrieval model yielded the best correspondence between predictions and data, 

and this was confirmed by the significant difference with each of the other models.  
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3.5.3.  Model validation.  

As the model has three free parameters, it is also important to know whether each of the 

parameters is indispensable.  To that end, each of the parameters in turn was clamped to a neutral 

value, and with one parameter fixed, new estimations of the other two parameters were obtained.  

A neutral value for the free parameters was considered to be a value at which the effect of the 

corresponding process was the lowest; so for m and r the lowest value, respectively 3 and 0, was 

taken, and for b, a value of 0.5 (no bias in either direction) was considered to be neutral. Table 4 

shows that -ln L yielded a lower value for the full than for the restricted models (see also, Figure 2, 

right panels).  For testing the significance of the differences between these nested models, the 

likelihood ratio test was used (Buse, 1982).  Let A refer to the log likelihood of the full model and 

B to the log likelihood of the nested model, then the statistic W, which is defined as,

W= 2(̂A − ̂B )   

is distributed according to a χ 2 distribution with the difference in the number of parameters 

between the two models as the number of degrees of freedom.  Per subject, W was calculated for 

all pairs consisting of the full (three-parameter) model and a model where one of the parameters 

was fixed.  In order to test whether the majority of subjects was in favor of the full model, a normal 

approximation to the binomial test for proportions was performed.  On the line labeled “P(LR)” the 

proportion of subjects with a significantly smaller likelihood of the full model is displayed, and on 

the next line the z-score with the probability of the observation under the null hypothesis is listed.

---- Table 4 about here ----

It appears that the fit of the full model is better than the fit of the nested models, but only 

significantly for the variant with parameter r fixed at 0.  The other two nested models (m = 3 and b 

= 0.5) could not be rejected.  However, when also the predictions of the full and the nested models 

are taken into account (see lower panels of Table 4), it appears that in the task autocorrelation 
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predictions only the nested model with b fixed is equivalent with the full model, and in the 

predictions of the transition autocorrelations, the full parameter model was significantly better than 

each of the nested variants.  These findings suggest that the m and the r parameter may play an 

important role, whereas the evidence in favor of the b parameter is not convincing.  Possibly the 

statistical power of the present study is not strong enough for supporting strong conclusions. 

Table 4 also shows the estimate of the proportion of repetitions due to top-down control and 

the estimate of the proportion of bottom-up triggered repetitions.  Together these two proportions 

account for the observed proportion of repetitions.  Clearly, the proportion of top-down triggered 

repetitions is much smaller than the value of the bias parameter (b).  Also the proportion of bottom-

up triggered repetitions is smaller than expressed in parameter r.  This is because some bottom-up 

repetitions coincide with top-down repetitions and do not change the top-down controlled actions.  

Comparison of these proportions across the different model variants shows that when r is 0, there 

are no bottom-up events whatsoever, with as a result that the other parameters (m and b) are 

adapted to account as much as possible for the observed proportion of repetitions.  Similarly, when 

b is clamped to a neutral value, m and r become larger to achieve an acceptable estimation.  The 

observation that m increases to compensate for the lack of repetitions, suggests that this 

parameter is not only constrained by the length of the chains that can be handled but also by the 

frequency with which top-down repetitions do occur.  Finally, even when m is fixed, the estimated 

value of the two other parameters is adapted (increased), again suggesting that m affects the 

number of top-down repetitions.  

3.5.4.  Discussion.  

The chain-retrieval model seems quite promising when fitted to the run length proportions in 

sequences of tasks.  For a significant majority of the participants, the obtained fit was better than 

the fits obtained for the statistical independence model and existing statistical dependence models.  

Also the predictions of the autocorrelations in sequences of tasks as well as in sequences of 

transitions were better for a significant majority of the participants than the predictions of the 

comparison models.  
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In a final test designed to investigate whether the processes underlying the three free 

parameters are all involved in achieving the very good correspondence of the chain-retrieval model 

and the data, each of the parameters in turn was clamped to a neutral value so as to exclude or to 

minimize the role of the underlying process.  These analyses indicated that the m and r parameters 

are important: even when corrected for the number of estimated parameters, the full parameter 

model still yielded significantly better fits to the runs proportions and significantly better predictions 

of the task and transition autocorrelations.  The case for the b parameter was less convincing in 

the present study, although the findings clearly indicate that this parameter also affects the top-

down repetition tendency.

4. Study 2

Although the application of the chain-retrieval model to the task choice data of Study 1 shows 

that the model yields a better account of task choices in VTS than statistical independence and 

dependence models,  some concerns may be raised about the generality of these findings.  First, 

the size of the subject sample and the number of choices per subject were both rather small.  

Second, the data were collected with the single-registration procedure which is known to be very 

sensitive to bottom-up intrusions.  As the occurrence of such intrusions is a central assumption of 

the model, the test in Study 1 may be biased in favor of the model.  In order to counter the latter 

criticism, in Study 2 the double registration procedure (Arrington & Logan, 2005) was used.  In this 

procedure, two responses have to be emitted in each trial. First, a probe appears to which the 

subject responds by indicating the task that will be used in the current trial.  Next, the target 

stimulus is presented and the selected task is applied to this stimulus.  The concern regarding the 

amount of data was countered by having more subjects (80) and longer sequences of task choices 

(2 blocks of 256 trials).

This design has the additional advantage that it becomes possible to include the effect of 

practice in the study.  If task-choice behavior changes with practice, then the pattern of choices 

might be different between the first and the second block of 256 trials.  In the same vein, this 

design allows to investigate whether the best fitting model parameters change with practice.  The 

rationale for this is that in developing the chain-retrieval model, it was assumed that the chains in 
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LTM are learned from experience within the constraints of working memory because once 

retrieved, the chain has to be unfolded in working memory in order to access the next element in 

the sequence on consecutive trials.  In order to be able to fit the model parameters, it was further 

assumed that learning was confined to the practice trials so that chain length could be considered 

constant over the experimental session.  A secondary aim of this study is to test whether this 

simplified assumption is tenable: are changes in the m parameter negligible or are there important 

changes with further practice?

4.1. Method

4.1.1. Participants and design

Eighty first-year psychology students at Ghent University participated for course 

requirements and credit.  All participants had normal or corrected-to-normal vision, were right-

handed, and all were naïve to the purpose of the experiment.  Participants were randomly 

assigned to two conditions (forty participants per condition) that differed in the stimulus onset 

asynchrony (SOA) of the stimulus and the probe (see below).

4.1.2. Materials

Stimuli were the digits 1-9, excluding 5.  Participants were required to classify the digits 

either on the basis of their magnitude (smaller or larger than five) or their parity (odd or even).  

Responses were registered by means of the numeric pad of a standard keyboard.  One hand was 

used for pressing the task-selection keys; the other hand was used for pressing the task-execution 

keys.

4.1.3. Procedure

Although we only need the task-selection data, we describe the complete procedure of data 

collection.  However, for completeness and to show that the experiment replicates typical task-

switching results, the main findings regarding the task-execution data obtained in this experiment 

are briefly presented in Appendix A.  Pentium III personal computers with a 17-inch color monitor 

running the Tscope C/C++ library (Stevens et al., 2006) were used.  Each session lasted for 

approximately 45 minutes.  After participants signed an informed consent, instructions were 

presented on screen and paraphrased if necessary.  The instructions concerning unpredictability of 
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voluntary task switches were the same as those used by Arrington and Logan (2005), namely that 

each task should be performed about equally often and that the sequence should be as 

unpredictable as in coin tossing.

On each trial, a probe (“?”) was presented in a square 5 mm above the centre of the screen.  

This probe disappeared when participants pressed one of the task-selection keys.  This was 

followed 400 ms later by the appearance of the target stimulus, 5 mm below the centre of the 

screen.  The target remained on screen until participants responded on the basis of the previously 

selected task or until a maximal response time of 2500 ms elapsed.  The probe of trial n appeared 

either 50 ms (short SOA condition) or 1500 ms (long SOA condition) after the presentation of the 

stimulus of trial n-14.

After two practice blocks of 64 trials, participants performed two experimental blocks of 256 

trials.  In the first practice block, the emphasis was on familiarization of the procedure of selecting 

and executing the different tasks.  In the second practice block, the emphasis was on 

unpredictable selection of the tasks.  In order to increase participantsʼ awareness of their selection 

behavior, the warning “do not forget to switch tasks” was shown for 1000 ms whenever the 

participants selected the same task four times in a row.  When the participants switched between 

tasks four times in a row, the warning “do not forget to repeat tasks” appeared for 1000 ms.  This 

task-selection feedback was presented in the second practice block only.
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4 This variation of SOA between the probe and the target is reminiscent of the PRP (psychological 

refractory period) paradigm.  However, unlike in the PRP paradigm, in the present procedure, task 

selection does not have to wait for the probe to start.  In fact, task selection can start at any time, 

even at an earlier trial.  The function of the probe is to indicate that a task-indication response must 

be emitted.  On the trials where the task choice has not yet been made, the task-selection 

response may result in postponement of the task execution response.  Appendix A shows, 

however, that probe RTs are fairly short suggesting that on average task selection has been 

completed before presentation of the probe.  For all these reasons, strictly speaking, the present 

design is not a PRP paradigm, although it may bear similarities to it and it may be the case that 

task choice processes compete with task execution.



During the entire experiment, participants received on-line feedback about their performance.  

A red screen appeared for 50 ms when they made an error on the target.  When they were too 

slow to select a task (RT > 2500 ms), the message “no task selected” was displayed for 1500 ms.  

Following each block (practice and experimental), a general summary about the performance 

during that block was shown.  This feedback included the mean reaction times on the targets, the 

percentage of errors, the selection percentage of each task, the percentage of failures to select a 

task, and the percentage of task repetitions and task switches.  If necessary, participants were 

corrected: they were urged to switch more or to repeat more when the proportion of repetitions or 

switches was above .70, to make fewer errors when percentage of errors was above 15%, to 

respond faster when mean task-execution reaction time was above 1200 ms or when the 

proportion of trials without a task-indication response was above 10%, and to be more random 

when they selected a particular task on more than 75% of the trials.

4.2. Results

As in Study 1, the data analysis was performed in two steps.  In the first step, the analysis 

focused on the sequence of task choices; in the second step, on sequences of transitions.  The 

analyses of the runs and the autocorrelation statistic are reported separately.  As for Study 1, we 

first provide an overall summary of the findings before presenting the statistical details.

In the task-based analyses, runs proportions were lager in the parity task, in the second 

block and in the short SOA condition (Figure 3, top-left).  The drop in proportions with run length 

was steeper in the short SOA condition and also in the second block.  The autocorrelations varied 

with task and lag (see Figure 3, bottom-left).  At lag 1, the autocorrelations were rather larger and 

then showed a dip at lags 2-4.  The size of the dip was larger at long SOA.  The size of the dip was 

also larger in the second block than in the first.

The transition-based analyses revealed that runs proportions were higher for repetitions than 

for switches, and higher for short than for long SOA (see Figure 3, top-right), and higher in the 

second block as compared to the first block . At short SOA repetitions were repeated more often 

than switches and in the second block runs proportions tended to be larger than in the first block at 

all lengths.  The autocorrelations were characterized by a lower value at lag 1 than at the other 
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lags and overall there was not much variation from lag 2 on (see Figure 3, bottom-right).  The 

autocorrelations were lager for repetitions than for switches and were larger in block 2 than in 

block 1.

In the following paragraphs, these findings are substantiated with the statistical details. 

Readers who prefer to skip these details can continue at section 4.3 (Discussion).

4.2.1. Focus on tasks

For the magnitude task, the task selections of each participant were coded 1 when 

magnitude was selected and 0 otherwise (parity or no selection).  Similarly, for the parity task, the 

selections were coded 1 when parity was selected and 0 otherwise.  About 1% of the trials were 

non-selections.  Due to the coding, non-selections did not contribute to the run length or the 

autocorrelation data.

