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ABSTRACT

Contact. The large quantity of high-quality asteroseismic data that have been obtained from space-based photometric missions and the
accuracy of the resulting frequencies motivate a careful consideration of the accuracy of computed oscillation frequencies of stellar
models, when applied as diagnostics of the model properties.
Aims. Based on models of red-giant stars that have been independently calculated using different stellar evolution codes, we inves-
tigate the extent to which the differences in the model calculation affect the model oscillation frequencies and other asteroseismic
diagnostics.
Methods. For each of the models, which cover four different masses and different evolution stages on the red-giant branch, we com-
puted full sets of low-degree oscillation frequencies using a single pulsation code and, from these frequencies, typical asteroseismic
diagnostics. In addition, we carried out preliminary analyses to relate differences in the oscillation properties to the corresponding
model differences.
Results. In general, the differences in asteroseismic properties between the different models greatly exceed the observational preci-
sion of these properties. This is particularly true for the nonradial modes whose mixed acoustic and gravity-wave character makes
them sensitive to the structure of the deep stellar interior and, hence, to details of their evolution. In some cases, identifying these
differences led to improvements in the final models presented here and in Paper I; here we illustrate particular examples of this.
Conclusions. Further improvements in stellar modelling are required in order fully to utilise the observational accuracy to probe in-
trinsic limitations in the modelling and improve our understanding of stellar internal physics. However, our analysis of the frequency
differences and their relation to stellar internal properties provides a striking illustration of the potential, in particular, of the mixed
modes of red-giant stars for the diagnostics of stellar interiors.
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1. Introduction

Space-based photometric observations of oscillations in red-
giant stars with the CoRoT (Baglin et al. 2013), Kepler (Borucki
2016) and, since 2018, the TESS (Ricker et al. 2014) missions
have provided a huge set of accurate oscillation frequencies and
other properties for these stars. These data provide the basis for
detailed investigations of stellar structure and evolution, as well
as the application of stellar properties in other areas of astro-
physics, including the study of extra-solar planetary systems and
the structure and evolution of the Galaxy. A necessary compo-
nent of almost any analysis of such asteroseismic data is the use
of modelling of stellar structure and evolution and the computa-
tion of oscillation frequencies for the resulting models. Given the
complexity of stellar modelling, it is a non-trivial task to secure
the required numerical and physical accuracy. Specifically, a full
utilisation of the analysis of the observations requires that the
numerical errors in the computed properties are substantially
smaller than the uncertainties in the observations. Although ade-
quate convergence of the computations can, to some extent, be
tested by comparing results obtained with different numbers of
meshpoints or timesteps in the models, more subtle errors in the
calculations can probably only be uncovered through compar-
isons of the results of independent codes under carefully con-
trolled conditions.

Extensive comparisons of this nature were organised for
main-sequence stars in connection with the CoRoT project
(Lebreton et al. 2008). Detailed comparisons between stellar
models for the Red Giant Branch stage available in the litera-
ture have been discussed by Cassisi et al. (1998), Salaris et al.
(2002), and Cassisi (2017). In the Aarhus Red Giant Challenge,
we have so far concentrated on the numerical properties of the
computation of the stellar models. Thus, the models are com-
puted using, to the extent possible, the same input physics and
basic parameters, and the comparisons are carried out at carefully
specified stages in the evolution along the red-giant branch. Dif-
ferences between the model properties, including their oscillation
frequencies, should therefore reflect differences (and errors) in
the numerical implementation of the solution of the equations of
stellar evolution, or in the implementation of the physics. Also,
we considered the effects of the resulting model differences on
the computed oscillation frequencies, hence providing a link to
the asteroseismic observations, with the goal of strengthening the
basis for the analysis of the results of space-based photometry.

The initial analysis has focused on models up to and includ-
ing the red-giant branch, emphasising the latter stage where
energy production takes place in a hydrogen-burning shell
around an inert helium core. Silva Aguirre et al. (2020, Paper I)
presented model calculations for selected models with masses
of 1, 1.5, 2, and 2.5 M� on the main sequence and the red-giant
branch; the models analysed in detail were characterised in terms
of radii chosen such that the models are of interest in connec-
tion with the asteroseismic investigations. The calculations used
nine different stellar-evolution codes; Paper I discusses the dif-
ferences between the results in terms of the overall properties
of the models. The present paper considers oscillation calcula-
tions, using a single oscillation code, for the models presented
in Paper I; this includes some discussion of the relation between
the stellar structure and oscillation properties. A striking result
is that the oscillation properties, in accordance with the poten-
tial for asteroseismic analyses, serve as a “magnifying glass” on
the differences in the stellar models, highlighting aspects where
different codes yield results that are significantly different at the
accuracy of the asteroseismic observations.

