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Abstract
We provide a Hopf boundary lemma for the regional fractional Laplacian (−Δ)s

Ω
 , with 

Ω ⊂ ℝ
N a bounded open set. More precisely, given u a pointwise or weak super-solution 

of the equation (−Δ)s
Ω
u = c(x)u in Ω , we show that the ratio u(x)∕(dist(x, �Ω))2s−1 is strictly 

positive as x approaches the boundary �Ω of Ω . We also prove a strong maximum principle 
for distributional super-solutions.

Keywords  Regional fractional Laplacian · Hopf boundary lemma · Pointwise super-
solution · Weak super-solution · Distributional super-solution

Mathematics Subject Classification  47G20 · 35B50 · 45K05

1 � Introduction and main results

Let s ∈ (1∕2, 1) and let Ω ⊂ ℝ
N (N ≥ 2) be a bounded domain with C1,1 boundary. The 

regional fractional Laplacian (−Δ)s
Ω

 of a function u ∶ Ω → ℝ is defined as

provided that the limit exists. We recall that “P.V.” stands for the Cauchy principal value 
and that the normalization constant cN,s is explicitly given by

(1.1)(−Δ)s
Ω
u(x) = cN,sP.V .∫Ω

u(x) − u(y)

|x − y|N+2s
dy = cN,s lim

�→0+ ∫Ω⧵B
�
(x)

u(x) − u(y)

|x − y|N+2s
dy,
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For functions u belonging to C2s+�
loc

(Ω) ∩ L∞(Ω) for some 𝜖 > 0 , the integral in (1.1) is 
finite. In this way then, we say that (1.1) is defined pointwisely in Ω.

The study of the regional fractional Laplacian has received some growing attention in 
recent years. However, in contrast to that of the1 fractional Laplacian

the theory of elliptic problems driven by the regional fractional Laplacian is less developed 
in spite of some known results. We are concerned here in particular with the Hopf bound-
ary lemma, which is a powerful tool for the study of qualitative properties of solutions like, 
for example, their monotonicity and symmetry, also via moving plane arguments.

In [13], the authors obtained a Hopf lemma for pointwise super-solutions for an ellip-
tic equation involving the fractional Laplacian (−Δ)s under the assumption that an interior 
ball condition holds. For the Hopf boundary lemma for weak super-solutions related to the 
fractional p-Laplacian, we refer to [9] and references therein. Other references on the Hopf 
boundary lemma for fractional Laplacian can be found in [1, 5, 7, 12, 16, 17]. However, to 
the best of our knowledge, an analogue result for the regional fractional Laplacian has not 
been investigated before. Let us mention here that while the Hopf lemma is usually used 
to run a moving plane method in the case of the fractional Laplacian, as recalled above, 
this does not seem to be the case for the regional fractional Laplacian. The moving plane 
method for (−Δ)s

Ω
 remains indeed a challenging question: the main difficulty relies on the 

fact that the operator depends on the domain and therefore, upon scaling the domain, the 
operator changes as well. We expect a symmetry breaking in the case of the regional frac-
tional Laplacian defined on bounded domains.

Here, we investigate the validity of a suitable Hopf-type lemma for super-solutions of 
the equation

We analyze this both for the case of pointwise and weak super-solutions. Moreover, we also 
study a strong maximum principle for distributional super-solutions to (1.3). So, before 
stating our main results, let us recall the following definitions (notations are defined in 
Sect. 2).

Definition 1.1  We say that a function u ∶ Ω → ℝ is a pointwise super-solution of (1.3) if 
u ∈ C2s+�

loc
(Ω) ∩ L∞(Ω) for some 𝜖 > 0 and

Definition 1.2  We say that a function u ∶ Ω → ℝ is a weak super-solution of (1.3) if 
u ∈ Hs(Ω) and

cN,s ∶=

(

∫
ℝN

1 − cos(�1)

|� |N+2s
d�

)−1

= s(1 − s)
22s Γ(

N+2s

2
)

�N∕2 Γ(2 − s)
.

(1.2)(−Δ)su(x) = cN,sP.V .∫
ℝN

u(x) − u(y)

|x − y|N+2s
dy,

(1.3)(−Δ)s
Ω
u = c(x)u in Ω.

(−Δ)s
Ω
u(x) ≥ c(x)u(x) for any x ∈ Ω.

1  Sometimes it is also called restricted fractional Laplacian.
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Definition 1.3  We say that a function u ∶ Ω → ℝ is a distributional super-solution of (1.3) 
if u ∈ L1(Ω) and

In this case, we briefly write

Remark 1.4  Sub-solutions can be defined in similar ways as in Definitions 1.1, 1.2, and 1.3. 
Also, in the case of Definition 1.2, by density the test function � can be chosen in Hs

0
(Ω)+ if 

c is somewhat well-behaved (see Lemma 4.1 for more details).

We are going to denote by �Ω(x) = inf{|x − �| ∶ � ∈ �Ω} for x ∈ Ω . The main results of 
the paper are the following.

Theorem 1.5  (Hopf lemma for pointwise super-solutions) Let Ω ⊂ ℝ
N be an open bounded 

set with C1,1 boundary and s ∈ (1∕2, 1) . Let c ∈ L∞(Ω) and let u ∶ Ω → ℝ be a lower semi-
continuous super-solution (in the sense of Definition 1.1) of (1.3). 