These data were used to calculate the proportion of runs of lengths 1-10 and 

autocorrelations at lags 1-10 separately in each block.  Per statistic, the multivariate general linear 

model was applied to the data on the basis of a 2 (SOA: 50 or 1500 ms) x 2 (Task: magnitude vs.  

parity) x 2 (Blocks) x 10 (Lengths or Lags) factorial design with repeated measures on the last two 

factors.  For all analyses, α = .05, unless otherwise mentioned.  In order not to overload the report 

with an enumeration of statistical tests, the outcomes of the complete analyses are presented in 

Table 5; only the effects that are central to our main purpose are reported in the text.

---- Table 5 about here ----

4.2.1.1. Runs.  Figure 3 (top-left) displays the runs proportions as a function of SOA, task, 

and run length.  On average, the selection proportions of magnitude and parity were 0.48 and 0.51 

respectively.  As can be seen in Table 5, run proportions depended on task, blocks, length, and 

SOA.  Proportions of runs were higher for the parity task (M = .13) than for the magnitude task (M 

= .11), and they decreased with run length.  Run proportions were larger in the second block (M = .

12) than in the first block (M = .11), and they were smaller when SOA was long (.10 for long 

versus .13 for short SOA).  Length interacted with task and with SOA.  The drop in the proportions 

was less steep for the parity task and for short SOA.  This shows that there was a tendency to 
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repeat the parity task more than the magnitude task and also a tendency to repeat tasks more at 

short than at long SOA.  Blocks interacted with length, SOA and length x SOA.

---- Figure 3 about here ----

In the second block, more short run lengths were observed and the proportions of runs 

decreased over lengths at a slower rate than in the first block.  This is confirmed in the interaction 

of the contrast between short (1-2) and medium lengths (4-5) by blocks, F(1,78) = 16.58, ηp2 = .18 

and in the interaction of this contrast, SOA and blocks, F(1,78) = 7.13, ηp2 = .08.

4.2.1.2. Autocorrelations.  The autocorrelations are shown in Figure 3 (bottom-left) as a 

function of SOA, task, and lag.  Only the effects of task and lag were reliable (see Table 5).  Figure 

3 shows that the correlations start high and then quickly drop off and stabilize from lag 5 on.  

Overall, autocorrelations were lower at lags 2-4 (M = .22) than at lags 7-9 (M = .24), F(1,78) = 

23.76, ηp2 = 0.23.  This contrast interacted with SOA, F(1,78) = 6.47, ηp2 = 0.08.  The contrast was 

smaller at short (.22 vs.  .23) than at long SOA (.21 vs.  .25).  These findings show that there was a 

rather strong repetition tendency (autocorrelation) at lag 1, but that at lags 2-4, the autocorrelation 

was rather weak.  This suggests that a tendency to immediately repeat the task is soon followed by 

one or more switches.

There was no main effect of blocks, and blocks interacted only with lags.  Autocorrelations at 

short lags (1-2) tended to be larger in the second block (.269 vs. .258), whereas from lags 4-5 on, 

the difference tended to vanish (.228 vs. 225).  This was confirmed in an interaction of the contrast 

between short (1-2) and medium (4-5) lags, F(1,78) = 6.04, ηp2 = .07.

4.2.2. Focus on transitions

In the sequential analysis of the transitions, repeating the same task was coded 1 and 

changing the task or failing to select a task was coded 0; in the calculation targeting on switches, 

changing tasks was coded 1 and repeating the same task or failing to select a task was coded 0.  

In all other respects, the same data-analytic method was used as for the analysis focusing on task 

selections.  The statistical analyses are reported in Table 6.

---- Table 6 about here ----

! Modeling Voluntary Task Switching 34



4.2.2.1. Runs.  Transition runs are shown in Figure 3 (top-right) as a function of SOA, 

transition, and length.  Overall, runs of repetitions (M = 0.14) were more frequent than runs of 

switches (M = 0.07).  Run proportions were only slightly but reliably larger on short (M = 0.103) 

than on long SOA (M = 0.102).  All interactions were reliable (see Table 6).  The dominant 

presence of repetitions confirms the repetition bias already observed at the level of tasks.  

Repetitions were repeated more often than switches especially at short SOA.

In the first block, run proportions were smaller (M = .10) than in the second block (M = .11), 

and this effect interacted with all other factors except transition; all higher-level interactions with 

blocks were significant.  The contrast between the first (1-5) and the second half of the lengths 

(6-10) revealed an average drop of .17 in the first block and a drop of .18 in the second block.  

Although values started higher in the second block and dropped more, at length 10 they were still 

higher than in the first block.  This contrast accounts to a large extent for the interactions involving 

run length and blocks.

4.2.2.2. Autocorrelations.  Figure 3 (bottom-right) displays the transition-based 

autocorrelations as a function of SOA, transition, and lag.  In contrast to the task-based 

autocorrelations, the transition-based autocorrelations seem quite stable, except at lag 1.  Overall, 

autocorrelations were larger for repetitions (M = .38) than for switches (M = .17).  They were larger 

in the second block (M = .28) than in the first block (M = .27).  They also varied over lags.  In 

particular, correlations were lower at lag 1 (M = .22) than at other lags (M = .28), F(1,78) = 146.54, 

ηp2 = 0.65.  This contrast explains most of the variance among the means per lag: r2 = .98.  

Transition interacted with SOA and lag.  The latter interaction basically corresponds to an 

interaction of transition with the contrast between lag 1 and lags 2-10, F(1,78) = 72.16, ηp2 = 0.48. 

Blocks interacted with SOA but not with transition or lag.  Finally, the triple interactions of SOA, 

transition and blocks and of SOA, transition and lag were significant, as well as the interaction of 

all four factors.  

Repetitions were selected more often than switches and therefore repetitions also tended to 

be repeated more than switches.  However, for both, repetitions and switches, this tendency was 
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smaller at lag 1 than at longer lags, where transitions rather showed a pattern of independence, 

but repetitions were still repeated more than switches.

4.3. Discussion

The pattern of findings replicates the pattern observed in Study 1: a repetition bias was 

observed and this bias was stronger at short than at long SOA (Arrington & Logan, 2004, 2005; 

Mayr & Bell, 2006).  The pattern of autocorrelations for both the tasks and the transition was also 

completely similar to that observed in the first study.  Again, it may be concluded that the repetition 

bias is global with the exception that immediate (lag 1) repetition of a transition is less frequent 

than the global average.

The presence of more alternations in lags 2-4 is consistent with the observation of Lien and 

Ruthruff (2008) that task repetitions at lag 2 (i.e., ABA and BAB) are avoided.  These authors 

attribute their results to persistence of the inhibition (e.g., Mayr & Keele, 2000) of the task at trial 

n-2 on the present trial (n).  However, in the present data, the alternation tendency is present in the 

window at lags 2-4 so that even if persistence of inhibition could account for the findings at lag 2, 

this explanation fails to account for the observed alternation tendency at lags 3 and 4.  

Practice seems to result in a tendency to have more shorter runs of the same task, but this 

effect depends on combinations of the other variables in the design such as SOA, lag and task.  

The transition-based analysis showed evidence for an effect of practice with an increase in the 

number of repetitions in the transition data.  Basically, practice seems to enhance the repetition 

bias. 

4.4. Model testing

The same model-testing procedure was used as in Study 1.  Additionally, the effect of 

practice on the obtained parameter estimates was investigated by comparing model fits based on 

the first versus the second block of task choices.  Next, the chain-retrieval model was compared to 

model variations were each parameter in turn is clamped to a neutral value.  In each case, first the 

tests are applied to the entire data sequence ignoring practice effects before presenting data that 

show how practice modulates the estimated parameters, the fits and the predictions.
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4.4.1. Model fitting and parameter estimation.

Table 7 (top panel) displays the fit and the estimated parameters of the four models to the 

complete sequence of task choices per subject.  This table shows that the average fit over all 

participants was very good for the chain-retrieval model, while the fits of the statistical 

independence and dependence models were rather poor.  Based on the AICc criterion which 

balances the goodness of fit and the number of free parameters,  the chain-retrieval model yielded 

the best fit for a large majority of the participants (73 of the 80 participants for the independence 

and alternation models; 62 out of 80 participants for the perseveration model).  This significantly 

better fit to the task run proportions of the chain-retrieval model is interesting in that it suggests that 

the model better captures the relevant information in the data.

---- Table 7 about here ----

As an additional investigation of the goodness of fit, we tested whether the estimated 

parameter values captured differences between the subjects due to a short versus long SOA 

between the previous target and the present probe stimulus in the experiment.  The estimated 

values of parameters m and b did not depend on the SOA, but the value of the r parameter did: 

with short SOA the parameter value was larger (M = 0.31) than with long SOA (M = 0.18), F(1,78) 

= 10.11, ηp2 =.11.  This is consistent with the assumption that r represents the probability of 

intrusions which occur more often at short SOA.  Similarly, in the perseveration model, only the 

perseveration parameter was sensitive to SOA, with a larger perseveration tendency at short (.19) 

than at long (.07) SOA, F(1,78) = 8.34, ηp2 = .10.  This is again consistent with the findings of a 

larger repetition tendency at short SOA.  In the alternation model, the alternation parameter was 

sensitive to SOA with a smaller probability at short (.07) than at long (.13) SOA, F(1,78) = 4.92, ηp2 

=.06.  The smaller tendency to alternate at short SOA is also consistent with a larger repetition 

tendency at short SOA.  In neither of these two models, the q parameter varied with SOA, and 

similarly the p parameter of the Bernoulli model did not depend on SOA.  These findings show that 

the repetition bias is something that is not captured in a general probability of selecting a task, but 

that the chain-retrieval model and the statistical dependence models are able to capture its 

variability.
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The assumption that parameter b is related to the switch cost was tested by means of the 

correlation between this parameter and the switch cost.  Because the perception of the difference 

in difficulty between repetitions and switches should be driving the bias, the correlation of the error 

switch cost per participant with the individualʼs estimated value of b was calculated.  The error 

switch cost is the difference between the average proportion of incorrect repetitions and the 

average proportion of incorrect switches.  The product-moment correlation amounted to 0.28, t(78) 

= 2.58, p < .05.  This indicates that b is related to the difference in difficulty of repetitions and 

switches.

4.4.2. Modulation of model fits due to practice

Next, the chain-retrieval model parameters were estimated for each block separately.  The 

results of these fits are also shown in Table 7.  The minimized −  did not significantly differ 

between the two blocks, F(1,78) = 2.30, ηp2 = .03, p = .13, but more participants (47 out of 80) 

obtained a lower minimum in the first block than in the second block.  The average m and b 

parameter values did not differ between the two blocks, respectively F(1,78) = 1.54, ηp2 = .02, p = .

22 and F < 1.  Parameter r, on the contrary, was smaller in the first block than in the second block 

2, F(1,78) = 5.34, ηp2 = .06, which would suggest that vulnerability to bottom-up intrusions 

increases from the first to the second block, possibly due to fatigue or a related drop in attentional 

focusing.  That m did not change significantly over the two blocks, suggests that a short practice 

period suffices to achieve stable performance. 

4.4.3. Model predictions.

The same procedure was followed as in Study 1 to obtain predictions of the autocorrelation 

statistic for both the task data and the transition data.  The outcomes of the statistical tests of this 

correspondence are displayed in Table 7 (lower panels). The correspondence of the predictions 

and the data is shown in Figure 4 for the predictions of the task autocorrelations (top-left) and the 

transition autocorrelations (bottom-left).  This figure illustrates that the task-chain retrieval model 

yielded the best correspondence between predictions and data.  The overview in Table 7 shows 

that the chain-retrieval model yields better predictions for both the task autocorrelations and the 

transition autocorrelations than the other models in a significant majority of the participants. The 
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present observations confirm that when applied to data that are more sensitive to deviations from 

statistical independence than the runs statistic, it seems that the chain-retrieval model significantly 

better accounts for these deviations than the other dependence models. 