Further papers in this series will extend the analysis to the
so-called clump (or horizontal-branch) stars where, in addition
to the hydrogen-burning shell, there is helium fusion in the core;
this leads to a rather complex structure and pulsation proper-
ties of the stars, with interesting consequences for the com-
parison between models and observed oscillations. In addition,
we shall consider comparisons between models computed with
“free physics”, where each modeller chooses the parameters and
physical properties that would typically be used in the analy-
sis of, for example, Kepler data. Finally, since the computation
of stellar oscillations for these evolved models involves a num-
ber of challenges, an additional consideration of the comparisons
between independent pulsation codes, for a number of represen-
tative models, is also planned.

2. Properties of red-giant oscillations

2.1. General properties

We consider oscillations of small amplitude and neglect effects
of rotation and other departures from spherical symmetry. Then
the modes depend on colatitude θ and longitude φ as spherical
harmonics, Ym

l (θ, φ). Here the degree l measures the total num-
ber of nodes on the stellar surface and the azimuthal order m
defines the number of nodal lines crossing the equator. Frequen-
cies of spherically symmetric stars are independent of m. In addi-
tion, a mode is characterised by the number and properties of
the nodes in the radial direction, which define the radial order
n. For reviews of the properties of stellar oscillations see, for
example, Aerts et al. (2010), Chaplin & Miglio (2013), Hekker
& Christensen-Dalsgaard (2017); we discuss problems with the
definition of the radial order in Appendix A.4.

Radial modes, with l = 0, are purely acoustic, that is, stand-
ing sound waves. Modes with l > 0 in red giants all have a
mixed character, behaving as acoustic modes in the outer parts
of the star and as internal gravity waves in the core. This is con-
trolled by two characteristic frequencies of the star: the acoustic
(or Lamb) frequency

S l =
Lc
r
, (1)

and the buoyancy (or Brunt-Väisälä) frequency N, given by

N2 = g

(
1
Γ1

d ln p
dr
−

d ln ρ
dr

)
· (2)

Here L =
√

l(l + 1), c is adiabatic sound speed, r is distance
to the centre, g is local gravitational acceleration, p is pressure,
ρ is density, and Γ1 = (∂ ln p/∂ ln ρ)ad is adiabatic compress-
ibility, the derivative being at constant specific entropy. These
frequencies are illustrated in Fig. 1 for a 1 M�, 7 R� model,
together with the typical observed frequency range around the
estimated frequency νmax at maximum oscillation power (see
below; also Hekker & Christensen-Dalsgaard 2017). In the outer
region, where ν > S l and ν > N (i.e. the p-mode cavity), the
mode behaves acoustically, while in the core where ν < S l and
ν < N (i.e. the g-mode cavity) the mode behaves like an inter-
nal gravity wave. In the intermediate region, the mode has an
exponential behaviour; the extent of this so-called evanescent
region controls the coupling between the acoustic and gravity-
wave behaviour in the given mode. As a result of these prop-
erties, all nonradial modes, with l > 0, have a mixed nature,
with sensitivity both to the outer layers and to the core. For
detailed discussions of such mixed modes see, for example,
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Fig. 1. Characteristic frequencies S l/2π for l = 1 and 2 (dashed and
dot-dashed; cf. Eq. (1)) and N/2π (solid; cf. Eq. (2)) in the ASTEC 1 M�,
7 R� model. The horizontal red band marks the region around νmax, the
estimated frequency of maximum oscillation power (cf. Eq. (8)), where
observed modes are expected. The blue and orange areas indicate the
corresponding regions of g- and p-mode behaviour, for l = 1. The
glitch in the buoyancy frequency is caused by the near-discontinuity
in the hydrogen abundance resulting from the penetration, during the
first dredge-up, of the convective envelope into a region where the com-
position has been modified by nuclear reactions (see also Paper I).

Hekker & Christensen-Dalsgaard (2017), Mosser et al. (2018);
and references therein. Here we present some of the properties
of the modes which are useful for the following analysis.

Acoustic modes of low degree have the following asymptotic
behaviour (Shibahashi 1979; Tassoul 1980; Gough 1993):

νnpl ≈ ∆ν

(
np +

l
2

+ εp

)
+ dnpl, (3)

for the cyclic frequencies νnpl. Here the asymptotic expression
for the large frequency separation ∆ν is

∆ν = ∆νas =

(
2
∫ R∗

0

dr
c

)−1

, (4)

that is, the inverse of twice the sound travel time between the
centre and the so-called acoustic surface (Houdek & Gough
2007), at a distance R∗ from the centre, in the stellar atmosphere.
In the strict asymptotic analysis, εp is a constant and the small
higher-order effects are contained in dnpl (see also Mosser et al.
2013). Here, however, we adopt the formalism of Roxburgh &
Vorontsov (2013) and regard εp as a phase function depending
on frequency but not on degree, determined by the properties of
the near-surface layers (see also Christensen-Dalsgaard & Pérez
Hernández 1992); this allows us to assume that dnpl is 0 for l = 0.
For the purely acoustic radial modes, Eq. (3) provides an approx-
imation to the frequencies as a function of mode order np; for
the mixed nonradial modes the acoustically dominated modes
(known as p-m modes) approximately satisfy the relation for an
order np characterising the acoustic behaviour.