	 (i)	 If c ≤ 0 in Ω and u ≥ 0 on �Ω , then either u vanishes identically in Ω or 

	 (ii)	 If u ≥ 0 in Ω , then either u vanishes identically in Ω or (1.4) holds true.

Theorem  1.6  (Hopf lemma for weak super-solutions) Let Ω ⊂ ℝ
N be an open bounded 

set with C1,1 boundary and s ∈ (1∕2, 1) . Let c ∶ Ω → ℝ be a measurable function and let 
u ∈ Hs(Ω) be a weak super-solution (in the sense of Definition 1.2) of (1.3). Suppose that 
either

or

hold. 

	 (i)	 If c ≤ 0 in Ω and u ≥ 0 on �Ω , then either u vanishes identically in Ω or 

	 (ii)	 If u ≥ 0 in Ω , then either u vanishes identically in Ω or (1.7) holds true.

E(u,�) ≥ �Ω

cu� for any � ∈ C∞
c
(Ω), � ≥ 0 in Ω.

�Ω

u (−Δ)s
Ω
� ≥ �Ω

cu� for any � ∈ C∞
c
(Ω), � ≥ 0 in Ω.

(−Δ)s
Ω
u ≥ c(x)u in D�(Ω).

(1.4)lim inf
Ω∋x→z

u(x)

𝛿Ω(x)
2s−1

> 0 for any z ∈ 𝜕Ω.

(1.5)c ∈ L∞(Ω)

(1.6)c ∈ Lq(Ω), q >
N

2s
, and u ∈ L∞

loc
(Ω),

(1.7)there exists 𝜀0 > 0 such that
u

𝛿
2s−1
Ω

> 𝜀0 in Ω.
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Let us first comment on the proof of Theorem 1.5. Starting with a strong maximum prin-
ciple, we obtain the strict positivity of non-trivial super-solutions of (1.3): this is where the 
lower semicontinuity of u is needed. In a next step, we construct a barrier from below for u in 
terms of the torsion function utor , i.e., the solution to the boundary value problem

This function is known to satisfy, on smooth domains, the double-sided estimate

for some C > 1 , see [3, 6] which are based on some estimates in [2, 8, 14]. Intuitively, (1.9) 
gives that the boundary behavior of super-solutions described by (1.4) and (1.7) is opti-
mal. We notice that, in contrast to what happens for the fractional Laplacian, there are no 
explicit examples of torsion functions for the regional fractional Laplacian, even in the case 
when Ω is a ball. In [10], a numerical analysis is performed in the one-dimensional case 
Ω = (−1, 1).

We mention that the existence and uniqueness of pointwise and weak solutions to the Dir-
ichlet problem (1.8) with general bounded right-hand side was obtained in [6]. We notice 
also that the Hölder regularity up to the boundary of any weak solution of (1.8) was recently 
proved in [11], while regularity up to the boundary of pointwise solution of (1.8) was obtained 
earlier in [6]. We also mention that the boundary regularity of the ratio utor∕�2s−1Ω

 has been 
established in [11] in the case when Ω is of class C1,� for some 𝛽 > 0 . Thus, it makes sense to 
evaluate utor∕�2s−1Ω

 pointwisely on Ω.
The proof of Theorem 1.6 follows the same line of thought as the one of Theorem 1.5, 

although with some more technical difficulties due to the weak character of super-solutions 
involved. For example, when c ∈ Lq(Ω) the strong maximum principle involved in our strat-
egy takes the following form.

Proposition 1.7  (Strong maximum principle for distributional super-solutions) Let Ω ⊂ ℝ
N 

be a bounded open set and u ∈ L∞
loc
(Ω) be a distributional super-solution (in the sense of 

Definition 1.3) of (1.3) with

If u ≥ 0 in Ω , then either u vanishes identically in Ω or

The paper is organized as follows. In Sect. 2, we present some notations and definitions. 
Section 3 is devoted to the proof of Theorem 1.5, whereas in Sect. 4 we prove Theorem 1.6. 
Finally, in Sect. 5 we prove Proposition 1.7.

2 � Preliminaries

We collect in this section some notations and useful tools. For s ∈ (0, 1) , Hs(Ω) denotes the 
space of functions u ∈ L2(Ω) such that

(1.8)
{

(−Δ)s
Ω
utor = 1 in Ω,

utor = 0 on �Ω.

(1.9)C−1
�
2s−1
Ω

≤ utor ≤ C�2s−1
Ω

in Ω

(1.10)c ∈ L
q

loc
(Ω), q >

N

2s
.

ess inf
K

u > 0 for any K ⊂⊂ Ω.
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It is a Hilbert space endowed with the norm

We denote by Hs
0
(Ω) the completion of C∞

c
(Ω) with respect to the norm ‖ ⋅ ‖Hs(Ω) . It is 

known that for s ∈ (1∕2, 1) , Hs
0
(Ω) is a Hilbert space with the norm ‖ ⋅ ‖Hs

0
(Ω) = [⋅]Hs(Ω) 

(which is equivalent to the usual one in Hs(Ω) thanks to a Poincaré-type inequality) and it 
can be characterized as follows

Next, we define Hs
0
(Ω)+ by

For u, v ∈ Hs
0
(Ω) , we consider the symmetric, continuous, and coercive bilinear form

The first Dirichlet eigenvalue of (−Δ)s
Ω

 in Ω can be defined by

It holds 𝜆1(Ω) > 0 , with the corresponding eigenfunction unique and strictly positive in Ω.
Given x ∈ Ω and r > 0 , we denote by Br(x) the open ball centred at x with radius r. 