---- Figure 4 about here ----

The correspondence between the observed and the predicted autocorrelations was on 

average very similar in the two blocks, as can be seen in the lower panels of Table 7.  In the 

predictions of the autocorrelations of tasks and transitions, the difference in the number of 

participants with a smaller rmsd on the first than on the second block (respectively 43/80 and 

32/80) was not significant.

4.4.4. Model validation.

As in Study 1, each of the parameters in turn was clamped to a neutral value and with one 

parameter fixed, new estimations of the other two parameters were obtained.  Table 8 and Figure 4 

(right panels) show that except for the model with m = 3, each of these restricted models yielded a 

significantly worse fit than the full model.  However, because the m parameter varies stepwise in 

units of 1, it is the case that for 15 subjects, the full model is exactly the same as the model with m 

fixed. When these participants—for whom no distinction is possible between the full and the nested 

model—are excluded from the test, the proportion of subjects for which the full model yielded a 

better fit amounted to 0.64; this proportion has a z-score of 2.36 (p < .01).  Moreover, in each of the 

three nested models, the predictions of the autocorrelations of tasks were dramatically worse.  In 

the predictions of the transition autocorrelations, the results were similar except that here the full 

model was not significantly better than the model with m = 3.  When again, the 15 overlapping 

cases were excluded from the test, the proportion of subjects with better predictions for the full 

model amounted to .77 (z = 4.34, p < .001). Taken together, these findings support the conclusion 

that all three parameters and the underlying processes are needed to account for the data.

---- Table 8 about here ----

4.4.5. Discussion.

The application of the chain-retrieval model in the present experiment confirms and 

strengthens the findings reported in Study 1.  Compared to the statistical independence model and 
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existing statistical dependence models, both the parameter fit to the runs proportions and the 

predictions of the autocorrelation statistic of tasks and transitions yielded a better correspondence 

to the data.  In the validation test designed to investigate whether the processes underlying the 

three free parameters are all involved in achieving this good correspondence, each of the 

parameters in turn was clamped to a neutral value so as to exclude or to minimize the role of the 

underlying process.  These analyses indicated that all three parameters of the model and the 

underlying processes are important in achieving the good correspondence with the data.  Other 

assumptions for the underlying processes of the model were also investigated; these are reported 

in Appendix B.  The variations considered relate to the way the chains are connected and the way 

bottom-up events affect task choice.  Instead of working with overlapping chains, the possibility to 

work with concatenated chains was tested and instead of bottom-up repetitions that overrule the 

intended action, other types of intrusions were also considered.  More details are provided in the 

appendix that shows that changing the present assumptions does not seem to improve the chain-

retrieval model fitted to task sequences.

Separate model fitting to each of the two blocks in the present study shows a modest effect 

of practice, only the size of the r parameter changed with practice.  These findings suggest that a 

small amount of practice at the start of the experiment suffices to obtain stable behavior.  Over 

time, bottom-up events seem to become more important (increase in r), which suggests that top-

down control over task selection becomes less strict as practice proceeds. In view of the high 

degree of similarity between the two blocks in both the degree of fit to the runs data and the 

degree of correspondence with the autocorrelations, it seems that the model yields quite stable 

results and is not jeopardized by accepting the simplifying assumption that the chain length is 

stable over the session.

If the hypothesis is correct that the b parameter expresses the sensitivity to the difference in 

difficulty between task repetitions and task switches, then as soon as task switching is involved, a 

bias towards choosing more repetitions would be expected.  The question raised here, is whether 

such a bias would still be expected if the switching is irrelevant to the task choice.  For example, 

would the bias still exist when participants are required to randomly choose which hand they will 
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use to perform the task?  Will there be a bias towards selecting more hand repetitions or may it be 

expected that b would take a value close to neutral (close or equal to 0.5)?  This question was 

investigated in Studies 3 and 4.  

5. Study 3

In study 3, participants were requested to perform only one task throughout the experimental 

session (e.g., magnitude judgment) so that, strictly speaking, there were only task repetitions.  

Thus, they did not have to select tasks but they had to select the hand with which they wanted to 

execute the response.  Hand switching is associated with a cost (Stelzel, Basten, & Fiebach, 

2011), but this cost is due to associative carry-over in the hand repetition trials.  Pashler and Baylis 

(1991) proposed that  during execution of a task, a transient association between the stimulus 

identity and the executed response is formed, and if this association can be reused on the next 

trial, a repetition advantage is observed as the normal response-selection stage is bypassed.  

Applied to the present context and assuming that subjects represent their hand selection by means 

of an internal label, this implies that a shortcut between this internal label and the selected hand 

can be reused on hand repetition trials, bypassing the top-down controlled hand-selection stage.  

No such advantage is present in the hand switching situation, where both the internal label and the 

selected hand would be different.   This account suggests that the difference between hand 

repetitions and hand switches is not based on a difference in the amount of mental effort needed 

for preparing and executing the tasks.  As the bias towards repetitions is assumed to result from 

such differences in mental effort (Botvinick, 2007), it is expected, therefore, that in the case of hand 

switching no bias towards selecting more hand repetitions will develop.  Hence, it is predicted that 

in such a hand-switching design, a hand switch cost (or hand alternation cost) may be observed 

(cf. Pashler & Baylis, 1991), but this will not result in a bias toward more frequent selection of hand 

repetitions.  In other words, it is expected that the model with b fixed to 0.5 will not yield a worse fit 

and worse predictions than the full model.  In addition, it should be noted that the present 

procedure constitutes a dual-task situation in which random hand selection is required while 

performing another task.  Therefore, bottom-up events may be expected to play an important role.
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5.1. Method

5.1.1. Participants and design

Thirty-five first-year psychology students at Ghent University participated for course 

requirements and credit. None of them had participated in one of the previous studies. They all had 

normal or corrected-to-normal vision, were right-handed, and all were naïve to the purpose of the 

experiment.  Participants were randomly assigned to two conditions that differed in the task they 

performed throughout the session (see below).  One participant was excluded for not following the 

instructions and producing errors on about half of the trials; a second participant was excluded for 

producing a pattern of task choices that was completely deviant from that of the other participants, 

so that as well the proportions of runs as the proportions of autocorrelations in this participantʼs 

choice data deviated more than 2 standard deviations from the sample mean. 

5.1.2. Materials and procedure

The same procedure (single registration) as in Study 1 was used in combination with the 

stimuli and the tasks of Study 2.  Participants were instructed to perform one single task 

throughout the experimental session that consisted of two blocks of 65 trials, preceded by a 

practice block of the same length.  Half of the participants performed the magnitude task and 

pressed the left key for smaller and the right key for larger than 5.  The other half was requested to 

execute the parity task and pressed the left key for odd and the right key for even.  They were 

further instructed to switch hands in an unpredictable manner with the restriction of using both 

hands about equally often.  During the practice block, they received feedback in the same way as 

in Study 2.  At the end of each block a feedback screen showing performance during the block was 

presented, also completely similar as in Study 2.

5.2. Results

For completeness, analyses of task performance are presented in Appendix C.  Here we 

focus on the sequential analysis.  This data analysis was completely similar to that of Studies 1 

and 2.  The analysis was performed once with a focus on tasks (hands in the present study), and 

once with a focus on transitions.  Both runs and autocorrelations were analyzed on the basis of the 
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multivariate linear model in a 2 (Task: magnitude or parity) × 2 (Hand: left or right) × 10 (Length or 

Lag) with repeated measures on the last two factors.

Previewing the findings, the hand-based analyses revealed larger runs proportions for the left 

than for the right hand, but decrease of runs proportions over lengths did not differ across the two 

hands.  As in Studies 1 and 2, the autocorrelations showed a dip at lags 2-4, and although the 

average autocorrelations were higher for the left than for the right hand, the size of the dip did not 

differ across hands.  In the transition-based analyses, proportion of hand repetitions was larger 

than the proportion of hand switches.  Decrease of runs proportions over lengths was faster for 

repetitions than for switches.  Autocorrelations were larger for repetitions than for switches and as 

in the previous studies, the autocorrelation at lag 1 was smaller than at the other lags.

More statistical details about these findings are presented in the following paragraphs. 

Readers who prefer to skip these details can move directly to session 5.3 (Discussion).

5.2.1. Focus on hands

Hand selection data were coded as binary series of events in the same way as in Studies 1 

and 2.  More specifically, the 2 × 64 hand choices was first coded 1 for left and 0 for right to 

generate runs and autocorrelation statistics.  The codes were then reversed to calculate the values 

of the same statistics with the focus on the right hand (right = 1, left = 0).  Also the transitions were 

coded, namely first with hand repetition coded as 1 and hand switching as 0 and then with the 

coding reversed.  This way completely the same analysis was performed as in Studies 1 and 2, 

with the understanding that in the present study, there was no task switching but only hand 

switching.

The pattern of runs was completely similar to the one obtained in Studies 1 and 2.  Selection 

proportions of the left hand and the right hand were .52 and .48 respectively.  Overall, runs 

proportions were larger on the left hand (M = .11) than on the right hand (M = .10).  This difference 

was significant, F(1,31) = 7.59, ηp2 = 0.20.  Furthermore, only the main effect of run length was 

reliable, F(9,23) = 91434, ηp2 = 1.00.  Importantly, hand did not interact with run length, F(9,23) = 

1.97, p = .09.
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Similarly, average autocorrelations were larger when focus was on the left hand (M = .26) 

than when focus was on the right hand (M = .23), F(1,31) = 13.59, ηp2 = 0.30.  Besides, 

autocorrelations varied over lags, F(9,23) = 4.11, ηp2 = 0.62.  As in Studies 1 and 2, 

autocorrelations were lower in the window at lags 2-4 than at longer lags (7-9), F(1,31) = 15.17, ηp2 

= 0.33.  No other effects or interactions were reliable.

5.2.2. Focus on transitions

Proportions of hand repetitions (M = .53) were larger than proportions of hand switches (M 

= .47), but these values were not significantly different from 0.5, t(32) = 1.37, p = 0.18.  On average 

runs proportions were larger for repetitions (M = .11) than for switches (M = .09), but this difference 

was not reliable (F < 1).  Run length was significant, F(9,23) = 23894, ηp2 = 1.00, as well as its 

interaction with transition type, F(9,23) = 10.76, ηp2 = 0.81.

On average autocorrelations were larger for repetitions (M = .30) than for switches (M = .23), 

but this difference was not reliable.  Autocorrelations only varied over lags, F(9,23) = 10.70, ηp2 = 

0.81.  As in Studies 1 and 2, transition autocorrelations were smaller at lag 1 (M = .23) than at the 

other lags (M = .27), F(1,31) = 72.22, ηp2 = 0.70.  This contrast did not interact with the other 

effects.

5.3. Discussion

The present study differs from Studies 1 and 2 by not showing a significant repetition bias for 

hand selection even though the hand switch cost was reliable (see Appendix C), and replicates 

Studies 1 and 2 in revealing a similar pattern of findings both in the analysis of the hand choice 

and in the analysis of the transitions between hands.  These similarities are obtained 

notwithstanding an important difference between the previous studies and the present one, namely 

that in the present study no task switching is needed as there is only one task, so that participants 

only have to select the hand they will use to perform the task. 

5.4. Model fits

The present study was designed to specifically test the validity of the chain-retrieval model.  