Observed and computed acoustic-mode frequencies follow
Eq. (3) fairly closely, to leading order, although the value of
the large frequency separation obtained from Eq. (4) is not suf-
ficiently accurate to be applied to comparisons with observa-
tions. In the analysis of observed frequencies, various techniques
can be used to determine the large frequency separation (e.g.
Huber et al. 2009; Mosser & Appourchaux 2009; Hekker et al.

2010; Kallinger et al. 2010). The relation between different mea-
sures of the large frequency separation for stellar models was
discussed by Belkacem et al. (2013) and Mosser et al. (2013).
Here we follow White et al. (2011) and Mosser et al. (2013)
and consider ∆νfit obtained from a weighted least-squares fit to
frequencies of radial modes around the frequency νmax of max-
imum power (see Eq. (8) below), with a weight reflecting an
estimate of the mode power. Some details on the fit are pro-
vided in Appendix A.3. We do note, however, that this procedure
does not fully represent the weighting in the analyses of observa-
tional data, which are typically done directly from the observed
power spectrum, for example through a cross-correlation analy-
sis, without reference to the individual mode frequencies. Even
so, obtaining ∆νfit from a fit to the computed frequencies pro-
vides a convenient way to compare the results for different codes.

Modes dominated by internal gravity waves require density
variations over spherical surfaces in the star and are therefore
only found for l > 0. For such pure g modes, the periods Πngl =
1/νngl satisfy

Πngl = ∆Πl

(
ng + εg

)
(5)

(e.g. Shibahashi 1979; Tassoul 1980), where

∆Πl =
Π0

L
, Π0 = 2π2

(∫
N

dr
r

)−1

, (6)

the integral being over the gravity-wave cavity, and εg is a phase,
the so-called gravity offset, that may depend on l. Mixed modes
dominated by the gravity-wave behaviour (the g-m modes)
approximately satisfy Eq. (5), with ng being an order charac-
terising the g-mode behaviour (see also Fig. 2 below), and hence
provide a measure of ∆Πl. However, additional important char-
acteristics are provided by the measure q of the coupling between
the g- and p-mode cavities and εg, which provide information
about the evanescent region and the upper part of the g-mode
cavity (e.g. Takata 2016; Hekker & Christensen-Dalsgaard 2017;
Pinçon et al. 2019).

2.2. Observational properties

The information available from the observed frequencies of
oscillation depends strongly on the quality of the data. The
most visible modes are the acoustically dominated (p-m) modes,
which provide information about the overall properties of the
star. They are characterised by the large frequency separation
∆ν (cf. Eq. (4)) and the frequency νmax of maximum power. It
follows from homology scaling that, approximately, ∆ν ∝ ρ̄1/2

where ρ̄ is the mean density of the star. Specifically,

∆ν '

(
M
M�

)1/2 (
R
R�

)−3/2

∆ν�, (7)

valid for both ∆νas and ∆νfit, where ∆ν� is the corresponding
value for the Sun. A characteristic observed value is ∆ν� '
135.1 µHz. Also, observationally (Brown et al. 1991) and with
some theoretical support (Belkacem et al. 2011) νmax scales as
the acoustic cut-off frequency, such that

νmax '
M
M�

(
R
R�

)−2 (
Teff

Teff,�

)−1/2

νmax,�, (8)

where νmax,� ' 3090 µHz is the frequency at maximum power
for the Sun. In an extensive analysis of a large sample of Kepler
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Fig. 2. Top panel: mode inertia (cf. Eq. (9)) for modes of degree l = 0
(solid line, circles), 1 (dashed line, triangles), and 2 (dot-dashed line,
squares), in the ASTEC 1 M�, 7 R� model. Bottom panel: separation
between periods of adjacent modes with l = 1 in this model, plot-
ted against frequency. The horizontal dashed line shows the asymptotic
period spacing ∆Π1 = Π0/

√
2 (cf. Eqs. (5) and (6)). The heavy ver-

tical dotted lines show the frequency interval where power is half its
maximum value, according to the fit of Mosser et al. (2012) (see also
Appendix A.3).

red giants, Yu et al. (2018) found relative uncertainties in the
large frequency separation ∆ν below 0.1%, in some cases, with
a median value of 0.6%, while the median uncertainty in νmax
was 1.6%. From the scaling relations in Eqs. (7) and (8), stellar
masses and radii can be determined (see, for example, Kallinger
et al. 2010; Yu et al. 2018). In practice, departures from the
strict scaling relations, for example caused by departures from
homology, need to be taken into account (see Hekker 2019, for a
review); we return to this below in connection with a discussion
of the scaling in Eq. (7).