We denote by u+ ∶= max{u, 0} and u− ∶= max{−u, 0} the positive and negative part of 
u, respectively. We also recall that, if u ∈ Hs(Ω) , then u+, u− ∈ Hs(Ω) as well: this follows 
from a simple calculation, indeed u = u+ − u− and

where

3 � Proof of the Hopf lemma: the case of pointwise super‑solutions

The aim of this section is to prove Theorem 1.5. Before doing this, we need one key result: 
we state and prove a strong maximum principle for pointwise super-solutions of (1.3).

[u]2
Hs(Ω)

∶=
cN,s

2 ∫Ω ∫Ω

(
u(x) − u(y)

)2

|x − y|N+2s
dx dy < ∞.

‖u‖Hs(Ω) ∶=
�
‖u‖2

L2(Ω)
+ [u]2

Hs(Ω)

�1∕2
.

Hs
0
(Ω) ∶=

{
u ∈ Hs(Ω) ∶ u = 0 on �Ω

}
.

Hs
0
(Ω)+ ∶=

{
u ∈ Hs

0
(Ω) ∶ u ≥ 0 in Ω

}
.

E(u, v) ∶=
cN,s

2 ∫Ω ∫Ω

(
u(x) − u(y)

)(
v(x) − v(y)

)

|x − y|N+2s
dx dy.

(2.1)
�1(Ω) = min

u ∈ Hs
0
(Ω)

u ≠ 0

E(u, u)

‖u‖2
L2(Ω)

.

[u]2
Hs(Ω)

= E(u, u) = E(u+, u+) − 2E(u+, u−) + E(u−, u−)

E(u+, u−) =
cN,s

2 �Ω �Ω

(
u+(x) − u+(y)

)(
u−(x) − u−(y)

)

|x − y|N+2s
dx dy

= − cN,s �Ω �Ω

u+(x) u−(y)

|x − y|N+2s
dx dy ≤ 0.
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Proposition 3.1  (Strong maximum principle for pointwise super-solutions) Let Ω ⊂ ℝ
N be 

a bounded open set. Let c ∈ L∞(Ω) and u ∶ Ω → ℝ be a lower semicontinuous function 
super-solution (in the sense of Definition 1.1) of (1.3). 

	 (i)	 If c ≤ 0 in Ω and u ≥ 0 on �Ω , then either u vanishes identically in Ω , or u > 0 in Ω.
	 (ii)	 If u ≥ 0 in Ω , then either u vanishes identically in Ω , or u > 0 in Ω.

Proof  Before going into the proof, we start by proving that the function u is nonnegative in 
Ω as long as the hypotheses of assertion (i) are satisfied.

Let us assume that c ≤ 0 in Ω , u ≥ 0 on �Ω , and that u does not vanish identically on Ω . 
Then we claim that

Assume to the contrary that (3.1) does not hold, that is, u is negative somewhere in Ω . 
Then, using that Ω is compact together with the hypotheses of lower semicontinuity of u, 
a negative minimum of the function u must be achieved in Ω . In other words, there exists 
x0 ∈ Ω such that

Combining (3.2) with u ≥ 0 on �Ω , it follows that

But, since by assumption c(x0) ≤ 0 , we have that c(x0)u(x0) ≥ 0 . Therefore,

which is a contradiction. Consequently, claim (3.1) follows.
So we can now suppose u ≥ 0 in Ω . Suppose that u ≢ 0 in Ω and let us prove that

First of all, we recall that by the lower semicontinuity of u, there exist x1 ∈ Ω and 𝜖1, r > 0 
such that

If the inequality (3.3) were not true, that is, if u(x̃) = 0 at some x̃ ∈ Ω , then it would hold

Therefore,

a contradiction. Thus, the strict inequality u > 0 in Ω must hold true. 	�  ◻

Having the above strong maximum principle, we can now give the proof of Theorem 1.5 
by following some ideas in [13].

(3.1)u ≥ 0 in Ω.

(3.2)u(x0) = min
x∈Ω

u(x) < 0.

(−Δ)s
Ω
u(x0) = cN,sP.V .∫Ω

u(x0) − u(y)

|x0 − y|N+2s
dy < 0.

0 > (−Δ)s
Ω
u(x0) ≥ c(x0)u(x0) ≥ 0.

(3.3)u > 0 in Ω.

u(y) ≥ 𝜖1 for all y ∈ Br(x1) ⊂ Ω.

(−Δ)s
Ω
u(x̃) = cN,sP.V .�Ω

−u(y)

|x̃ − y|N+2s
dy ≤ cN,sP.V .�Br(x1)

−u(y)

|x̃ − y|N+2s
dy < 0

0 > (−Δ)s
Ω
u(x̃) ≥ c(x̃)u(x̃) = 0,
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Proof of Theorem 1.5  From Proposition 3.1, it follows that

provided that u does not vanish identically in Ω . In other words, if u does not vanish identi-
cally in Ω , then for every compact subset K ⊂ Ω we have

Now suppose that u does not vanish identically in Ω and let us prove (1.4). To this end, it 
suffices to construct a barrier for u in terms of the solution problem (1.8). Let utor denote 
the pointwise solution of (1.8).