In the experimental procedure of the present study, task switching was replaced by hand switching 

while performing one single task.  As explained in the introduction to this study, on the basis of the 
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considerations that a hand switch cost may be observed but that this switch cost is not driven by 

task-set preparations, it was predicted that no bias would develop towards chains with more hand 

repetitions.  Because a hand switch cost was observed, as well in error data as in RT data (see 

Appendix C for details),in order to verify the prediction, we must consider two possibilities.  First, 

due to the presence of a hand-switch cost, participants may learn from this performance difference 

to prefer chains with more hand repetitions to chains with less hand repetitions.  If that is the case, 

the present model application should simply replicate the results of Studies 1 and 2.  The second 

possibility, is that notwithstanding the presence of a hand-switch cost, participants did not learn 

from the performance difference between hand repetitions and hand switches and did not acquire 

a bias towards more repetitions.  Such failure to acquire a bias, given that a performance 

difference is present, is probably due to the fact that switching hands does not involve mental effort 

to prepare for using another hand, whereas in task switching, changing from one task to another 

involves a set of preparatory processes that can be modulated by performance monitoring 

(Botvinick, Nystrom, Fissell, Carter, & Cohen, 1999; Botvinick, 2007; Botvinick, Braver, Barch, 

Carter, & Cohen, 2001; Botvinick, Cohen, & Carter, 2004).  If participants did not acquire a bias 

towards chains with more repetitions, then the present model application should not simply 

replicate Studies 1 and 2.  More particularly, it would be expected that the b parameter would take 

a value close to neutral (0.5).  

Because of this focused research question, the present section therefore reports only the 

tests of the chain-retrieval model.  The full parameter models, and the three variants with one of 

the parameters clamped to a neutral value were tested.  The questions addressed were whether 

the fit of the model with b fixed would be close to the fit obtained for the full parameter version and 

whether any of the other two-parameter models would be sufficient to explain the data.

Table 9 displays the fit and estimated parameters of the four model variants studied.  The fit 

of the full-parameter chain-retrieval model was quite good.  The same goes for the variants with m 

fixed and b fixed.  In fact, the fit of the full model was not statistically better than the fit with either 

parameter fixed. The fit of the model with r fixed was substantially worse, although the difference 

fell short from statistical significance.  When considering the predictions of the task 
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autocorrelations, the full parameter model was significantly better than the fixed-r model.  The 

difference between the full and the m-fixed model was also significant when the overlapping cases 

were excluded (z = 3.67, p < .001).  Only the difference with the b-fixed model was not statistically 

significant.  The predictions of the transition autocorrelations yielded all significant differences in 

favor of the full-parameter model. 

---- Table 9 about here ----

These findings show that the bias parameter (b) does not play a role when task difficulty 

differences are not at issue: neither in the parameter estimation nor in the prediction of 

autocorrelations, the full model was better than the model with b fixed.  This observation is further 

substantiated by the finding that the correlation between the value of the b in the full model and the 

RT switch cost (r = -0.43, opposite direction than expected) and the correlation of b with the error 

switch cost (r = 0.27, p = 0.13) are not reliable.  Even though hand switching was more difficult 

than hand repetition, this does not seem to intrude into the selection of a hand for executing a task.  

That there is no bias towards chain with more repetitions does not mean that the repetition 

bias is completely abolished.  The difference between the r-fixed and the full model shows that 

hand selection is still affected by bottom-up events.  As well in the model fits as in the prediction of 

autocorrelations, the full model was reliably better than the model with r fixed to 0.  The estimated 

proportion of bottom-up triggered repetitions seems to be smaller than in Studies 1 and 2.  A test of 

the difference showed a marginally significant difference, F(1,127) = 3.30, p = .07, ηp2 = 0.03.  

Finally, in comparing the full model to the model with m fixed, the fits showed that the full 

model was not better than the restricted model, but in the prediction of the autocorrelations, the 

difference between both sets of predictions was significant.  This observation indicates that the 

preferred chain length is an important modulator of selection and that it plays an important role in 

achieving the tendency to repeat present in this data set, the more so that bias does not seem to 

be effective to augment proportions of repetitions and that fewer bottom-up repetitions do occur.

6. Study 4

Study 3 tested the chain-retrieval model in a dual-task context: it required hand switching 

while performing another task.  Although a hand-switch cost was observed, no bias was acquired 
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on the basis of this difference in difficulty between hand repetitions and hand switches.  In that 

context, the m  and r  parameters could not be discarded.  The question addressed in Study 4 is 

whether the processes underlying these parameters would still play an important role, when the 

context is further simplified, i.e., when the dual-task characteristic is removed.  In Study 4, the 

situation was completely similar as in Study 3, except that no target-based task processing was 

required.  On every trial, a fixed probe was presented to which participants responded by pressing 

a key either with the left or with the right hand.  Hence, the task situation only required voluntary 

hand selection.  The research questions are (a) whether the chain-retrieval model would still be 

better than the statistical independence and dependence models, and (b) whether the three 

parameters would still be instrumental in obtaining good fits and predictions.

6.1. Method

6.1.1. Subjects. 

Twenty-four participants were selected from the same pool as Study 3.  They all served in a 

single condition in which they randomly switched between hands.  One subject failed to emit a 

response on about one third of the trials and was not included in the data analysis.

6.1.2. Materials and procedure

Participants were instructed to switch hands in an unpredictable manner with the restriction 

of using both hands about equally often.  Each trial consisted of a probe (exclamation mark) that 

signaled that a response was required, namely to either press a left key with the left hand or to 

press a right key with the right hand.  Time allowed for responding was 3000 ms.  During the 

practice block, they received feedback.  At the end of each block a feedback screen showing 

performance during the block was presented completely similar as in Study 2.  The practice block 

contained 65 trials; this was followed by two experimental blocks of 65 trials each.

6.2. Results

RTs were not faster for repetitions than for switches (Ms respectively 332 and 359 ms), F

(1,22) = 2.04, p = 0.17, ηp2 = 0.08. The sequence data were analyzed once with a focus on hands 

and once with a focus on transitions between hands.  Both runs and autocorrelations were 
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analyzed on the basis of the multivariate linear model in a 2 (Hand: left or right) × 10 (Length or 

Lag) repeated measures design .

6.2.1. Focus on hands

Hand selection data and transition data were coded in the same way as in Study 3.  This way  

we could conduct completely the same analyses as in the previous studies, with the understanding 

that in the present study, hand switching was the only task.

The pattern of runs was completely similar to the one obtained in the previous studies.  

Selection proportions of the left hand and the right hand were .51 and .49 respectively.  Overall, 

runs proportions were not larger on the left hand (M = .10) than on the right hand (M = .10), F < 1.  

The main effect of run length was reliable, F(9,14) = 6.16, ηp2 = 0.80.  Importantly, hand did not 

interact with run length, F(9,14) = 1.13, p = .40.

Average autocorrelations were slightly larger when focus was on the left hand (M = .25) than 

when focus was on the right hand (M = .24), but this difference was not reliable, F < 1.  

Autocorrelations varied over lags, but again not reliably, F(9,23) = 1.40, p = .28, ηp2 = 0.47.  In 

contrast to the previous studies, autocorrelations were not lower in the window at lags 2-4 than at 

longer lags (7-9), F < 1, ηp2 = 0.04.  No other effects or interactions were reliable.

6.2.2. Focus on transitions

Proportions of hand repetitions (M = .53) were larger than proportions of hand switches (M 

= .47), but these values were not significantly different from 0.5, t(22) = 1.08, p = 0.29.  On average 

runs proportions were not larger for repetitions (M = .10) than for switches (M = .10), F < 1.  Run 

length was significant, F(9,14) = 4.81, ηp2 = 0.76, but its interaction with transition type was not, F

(9,14) = 2.02, p = .12, ηp2 = 0.57.

On average, autocorrelations were larger for repetitions (M = .27) than for switches (M = .25), 

but this difference was not reliable, F < 1.  Autocorrelations did not vary reliably over lags, F(9,14) 

= 1.23, p = .35, ηp2 = 0.44.

6.3. Discussion

Like Study 3, the present study did not show a repetition bias for hand selection.  The pattern 

in the autocorrelations was completely different from the pattern found in the three previous 
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studies, both in the hand choice and in the transitions.  The most striking feature is that neither a 

hand preference, nor a repetition bias is observed.  On the basis of the random generation 

literature, an alternation bias could have been expected.  In comparison to typical random 

generation experiments, the time allowed per trial was rather large in the present study (3 s), so 

that there was enough time to overcome such bias.  Note, however, that hand choice has so far 

not been used in random generation tasks, and possibly hand selection is sensitive to bottom-up 

intrusions.  The model application will show that this may indeed have been the case.

6.4. Model fits

Like Study 3, the present study was designed to specifically test the validity of the chain-

retrieval model, presently in a situation where only random choice of hands is required.  Because 

this is the kind of situation that corresponds most closely to typical random generation tasks, first a 

comparison is made between the chain-retrieval model and the three statistical models tested in 

Studies 1 and 2, namely the independence model, and the perseveration and alternation models.  

Next, an analysis like the one presented in Study 3 is performed to check whether the assumptions 

of the chain-retrieval model all hold in this more simple kind of task setting.

Table 10 presents an overview of the findings comparing the chain-retrieval model to the 

statistical models.  Although the goodness-of-fit of the statistical models now seems to be slightly 

better than in Studies 1 and 2, the chain-retrieval model still yields a better fit, even when the 

number of free parameters is taken into account; this model yields a statistical significant better fit 

than each of the other models.  In terms of the predictions, all models seem to be doing equally 

well.  This is not very informative on the relative quality of the models, as the data analysis had 

already shown that the autocorrelation data did not vary over the lags. 

---- Table 10 about here ----

The comparison of the full and nested variants of the chain-retrieval model is summarized in 

Table 11.  The table shows that each of the nested models provided an equally good fit as the full 

model.  When considering also the predictions, only the model with r = 0, produced significantly 

worse predictions than the full-parameter model.  Similar to Study 3, the proportion of bottom-up 

triggered repetitions tended to be smaller.  Indeed, when contrasting the number of bottom-up 
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triggered repetitions in Studies 1 and 2 with the number in Studies 3 and 4, less such repetitions 

did occur in the latter two studies, F(1,149) = 4.92, p < .05, ηp2 = 0.03.  As in Study 3, the full 

model was not better than the model with b fixed; the correlation of b with the hand-switch cost 

was close to zero (r = 0.09, p = 0.70).

---- Table 11 about here ----

By and large, this study shows that the chain model accounts well for random generation 

data, while parameters m and b are fixed.  A good fit was obtained with r fixed to 0, but predictions 

of autocorrelations were better when r varied freely.   Apparently, bottom-up repetitions (e.g., due to 

repetition priming) did occur in hand switching.  In a task context with less opportunities for bottom-

up repetitions, fixing r to 0 may be expected to yield good correspondence.  That the chain-

retrieval model achieves a good account of random generation data with so many of the free 

parameters fixed further supports the assumptions that go back to the model of Rapoport and 

Budescu (1997).

7. General Discussion

7.1. Overview of the findings

The objective of the present study was to develop a framework that specifies the processes 

involved in voluntary task selection, to define a formal model on the basis of the framework, test 

this model in situations involving task selection, and test the limits of the model by applying it also 

to event selection.  On the basis of functional similarities between VTS and the selection of 

independent events as studied in the random generation experiments, we formulated the central 

hypothesis of the framework, namely that in order to produce sequences of task choices in which 

both tasks occur independently and about equally often, people quickly learn to retrieve short 

balanced sequences (in line with the model of Rapoport & Budescu, 1997) of task names from 

LTM to guide the trial-by-trial choice of tasks.  We assumed that the length of the chains is 

constrained by working memory capacity, although we noticed that chain length is also related to 

the proportion of task repetitions in the chains.  We further assumed that there is a bias towards 

retrieval of chains with more repetitions, and that bottom-up triggered repetitions may overrule the 

currently intended event.  This view was specified in a model with three free parameters 
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corresponding to these hypothesized processes.  This modelʼs performance was compared with 

that of a statistical independence model (Bernoulli) and with performance of two statistical 

dependence models, one with a repetition bias (perseveration model) and one with an alternation 

bias (alternation model).