The g-m modes, with a large component of internal grav-
ity wave, provide strong constraints on stellar properties (for an
early example, see Hjørringgaard et al. 2017). With improved
analysis, further details on the g-m mode properties are becom-
ing available (Mosser et al. 2018), providing further constraints
on the stellar internal properties. Uncertainties in individual
frequencies for both acoustic and mixed modes are as low as
0.01 µHz (Corsaro et al. 2015; de Montellano et al. 2018), cor-
responding to relative uncertainties of order 10−4. Analysis of
observed data on mixed modes in red giants has so far mainly
been carried out in terms of determinations of the asymptotic

properties characterised by ∆Πl, q and εg as obtained from fitting
a full asymptotic expression to the observed frequencies. (e.g.
Bedding et al. 2011; Mosser et al. 2014, 2017, 2018). Uncer-
tainties in the dipolar period spacing ∆Π1 of around 0.1 s were
quoted by Hekker et al. (2018), Mosser et al. (2018). Detailed
model fits to individual frequencies should also be feasible but
have so far apparently not seen much use.

2.3. Oscillation properties of red-giant models

To compare the oscillation properties of the models involved
in the challenge the equations of adiabatic oscillations were
solved using the code ADIPLS (Christensen-Dalsgaard 2008a).
This code was compared in detail with other pulsation codes
by Moya et al. (2008) and, more recently as part of the present
project, with the GYRE code (Townsend & Teitler 2013). Owing
to the condensed core of red-giant stars and the resulting very
high value of the buoyancy frequency, modes of very high radial
order are involved, requiring some care in the preparation of the
models for the oscillation calculations; some details of these pro-
cedures are discussed in Appendix A.1; in Appendix A.2 we esti-
mate the numerical errors in the resulting frequencies, both the
intrinsic errors of the oscillation calculation and the effects on
the frequencies from the errors in the computation of the ASTEC
models, which are used for reference in the comparisons. Com-
parisons between models should be carried out at fixed mode
order, requiring a determination of the order of the computed
modes. For dipolar modes, this gives rise to some complica-
tions, compounded by inconsistencies in the structure very near
the centre in some models, as discussed in Appendix A.4. Com-
puted frequencies for all models, as well as the model structure,
are provided at the website of the project1.

To characterise the properties of the modes a very useful
quantity is the normalised mode inertia,

E =

∫
V ρ|δr|

2dV

M|δr|2phot

, (9)

where δr is the displacement vector and “phot” indicates the
photospheric value, defined at the location where the temper-
ature equals the effective temperature; the integral is over the
volume V of the star. In Fig. 2 the top panel shows the inertia
for a 1 M�, 7 R� model computed with ASTEC. Predominantly
acoustic (p-m) modes have their largest amplitude in the outer
layers of the star, where ρ is small, and hence E is relatively
small, while g-m modes have large inertias. For the radial modes,
the inertia decreases strongly with increasing frequency at low
frequency, while it is almost constant at higher frequency. For
l = 1 and 2, there is evidently a very high density of modes,
most of which have inertia much higher than those of the radial
modes and hence are predominantly of g-m character. However,
there are clear acoustic resonances where the inertia approaches
the radial-mode values and the modes are predominantly of p-m
character. The frequencies of these resonances satisfy the asymp-
totic relation in Eq. (3); in particular, l = 0 and 2 modes sep-
arated by one in the acoustic order np have frequencies at a
small separation determined by the term in dnpl. It should also
be noticed that the minimum inertia at the resonances is sub-
stantially lower for l = 2 than for l = 1: as shown in Fig. 1
the evanescent region is broader for l = 2, leading to a weaker
coupling and hence to a more dominant acoustic character of the
mode at a resonance.
1 https://github.com/vsilvagui/aarhus_RG_challenge

A165, page 4 of 21

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936766&pdf_id=2
https://github.com/vsilvagui/aarhus_RG_challenge


J. Christensen-Dalsgaard et al.: The Aarhus red giants challenge. II.

This mixed character of the modes is also visible in the bot-
tom panel of Fig. 2, which shows the period spacing between
adjacent dipolar modes in the same model. For most of the
modes, particularly at low frequency, the computed period spac-
ing is very close to the asymptotic value, indicated by the hor-
izontal dashed line. However, at the acoustic resonances where
the modes take on a p-m character the period spacing is strongly
reduced; we note that these resonances take place at frequencies
approximately satisfying Eq. (3).