Next, for n ∈ ℕ , we set

Then, by definition and (1.9), by the boundedness of Ω it follows that

We wish now to show that there exists some n0 ∈ ℕ such that

In order to prove (3.8), we argue by contradiction: suppose that for every n ∈ ℕ the func-
tion wn defined by

is positive somewhere in Ω . Then, using that wn = vn − u = −u ≤ 0 on �Ω and the com-
pactness of Ω , a positive maximum of the upper semicontinuous function wn (since u is 
lower semicontinuous by assumption) must be achieved at some x

n
∈ Ω , that is, there 

exists x
n
∈ Ω such that

This implies together with (3.4) that 0 < u(xn) < vn(xn) . From this and thanks to (3.7), we 
find that

Recalling (3.5), we deduce from (3.10) that x
n
→ �Ω as n → ∞ . Taking this into account, 

one deduces that for any compact set K ⊂ Ω there exists h > 0 such that |xn − y| ≥ h > 0 
for any y ∈ K and n sufficiently large. As a direct consequence, there exist two positive 
constants 𝛾1, 𝛾2 > 0 , independent of n such that

Thus, we have

(3.4)u(x) > 0 for all x ∈ Ω

(3.5)inf
y∈K

u(y) > 0.

(3.6)vn(x) =
1

n
utor (x) for x ∈ Ω.

(3.7)vn → 0 uniformly in Ω as n → ∞.

(3.8)u ≥ vn in Ω, for any n ≥ n0.

wn ∶= vn − u in Ω

(3.9)wn(xn) = max
x∈Ω

wn(x) > 0.

(3.10)lim
n→∞

u(xn) = 0.

(3.11)𝛾1 < ∫K

dy

|xn − y|N+2s
< 𝛾2 for n sufficiently large(depending on K).
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We now aim at estimating the integrals on the right-hand side of the above inequality. Con-
cerning the first integral, we notice that by (3.5), there exists a positive constant 𝛾3 > 0 
such that u(y) ≥ �3 for y ∈ K . As a consequence of this and by using (3.10) and (3.11), it 
follows that

Regarding the second integral in (3.12), we first recall that since xn is the maximum of wn 
in Ω , then by (3.9)

Using this, the second integral in (3.12) can be estimated as follows:

Moreover, a simple calculation yields

Now, from (3.6) and (1.8), it follows that

This yields

Combining (3.16), (3.7) and (3.11), we observe that the right-hand side in the equality 
(3.15) goes to zero as n → ∞ and therefore

Consequently, from (3.14), we get

However, using that c is bounded, it follows from (3.10) that

Finally, (3.17) and (3.13) into (3.12), lead to a contradiction with (3.18). Therefore, the 
inequality (3.8) follows for some n ∈ ℕ large enough. 	�  ◻

(3.12)

c(xn)u(xn) ≤ (−Δ)s
Ω
u(xn) = cN,s �K

u(xn) − u(y)

|xn − y|N+2s
dy + cN,sP.V .�Ω⧵K

u(xn) − u(y)

|xn − y|N+2s
dy.

(3.13)lim sup
n→∞ �K

u(xn) − u(y)

|xn − y|N+2s
dy ≤ −𝛾1𝛾3 < 0.

u(xn) − u(y) ≤ vn(xn) − vn(y).

(3.14)P.V .�Ω⧵K

u(xn) − u(y)

|xn − y|N+2s
dy ≤ P.V .�Ω⧵K

vn(xn) − vn(y)

|xn − y|N+2s
dy.

(3.15)cN,sP.V .∫Ω⧵K

vn(xn) − vn(y)

|xn − y|N+2s
dy = (−Δ)s

Ω
vn(xn) − cN,s ∫K

vn(xn) − vn(y)

|xn − y|N+2s
dy.

(−Δ)s
Ω
vn(xn) =

1

n
(−Δ)s

Ω
utor (xn) =

1

n
.

(3.16)(−Δ)s
Ω
vn(xn) → 0 as n → ∞.

lim
n→∞

P.V .∫Ω⧵K

vn(xn) − vn(y)

|xn − y|N+2s
dy = 0.

(3.17)lim sup
n→∞

P.V .�Ω⧵K

u(xn) − u(y)

|xn − y|N+2s
dy ≤ 0.

(3.18)lim
n→∞

c(xn)u(xn) = 0.
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4 � Proof of the Hopf lemma: the case of weak super‑solutions

In this section, we aim at proving Theorem 1.6. Here, the function utor defined via (1.8) 
above is understood to be a weak solution. Recall the double-sided estimate (1.9). We first 
state and prove a technical lemma and a strong maximum principle for weak super-solu-
tions of (1.3).

Lemma 4.1  Let Ω ⊂ ℝ
N be an open bounded set and c ∈ L

N

2s (Ω) . Then u is a weak super-
solution (in the sense of Definition 1.2) of (1.3) if and only if

Proof  Fix v ∈ Hs
0
(Ω)+ and let (𝜓n)n∈ℕ ⊂ C∞

c
(Ω) a sequence of nonnegative functions con-

verging to v in the Hs(Ω)-norm. By Definition 1.2, we have

On the left-hand side, we have the convergence E(u,�n) → E(u, v) as n → ∞ by construc-
tion; so, let us deal with right-hand side. By the Sobolev embedding, we have �n → v as 
n → ∞ in L2∗s (Ω) , with 2∗

s
=

2N

N−2s
 . So, we have the convergence

if cu ∈ L
2N

N+2s (Ω) where 2N

N+2s
= (2∗

s
)� is the conjugate exponent of 2∗

s
 , which is what we show 

next. This indeed follows from the Hölder inequality:

Then

	�  ◻

Proposition 4.2  (Strong maximum principle for weak super-solutions) Let c ∈ Lq(Ω) , with 
q >

N

2s
 , and u ∈ Hs(Ω) ∩ L∞

loc
(Ω) be a weak super-solution of

	 (i)	 If c ≤ 0 in Ω and u ≥ 0 on �Ω , then either u vanishes identically in Ω or u > 0 in Ω.
	 (ii)	 If u ≥ 0 in Ω , then either u vanishes identically in Ω or u > 0 in Ω.