To compare these models, we analyzed task-choice data from two perspectives, namely as a 

sequence of tasks and as a sequence of transitions between tasks.  The task-based analysis of 

the VTS data in Studies 1 and 2 confirmed the task repetition bias in task selection (Arrington & 

Logan, 2004).  The autocorrelation statistic showed that this bias was strongly present at lag 1 and 

dipped on subsequent lags, which is consistent with the avoidance of lag-2-repetitions in VTS (Lien 

& Ruthruff, 2008) but then stabilized at an intermediate level from lag 5 on.  In other words, when 

participants executed task A, there is a tendency to immediately repeat task A (lag-1 repetition/

autocorrelation), and to switch to the other task one or two times in the lag 2-5 window.  At lags 

longer than 5, there is no strong evidence for any statistical dependency.  This pattern is different 

from what is typically found in the random-generation literature: when people select random 

events, they often tend to alternate at Lag 1. The transition-based analysis of the choice data 

confirmed the presence of a global repetition bias supported by a dominance in the proportion of 

repetitions and a stable level of relatively high autocorrelations on lags greater than 1.  At lag 1, the 

tendency to repeat the same transition was lower, which suggests that actual lag-2 repetitions 

were not avoided. The same pattern of findings was also present in Study 3 which did require hand 

switching instead of task switching, although the repetition bias was not so strong in this study.

In Studies 1 and 2, the parameters of the chain-retrieval model and of the three statistical 

models were estimated separately for each participant by means of a maximum likelihood method 

taking into account the number of free parameters.  This analysis showed that the chain-retrieval 

model yielded a better account of the sequential choices than any of these other models.  Also in a 

comparison of the full-parameter model to restricted models in which one of the parameters was 

clamped to a neutral value, the full model produced better fits and better predictions than the 

restricted models.
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In order to further test the processes underlying the chain-retrieval model, in Study 3 the 

model was applied to a dual-task situation in which no task switching, but instead hand switching 

was required.  The fit of the full-parameter model was not statistically better than that of the nested 

two-parameter models.  Taking into account also the predictions of the autocorrelation data, it 

appeared that only the variant with b = 0.5 was completely equivalent to the full model.  Even 

though a hand switch cost was present in RT and error data, this did not result in the acquisition of 

a bias towards the easier chains with more hand repetitions.  It was argued that this is due to a 

qualitative difference between task switching and hand switching.  Task switching requires task-set 

configuration, a process that involves mental effort and is modulated by performance monitoring 

(Botvinick, 2007; Botvinick et al., 2001).  As explained in the introduction to Study 3, the reason for 

an RT difference in hand repetitions and hand switches fits with the pattern of data reported by 

Pashler and Baylis (1991), and can be accounted for by re-usage of a response-selection shortcut 

in the case of hand repetitions.  The difference in RTs is not based on a difference on mental effort 

and hence could not be used to develop a preference for the more easy hand repetitions. 

Study 4 compared the chain-retrieval model to the statistical models as well as to the 

variants with one of the parameters clamped to a neutral value.  In this study, participants only 

switched between response hands.  Even though the statistical dependence models should 

provide a good fit to such data, the chain-retrieval modelʼs fit (corrected for the number of free 

parameters) was still better than that of the three statistical models.  The comparison of the full 

model to the models with one parameter fixed revealed no longer an advantage for the full model.  

Based on the goodness-of-correspondence of data and predictions, the model without bottom-up 

events produced poorer correspondence to the data, so that this study provides evidence that the 

bottom-up events do also occur in simple event selection.  Interestingly, however, the likelihood of 

these bottom-up triggered repetitions was smaller than in the task switching studies (Studies 1 and 

2).  This observation supports the hypothesis that VTS is more vulnerable to bottom-up repetitions 

than is the case in independent event selection as in Studies 3 and 4.  A possible reason why 

bottom-up events may affect VTS more relates to the larger number of requirements in VTS (select 
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tasks, randomly and correct execution of the selected tasks) than in random event selection 

(random selection without any behavioral consequences). 

By way of summary, the chain-retrieval model yields a better account than the statistical 

independence and the statistical dependence models, not only in contexts of VTS with single 

(Study 1) and double registration (Study 2), but also in a context of hand switching (Study 4).  The 

analyses support the conclusion that in the context of task switching, the three postulated 

processes of the model (namely chain selection, chain-retrieval biasing and bottom-up triggered 

repetitions), all have a role to play.  Even though, the extent to which either of these processes 

contribute to the generation of task choices can be modulated for the absence of the others, this 

modulation does not suffice to completely account for the data when one of these processes is 

blocked in the model.  In contexts without task switching, the model still accounts for the observed 

selections, but this can be achieved by means of only two parameters (r and m), and in a context 

of simple hand choice, one parameter (r) seems to suffice.

7.2. Theoretical implications

In this section, we discuss the theoretical basis and implications of the assumptions we made 

in developing the chain-retrieval model.  This discussion considers the assumptions related to the 

three free parameters.

The three parameters of the model were introduced to grasp particular constraints of the task 

selection process in VTS.  Parameter m was introduced to specify the variability in sequences of 

choices produced by different persons.  In developing the sets of balanced chains of different 

lengths, two observations may be of interest. First, all these sets of chains are characterized by an 

alternation bias, which is less strong in chains of lengths 5-6 than in chains of lengths 3-4. Second, 

by increasing the bias (b) towards more repetitions, there is more room for creating a repetition 

bias in the longer than in the shorter chains.  In other words, the preferred chain length does not 

only depend on the limited capacity available for processing chains of a particular length, the 

preference for a particular length may also depend on the maximum proportion of repetitions that 

can be produced by chains of a particular length. Taken together, these observations suggest that 
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preferred chain length may be based on a balance between capacity limits and limits in achievable 

repetition bias.

A second parameter, b, biases the selection of sequences in such a way that sequences are 

more likely to be retrieved when they contain more repetitions compared to when they contain 

more alternations.  The inclusion of the b parameter in the modeling shows that the probability of 

retrieving particular chains depends on the ease of execution, as was confirmed by the significant 

correlation between b and the accuracy difference between repetitions and switches.  In Studies 3 

and 4 which did not require task switching, the bias parameter was not needed to account for the 

data.  As already extensively argued, the task-switch cost, but not the hand-switch cost, is 

intricately related to task-set reconfiguration and performance monitoring to achieve the best 

performance with the least mental effort. 

The good correspondence of the modelʼs predictions and the data is consistent with the idea 

that in voluntary task choice, there is a bias towards a selection of sequences with more 

repetitions.  How can this be explained? One obvious possible explanation relates to the 

assumption we adopted to motivate the inclusion of the b parameter, namely that participants 

develop such a bias during task execution on the basis of the experience that repetitions are easier 

to execute than switches.  Whether participants indeed develop such a bias, is one of the avenues 

for further research that follows from the present modeling attempt.  Making switching easier or 

more difficult to execute should affect the value of this parameter.  This is in line with Botvinickʼs 

integrative account of the functioning of the anterior cingulate cortex (Botvinick, 2007).

The third parameter, r, specifies the probability that a repetition overrules the intended action.  

The value of the parameter overestimates the real proportion of bottom-up intrusions, because on 

some trials the bottom-up triggered event and the intended event are the same.  Correction for this 

overlap shows that the estimated proportion of bottom-up triggered repetitions hovers around .11 in 

task switching and around .07 when no task switching is involved. This parameter was included to 

account for previous findings regarding bottom-up effects in VTS.  The parameter value also 

suggests that these kinds of events are happening quite often.  This confirms the difficulty of 

remaining in control of task selections while trying to avoid to be distracted by exogenous events 
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(Mayr & Bell, 2006), although in the context of Study 2, the effect cannot be attributed to the 

presence of stimulus repetitions, as the task choice occurs in response to a prompt, before 

stimulus presentation.

The particular choice for bottom-up intrusions that overrule the intended action has some 

advantages over other possible rules that could be used to implement the model.  Other 

possibilities are that the bottom-up intrusions intervene between the intended events but do not 

overrule the intention or that an intrusion intervenes and blocks further execution of the chain.  

These alternatives are conceptually less attractive because in these alternatives the presently 

intended action is never overruled, but only postponed.  Also empirically, these alternative rules do 

not seem to account so well for the data, as can be seen in Appendix B that reports tests of model 

variations using these alternative rules.

Another interpretation of the r parameter is that it may reflect execution errors on the part of 

the participants.  Erroneously executing a repetition instead of a switch would have the same 

effect.  Given that error rates in task-switching research are usually around 5%, errors cannot 

completely account for the value of r.  The interpretation that r represents bottom-up intrusions that 

could not be blocked by top-down control mechanisms is also supported by the observation that 

the size of r depended on the SOA between the previous stimulus and the present task probe.  The 

value of r was namely larger with a short SOA.  This is exactly what would be expected if this 

parameter is related to intrusions.  On the same count, no such effect is expected for the other 

parameters and this was also confirmed.  Further tests of the model could include other well 

chosen design variations, such as the number of target repetitions (Mayr & Bell, 2006) or invoked 

response repetitions.  Data based on such procedural variations should lead to larger values for r 

in conditions that result in more repetitions.

While the present study was completely framed within the VTS procedure, the modeling 

reported here, does have implications that go beyond VTS.  First, the chain-retrieval model  was 

designed to provide an explanation of task choice in VTS, but it can also account for the different 

pattern of findings in the production of sequences of independent events.  The model is, for 

example, also applicable to binary randomization tasks, such as coin tossing.  Study 4 reports 
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such an application based on random hand switching.  The findings showed that, as expected, 

bias towards repetitions did not play a role.  However, the task was still sensitive to bottom-up 

intrusions, be it that the amount of intrusions was significantly smaller than in a task-switching 

context.  Considering that the chain-retrieval model was developed starting with assumptions from 

the Rapoport and Budescu (1997) model, it can be considered as an extension of the latter model 

complementing it with other processes such as biased selection and bottom-up intrusions.  The 

results of Study 4 and these considerations raise the question, whether and to what extent typical 

random choice behavior is also affected by bottom-up processes.

7.3. Avenues for further research

One obvious question for further research concerns the role of working memory in relation to 

the present framework.  As was already mentioned, the preferred chain length is, among other 

factors, probably constrained by working memory capacity.  Also the frequency with which bottom-

up intrusions occur may depend on the availability of attentional resources, which are central in 

most working memory models.

There is little doubt that further empirical work to substantiate these relationships between 

the hypothesized mechanisms of task selection and working memory would be most valuable.  

One major reason is that, thus far, many attempts to clarify the relationship between task switching 

and working memory have stranded in null results (see Vandierendonck et al., 2010, for a brief 

discussion), and only a few studies have reported positive results.  As the potential role of working 

memory is explicit in at least two processes of the present framework, further tests of these 

relations do seem worthwhile.

