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Finding the relations between the microstructural material parameters and the macroscopic hys-
teresis behavior is indispensable in the design of ferromagnetic materials with minimal (hystere-
sis) losses. Micromagnetic hysteresis simulations enable a rigorous and structured investigation of
these relations since in the numerical model each material parameter can be altered independently.
This paper describes a procedure to extract the Preisach distribution function, quantifying the
macroscopic hysteresis properties, from micromagnetic simulations incorporating the materials’ mi-
crostructure. Furthermore, the instantaneously added, stored and dissipated energy while running
through the hysteresis loop as described in the macroscopic Preisach model and in the micromagnetic
hysteresis model are compared, evidencing a very good agreement. Moreover, using the micromag-
netic model, the energy rearrangements between the different micromagnetic interaction terms is
studied at each time point of the hysteresis loop. It is concluded that the micromagnetic hysteresis
model is a valuable tool in the study of hysteresis properties and loss mechanisms in ferromagnetic
materials.

I. INTRODUCTION

The magnetic hysteresis properties of ferromagnetic
materials largely influence their applicability. More pre-
cisely, the hysteresis losses determine the efficiency of
e.g. electrical machines and transformers [1, 2]. There-
fore, it is indispensable to get a better insight in the loss
mechanisms when running through the hysteresis loop
and find the microscopic, physical basis of the processes
which determine the hysteresis properties. Different ap-
proaches have been applied to develop hysteresis models
that accurately incorporate the influence of the differ-
ent microstructural entities of ferromagnetic materials.
The models aim at accurately describing the macroscopic
magnetization curves using a minimum number of model
parameters.

The Jiles-Atherton model [3] uses a differential equa-
tion with few model parameters to describes the magne-
tization curves. In the model developed by Hauser [4]
the Gibbs free energy is determined based on statistical
grounds and minimized to obtain magnetization curves.
Harrison [5] models first-order return curves based on
analytical formula describing quantum mechanical pro-
cesses on the atomistic length scale and classical magnetic
processes on the domain length scale. In the Preisach
formalism [6, 7], different distribution functions defined
by different model parameters can be used to map the
magnetic properties of the ferromagnetic material. Since
in most of these models it is difficult to determine the
influence of the various material parameters based on
purely theoretical grounds, fitting of the parameters to
experimentally results is required. The influence of the
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microstructural material properties on the macroscopic
magnetic (hysteresis) properties is studied by relating
parameters defining the microstructure of the material
to model parameters [8–11]. In this approach, a com-
plete, structured study is hardly feasible since it is very
difficult to prepare ferromagnetic samples where all mi-
crostructural parameters are altered independently to re-
veal the influence on the model parameters and the hys-
teresis properties of each distinct parameter.

The micromagnetic formalism [12, 13] describes the
magnetization processes based on the (changing) Gibbs
free energy in the system, starting from the microstruc-
tural properties and the externally applied field. Since
the theory is based on the physical interactions on the
nanometer space scale, the only parameters are known
material constants which excludes the need experiments
and fitting. Moreover, the theory is applicable for all
magnetic materials where most models are only applica-
ble for a certain class of magnetic materials. This makes
a micromagnetic hysteresis model as [14] ideally suited to
study the relations between microstructure and magnetic
hysteresis properties.

In many applications, one aims at designing ferromag-
netic materials with minimal hysteresis losses. In this
framework one should be able to determine which mate-
rial parameters influence the losses, not only integrated,
after running through the complete hysteresis loop, but
also instantaneously, on each given time point of the loop.
Moreover, one should be able to distinguish the instan-
taneous energy arrangements in the ferromagnetic ma-
terial. Macroscopically, it is only possible to determine
(i) the total dissipated energy during one cycle as the
surface of the hysteresis loop and (ii) instantaneous en-
ergy which is added to the ferromagnetic material [15].
Since the micromagnetic hysteresis model is based on the
(changing) Gibbs free energy in the system, it is able to
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determine also the instantaneously added and stored en-
ergy as well as the mutual instantaneous energy flows
between the micromagnetic energy terms. Enabling the
determination of the energy flows from, to and in the mi-
cromagnetic sample, a micromagnetic hysteresis model is
ideally suited to gather a greater insight in the hysteresis
mechanisms in ferromagnetic materials.
Also in the Preisach formalism, the instantaneously

added, stored and dissipated energy can be determined
starting from a given Preisach distribution function
(PDF). In this paper, we present a strategy to obtain
the PDF from micromagnetic simulations. Based on this
PDF we compare and interpret the instantaneous energy
flows as described in the Preisach and the micromagnetic
approach. Furthermore, we study the instantaneous en-
ergy rearrangements in the material using the micromag-
netic hysteresis model.