Proof  We first recall the following elementary inequality:

E(u, v) ≥ �Ω

cuv for any v ∈ Hs
0
(Ω)+.

E(u,�n) ≥ �Ω

cu�n for any n ∈ ℕ.

∫Ω

cu�n ⟶ ∫Ω

cuv as n → ∞,

∫Ω

||cu||
2N

N+2s =

(

∫Ω

||c||
N

2s

) 4s

N+2s
(

∫Ω

||u||
2N

N−2s

) N−2s

N+2s

< ∞.

E(u, v) = lim
n→∞

E(u,�n) ≥ lim
n→∞�Ω

cu�n = �Ω

cuv.

(4.1)(−Δ)s
Ω
u = c(x)u in Ω.

(4.2)
(
u(x) − u(y)

)(
u−(x) − u−(y)

) ≤ −
(
u−(x) − u−(y)

)2
, for any x, y ∈ Ω.
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Assume then c ≤ 0 in Ω and u ≥ 0 on �Ω . Then u− = 0 on �Ω . Moreover, by standard argu-
ments, we also know u− ∈ Hs(Ω) . Therefore u− ∈ Hs

0
(Ω)+ . Hence, by testing (4.1) on u− 

(which is allowed by Lemma 4.1), we have from inequality (4.2) that

Moreover, u = u+ − u− with u+u− ≡ 0 in Ω , which yields

where �1(Ω) has been defined in (2.1). Since 𝜆1(Ω) > 0 , then from the nonpositivity of c it 
follows

implying that u− = 0 a.e. in Ω , that is, u ≥ 0 a.e. in Ω.
So we can at this point assume that u ≥ 0 in Ω . Note that the fact that u is a weak super-

solution implies in particular that u is also a distributional super-solution. Indeed, for any 
� ∈ C∞

c
(Ω) , � ≥ 0 in Ω,

Using this remark, we can use Proposition 1.7. 	� ◻

Remark 4.3  It is possible to drop the assumption u ∈ L∞
loc
(Ω) in Proposition 4.2 by paying 

the price of assuming c ∈ L∞(Ω) . In this case, the first part of the proof still holds, while, 
instead of using Proposition 1.7, the second part simply follows from [15, Theorem 1.2].

We now prove Theorem 1.6. For the sake of clarity, we split its proof into two differ-
ent arguments.

Proof of Theorem 1.6 under assumption 1.5  Suppose that u does not vanish identically in Ω 
and let us prove (1.7). In other words, we want to prove that there exists a positive constant 
C > 0 such that

From Proposition 4.2 and Remark 4.3, it follows that u > 0 in Ω . This means that for any 
K ⊂⊂ Ω there exists 𝜖 > 0 such that it holds

Now, let wn ∶= vn − u where vn is the function defined in (3.6). Then, thanks to (3.7) and 
(4.4), we can assume without any ambiguity that

�Ω

c(x)u(x)u−(x) dx ≤ E(u, u−) ≤ −E(u−, u−).

�Ω

c(x)u−(x)2 dx ≥ E(u−, u−) ≥ �1(Ω)‖u−‖2L2(Ω),

‖u−‖2
L2(Ω)

= 0

�Ω

cu� ≤ E(u,�) =
cN,s

2 �Ω �Ω

(
u(x) − u(y)

)(
�(x) − �(y)

)

|x − y|N+2s
dx;dy

= cN,s �Ω

u(x)P.V .�Ω

�(x) − �(y)

|x − y|N+2s
dy dx = �Ω

u(−Δ)s
Ω
� .

(4.3)u ≥ C�2s−1
Ω

in Ω.

(4.4)u(x) ≥ 𝜖 > 0 for x ∈ K.

(4.5)w+
n
≡ 0 in K for n sufficiently large.
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Now, since w+
n
∈ Hs

0
(Ω)+ (because w+

n
≥ 0 in Ω , w+

n
∈ Hs(Ω) since wn is, and w+

n
= 0 on 

�Ω since vn = 0 on �Ω and u ≥ 0 on �Ω ), one can use it as a test function in Definition 1.2 
(by Lemma 4.1) in order to have

Since in {w+
n
> 0} it holds

we have

On the other hand,

Since the first term on the right-hand side of the above equality is nonpositive and 
E(utor ,w

+
n
) = ∫

Ω
w+
n
= ‖w+

n
‖L1(Ω) thanks to (1.8), then

Now,

Recall that, by definition (see also (4.5)), K ⊂ {wn < 0} = {w−
n
> 0} and

so, upon plugging this into (4.9), we obtain

for some C0 > 0 and n sufficiently large. Plugging (4.7) into (4.6), using (4.8) and this last 
obtained inequality, we get

(4.6)E(u,w+
n
) ≥ �Ω

cuw+
n
.

u < vn ≤ 1

n
‖utor‖L∞(Ω),

(4.7)�Ω

c(x)u(x)w+
n
(x) dx ≥ −

1

n
‖c‖L∞(Ω)‖utor‖L∞(Ω)‖w+

n
‖L1(Ω).