Further testing of the relationship between preferred chain length and working memory 

capacity does seem straightforward.  Important evidence has already been reported as to the role 

of working memory in sequence generation.  Baddeley et al. (1998), for example, found that the 

deviation of randomness in generated key presses increased when an irrelevant memory load was 

larger, which shows that maintaining a memory load may interfere with cognitive control processes 

needed for the generation task.  Several studies have also reported poorer recall on a memory 

task when an unrelated random generation task was performed concurrently (e.g., Fisk & Sharp, 
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2003; Macizo, Bajo, & Soriano, 2006; Towse & Cheshire, 2007; Vandierendonck, 2000a, 2000b; 

Vandierendonck, De Vooght, & Van der Goten, 1998a, 1998b; Vandierendonck, Kemps, Fastame, 

& Szmalec, 2004), suggesting that random generation interferes with maintenance of unrelated 

memory contents.  Based on these findings, the expectation may be formulated that performing 

VTS under a memory load could result in the usage of shorter chains.  This may be modulated by 

two factors.  First, if the tendency to avoid the more difficult switches is strong, longer chains may 

be preferred and efforts may be deployed to work with longer chains.  Second, the impact of a 

memory load depends on the amount of working memory capacity available.  Persons with a larger 

working memory capacity are more able to maintain a load while performing another demanding 

cognitive task (e.g., Engle, Kane, & Tuholski, 1999).  Therefore, the expectation that shorter chains 

would be used in VTS under a memory load would probably mainly affect persons with a low 

working memory capacity.  Therefore, these modulating factors must be taken into account in a 

test of the relationship between working memory and actually used chain length.  It is worth noting 

that one study of the role of working memory in VTS did not find a relationship between task choice 

and working memory capacity (Butler, Arrington, & Weywadt, 2011).  As the study was performed 

outside the present framework, unfortunately, it did not provide a direct test of the hypothesis 

proposed here.

The second issue of interest is whether working memory mediates the frequency of bottom-

up intrusions.  Starting from the finding that stimulus repetitions enhance task repetitions (Mayr & 

Bell, 2006), one study already showed that this effect is strengthened under a working memory 

load (Demanet et al., 2010).  It is quite likely that a memory load sets the stage for more bottom-up 

intrusions (see e.g., Lavie, Hirst, de Fockert, & Viding, 2004); consequently, the r parameter is 

expected to increase when load increases, also because the control processes that block 

upcoming intrusions are expected to be less efficient when there is a working memory load.  In this 

sense, voluntary task selection involves blocking of “unwilled” actions.  In terms of the task-chain 

model, this means that the more choices are voluntary, the lower the value of r should be.  As the 

average value was lower at long than at short SOA, it seems that at long SOA more intrusions 

were blocked and that consequently more voluntary task choices were made.  Within the 
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application of the model, it is possible to estimate how frequently an intended switch was overruled 

by a bottom-up triggered repetition.  This is, however, merely an estimate.  Under the hypothesis 

that under working memory load more bottom-up intrusions overrule an intended action, it follows 

that the estimated proportion of overruled switches should be larger under load than without load, 

a prediction worthwhile to follow up.

If it is the case that under load, task switching would become more difficult, this would also 

imply that a larger b-value would be expected under load than without load.  This could also imply 

that low working memory subjects would also be more susceptible to the effects of load and 

develop a stronger bias towards repetitions, which would require the selection of longer chains.  

Taken together, in an individual differences approach, participants with larger working memory 

capacity would be observed to prefer longer chains, and they would be expected to be less 

sensitive to bottom-up intrusions.  In terms of the modeling, high working memory participants 

would show a larger value for m and a smaller value for r and b than low working memory 

participants.  Clearly such a test will not be easy because of the possible compensatory effects 

between the processes involved.

Apart from the role of working memory, the present framework also provides a basis for 

further exploring the conditions under which differences in difficulty between transitions or between 

tasks may affect the propensity to avoid the more difficult tasks or transitions in task choice.  This 

assumption of the framework seems to work well, but it was not explicitly tested in the present 

project.  The work of Botvinick (Botvinick, 2007; Botvinick & Rosen, 2009) regarding the role of 

mental effort offers one entry for further investigation.  This also includes a link to work on 

performance monitoring.  In fact, a bias towards the more easy repetitions as proposed in the 

chain-retrieval model must be based on such processes.  This entails, checking for errors, for 

response slowing, for conflicts between response alternatives, and using this information as 

feedback in the acquisition of the bias towards more easy tasks, which in the end helps to maintain 

an acceptable level of performance.  In the context of VTS, the effect of asymmetric switch costs 

on task choice (e.g., Liefooghe et al., 2010) and the role of lag 2 repetition costs (e.g., Lien & 
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Ruthruff, 2008) may be further pursued by linking these effects to performance and conflict 

monitoring 

As a final remark, the idea of retrieving stored chains of tasks to guide further action is quite 

similar to but also different from retrieving a plan of actions.  When people make a plan, in order to 

achieve the goal, appropriate subgoals are retrieved and chained into a sequence of steps.  These 

chains are stored in LTM and can be retrieved for later usage.  The retrieved chains guide task 

execution which subsequently results in achieving the goal.  Apart from this similarity, there are 

also differences.  The chains considered in the chain-retrieval model clearly are no action plans.  

The chains are rather a means to achieve the goal of performing well in a particular task setting 

with particular constraints.  Nevertheless, further research on how chain retrieval could develop 

into plan retrieval would, no doubt, be worthwhile.  The step from chain-retrieval to sequence 

planning may be rather small and if so, it is no coincidence that there are some similarities 

between the present modeling and the task-span procedure introduced by Logan (2004a, 2006).

7.4. Conclusion

The present study showed that the repetition bias in VTS is due to a globally-based statistical 

dependency in the sequence of selected tasks or transitions.  The model based on chain retrieval 

accounts very well for these data and suggests (a) that short sequences of tasks  are retrieved 

from LTM to guide task selection, (b) that the length of these sequences varies over individuals 

and (c) is affected by the probability that the sequences contain repetitions linked to ease of 

execution and may also be constrained by working memory capacity, and finally (d) that bottom-up 

intrusions of repetitions play an important part in the repetition bias.  This model has a number of 

implications that can be tested in future research.  The memory processes postulated in the model 

propose a hypothesis on how sequences of independent events in general and more particularly, 

how task selection in VTS may occur.  The assumption that task selection is based on chains of 

events retrieved from memory provides a possible answer regarding the cognitive control of task 

selection, namely that in VTS, not single tasks but chains of tasks or possibly even action plans 

are selected.  Finally and not least important, the modeling also indicates that the adjective 
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“voluntary” in voluntary task switching may refer to the process of selecting tasks but also to the 

process of blocking intrusions. 
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Table 1.  Overview of the balanced sequences of tasks A and B that are possible at 

lengths 3-6.  The corresponding sequences of transitions (R = repetition; S = switch) are 

also displayed as well as the number of repetitions in the sequence.

Length 3Length 3Length 3 Length 4Length 4Length 4

Tasks Transitions # Rep Tasks Transitions # Rep

AAB RS 1 AABB RSR 2

ABB SR 1 ABBA SRS 1

ABA SS 0 ABAB SSS 0

Length 5Length 5Length 5 Length 6Length 6Length 6

Tasks Transitions # Rep Tasks Transitions # Rep

AAABB RRSR 3 AAABBB RRSRR 4

AABBB RSRR 3 AABBBA RSRRS 3

AABBA RSRS 2 AABBAB RSRSS 2

AABAB RSSS 1 AABABB RSSSR 2

ABBBA SRRS 2 ABBBAA ARRSR 3

ABBAA SRSR 2 ABBAAB SRSRS 2

ABBAB SRSS 1 ABBABA SRSSS 1

ABABB SSSR 1 ABAABB SSRSR 2

ABAAB SSRS 1 ABABBA SSSRS 1

ABABA SSSS 0 ABABAB SSSSS 0
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Table 2.  Results of the analyses of variance of the proportions of runs and autocorrelations in the 

transition-based analysis of Study 1 in a 2 (RSI: 100 vs 1000 ms) × 2 (Task: letter vs. form) ×  8 

(Lengths/Lags 1-8) factorial design with repeated measures on the last two factors.

RunsRunsRuns AutocorrelationsAutocorrelationsAutocorrelations

Effect df F ηp2 F ηp2

RSI (I) 1,16 3.5† .18 3.5† .18

Task (T) 1,16 13.2** .45 25.3*** .61

Lag (L) 7,10 2644.5*** 1.00 3.6* .72

T x L 7,10 8.6** .86 1.0 .41

I x T 1,16 7.3* .31 7.3* .31

I x L 7,10 1.7 .55 3.3* .70

I x T x L 7,10 1.3 .48 0.4 .21

Note.  * p < .05, ** p < .01, *** p < .001; † p = .10Note.  * p < .05, ** p < .01, *** p < .001; † p = .10Note.  * p < .05, ** p < .01, *** p < .001; † p = .10Note.  * p < .05, ** p < .01, *** p < .001; † p = .10Note.  * p < .05, ** p < .01, *** p < .001; † p = .10Note.  * p < .05, ** p < .01, *** p < .001; † p = .10Note.  * p < .05, ** p < .01, *** p < .001; † p = .10Note.  * p < .05, ** p < .01, *** p < .001; † p = .10Note.  * p < .05, ** p < .01, *** p < .001; † p = .10Note.  * p < .05, ** p < .01, *** p < .001; † p = .10
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Table 3.  Comparison of the chain-retrieval model in Study 1 to the statistical independence model, 

and the statistical dependence models.  For each model, the table shows −  (Fit), the proportion 

of cases in which the chain-retrieval model is better than the other models on the basis of the AICc 

measure, and the estimated parameter values.  The table also shows the degree of 

correspondence (rmsd) between predictions of task and transition autocorrelations and data, as 

well as the proportion of the participants for which the prediction of the chain-retrieval model is 

better than that of the other models, and the probability the z-score based on this proportion.

Chain-retrieval 
model

Bernouilli model Perseveration 
model

Alternation model

FitFitFitFitFit

− 42.3 249.2 51.6 244.9

Prop(AICc) 0.88 0.65 0.88

z 3.15
(p < .001)

1.70
(p < .05)

3.15
(p < .001)

Parameter 1 m = 5.35 p = 0.48 q = 0.49 q = 0.48

Parameter 2 b = 0.62 a = 0.16 a = 0.05

Parameter 3 r = 0.27

Prediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelation

rmsd 0.020 0.041 0.035 0.044

Prop(rmsd) 0.88 0.82 0.88

z 3.15
(p < .001)

2.67
(p < .01)

3.15
(p < .001)

Prediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelation

rmsd 0.018 0.043 0.026 0.045

Prop(rmsd) 0.82 0.71 0.82

z 2.67
(p < .01)

1.69
(p < .05)

2.67
(p < .01)
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Table 4.  Comparison of the full-parameter chain-retrieval model to variations with one of the 

parameter clamped to a neutral value in Study 1.  For each model, the table shows −  (Fit), the 

proportion of cases in which the chain-retrieval model is better than the other models on the basis 

of the likelihood ratio (LR), and the estimated parameter values.  The table also shows degree of 

correspondence (rmsd) between predictions of task and transition autocorrelations and data, as 

well as the proportion of the participants for which the prediction of the chain-retrieval model is 

better than that of the other models, and the probability the z-score based on this proportion.

Full model m = 3 b = 0.5 r = 0

FitFitFitFitFit

− 42.3 46.2 46.2 904.3

P(LR) 0.47 0.59 0.82

z -0.25
(p = 0.60)

0.73
(p = 0.23)

2.67
(p < 0.001)

Parameter m 5.35 3.00 5.65 5.82

Parameter b 0.62 0.79 0.50 0.79

Parameter r 0.27 0.37 0.33 0.00

Top-down 

repetitions
0.48 0.41 0.39 0.65

Bottom-up 

repetitions
0.12 0.15 0.17 0.00

Prediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelation

rmsd 0.020 0.044 0.028 0.050

Prop(rmsd) 0.82 0.65 0.94

z 2.67
(p < 0.001)

1.21
(p = 0.12)

3.64
(p < 0.001)

Prediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelation

rmsd 0.018 0.035 0.027 0.036

Prop(rmsd) 0.88 0.94 0.94

z 3.15
(p < 0.001)

3.64
(p < 0.001)

3.64
(p < 0.001)
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Table 5.  Results of the analyses of variance of the proportions of runs and autocorrelations in the 

task-based analysis of Study 2 on the basis of a 2 (SOA: 50 vs 1500 ms) × 2 (Task: magnitude vs 

parity) × 2 (Blocks) x 10 (Lengths/Lags 1-10) factorial design with repeated measures on the last 

three factors.