II. MICROMAGNETIC HYSTERESIS MODEL

The used micromagnetic hysteresis model is exten-
sively described in [14]. Here we will only provide a short
summary. The ferromagnetic object is discretized using
cubical finite difference cells of identical shape. Accord-
ing to the micromagnetic theory [13], the magnetization
in each cell is considered to be uniform with a fixed am-
plitude Ms and a varying orientation. This defines the
magnetization field M(r, t) = Msm(r, t). In the hys-
teresis model time is discretized on two different time
scales, see Fig. 1. The externally applied field Ha is ap-
proximated by a staircase function varying on a macro-
scopic time scale ∆t. It is guaranteed that at the mo-
ment the applied field jumps from one constant value Ha

to the next one Ha + ∆Ha, the ferromagnetic system
is in static micromagnetic equilibrium: each equilibrium
magnetization state is determined by time stepping the
Landau-Lifshitz (LL) equation, describing the fast dy-
namics of the magnetization field m(r, t) on a picosecond
time scale, in each FD cell until the next micromagnetic
equilibrium state is reached. For time stepping the LL-
equation a microscopic time step δt ≪ ∆t is used. To
check wether the next equilibrium state is reached, the
following stopping criterium is verified for all FD cells

|m(ti)−m(ti + δt)|
δt

< ϵ. (1)

With δt expressed in ps, a typical value of ϵ is 0.01. Other
groups [16] choose to apply a zero torque stopping cri-
terium which is equivalent due to the structure of LL-
equation. However, the use of criterium (1) enables to
easier distinguish equilibrium states when thermal effects
are incorporated through a randomly fluctuating ther-
mal field Hth, added to the effective field [17]. Indeed,
at any time point, Hth gives rise to a fluctuating local
torque ∝ m×Hth which can be larger than a predefined
threshold while the resulting change in local magnetiza-
tion |m(ti)−m(ti + δt)|/δt can be negligible, indicating
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FIG. 1: The time evolution of the applied field is discretized
using macroscopic time steps ∆t between time points ti+1 =
ti + ∆t at which the system is in an equilibrium state. The
fast magnetization dynamics describing the evolution between
equilibrium points is discretized using order picosecond time
steps δt.

that an equilibrium state is reached.
Once the criterium (1) is met in all FD cells simul-

taneously, the equilibrium state is reached and the ap-
plied field takes a next jump for which a successive
magnetization state is computed, etc. The macroscopic
transition curves are obtained from the micromagnetic
computations by considering the mean magnetization
< M >= Ms < m > at the successive equilibrium points
at time points t1, t2, . . ., see Fig. 1.

Note that time stepping the LL-equation guarantees
that, out of the many equilibrium states possibly cor-
responding with a particular applied field, only those
successive equilibrium states are selected which can be
reached starting from the last considered equilibrium
state, i.e. with ever decreasing Gibbs free energy path
between two successive states. Hence, the micromagnetic
hysteresis approach inherently incorporates the magneti-
zation history. This is in contrary to hysteresis schemes
based on the direct minimization of the Gibbs free energy
where one needs to evaluate the direction of the energy
gradient to determine the path along which to move to
the next energy equilibrium. In such an approach, mak-
ing a reliable estimate of the gradient in the rich struc-
ture of the micromagnetic energy landscape is far from
obvious [15].

We also remind that, when considering micromagnetic
hysteresis computations on large ferromagnetic objects,
special attention should go to the effectiveness of the
used time stepping scheme. The scheme should incor-
porate the three main properties of the LL-equation: (i)
preservation of the magnetization field amplitude, (ii) the
decrease in total Gibbs free energy under a constant ap-
plied field and (iii) conservation of the Gibbs free energy
in case of zero damping. Classical ’off-the-shelf’ meth-
ods as the Euler method, Heun method or Runge Kutta
methods do not preserve the magnetization amplitude
and violate the other properties leading to possibly in-
correct results. Many geometrical integrators [18–21] are
developed to preserve the magnetization amplitude by
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exploiting symmetries, invariant quantities, hamiltonian
structures etc. of the LL-equation. However, not all of
them meet the two other properties. A geometrical in-
tegration method based on the mid point rule described
in [22] incorporates all three properties and is uncondi-
tionally stable. However, being an implicit method, a
large system of coupled non-linear equations needs to be
solved every time step which limits its application for
large ferromagnetic systems. Therefore we opt to use the
semi-analytical predictor-corrector scheme [23]. Being an
explicit time stepping scheme, it does not require solving
a set of coupled equations. The method has a high order
convergence rate and meets the three intrinsic properties
of the LL-equation, enabling the use of large time steps
δt.
Furthermore, when considering large material sam-