3. Results of model comparisons

3.1. Stellar models

We computed oscillation properties of the models highlighted in
Paper I. We note in particular that two sets of models have been
considered. In one (in the following the solar-calibrated models),
the mixing-length parameter αMLT was adjusted in each code to
achieve a photospheric radius of 6.95508 × 108 m at the age of
4.57 Gyr of main-sequence evolution for the 1 M� model. In the
second (in the following the RGB-calibrated models), αMLT was
fixed for each track by requiring a specific effective tempera-
ture Teff for the 7 M� models on the 1 and 1.5 M� tracks and the
10 M� models on the 2 and 2.5 M� tracks. In the present section,
we generally focus on the solar-calibrated models; results for the
RGB-calibrated models are provided in Appendix B.

The following evolution codes were used:
– ASTEC: the Aarhus STellar Evolution Code; see Christensen-

Dalsgaard (2008b).
– BaSTI: Bag of Stellar Tracks and Isochrones; see Pietrinferni

et al. (2013).
– CESAM2k: Code d’Evolution Stellaire Adaptatif et Modu-

laire, 2000 version; see Morel & Lebreton (2008).
– GARSTEC: the GARching STellar Evolution Code; see Weiss

& Schlattl (2008).
– LPCODE: the La Plata stellar evolution Code; see Miller

Bertolami (2016).
– MESA: Modules for Experiments in Stellar Astrophysics, ver-

sion 6950; see Paxton et al. (2013).
– MONSTAR: the Monash version of the Mt Stromlo evolution

code; see Constantino et al. (2015).
– YaPSI: the Yale Rotational stellar Evolution Code, as used in

the Yale-Potsdam Stellar Isochrones; see Spada et al. (2017).
– YREC: the Yale Rotating stellar Evolution Code; see Demar-

que et al. (2008).
We note that in order to avoid effects of different extents of the
atmosphere in models from different codes for a given set of
parameters, the models were truncated in the atmosphere at a
height corresponding to the code with the smallest atmospheric
extent, for the given case.

Further details about the codes and the models are provided
in Paper I.

3.2. Acoustic properties

We first consider the properties of the acoustically-dominated
oscillations, as characterised by the radial modes. As an indica-
tion of the frequency differences between different codes, Fig. 3
shows the root-mean-square relative differences in radial-mode
frequencies between the various codes and ASTEC, including all
modes up to the acoustic cut-off frequency. We note that they are
far bigger than the observational uncertainties of the individual
frequencies (cf. Sect. 2.2).

Fig. 3. Root-mean-square relative differences, in the solar-calibrated
case, in radial-mode frequencies relative to the ASTEC results, in the
sense (model) – (ASTEC); the different codes are identified by the sym-
bol shape and colour and labelled by the abbreviated name of the code:
BAS (BaSTI), CES (CESAM), GAR (GARSTEC), LPC (LPCODE), MES
(MESA), MON (MONSTAR), YAP (YaPSI), and YRE (YREC).

Fig. 4. Relative differences for solar-calibrated models in the large fre-
quency separations ∆νfit obtained from fits to the radial-mode frequen-
cies as functions of mode order (cf. Appendix A.3), compared with the
ASTEC results, in the sense (model) – (ASTEC); the different codes are
identified by the symbol shape and colour (cf. caption to Fig. 3).

The large frequency separation between acoustic modes is an
important asteroseismic diagnostics. As discussed in Sect. 2.1,
we characterise the observable values by the result ∆νfit of fitting
the computed radial-mode frequencies to Eq. (3), representing
εp by a quadratic expression in mode order (cf. Appendix A.3).
Table 1 provides values obtained from these fits in the solar-
calibrated case, and Fig. 4 shows relative differences for these
fitted values, relative to the ASTEC models. In most cases the
relative differences are below 0.2%, comparable with or some-
what bigger than the observational uncertainties of around 0.1%
(cf. Sect. 2.2).

The scaling relation in Eq. (7) is fundamental in the analy-
sis of global seismic observations, but the underlying assumed
homology scaling is not exact. Thus, it is often corrected by
including a factor f∆ν on the right-hand side (e.g. White et al.
2011; Rodrigues et al. 2017); (see Sharma et al. 2016, for an
application). Within the present model analysis we replace
Eq. (7) by

∆νfit = f∆ν

(
M
M�

)1/2 (
R
R�

)−3/2

∆ν(cal)
fit , (10)
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Table 1. Large frequency separations ∆νfit in µHz obtained from fits to radial-mode frequencies as functions of mode order (cf. Eq. (3) and
Appendix A.3) for solar-calibrated models.