E(u,w+
n
) = E(u − vn,w

+
n
) + E(vn,w

+
n
) = E(−wn,w

+
n
) +

1

n
E(utor ,w

+
n
)

= −E(w+
n
,w+

n
) + E(w−

n
,w+

n
) +

1

n
E(utor ,w

+
n
).

(4.8)E(u,w+
n
) ≤ E(w−

n
,w+

n
) +

1

n
‖w+

n
‖L1(Ω).

(4.9)E(w−
n
,w+

n
) = −cN,s ∫Ω ∫Ω

w−
n
(x)w+

n
(y)

|x − y|N+2s
dx dy.

w−
n
≥ � −

1

n
‖utor‖L∞(Ω) in Ω,

E(w−
n
,w+

n
) ≤ −cN,s �Ω �K

w−
n
(x)w+

n
(y)

�x − y�N+2s
dx dy

≤ cN,s

�
1

n
‖utor‖L∞(Ω) − �

�
�Ω �K

w+
n
(y)

�x − y�N+2s
dx dy

≤ C0cN,s

�
1

n
‖utor‖L∞(Ω) − �

�
‖w+

n
‖L1(Ω)
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For n sufficiently large, we deduce from (4.10) that

Therefore, (4.3) follows. 	�  ◻

Proof of Theorem 1.6 under assumption 1.6  The very first part of the proof follows the argu-
ment given above. We start here from (4.6). We know from Proposition 4.2 that u > 0 in Ω 
and so wn < vn , from which it follows

By the fractional Sobolev inequality, we have that u ∈ Lp(Ω) for any 
1 ≤ p ≤ 2∗

s
= 2N∕(N − 2s) . As the conjugate exponent of 2N∕(N − 2s) is 2N∕(N + 2s) 

which is smaller than N/(2s), we have by an application of the Hölder’s inequality that

By repeating the calculations in the preceding argument, we then get the analog of (4.10) 
which reads in this case

This last inequality, for n sufficiently large, gives

Therefore, (4.3) follows also in this case. 	�  ◻

5 � Proof of the strong maximum principle for distributional 
super‑solutions

This last section is devoted to the proof of Proposition 1.7. In the following, we assume that 
u ∶ Ω → ℝ is a distributional super-solution (in the sense of Definition 1.3) of (1.3) and that c 
satisfies the assumptions in (1.10).

5.1 � Regional v. restricted fractional Laplacian

Note that

(4.10)
C0cN,s

�
1

n
‖utor‖L∞(Ω) − �

�
‖w+

n
‖L1(Ω) +

1

n
‖w+

n
‖L1(Ω) ≥

≥ −
1

n
‖c‖L∞(Ω)‖utor‖L∞(Ω)‖w+

n
‖L1(Ω).

w+
n
≡ 0 in Ω.

�Ω

cuw+
n
≥ −

1

n
‖utor‖L∞(Ω) �Ω

�cu�.

�Ω

cuw+
n
≥ −

1

n
‖utor‖L∞(Ω)‖u‖L2∗s (Ω)‖c‖Lq(Ω).

C0cN,s

�
1

n
‖utor‖L∞(Ω) − �

�
‖w+

n
‖
L1(Ω) +

1

n
‖w+

n
‖
L1(Ω)

≥ −
1

n
‖utor‖L∞(Ω)‖u‖L2∗s (Ω)‖c‖Lq(Ω).

w+
n
≡ 0 in Ω.



107A Hopf lemma for the regional fractional Laplacian﻿	

1 3

where we recall (1.2), so that Definition 1.3 is equivalent to (if we extend u = 0 in ℝN ⧵Ω)

5.2 � Approximation and representation of distributional solutions

Consider a solution u ∶ ℝ
N
→ [0,+∞) to (5.1) with

Take �
�
∈ C∞

c
(B

�
) a mollifier. If we take an open Ω�

⊂⊂ Ω then for any � ∈ C∞
c
(Ω�), � ≥ 0, 

it holds � ∗ �
�
∈ C∞

c
(Ω) for � small independently of � and we can say

which implies that

As u ∗ �
�
∈ C∞(Ω�) , the above inequality also holds in a pointwise sense. We can then 

exploit a Green representation on u ∗ �
�
 (see [4]) to deduce that for any x ∈ Ω��

⊂⊂ Ω� and 
0 < r < dist(Ω��,ℝN ⧵Ω�)

Here we have used the kernels G and P which are, respectively, the Green function and the 
Poisson kernel of the fractional Laplacian (−Δ)s on the unitary ball B1 , which are explicitly 
known, see [4]:

From now on, we assume that u ≥ 0 in Ω . We want to send � → 0 in (5.3) and deduce a 
representation for u. For the Poisson integral, we use the nonnegativity of u and the Fatou’s 
Lemma to say

(−Δ)s
Ω
� = (−Δ)s� − �Ω� in Ω, �Ω(x) = cN,s ∫

ℝN⧵Ω

dy

|x − y|N+2s
for x ∈ Ω,

(5.1)(−Δ)su ≥ (
c + 𝜅Ω

)
u in D�(Ω), c ∈ L

q

loc
(Ω), q >

N

2s
.

(5.2)u ∈ L𝛼
loc
(Ω), 𝛼 >

Nq

2sq − N
, and u = 0 in ℝ

N ⧵Ω.