ples, special attention should go to the fast evalua-
tion of the magnetostatic field. Fast multipole method
(FMM) based algorithms as [24] are very flexible regard-
ing the used discretization and can incorporate an adap-
tive meshing [25]. Fast Fourier transform (FFT) based
algorithms are restricted to a regular discretization grid.
Given such a regular grid, they are much faster then
FMM based schemes, but require more memory resources
[26]. The fast Fourier transform on multipoles (FFTM)
technique [27] developed by Ong et al. is a combination
of the FMM and FFT method. It still needs a regular
grid, but shows more flexibility –adaptive discretization–
compared to a pure FFT scheme. For the regular dis-
cretization grid with identical FD cells applied here, the
FFT based scheme is used since it outperforms all other
evaluation techniques when CPU time is considered.

III. CLASSICAL PREISACH HYSTERESIS
MODEL

We again restrict ourselves to a short summary of the
model and refer to reference text books for a complete
description of the model [7, 15]. In the classical Preisach
model [6], the description of uniaxial rate independent
hysteresis properties is based on an infinite collection of
elementary magnetic dipoles . The dipoles have an asym-
metric rectangular hysteresis loop with switching fields
commonly denoted by α and β (α ≥ β). As shown in
Fig. 2, the polarity of a given dipole (α, β) depends
on the value of the applied field Ha and/or its history
Ha,hist. For Ha > α the polarity η is +1. When Ha is
now decreased, the polarity changes to −1 at Ha = β.
The increasing branch of the dipole defines the polarity
for increasingHa values. Here, the polarity switches from
−1 to +1 at Ha = α.
To describe the hysteretic magnetic behavior of a ferro-

magnetic sample, first the reversible and the irreversible
part of the magnetization loop is separated. The irre-
versible part is then represented by the Preisach distri-
bution function (PDF) P (α, β), which corresponds to the
statistical density of elementary dipoles (α, β). The mag-
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FIG. 2: Elementary Preisach dipole with switching fields α
and β.

netization in the Preisach model is now expressed as an
integral over the entire elementary dipole collection

M(Ha) =Mrev(Ha) +Mirr(Ha,Ha,hist) (2)

Mirr(Ha) =
1

2µ0

∫ +∞

−∞
dα∫ α

−∞
dβ η(α, β,Ha,Ha,hist)P (α, β). (3)

The PDF P (α, β) is shown to be dependent on the mi-
crostructure of the ferromagnetic sample [11, 28, 29] and
can be interpreted as a blueprint of the magnetic hys-
teretic properties of a given sample.

IV. OBTAINING THE PDF FROM
MICROMAGNETIC SIMULATIONS

The PDF is typically extracted from a whole set of
measured quasi-static first-order symmetric magnetiza-
tion loops, from low to high magnetic induction levels,
starting on the virgin curve or from a number of first or-
der reversal curves (FORCs) covering the complete range
of the major hysteresis loop [7]. In the micromagnetic
simulations, magnetization branches should always start
at a known equilibrium state. The demagnetized state
at which the virgin curve emanates is not known, nor
easy to obtain, while FORCs emanate at known micro-
magnetic equilibrium states on the major hysteresis loop.
Therefore, the PDF is extracted from FORCs.

In the micromagnetic simulations, by way of ex-
ample, a sample is considered with dimensions
0.32µm×0.32µm×5.12µm. The sample comprises 16
grains in the elongated direction with random cubi-
cal easy axes orientations. The saturation polariza-
tion is µ0Ms = 2.16T, the exchange stiffness is small:
0.25 10−12 J/m and the anisotropy constants are K1 =
0.48 106 J/m3 and K2 = −0.50 105 J/m3. The external
field is applied in the elongated direction of the sample
and ranges from 3.0 106 A/m to −3.0 106 A/m with steps
of ∆Ha = 400A/m. The simulated FORCs are shown
in Fig. 3. For this simple system, the small exchange
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FIG. 3: Simulated FORCs using the micromagnetic hysteresis
scheme.
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FIG. 4: Reversible part of the magnetization curves corre-
sponding to Fig. 3.

stiffness ensures that the hysteresis loop is smooth and
does not show too large magnetization jumps for varying
Ha. In this way, FORCs can start at relatively equidis-
tant steps in the magnetization. In larger, more complex,
non-ideal materials, the smoothness of the loop is guaran-
teed by the presence of various pinning sites as impurities
in the iron lattice.