M/M� R/R� ASTEC BaSTI CESAM GARSTEC LPCODE MESA MONSTAR YAP YREC

1.0 7.0 7.087 7.093 7.100 7.089 7.090 7.077 7.084 7.100 7.090
1.0 12.0 3.130 3.133 3.137 3.131 3.130 3.124 3.128 3.137 3.131
1.5 7.0 8.780 8.783 8.799 8.774 8.789 8.768 8.762 8.778 8.785
1.5 12.0 3.876 3.879 3.884 3.876 3.875 3.869 3.873 3.882 3.876
2.0 10.0 5.949 5.952 5.958 5.949 5.951 5.940 5.938 5.938 5.948
2.5 10.0 6.739 6.746 6.744 6.735 6.737 6.726 6.736 6.744 6.738

Table 2. Correction factors f∆ν (cf. Eq. (10)) between the large frequency separation ∆νfit obtained from a fit to radial-mode frequencies and the
value obtained from homology scaling for solar-calibrated models.

M/M� R/R� ASTEC BaSTI CESAM GARSTEC LPCODE MESA MONSTAR YAP YREC

1.0 7.0 0.9655 0.9661 0.9667 0.9658 0.9660 0.9656 0.9656 0.9682 0.9658
1.0 12.0 0.9572 0.9578 0.9588 0.9575 0.9573 0.9568 0.9571 0.9601 0.9573
1.5 7.0 0.9767 0.9769 0.9782 0.9761 0.9777 0.9768 0.9752 0.9774 0.9771
1.5 12.0 0.9677 0.9682 0.9691 0.9679 0.9677 0.9676 0.9676 0.9702 0.9677
2.0 10.0 0.9786 0.9789 0.9795 0.9787 0.9789 0.9786 0.9773 0.9777 0.9783
2.5 10.0 0.9915 0.9923 0.9917 0.9909 0.9912 0.9911 0.9915 0.9932 0.9911

Fig. 5. Correction factor f∆ν, for solar-calibrated models, in the scaling
relation for the large frequency separation ∆νfit obtained from fits to the
radial-mode frequencies (cf. Eq. (10)). The different codes are identified
by the symbol shape and colour (cf. caption to Fig. 3), with the addition
of AST (for ASTEC).

where ∆ν(cal)
fit is the large separation resulting from a fit to the

radial modes of the (1 M�, 1 R�) models used to calibrate the
mixing length in the solar-calibrated case. The resulting values
of the correction factor f∆ν are shown in Table 2 and Fig. 5
for the solar-calibrated case. The dominant variation is that f∆ν
approaches unity for the most massive model, in accordance with
the results obtained by Guggenberger et al. (2017), Rodrigues
et al. (2017). Differences in f∆ν between the different codes rel-
ative to ASTEC are shown in Fig. 6. We note that for any given
model case there is a spread of around ±0.002 between the val-
ues of f∆ν obtained by the different evolution codes. As pointed
out by, for example, Sharma et al. (2016) the radius and mass
obtained from direct scaling analysis of global asteroseismic
observables scale as, respectively, f −2

∆ν and f −4
∆ν . Thus, the spread

between the codes would correspond to variations of around 0.4
and 0.8% in the inferred radii and masses, when using Eq. (10)
to analyse observed data.

Fig. 6. Differences relative to the ASTEC model in the solar-calibrated
case, in the sense (model) – (ASTEC), in the correction factors f∆ν (cf.
Eq. (10)) relating the large frequency separation ∆νfit obtained from a fit
to radial-mode frequencies and the value obtained from homology scal-
ing. The different codes are identified by the symbol shape and colour
(cf. caption to Fig. 3).

The frequency νmax of maximum power plays an important
role for asteroseismic inference. In view of this, we include a
brief analysis of the differences in νmax between the models,
even though these differences essentially reflect the differences
in Teff , already discussed in Paper I, given that the compari-
son is carried out at fixed target model radius, and with a con-
straint on GM/R3. Table 3 shows values of νmax, estimated from
Eq. (8), for solar-calibrated models, while Fig. 7 shows relative
differences in νmax, compared with the ASTEC values for both
solar- and RGB-calibrated models. For the solar-calibrated mod-
els, there is a spread of order 50 K between different codes for
any given model, corresponding to roughly 1% (cf. Figs. 2 and 7,
and Tables C.2–C.4, of Paper I; see also Fig. 12 below). For the
RGB-calibrated models, where Teff was explicitly constrained
on the RGB, the spread is less than 4 K, or 0.1%. Thus, the
differences are smaller by about an order of magnitude for the
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Table 3. Frequency νmax, in µHz, of maximum oscillation power estimated from Eq. (8) for solar-calibrated models.