RunsRunsRuns AutocorrelationsAutocorrelationsAutocorrelations

Effect df F ηp2 F ηp2

SOA (S) 1,78 8.2** .09 1.0 .01

Task (T) 1,78 34.1*** .30 40.2*** .34

Blocks (B) 1,78 9.0** .10 0.0 .00

Lag (L) 9,70 6552.3*** 1.00 27.0*** .78

T x B 1,78 0.0 .00 0.5 .07

T x L 9,70 4.6*** .37 0.6 .07

B x L 9,70 3.8** .33 2.6* .25

S x T 1,78 3.1 .04 .7 .01

S x B 1,78 11.1** .12 .7 .01

S x L 9,70 2.0† .20 1.5 .16

S x T x B 1,78 0.1 .00 0.1 .00

S x T x L 9,70 1.7 .18 1.0 .12

S x B x L 9,70 2.8** .26 1.9 .19

S x T x B x L 9,70 1.1 .12 1.1 .12

Note.  * p < .05, ** p < .01, *** p < .001; † p = .051Note.  * p < .05, ** p < .01, *** p < .001; † p = .051Note.  * p < .05, ** p < .01, *** p < .001; † p = .051Note.  * p < .05, ** p < .01, *** p < .001; † p = .051Note.  * p < .05, ** p < .01, *** p < .001; † p = .051Note.  * p < .05, ** p < .01, *** p < .001; † p = .051Note.  * p < .05, ** p < .01, *** p < .001; † p = .051Note.  * p < .05, ** p < .01, *** p < .001; † p = .051Note.  * p < .05, ** p < .01, *** p < .001; † p = .051Note.  * p < .05, ** p < .01, *** p < .001; † p = .051
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Table 6.  Results of the analyses of variance of the proportions of runs and autocorrelations in the 

transition-based analysis of Study 2 on the basis of a 2 (SOA: 50 vs.  1500 ms) × 2 (Tasks: 

magnitude vs.  parity) × 2 (Blocks) × 10 (Lengths/Lags 1-10) factorial design with repeated 

measures on the last two factors.

RunsRunsRuns AutocorrelationsAutocorrelationsAutocorrelations

Effect df F ηp2 F ηp2

SOA (S) 1,78 4.4* .05 2.8 .03

Trans(T) 1,78 26.8*** .26 55.1*** .41

Blocks (B) 1,78 12.9*** .14 35.8*** .31

Lag (L) 9,70 9424.5*** 1.00 20.5*** .72

T × B 1,78 0.1 .00 0.8 .01

T × L 9,70 37.9*** .83 9.2*** .54

B × L 9,70 3.9*** 0.33 1.3 .14

S × T 1,78 8.5** .10 6.1* .07

S × B 1,78 4.1* .05 21.1*** .21

S × L 9,70 2.2* .22 1.3 .14

S × T × B 1,78 2.5 .03 4.4* .05

S × T × L 9,70 6.3*** .45 5.4*** .41

S × B × L 9,70 2.7* .26 1.8 .19

S × T × B × L 9,70 2.1* .21 2.1* .22

Note.  * p < .05, ** p < .01, *** p < .001Note.  * p < .05, ** p < .01, *** p < .001Note.  * p < .05, ** p < .01, *** p < .001Note.  * p < .05, ** p < .01, *** p < .001Note.  * p < .05, ** p < .01, *** p < .001Note.  * p < .05, ** p < .01, *** p < .001Note.  * p < .05, ** p < .01, *** p < .001Note.  * p < .05, ** p < .01, *** p < .001Note.  * p < .05, ** p < .01, *** p < .001Note.  * p < .05, ** p < .01, *** p < .001
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Table 7.  Comparison of the chain-retrieval model in Study 2 to the statistical independence model, 

and the statistical dependence models.  For each model, the table shows −  (Fit), the proportion 

of cases in which the chain-retrieval model is better than the other models on the basis of the AICc 

measure, and the estimated parameter values.  The table also shows the degree of 

correspondence (rmsd) between predictions of task and transition autocorrelations and data, as 

well as the proportion of the participants for which the prediction of the chain-retrieval model is 

better than that of the other models, and the probability the z-score based on this proportion.

Chain-retrieval modelChain-retrieval modelChain-retrieval model Bernouilli 
model

Perseverati
on model

Alternation 
model

All Block 1 Block 2

Bernouilli 
model

Perseverati
on model

Alternation 
model

FitFitFitFitFitFitFit

− 49.2 38.2 41.0 302.5 83.0 282.9

Prop(AICc) 0.91 0.78 0.91

z 7.38 
(p < .001)

4.92
(p < .001)

7.38
(p < .001)

Parameter 1 m = 4.80 m = 4.85 m = 5.01 p = 0.48 q = 0.49 q = 0.48

Parameter 2 b = 0.67 b = 0.67 b = 0.67 a = 0.13 a = 0.10

Parameter 3 r = 0.24 r = 0.21 r = 0.24

Prediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelation

rmsd 0.028 0.042 0.049 0.048 0.043 0.052

Prop(rmsd) 0.90 0.85 0.91

z 7.15
(p < .001)

6.26
(p < .001)

7.38 
(p < .001)

Prediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelation

rmsd 0.022 0.131 0.119 0.044 0.032 0.046

Prop(rmsd) 0.86 0.80 0.91

z 6.48
(p < .001)

5.37
(p < .001)

7.38
(p < .001)
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Table 8.  Comparison of the full-parameter chain-retrieval model to variations with one of the 

parameter clamped to a neutral value in Study 2.  For each model, the table shows −  (Fit), the 

proportion of cases in which the chain-retrieval model is better than the other models on the basis 

of the likelihood ratio (LR), and the estimated parameter values.  The table also shows degree of 

correspondence (rmsd) between predictions of task and transition autocorrelations and data, as 

well as the proportion of the participants for which the prediction of the chain-retrieval model is 

better than that of the other models, and the probability the z-score based on this proportion.

Full model m = 3 b = 0.5 r = 0

FitFitFitFitFit

− 27.6 28.6 28.4 121.8

P(LR) 0.53 0.64 0.79

z 0.45
(p = 0.67)

2.45
(p < 0.01)

5.14
(p < 0.001)

Parameter m 4.73 3.00 4.97 5.39

Parameter b 0.59 0.69 0.50 0.69

Parameter r 0.18 0.25 0.21 0.00

Top-down 

repetitions
0.47 0.42 0.38 0.61

Bottom-up 

repetitions
0.11 0.12 0.14 0.00

Prediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelation

rmsd 0.028 0.047 0.036 0.050

Prop(rmsd) 0.78 0.76 0.74

z 4.92
(p < 0.001)

4.70
(p < 0.001)

4.25
(p < 0.001)

Prediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelation

rmsd 0.022 0.033 0.032 0.035

Prop(rmsd) 0.63 0.80 0.76

z 2.24
(p < 0.05)

5.37
(p < 0.001)

4.70
(p < 0.001)
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Table 9.  Comparison of the full-parameter chain-retrieval model to variations with one of the 

parameter clamped to a neutral value in Study 3.  For each model, the table shows −  (Fit), the 

proportion of cases in which the chain-retrieval model is better than the other models on the basis 

of the likelihood ratio (LR), and the estimated parameter values.  The table also shows degree of 

correspondence (rmsd) between predictions of task and transition autocorrelations and data, as 

well as the proportion of the participants for which the prediction of the chain-retrieval model is 

better than that of the other models, and the probability the z-score based on this proportion.

Full model m = 3 b = 0.5 r = 0

FitFitFitFitFit

− 27.6 28.6 28.8 122.3

P(LR) 0.21 0.21 0.61

z -3.31
(p = 0.99)

-3.31
(p = 0.99)

1.22
(p = 0.11)

Parameter m 4.73 3.00 4.97 5.39

Parameter b 0.59 0.69 0.50 0.69

Parameter r 0.18 0.25 0.21 0.00

Top-down 

repetitions
0.43 0.38 0.38 0.56

Bottom-up 

repetitions
0.08 0.09 0.10 0.00

Prediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelation

rmsd 0.028 0.043 0.032 0.048

Prop(rmsd) 0.64 0.58 0.82

z 1.57
(p = 0.06)

0.87
(p = 0.19)

3.66
(p  < 0.001)

Prediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelation
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rmsd 0.024 0.034 0.030 0.032

Prop(rmsd) 0.67 0.70 0.76

z 1.91
(p < 0.05)

2.26
(p < 0.05)

2.96
(p < 0.01)
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Table 10.  Comparison of the chain-retrieval model in Study 4 to the statistical independence 

model, and the statistical dependence models.  For each model, the table shows −  (Fit), the 

proportion of cases in which the chain-retrieval model is better than the other models on the basis 

of the AICc measure, and the estimated parameter values.  The table also shows the degree of 

correspondence (rmsd) between predictions of task and transition autocorrelations and data, as 

well as the proportion of the participants for which the prediction of the chain-retrieval model is 

better than that of the other models, and the probability the z-score based on this proportion.

Chain-retrieval 
model Bernouilli model Perseveration 

model Alternation model

FitFitFitFitFit

− 24.4 60.6 39.2 50.3

Prop(AICc) 0.96 0.96 0.87

z 4.38
(p < .001)

4.38
(p < .001)

3.54
(p < .001)

Parameter 1 m = 4.87 p = 0.50 q = 0.50 q = 0.50

Parameter 2 b = 0.60 a = 0.07 a = 0.16

Parameter 3 r = 0.15

Prediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelation

rmsd 0.038 0.036 0.036 0.036

Prop(rmsd) 0.43 0.43 0.43

z -0.63
(p = .73)

-0.63
(p = .73)

-0.63
(p = .73)

Prediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelation

rmsd 0.039 0.035 0.035 0.035

Prop(rmsd) 0.30 0.30 0.30

z -1.88
(p = 0.97)

-1.88
(p = 0.97)

-1.88 
(p = 0.97)
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Table 11.  Comparison of the full-parameter chain-retrieval model to variations with one of the 

parameter clamped to a neutral value in Study 4.  For each model, the table shows −  (Fit), the 

proportion of cases in which the chain-retrieval model is better than the other models on the basis 

of the likelihood ratio (LR), and the estimated parameter values.  The table also shows degree of 

correspondence (rmsd) between predictions of task and transition autocorrelations and data, as 

well as the proportion of the participants for which the prediction of the chain-retrieval model is 

better than that of the other models, and the probability the z-score based on this proportion.

Full model m = 3 b = 0.5 r = 0

FitFitFitFitFit

−
24.4 25.6 25.9 134.2

P(LR) 0.26 0.35 0.43

z -2.29
(p = 0.99)

-1.46
(p = 0.93)

-0.63
(p = 0.73)

Parameter m
4.87 3.00 5.30 5.43

Parameter b
0.60 0.75 0.50 0.69

Parameter r
0.15 0.23 0.19 0.00

Top-down 

repetitions
0.45 0.41 0.38 0.56

Bottom-up 

repetitions
0.07 0.08 0.10 0.00

Prediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelation

rmsd
0.038 0.045 0.032 0.050

Prop(rmsd)
0.61 0.30 0.74
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z 1.04
(p = 0.15)

-1.88
(p = 0.97)

2.29
(p  < 0.01)

Prediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelation

rmsd
0.039 0.037 0.033 0.042

Prop(rmsd)
0.48 0.35 0.78

z -0.21
(p = .58)

-1.46
(p = 0.93)

2.71
(p < 0.01)
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Figure Captions

Figure 1.  Task-based analysis (left panels) and transition-based analysis (right panels) of task 

choices  in Study 1.  Top-left panel: Proportion of runs length 1-10 as a function of RSI (100 vs. 