While this simulation is restricted to a very simplified
sample, the following analysis is representative since the
approach is identical for more complex materials. For
those non-ideal materials, the local material parameters
have to be determined on the used discretization scale.
The used micromagnetic hysteresis model is directly ap-
plicable to the obtained more real world, complex in-
put. Moreover, in the micromagnetic hysteresis model,
the influence of impurities like dislocations, voids, in-
terstitials, etc. is included by taking into account the
magneto-elastic interaction between their local charac-
teristic stress distributions and the local magnetization
[30]. Given the input parameters, the evaluation of the
effective field contributions stays unaltered and, conse-
quently, the treatment of the different energy contribu-
tions. Since no impurities are treated in the considered
sample, the magneto-elastic field is zero.

The determination of the PDF now encompasses four
steps.
1. The numerical magnetization curves are smoothed
using splines which meet the criterion dM/dHa > 0, re-
quired in the next steps.
2. Following equations (2) and (3), the reversible mag-
netization processes Mrev(Ha) are extracted by consid-
ering the differential permeability at the reversal points.
At these points only reversible magnetization processes
occur and thus the reversible differential permeability
µrev(Ha) can be defined. From this, the single valued
magnetization curve Mrev(Ha) is deduced

Mrev(Ha) =

∫ Ha

0

(
µrev(H)

µ0
− 1

)
dH. (4)

Consequently the irreversible magnetization curves are

Mirr(Ha) = M(Ha)−Mrev(Ha). (5)

The reversible part of the magnetization curves is shown
in Fig. 4.
3. The set of irreversible magnetization curves Mirr(Ha)
is now rearranged into an Everett map [31] The Everett
function Eev(α, β) is defined as

Eev(α, β) = µ0|Mirr(β)−Mirr(α)| (6)

with α an extremal value for the applied field Ha, and no
extrema are evaded from the memory when passing from
α to β.
4. Ultimately, the PDF is obtained by differentiating the
Everett function

P (α, β) = −∂2Eev(α, β)

∂α∂β
. (7)

The PDF is shown in Fig. 5. Note that the PDF has
only non-zero values in the half plane α > β. Further-
more, the constructed PDF has small areas with non-
physical negative values. These originate in the crossing
of the micromagnetically simulated FORCs in the region
close to the coercive field of the limit cycle (see Fig. 3).

To test the accuracy of the extracted PDF, the major
hysteresis loop is reconstructed from the PDF and com-
pared to the original hysteresis loop obtained from the
micromagnetic simulations. Figure 6 shows the excellent
agreement between the loop reconstructed from the PDF
data and the original micromagnetically simulated hys-
teresis loop: the reconstructed loop is a smoothed ver-
sion of the micromagnetic hysteresis loop which shows
Barkhausen jumps. Indeed, the micromagnetic model is
able to describe the discontinuous movement of the do-
main walls resulting in the Barkhausen jumps while the
Preisach model describes macroscopically averaged –and
thus more continuous– magnetization processes.

Note that this procedure can be applied rigorously to
find relations between the microstructural material pa-
rameters and the PDF in a structured way. When e.g. a
Lorentzian distribution function is fitted to the PDF, re-
lations between the parameters describing the Lorentzian
distribution and the microstructural parameters can be
investigated.
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FIG. 5: Reconstructed Preisach distribution function, based
on the smoothed irreversible first order reversal curves of Fig.
4.
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FIG. 6: Simulated hysteresis loop compared with the hystere-
sis loop reconstructed from the PDF. For completeness, the
irreversible hysteresis loop is also shown.

V. ENERGY DESCRIPTION

A. Energy flows in the micromagnetic hysteresis
model

The energy variations as described by the micromag-
netic hysteresis model during the transition between two
successive equilibrium states is sketched in Fig. 7. At a
given time point ti, an external field Ha is applied and
a corresponding equilibrium magnetization configuration
m(ti) is reached, state A. Now, the applied field takes a
jump ∆Ha. This increases the energy in the system to
a state B, which is unstable. Consequently, the original
magnetization configuration m(ti) evolves towards a new
equilibrium magnetization configuration m(ti +∆t) cor-
responding to state C. This new equilibrium state C has
a lower energy compared to the unstable state B. Dur-
ing the transition from state B to state C, the difference
in Gibbs free energy ∆ϕG is dissipated as heat towards

φ
G

m(t ),Hi a

m(t ),H + Ha a∆i

m(t + t),H + H∆ ∆a ai

∆φ
G

t

A

B

C

FIG. 7: Dissipated energy density in the micromagnetic hys-
teresis model: the difference in Gibbs free energy ∆ϕG corre-
sponds to the dissipated energy density.

the thermal bath. Hence, the dissipated energy density
∆ϕdiss equals ∆ϕG.