M/M� R/R� ASTEC BaSTI CESAM GARSTEC LPCODE MESA MONSTAR YAP YREC

1.0 7.0 69.76 69.97 70.03 69.93 69.74 69.61 69.90 69.87 69.78
1.0 12.0 24.29 24.36 24.38 24.36 24.29 24.24 24.34 24.33 24.30
1.5 7.0 102.57 102.85 102.91 102.82 102.55 102.35 102.80 102.73 102.61
1.5 12.0 35.76 35.86 35.88 35.85 35.75 35.69 35.83 35.82 35.77
2.0 10.0 67.05 67.24 67.27 67.24 67.06 66.93 67.21 67.17 67.06
2.5 10.0 82.64 82.85 82.92 82.88 82.65 82.49 82.82 82.79 82.65

Table 4. Asymptotic dipolar g-mode period spacings ∆Π1 in s (cf. Eq. (6)) for solar-calibrated models.

M/M� R/R� ASTEC BaSTI CESAM GARSTEC LPCODE MESA MONSTAR YAP YREC

1.0 7.0 72.12 72.07 72.58 72.41 72.64 72.69 73.23 76.64 73.14
1.0 12.0 58.36 58.00 58.39 58.44 58.47 58.61 59.02 60.86 58.97
1.5 7.0 69.90 69.86 70.34 70.20 70.48 70.75 71.13 74.48 71.05
1.5 12.0 57.29 56.94 57.43 57.35 57.30 57.48 57.87 59.47 57.90
2.0 10.0 78.72 79.02 78.36 77.18 78.14 76.99 79.57 82.26 79.02
2.5 10.0 123.62 124.10 121.54 121.50 122.32 121.83 124.91 125.52 123.33

Fig. 7. Relative differences in the estimated frequency νmax of maximum power, compared with the ASTEC results, in the sense (model) – (ASTEC);
the different codes are identified by the symbol shape and colour (cf. caption to Fig. 3). Left panel: results for the solar-calibrated models, and
right panel: for the RGB-calibrated models (note the different scales on the abscissas).

RGB-calibrated models. We note, however, that in either case
the differences in νmax are far smaller than the typical observa-
tional uncertainty of 1.6% (Yu et al. 2018) in this quantity.

Although the asymptotic value, ∆νas, of the large frequency
separation (cf. Eq. (4)) does not provide sufficient accuracy for
comparison with observed frequencies, it is still an interesting
diagnostics of the acoustic properties of the models. We analyse
it in Appendix C.

3.3. Mixed modes
The asymptotic dipolar g-mode period spacing ∆Π1 = Π0/

√
2

(cf. Eqs. (5) and (6)) are provided in Table 4 for solar-calibrated
models, while the variations relative to the ASTEC models are
shown in Fig. 8. Here relative differences of up to 2–4% are
found, corresponding to differences in ∆Π1 of several seconds,
greatly exceeding the observational uncertainty of around 0.1 s
(see Sect. 2.2). This reflects the sensitivity of the buoyancy fre-
quency to the details of the core structure of the star, including
the composition profile; we consider one example in some detail

Fig. 8. Relative differences for solar-calibrated models in the asymp-
totic period spacing ∆Π1, compared with the ASTEC results, in the sense
(model) – (ASTEC); the different codes are identified by the symbol
shape and colour (cf. caption to Fig. 3).
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Fig. 9. Relative differences in computed frequencies for the MESA solar-
calibrated 1.5 M�, 7 R� model, compared with the ASTEC results, in the
sense (MESA) – (ASTEC), for l = 0 (open circles), l = 1 (open triangles)
and l = 2 (filled squares). The differences are evaluated at fixed radial
order.

in Appendix F. The differences between the models illustrated in
Fig. 8 generally arise from qualitatively similar, although gener-
ally smaller, model differences.

As an example of the differences in individual frequencies,
Fig. 9 compares frequencies of given radial order in the MESA
model for 1.5 M�, 7 R� with ASTEC. The difference in the asymp-
totic frequency spacing is shown as a dashed line, and the dotted
line shows the difference in the asymptotic period spacing, with
inverted sign to convert relative period differences to frequency
differences. In this case, the purely acoustic radial modes gen-
erally agree well between the two models, as does the asymp-
totic frequency spacing (see also Fig. C.1). However, we note
the increasing magnitude of the differences at the highest fre-
quency that reflects issues with the modelling of the atmosphere in
the MESA model (see Appendix D). The g-dominated nonradial
modes have differences very close to the asymptotic value, while
the more acoustically dominated modes have intermediate dif-
ferences. Indeed, one would naively expect that the p-dominated
nonradial modes would have frequency differences similar to the
radial modes; instead, they are substantially higher in absolute
value, with a clear nearly linear envelope for the most p-dominated
cases.