1000 ms) and task (letter vs. form).  The runs proportions for the short RSI in both tasks show 

more frequent and on average longer runs of the task.  Bottom-left panel: Proportions of 

autocorrelations lag 1-10 as a function of RSI and task.  At lag 1 the proportion of correlations is 

quite high; it is lower (alternation tendency) at lags 2-4 especially at long RSI and gradually 

increases again from lag 5 on.  Top-right panel: Proportion of runs length 1-10 as a function of RSI 

(10 vs. 1000 ms) and transition (repetition vs.  switch).  More frequent and longer runs of 

repetitions occur in the short RSI condition.  Bottom-right panel: Proportions of autocorrelations lag 

1-10 as a function of RSI and transition.  At lag 1, the proportion of correlations is lower than at the 

later lags, where it is quite stable.  Correlations are higher for repetitions especially at short RSI.

Figure 2.  Observed and predicted proportions of autocorrelations lag 1-10 in the model 

estimations in Study 1.  Top-left panel: The observed task choice autocorrelations, the predictions 

of the chain-retrieval, the Bernoulli, the perseveration and the alternation models are shown.  The 

predictions of the chain-retrieval model seem to correspond best with the data.  Bottom-left panel: 

Observed autocorrelations and predictions by the same models for the transition data.  The figure 

shows lags 1-10, although for the predictions only 9 lags were used.  The predictions of the chain-

retrieval model seem to correspond best with the data.  Top-right panel: The predictions of the task 

choice autocorrelations by the full chain-retrieval model (3 parameters) and the three versions with 

the value of one parameter clamped to a neutral value.  The predictions of the complete chain-

retrieval model correspond best with the data.  Bottom-right panel: Same for the transition 

autocorrelations lag 1-10.  The figure shows lags 1-10, although for the predictions only 9 lags 

were used.  Except for the model with r clamped to 0,the predictions of all models seem to 

correspond well with the data.
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Figure 3.  Task-based analysis (left panels) and transition-based analysis (right panels) of task-

indication responses  in Study 2.  Top-left panel: Proportion of runs length 1-10 as a function of 

SOA (5 vs. 1500 ms) and task (magnitude vs. parity).  The runs proportions for the short SOA in 

both tasks show more frequent and on average longer runs of the task.  Bottom-left panel: 

Proportions of autocorrelations lag 1-10 as a function of SOA and task.  At lag 1 the proportion of 

correlations is quite high; it is lower (alternation tendency) at lags 2-4 especially at long SOA and 

gradually increases again from lag 5 on.  Top-right panel: Proportion of runs length 1-10 as a 

function of SOA and transition (repetition vs.  switch).  More frequent and longer runs of repetitions 

occur in the short SOA condition.  Bottom-right panel: Proportions of autocorrelations lag 1-10 as a 

function of SOA and transition.  At lag 1, the proportion of correlations is lower than at the later 

lags, where it is quite stable.  Correlations are higher for repetitions especially at short SOA.

Figure 4.  Observed and predicted proportions of autocorrelations lag 1-10 in the model 

estimations in Study 2.  Top-left panel: Besides the observed task autocorrelations, the predictions 

of the chain-retrieval, the Bernoulli, the perseveration and the alternation models are shown.  The 

predictions of the chain-retrieval model seem to correspond best with the data.  Bottom-left panel: 

Observed transition autocorrelations and predictions by the same models.  The figure shows lags 

1-10, although for the predictions only 9 lags were used.  The predictions of the chain-retrieval 

model seem to correspond best with the data.  Top-right panel: The predictions of the task 

autocorrelations by the full chain-retrieval model (3 parameters) and of the three versions with the 

value of one parameter clamped to a neutral value.  The predictions of the complete chain-retrieval 

model correspond best with the data.  Bottom-right panel: Same for the transition autocorrelations 

lag 1-10.  The figure shows lags 1-10, although for the predictions only 9 lags were used.  Except 

for the model with parameter r clamped, the predictions of all the models seem to correspond well 

with the data.
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Appendix A: Results task execution Study 2

Task execution RTs of correct trials and error rates were calculated. Task-execution RTs and 

error rates were analyzed by means of a 2 (SOA: 50ms vs. 1500ms) by 2 (task transition: task 

repetition vs. task switch) mixed ANOVA with repeated measures on the last factor. The main effect 

of SOA was significant, F(1,78) = 13.49, p < .01, ηp2= .15, indicating slower responses in the 

SOA-50ms (M = 706ms, SE=14) than in the SOA-1500ms (M = 632ms, SE = 14) condition. The 

RTs confirmed the significant main effect of task transition, F(1,78 )= 135.01, p < .01, ηp2= .63. 

Task switches (M = 715ms, SE = 13) were slower than task repetitions (M = 621ms, SE = 9). The 

interaction between task transition and SOA was not significant, F(1,78) = 1.97, p =.16, ηp2= .02. 

For the error rates, the analysis showed that the main effect of SOA was not significant, F

(1,78) = 2.16, p <.15, ηp2= .03. The main effect of task transition was significant, F(1,78 = 13.49, 

p<.01, ηp2= .15, indicating that more errors were made on task switches (M = .10, SE = .007) than 

on task repetitions (M = .07, SE = .005). The interaction between SOA and task transition was not 

reliable, F(1,78) = 2.31, p = .13, ηp2= .03.

In sum, with this analysis we confirmed the observation of Arrington and Logan (2004, 2005) 

that also with a double registration procedure for voluntary task switching, a switch cost is present 

on task execution performance.
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Appendix B: Additional tests of chain-retrieval model

Using the same formal basis defined by the three parameters of the chain-retrieval model, 

other assumptions can be made to implement model variations.  Basically, the critical issues are 

the way chains are combined to form a sequence and what happens when a bottom-up intrusion 

occurs.  The chain-retrieval model assumes (a) that the last element of the current chain is overlaid 

with the first element of the next chain and (b) that a bottom-up repetition overrules the intended 

action.  The number of possible variations and combinations of variations that can be considered 

are numerous.  In order to explore the usefulness of the two structural assumptions made, we 

consider alternative models in which each time one of the assumptions is replaced with another 

one.  

Instead of the first assumption, namely that the chains are overlaid, it is possible to assume 

that chains are simply concatenated.  Two possible ways of concatenation are considered, namely 

random concatenation and primed concatenation.  In random concatenation the chains are 

connected together without any restrictions.  In primed concatenation, the last element of the 

current chain primes the start of the next chain, so that when a chain ends with one task, the next 

starts with the same task (e.g., ABA followed by AAB).  This mechanism produces a not intended 

repetition at every junction of two consecutive chains. 

The second assumption regarding the effect of a bottom-up event can also be implemented 

in several ways.  In the model the event replaces the intended action.  An alternative is that the 

event intrudes into the intended chain, so that the presently intended element is postponed to the 

next position in the sequence.  Another alternative is that after an intrusion, the intended chain is 

lost from working memory and a new chain has to be retrieved.

The results of the tests of these model variations are presented in Table B1.  The tests are 

based on the data set of Study 2. This table is constructed in the same way as the tables in the 

main text.  It compares the goodness-of-fit and the correspondence of the predictions of the task-

chain retrieval model with other possible implementations of the model.  The table shows that the 

model yields a better fit to the observed runs proportions than the overlay-include, the overlay-
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restart and the concatenate-random variants and that the fit is equivalent for the concatenate-

primed variant.  The latter variant tends to yield better predictions of the task autocorrelations, but 

is very bad in prediction the transition autocorrelation data.  It seems, then, that the structural 

assumptions made are probably the best one possible.
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Table B1.  Comparison of model variants of the chain-retrieval model.  The table compares the 

basic version of the model to variations of the model in which one assumption was changed.  For 

each model variant the following results are shown: −  (Fit), the proportion of cases in which the 

chain-retrieval model is better than the other models on the basis of the AICc measure, and the 

estimated parameter values.  The table also shows the degree of correspondence (rmsd) between 

predictions of task and transition autocorrelations and data, as well as the proportion of the 

participants for which the prediction of the chain-retrieval model is better than that of the other 

models, and the probability the z-score based on this proportion.

Junction OverlayOverlayOverlay ConcatenationConcatenation

Intrusion overrule intrude restart random primed

FitFitFitFitFitFit

− 49.2 49.9 52.2 56.4 48.9

Prop(AICc) 0.61 0.91 0.89 0.46

z 2.01
(p < .05)

7.38
(p < .001)

6.93
(p < .001)

-0.67
(p = .75)

m 4.80 4.15 4.51 5.70 4.55

b 0.67 0.64 0.65 0.62 0.50

r 0.24 0.27 0.21 0.25 0.17

Prediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelationPrediction task autocorrelation

rmsd 0.028 0.027 0.029 0.031 0.027

Prop(rmsd) 0.45 0.51 0.53 0.40

z -0.89
(p = .81)

0.22
(p = .41)

0.45
(p = .33)

-1.79
(p = .96)

Prediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelationPrediction transition autocorrelation

rmsd 0.022 0.020 0.022 0.024 0.041

Prop(rmsd) 0.39 0.51 0.54 0.86

z -2.01
(p = .98)

0.22
(p = .41)

0.67
(p = .25)

6.48
(p < .001)
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Appendix C: Task execution results in Study 3

Error RTs and RT on trials following an error were excluded from data analysis, leading to 

6.7% of data loss.  These RTs were averaged per condition and subjected to a 2 (Task: magnitude 

or parity) × 2 (Hand: left or right) × 2 (Transition: repetition or switch) ANOVA with repeated 

measures on the last two factors.  Hand switches were slower (M = 813 ms) than hand repetitions 

(M = 692 ms), F(1,31) = 17.75, ηp2 = 0.36, and this was the only significant main effect.  Task 

interacted with Hand, F(1,31) = 10.44, ηp2 = 0.25 so that in the magnitude task, left responses 

were slower (M = 737 ms) than right responses (M = 680 ms), F(1,31) = 10.85, ηp2 = 0.26, 

whereas the difference was not significant in the parity task, F(1,31) = 1.55, p = 0.22, ηp2 = 0.05.  

The triple interaction of Task by Hand by Transition was also significant, F(1,31) = 5.94, ηp2 = 0.16, 

indicating that the hand switch cost size depended on both task and hand.

More errors were committed on hand switches (M = 0.09) than on hand repetitions (M = 

0.05), F(1,31) = 15.28, ηp2 = 0.33.  This effect interacted with Task, F(1,31) = 5.52, ηp2 = 0.15.  On 

the magnitude task, the switch cost was not reliable (M = 0.04 for hand repetitions and M = 0.06 for 

hand switches), F(1,31) = 1.18, p = 0.29, ηp2 = 0.04, but on the parity task the contrast was large 

(M = 0.05 for hand repetitions and M = 0.12 for hand switches), F(1,31) = 20.20, ηp2 = 0.39.  Apart 

from these effects, no other significant effects were observed, except that the interaction of Task 

and Hand was close to significance, F(1,31) = 3.90, p = 0.06, ηp2 = 0.11.  On the magnitude task, 

less errors were committed on the right hand (M = 0.04) than on the left hand (M = 0.07), F(1,31) = 

3.48, p = 0.07, ηp2 = 0.10, while no difference was observed on the parity task (both M = 0.09).

The observation of a hand switch cost in RT and error data is in line with the findings 

reported by Stelzel et al. (2011).  Interestingly, in the present case, the size of the switch cost 

seems to depend on the main task performed and on the hand selected to execute the main task.
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