The added energy density ∆ϕadd can be derived from
the macroscopic formula as

∆ϕadd = Ha∆B = µ0Ha · (∆M+∆Ha), (8)

In the used model, the applied field is constant between
two equilibrium states and equals Ha +∆Ha. Hence in
terms of the micromagnetic quantities used in Fig. 7 the
added energy density yields

∆ϕadd =µ0Ms(Ha +∆Ha) · [< m(ti +∆t) > − < m(ti) >]

+ µ0(Ha +∆Ha)∆Ha.

(9)

The conservation of energy principle then yields the
stored energy density as

∆ϕst = ∆ϕadd −∆ϕdiss. (10)

Note that in the micromagnetic hysteresis model each
micromagnetic energy term can be studied in detail. In-
deed, inspection of the differences in the Zeeman, ex-
change, anisotropy and magnetostatic energy between
state B and state C yield the energy rearrangements be-
tween the different micromagnetic energy terms.

B. Energy flows in the classical Preisach model

In the classical Preisach model, one can distinguish the
instantaneous energy density that is added, stored and
dissipated when running through the hysteresis loop by
inspecting the elementary Preisach dipole. The following
energy densities can be associated with the areas shown
in Fig. 8. During the switching process of the ascending
branch, the area (a)+(b)+(c) corresponds to the energy
density added by the source. From that, the area (c) and
the area (a)+(b) correspond to the dissipated and the
stored energy density in the system respectively. During
the switching process of the descending branch, the area
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FIG. 8: Elementary Preisach dipole with associated energy
densities.

(a)+(b) corresponds to the stored energy density, while
the areas (a) and (b) correspond to the energy density
which is returned to the source and dissipated by the
system respectively.

By extending the above considerations to all dipoles in
the PDF that are switching when the applied field is al-
tered, the irreversibly added energy density ϕadd,irr, the
irreversibly stored energy density ϕst,irr and the dissi-
pated energy density ϕdiss can be distinguished at each
time point of the hysteresis loop. For the ascending
branch, an increase ∆Ha of the applied field leads to

∆ϕadd,irr =

∫ Ha+∆Ha

Ha

dα

∫ α

Hmin

αP (α, β) dβ (11)

∆ϕst,irr =

∫ Ha+∆Ha

Ha

dα

∫ α

Hmin

α+ β

2
P (α, β) dβ (12)

∆ϕdiss =

∫ Ha+∆Ha

Ha

dα

∫ α

Hmin

α− β

2
P (α, β) dβ, (13)

with Hmin the last minimum of Ha kept in memory. For
the descending branch, a decrease ∆Ha of the applied
field leads to

∆ϕadd,irr =

∫ Ha−∆Ha

Ha

dβ

∫ Hmax

β

βP (α, β) dα (14)

∆ϕst,irr =

∫ Ha−∆Ha

Ha

dβ

∫ Hmax

β

α+ β

2
P (α, β) dα (15)

∆ϕdiss =

∫ Ha−∆Ha

Ha

dβ

∫ Hmax

β

β − α

2
P (α, β) dα, (16)

with Hmax the last maximum of Ha kept in memory.
Note that negative values for the added energy density
correspond to an energy flow from the system towards
the source. Negative values for the stored energy density
indicate that more energy is leaving the system (towards
the source or by dissipation) than that energy is added to
the system. By definition, the dissipated energy is always
positive. Further, note that the reversible magnetization
processes only have a contribution to the total added and

stored energy density

∆ϕadd,rev = ∆ϕst,rev =

∫ Ha±∆Ha

Ha

H dBrev

=

∫ Ha±∆Ha

Ha

µrev(H)H dH.

(17)

Here, the sign in the integral boundaries is determined by
which branch is considered: negative for the descending
branch and positive for the ascending branch.

VI. DISCUSSION

In what follows we compare and comment on the en-
ergy flows in the ferromagnetic system when running
through the descending branch. Similar conclusions can
be drawn when running through the ascending branch.