�
ℝN

(
u ∗ �

�

)
(−Δ)s� =�

ℝN

u
(
�
�
∗ (−Δ)s�

)
= �Ω

u(−Δ)s
(
� ∗ �

�
) ≥ �Ω

(
c + �Ω

)
u
(
� ∗ �

�

)

=�Ω

[((
c + �Ω

)
u
)
∗ �

�

]
�

(−Δ)s
(
u ∗ �

�

) ≥ ((
c + �Ω

)
u
)
∗ �

�
in Ω�.

(5.3)

(
u ∗ �

�

)
(x) ≥ r2s �B1

G(0, y)
[((

c + �Ω

)
u
)
∗ �

�

]
(x + ry) dy

+ �
ℝN⧵B1

P(0, y)
(
u ∗ �

�

)
(x + ry) dy.

G(x, y) =
kN,s

|x − y|N−2s ∫
(1−|x|2 )(1−|y|2 )

|x−y|2

0

ts−1

(t + 1)N∕2
dt x, y ∈ B1,

P(x, y) =
�N,s

|x − y|N

(
1 − |x|2

|y|2 − 1

)s

x ∈ B1, y ∈ ℝ
N ⧵ B1.
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For the Green integral, we use that

and

where moreover, by the Hölder inequality

where the second inequality holds for � close to N
2s

 in view of (5.2). Therefore, using the 
weak topology in Lebesgue spaces,

Thus,

5.3 � The Hardy–Littlewood maximal function

Recall that, given f ∈ L
p

loc
(ℝN) , p > 1 , the Hardy–Littlewood maximal function is defined 

as

In the following, we are going to need the following fact

lim inf
�→0 �

ℝN⧵B1

P(0, y)
(
u ∗ �

�

)
(x + ry) dy ≥ �

ℝN⧵B1

P(0, y) u(x + ry) dy.

G(0, ⋅) ∈ Lp(B1) for any p ∈
[
1,

N

N − 2s

)

���
��

c + �Ω

�
u
�
∗ �

�

���L� (Ω�)
≤ C

���
�
c + �Ω

�
u
���L� (Ω�)

≤ C‖cu‖L� (Ω�) + C���Ω��L∞(Ω�)
‖u‖L� (Ω�)

for any � ∈
�
N

2s
, �
�

∫
Ω� �cu�𝛽 ≤ ‖c‖

1

𝛽

Lq(Ω�)
��u𝛽��Lq∕(q−𝛽)(Ω�)

for
N

2s
< 𝛽 < q,

∫
Ω� u

𝛽q∕(q−𝛽)
< ∞ for

𝛽q

q−𝛽
< 𝛼,

lim
�→0∫B1

G(0, y)
[((

c + �Ω

)
u
)
∗ �

�

]
(x + ry) dy

= ∫B1

G(0, y)
(
c + �Ω

)
(x + ry) u(x + ry) dy.

(5.4)

u(x) ≥ r2s �B1

G(0, y)
(
c + �Ω

)
(x + ry) u(x + ry) dy + �

ℝN⧵B1

P(0, y) u(x + ry) dy

for a.e. x ∈ Ω��.

(5.5)�[f ](x) = sup
r>0

1

rN ∫Br(x)

|f | x ∈ ℝ
N .
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5.4 � The strong maximum principle

Having the above ingredients, in this subsection, we are ready to give the proof of Proposi-
tion 1.7.

Proof of Proposition 1.7  We argue by contradiction. Assume that |{u > 𝛿} ∩ Ω�| > 0 for 
some 𝛿 > 0.

In the notations of the previous subsection, and without loss of generality, we assume 
that

Without loss of generality, we can assume that (rj)j∈ℕ is decreasing. Extract a subsequence 
(𝜌j)j∈ℕ ⊂ (rj)j∈ℕ in such a way that2

In order to ease notation, relabel cΩ = c + �Ω . We apply representation (5.4) with r = rj 
and we then integrate it over B

�j
(xj) , obtaining

The Poisson integral can be estimated as follows:

(5.6)���[f ]��Lp(K) ≤ C‖f‖Lp(K) for p > 1 and K ⊂⊂ ℝ
N measurable.

there exist (xj)j∈ℕ ⊂ Ω�� and (rj)j∈ℕ ⊂ (0,∞), rj → 0 as j → ∞,

such that lim
j→∞

1

(2rj)
N ∫B2rj

(xj)

u = 0.

(5.7)
1

�
N
j
�B

�j
(xj)

u ≤ r2s
j

j
and �j ≤ rj for any j ∈ ℕ.

(5.8)

1

�
N
j
�B

�j
(xj)

u ≥ r2s
j

�
N
j
�B1

G(0, y)�B
�j
(xj)

cΩ(x + rjy) u(x + rjy) dx dy +

+
1

�
N
j
�
ℝN⧵B1

P(0, y)�B
�j
(xj)

u(x + rjy) dx dy.

2  Here we briefly comment on inequality (5.7). As we know by assumption that 1

(2r
j
)N
∫
B2rj

(x
j
)
u → 0 as 

j → ∞ , one has also 2N

(2r
j
)N
∫
B2rj

(x
j
)
u → 0 as j → ∞ . Now, using that B

r
j

(x
j
) ⊂ B2r

j

(x
j
) and that u is nonnega-

tive, one can write

One can then extract a subsequence (𝜌
j
)
j∈ℕ ⊂ (r

j
)
j∈ℕ with �

j
≤ r

j
 such that (5.7) holds.