A. Instantaneous energy flows

The instantaneously added, dissipated and stored en-
ergy densities as determined in the micromagnetic and
the Preisach model are shown in Figs. 9, 10 and 11
respectively. The energy density curves derived from
the micromagnetic model show a highly irregular behav-
ior. Each spike corresponds to a Barkhausen jump at
which large energy flows occur in the ferromagnetic sys-
tem. Since the Preisach model incorporates a high level
of smoothing, the resulting energy density curves are con-
tinuous. To facilitate the comparison between the micro-
magnetic and the Preisach data, a locally averaged ver-
sion of the micromagnetic energy density curves is added
to the figures. In all figures, the coercive field value is in-
dicated with a vertical dash-dotted line. Note that since
the descending branch is considered, all curves in the fol-
lowing figures should be interpreted from right to left for
increasing time (i.e. from positive to negative applied
fields).

1. Instantaneously added energy

The instantaneously added energy density in the two
models is shown in Fig. 9. While returning from positive
saturation to Ha = 0.0A/m the added energy is nega-
tive, which indicates that energy is flowing from the ma-
terial towards the source. For negative applied fields, the
added energy density is positive, indicating that energy
is flowing from the source to the material. The largest
amounts of energy are added at applied field values in the
proximity of the coercive field. The expressions (14) and
(9) used in the Preisach and micromagnetic description
respectively result in coinciding curves.
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FIG. 9: Instantaneously added energy density when running
through the descending branch of the hysteresis loop shown
in Fig. The dash-dotted line indicates the coercive field.6.

−3 −2 −1 0 1 2 3

x 10
5

−1000

0

1000

2000

3000

4000

5000

di
ss

ip
at

ed
 e

ne
rg

y 
de

ns
ity

 [J
/m

³]

φ
diss
micromag

φ
diss
micromag smoothed

φ
diss
PDF

FIG. 10: Instantaneously dissipated energy density when run-
ning through the descending branch of the hysteresis loop
shown in Fig. The dash-dotted line indicates the coercive
field. 6.
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FIG. 11: Instantaneously stored energy density when running
through the descending branch of the hysteresis loop shown
in Fig. The dash-dotted line indicates the coercive field. 6.

2. Instantaneously dissipated energy

The instantaneously dissipated energy density in the
two models is shown in Fig. 10. This energy flow cor-
responds to energy that is dissipated as heat during the
irreversible magnetic processes which occur in the mate-
rial, i.e. during the Barkhausen jumps. It represents the
energy flow from the material towards the thermal bath
and is thus per definition always positive. The curves in
Fig. 10 have indeed only positive values. In the micro-
magnetic context, this is a consequence of the LLG equa-
tion which guarantees the continuous decrease in energy
for constant applied fields. In the Preisach model, the
positive values result from the prerequisite α ≥ β and
P (α, β) ≥ 0.

Most of the energy is dissipated for applied field values
between 0.0A/m and -1.0 105 A/m which roughly corre-
sponds to an average magnetization between ±0.8Ms,
see Fig. 6. This shows that most of the magnetic pro-
cesses in this part of the hysteresis loop are irreversible
in nature, while closer to saturation reversible processes
are dominant. This is in correspondence with literature
[15]. Figure 12 shows the number of time steps required
to reach equilibrium at successive constant applied field
values in the micromagnetic model. Here a convergence
threshold of ϵ = 0.01 in the stopping criterium (1). The
choice of an other value will lead to proportional peaks.
The number of time steps needed to reach equilibrium
is related with the ’irreversibility’ of the magnetic pro-
cess. Indeed, since large variations in the magnetiza-
tion structure can occur during Barkhausen jumps, the
simulation of these irreversible magnetization processes
require a large number of time steps to come to the
new equilibrium points. Only small changes in the mag-
netization structure occur during reversible magnetiza-
tion processes, which leads to a small number of time
steps required to reach new equilibrium points. In the
Preisach description, all energy is dissipated when run-
ning through the irreversible hysteresis loop shown in
Fig. 6. It is clear that the descending branch of the irre-
versible hysteresis loop has the largest slope in the range
−1.0 105 A/m< Ha <0.0A/m.

3. Instantaneously stored energy

The instantaneously stored energy density in the two
models is shown in Fig. 11. The agreement between both
descriptions is very good. When saturated in the posi-
tive direction, a large amount of energy is stored in the
system. When reducing the external field, this energy
is released towards the source or dissipated as heat giv-
ing rise to negative values for the instantaneously stored
energy density. When the ferromagnetic system reaches
the state corresponding to M = 0 and Ha = Hc –further
called the coercive state– the system starts to absorb en-
ergy when the field is further reduced towards negative
saturation. This leads to positive values for the instan-
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FIG. 12: Number of time steps required to reach equilibrium
at successive constant applied field values Ha when running
through the descending branch from Ha = 3105 A/m to Ha =
−3 105 A/m.

taneously stored energy density. From these curves, it is
clear that at the coercive state no energy is stored in the
ferromagnetic system. Starting from this point, any field
variation will result in an increase of the stored energy.

B. Instantaneous micromagnetic energy
rearrangement

When studying the loss mechanisms in ferromagnetic
materials and how microstructural material parameters
influence them, it is instructive to take a closer look at
the different micromagnetic energy contributions. In this
way it is possible to determine which features (magne-
tocrystalline effects through the anisotropy term, demag-
netizing effects through the magnetostatic field, etc.) are
responsible for the largest amount of stored, dissipated
and added energy. By changing the microstructural in-
put parameters of the micromagnetic hysteresis simula-
tions, the different energy flows will change when running
through the hysteresis loops. Such a study can contribute
to the development of improved materials. This investi-
gation is only possible in the micromagnetic model.
In the micromagnetic description of the instanta-

neously dissipated energy discussed above, the difference
in the total Gibbs free energy is considered as sketched in
Fig. 7. In the same way one can consider the difference
in the Zeeman energy ϕa, the magnetostatic energy ϕms,
the anisotropy energy ϕani and the exchange energy ϕexch

separately to come to the instantaneous flows of these
energy contributions. The corresponding instantaneous
changes in micromagnetic energy densities δϕa, δϕms,
δϕani and δϕexch are shown in Fig. 13. Here, positive
values correspond to an instantaneous energy flow from
the considered energy term to the other terms and/or
the thermal bath while negative values correspond to an
instantaneous energy flow towards the considered energy
term and thus an increase of the considered energy.

It is clear that, although the total instantaneously
dissipated energy is strictly positive, the instantaneous
changes in the separate energy densities can have nega-
tive values. This indicates that energy is rearranged in
the system while running through the hysteresis loop. In
the saturated state, the Zeeman and the exchange en-
ergy are minimal because the sample is uniformly mag-
netized along the applied field, while the magnetostatic
and the anisotropy energy are large since the flux lines
do not close in the ferromagnetic material and the lo-
cal magnetization in the material is not aligned along
an easy axis. At the coercive field however, the mag-
netostatic and anisotropy energy are very small and the
Zeeman and exchange energy are large since the system
now has a magnetization state with closed flux lines and
with the local magnetization mainly aligned along a lo-
cal anisotropy axis. Hence, depending on the applied
field, energy is rearranged in the ferromagnetic material.
Based on the plots in Fig. 9 we will now comment on
these energy rearrangements when running through the
hysteresis loop:

• The Zeeman energy has the largest contribution
to the total dissipated energy. The largest flows
of Zeeman energy occur around the coercive field
where the slope of the hysteresis loop is maximal.
In this part of the hysteresis loop large portions
of the ferromagnetic material are aligning with the
applied field and the Zeeman energy is vastly re-
duced. Here, Zeeman energy is dissipated as heat
or stored as magnetostatic, anisotropy and/or ex-
change energy.

• The magnetostatic energy flow is positive until the
coercive magnetization state is reached. Hence,
while running through this part of the hystere-
sis loop magnetostatic energy is converted to heat
and/or other micromagnetic energy contributions.
The coercive state contains the minimal magneto-
static energy since all flux lines close in the ma-
terial and only small demagnetizing effects appear
in the domain walls. When going further to sat-
uration, the net magnetization along the applied
field direction grows together with the demagnetiz-
ing fields, leading to an increase of the magneto-
static energy and thus negative values for the in-
stantaneous change in magnetostatic energy den-
sity δϕms.

• The instantaneous anisotropy energy flow has large
contributions over a relatively broad range of the
hysteresis loop. Whenever a region in the mag-
netic sample is aligning with a local easy axis, the
anisotropy energy decreases leading to positive val-
ues for the anisotropy energy flow (when going to
the coercive state). Whenever the magnetization
in a region is rotating away from a local easy axis,
anisotropy energy is built up (when going to satu-
ration).
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FIG. 13: Instantaneous changes in energy density for the different micromagnetic energy terms. From left-top to right-bottom:
Zeeman energy density, magnetostatic energy density, anisotropy energy density and exchange energy density.