0 ≤ 1

r
N

j
�
B
rj
(x

j
)

u ≤ 2N

(2r
j
)N �

B2rj
(x

j
)

u ⟶ 0 as j → ∞.
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which entails

for some C > 0 . Mind that here we have used the assumption that |{u > 𝛿} ∩ Ω�| > 0 for 
some 𝛿 > 0.

We now deal with the Green integral in (5.8). Fix p ∈ (1,min{q,N∕(N − 2s)}) . We 
estimate

Using that

by definition (5.5), we obtain for (5.10) the following estimates by means of a Hölder 
inequality

�
ℝN⧵B1

P(0, y) u(x + rjy) dy = �N,s �
ℝN⧵B1

u(x + rjy)

|y|N
(
|y|2 − 1

)s dy

≥ �N,sr
2s
j �Ω�⧵Brj

(x)

u(y)

|y − x|N
(
|y − x|2 − r2

j

)s dy

≥ Cr2s
j �Ω�⧵Brj

(x)

u

(5.9)
1

�
N
j
�
ℝN⧵B1

P(0, y)�B
�j
(xj)

u(x + rjy) dx dy ≥ Cr2s
j

(5.10)

1

�
N
j
�B1

G(0, y)�B
�j
(xj)

cΩ(x + rjy) u(x + rjy) dx dy ≥

≥ −
C

�
N
j
�B1

|y|2s−N �B
�j
(xj)

|cΩ(x + rjy)| u(x + rjy) dx dy

≥ −C �B1

|y|2s−N
(

1

�
N
j
�B

�j
(xj)

|cΩ(x + rjy)|q dx
) 1

q

×

(
1

�
N
j
�B

�j
(xj)

u(x + rjy)
q

q−1 dx

) q−1

q

dy

≥ −C

[

�B1

|y|(2s−N)p
(

1

�
N
j
�B

�j
(xj)

|cΩ(x + rjy)|q dx
) p

q

dy

] 1

p

(5.11)×

[

∫B1

(
1

�
N
j
∫B

�j
(xj)

|u(x + rjy)|
q

q−1 dx

) p

p−1

q−1

q

dy

] p−1

p

.

1

�
N
j
�B

�j
(xj)

|cΩ(x + rjy)|q dx ≤ �
[
|cΩ|q

]
(xj + rjy)
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by (5.6). Remark that the assumption 1 < p < N∕(N − 2s) ensures that

which guarantees the finiteness of the first factor in (5.12).
Fix now q ∈ (p, q) and notice how this implies

Using this, we estimate (5.11) as follows:

Note that

(5.12)

�B1

|y|(2s−N)p
(

1

�
N
j
�B

�j
(xj)

|cΩ(x + rjy)|q dx
) p

q

dy

≤ �B1

|y|(2s−N)p�
[
|cΩ|q

]
(xj + rjy)

p

q dy

≤
(

�B1

|y|
(2s−N)pq

q−p dy

) q−p

pq
(

�B1

�
[
|cΩ|q

]
(xj + rjy)

q

q dy

) p

q

≤
(

�B1

|y|
(2s−N)pq

q−p dy

) q−p

pq ‖‖�
[
|cΩ|q

]‖‖
p∕q

Lq∕q(Ω�)

≤
(

�B1

|y|
(2s−N)pq

q−p dy

) q−p

pq ‖‖|cΩ|
q‖‖

p∕q

Lq∕q(Ω�)

≤
(

�B1

|y|
(2s−N)pq

q−p dy

) q−p

pq ‖‖cΩ‖‖
p

Lq(Ω�)

(2s − N)pq

q − p
> −

Nq

q − p
> −N,

p

p − 1

q − 1

q
> 1.

�B1

(
1

�
N
j
�B

�j
(xj)

|u(x + rjy)|
q

q−1 dx

) p

p−1

q−1

q

dy

≤ C‖‖u‖‖
q

q−1
(

p

p−1

q−1

q
−1)

L∞(Ω�) �B1

(
1

�
N
j
�B

�j
(xj)

|u(x + rjy)|
q

q−1 dx

)
dy

≤ C‖‖u‖‖
(

p

p−1
−

q

q−1
)+(

q

q−1
−1)

L∞(Ω�) �B1

(
1

�
N
j
�B

�j
(xj)

u(x + rjy) dx

)
dy

= C‖‖u‖‖
1

p−1

L∞(Ω�) �B1

(
1

�
N
j
�B

�j
(xj)

u(x + rjy) dx

)
dy.
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We therefore deduce, by plugging in (5.8) the estimates contained in (5.7), (5.9), (5.12), 
and (5.13),

But this gives a contradiction for j large enough. 	�  ◻
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�B1

1

�
N
j
�B

�j
(xj)

u(x + rjy) dx dy =
1

rN
j
�Brj

1

�
N
j
�B

�j

u(xj + x + y) dx dy

=
1

�
N
j
�B

�j

1

rN
j
�Brj

u(xj + x + y) dy dx ≤ 1

�
N
j
�B

�j

1

rN
j
�Brj+�j

u(xj + z) dz dx

= �N

( rj + �j

rj

)N 1
(
rj + �j

)N �Brj+�j

u(xj + z) dz

≤ C
(
rj + �j

)N �Brj+�j

u(xj + z) dz

≤ C
( 2rj

rj + �j

)N 1

(2rj)
N �B2rj

u(xj + z) dz ⟶ 0 as j → ∞.

r2s
j

j
≥ −C1r

2s
j
𝜀j + C2r

2s
j
, for some (𝜀j)j∈ℕ ⊂ (0,∞), 𝜀j → 0 as j → ∞.
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