• In the considered system, the exchange energy is
negligible since the exchange stiffness A is very
small. This was chosen so in order to have a non-
stiff system leading to a smooth hysteresis loop with
only small magnetization jumps, which was a pre-
requisite to have FORCs emanating at relatively
equidistant magnetization values < M >, see Fig.
3. Although the exchange energy flows are negligi-
ble, the curve δϕexch is still instructive. It is clear
that the amplitude of the dissipated exchange en-
ergy is proportional to the slope of the hysteresis
loop. The exchange energy is built up until the
coercive magnetization state is reached. This coer-
cive state has the most non-uniform equilibrium do-
main configuration when running through the hys-
teresis loop. Indeed, at this point the exchange
energy density is maximal. When going further to
saturation the sample gradually becomes more uni-
formly magnetized, leading to energy flows towards
the thermal bath and the other energy terms.

C. Cumulated energy flows

The cumulated added, dissipated and stored energy
densities based on the Preisach description are shown in
Fig. 14. The curves obtained from the micromagnetic de-
scription are very similar, but are not shown on the graph
for clarity. At positive saturation, a maximal amount of
energy is stored. This energy is released when going to
the coercive state. Part of the energy is dissipated and
part of the energy is sent back to the source. When go-
ing to negative saturation, exactly the same amount of
energy is stored again in the system. This is clear from
the cumulated stored energy density curve: it has a min-
imum at the coercive field value and is zero for positive
as well as negative saturation. Since a part of the stored
energy is sent to the source, the cumulated added energy
density curve has negative values when going to the co-
ercive state. However, from the moment Ha = 0.0A/m,
energy is flowing from the source towards the system,
which results in a minimum at Ha = 0.0A/m. The curve
representing the cumulated dissipated energy density is
strictly positive since the instantaneously dissipated en-
ergy is always positive. Both the cumulated added and
stored energy density intersect at negative saturation,
meaning that the net amount of energy which is added by



10

−3 −2 −1 0 1 2 3

x 10
5

−6

−4

−2

0

2

4

6

8

10

12

14
x 10

4

H
a
 [A/m]

cu
m

ul
at

ed
 e

ne
rg

y 
de

ns
ity

 [J
/m

3 ]

φ
add

  cumulated

φ
diss

 cumulated

φ
st

    cumulated

FIG. 14: Simulated hysteresis loop compared with the hys-
teresis loop reconstructed from the PDF. For completeness,
the irreversible hysteresis loop is also shown.

the source when running through the hysteresis branch
is all dissipated as heat by the ferromagnetic system.
The total dissipated energy density when run-

ning through the descending hysteresis branch equals
125.6 kJ/m3 in the Preisach description and 128.8 kJ/m3

in the micromagnetic description. As known, the total
dissipated energy density when running through the com-
plete hysteresis loop corresponds to the surface of the
loop. Exploiting the symmetry in the hysteresis loop, it
is clear that half the energy is dissipated when running
through the descending branch and half of the energy is
dissipated when running through the ascending branch.
For the simulated hysteresis loop shown in Fig. 6 half
of the surface equals 126.7 kJ/m3. Hence, the values ob-
tained in the micromagnetic and Preisach description dif-
fer only by about one percent from this number, showing
the excellent agreement of the Preisach and the micro-
magnetic description on the one hand and the macro-

scopic loss description based on the surface of the hystere-
sis loop on the other hand. In the Preisach model, this
correspondence is incorporated theoretically in the model
by construction. In the micromagnetic model, this result
is something one expects based on simplified bistable sys-
tems as described in [15]. However, the excellent agree-
ment for the complex multi-stable micromagnetic system
considered here is striking.

VII. CONCLUSIONS

A procedure is outlined to derive the Preisach distribu-
tion function from micromagnetic simulations. This is an
interesting approach to study the relations between the
microstructure of the material and the macroscopic mag-
netic hysteresis properties. A striking agreement is found
between the micromagnetic and the Preisach description
when comparing the (instantaneously) added, dissipated
and stored energy density in the ferromagnetic system
when running through the hysteresis loop. As a macro-
scopic property emanating from the micromagnetic de-
scription, the energy dissipated during one excitation cy-
cle as computed in the micromagnetic model corresponds
to the surface of the hysteresis loop. Moreover, the mi-
cromagnetic hysteresis model is able to provide a bet-
ter insight in the instantaneous energy rearrangements.
These results confirm that the micromagnetic hysteresis
model is a valuable tool in the study of hysteresis prop-
erties and loss mechanisms in ferromagnetic materials.
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