The origin of this behaviour lies in the formally reasonable
choice of comparing the modes at fixed radial order, regardless
of the physical nature of the modes. In fact, modes with same
order may have rather different physical nature. To analyse this,
we consider the rescaled inertia Qnl = Enl/Ē0(νnl) where E was
defined in Eq. (9) and Ē0(νnl) is the radial-mode inertia inter-
polated to the frequency of the given mode. Figure 10 shows
Qnl for l = 1 against mode order for the two models. Here the
p-dominated modes correspond to the dips in the curves, result-
ing from acoustic resonances. The resonances are largely fixed
at the same frequency by the very similar acoustic behaviour of
the MESA and ASTEC models, reflected in the close agreement
in the radial-mode frequencies; however, it is obvious that they
are shifted in mode order, as a result of the difference between
the models in the period spacing and hence the relation between
order and frequency. In other words, although the two models
agree on the shape of the Qnl curve (including the location in fre-
quency of the resonant dips), the mixed modes of the two models
do not sample that curve at the same mode orders. As a result, a
comparison at fixed order is between physically different modes,

Fig. 10. Scaled mode inertias for dipolar modes (with l = 1) in the
solar-calibrated ASTEC (solid) and MESA (dashed) 1.5 M�, 7 R� models,
against mode order. The red circles show the MESA results, but shifted
in order (see text).

with a different weight to the p- and g-mode behaviour, in the
vicinity of the acoustic resonances.

From the point of view of comparing models and observa-
tions, the (formal) order is a somewhat inconvenient quantity
since it is difficult to derive it directly from the observa-
tions, except with data of exceptionally high quality. Here the
p-dominated modes are the natural starting points, anchoring the
mode orders in the vicinity of an acoustic resonance. In the com-
parison of the model frequencies, this corresponds to shifting
the mode orders of, say, the MESAmodel to obtain a new order n′
such as to make the acoustic resonances occur at the same values
of the order. As indicated by Fig. 10, the required shift decreases
with increasing order. Thus, in the complete set {n′} of shifted
orders there may be gaps or overlapping modes, but these can be
arranged to occur near the maxima in Qnl where the modes are
unlikely to be observed. As shown by the red circles in Fig. 10,
with such a shift the behaviour of Qnl as a function of mode order
is nearly indistinguishable between the models.

The effect of using the shifted orders in the frequency com-
parison at fixed order is illustrated in Fig. 11. Now the p-
dominated modes, marked by larger pluses superposed on the
symbols, do indeed have small frequency differences. This is
particularly clear for the l = 2 modes, where the coupling
between the acoustic and gravity-wave regions is weaker and the
p-dominated modes therefore have a cleaner acoustic nature.

To understand the behaviour shown in Fig. 11, we consider
two models, Model 1 (the ASTEC model) and Model 2 (the MESA
model), with period spacings ∆Πl and ∆Π′l . For simplicity, we
assume that the g-mode phase shift εg (cf. Eq. (5)) is the same for
the two models. We identify an acoustic resonance in Model 1,
corresponding to the order n0, and consider modes of order n
in Model 1 in the vicinity of n0. To identify modes in Model 2
similarly close to the acoustic resonance, we choose a shift k in
order such that ∆Πl(n0 + εg) ' ∆Π′l(n0 + k + εg), or

k ' −
δ∆Πl

∆Π′l
n0, (11)

where δ∆Πl = ∆Π′l−∆Πl, and compare modes with shifted mode
order n′ = n + k in Model 2 with modes of order n in Model 1.
From Eq. (11) it follows that the relative difference between the
frequencies ν′n′l and νnl of modes (n′, l) and (n, l) in Models 2
and 1 is
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Fig. 11. Relative differences in computed frequencies for the solar-
calibrated MESA 1.5 M�, 7 R� model with suitable shifts in mode order
(see text), compared with the ASTEC results, in the sense (MESA) –
(ASTEC), for l = 0 (black open circles), l = 1 (red open triangles) and
l = 2 (blue filled squares). The larger pluses mark the p-dominated
modes. The horizontal dotted line indicates zero difference.

ν′n′l − νnl

νnl
= −

Π′n′l − Πnl

Πnl
' −δ∆Πl

n − n0

Πnl
(12)

' −
δ∆Πl

∆Πl

Πnl − Πn0l

Πnl
'
δ∆Πl

∆Πl

(
νnl

νn0l
− 1

)
,

where we neglected the difference between ∆Π′l and ∆Πl in
the denominator. Equation (6) shows that δ∆Πl/∆Πl is indepen-
dent of l. Thus, according to Eq. (12) the frequency differences
including the shift in mode order are linear functions of fre-
quency with a slope depending on δ∆Πl/∆Πl and νn0l but not
on the degree, as is indeed found in Fig. 11.

The detailed frequency differences for other models or evo-
lution codes are qualitatively similar, although reflecting the dif-
ferences in global asteroseismic properties, in particular ∆νas
and ∆Π1, as illustrated in Figs. C.1 and 8. However, we note
that these models to some extent reflect modifications to the
modelling codes resulting from the analysis of earlier models.
Earlier models, showing substantially larger deviations, provide
interesting insight into the relation between the model structure
and the resulting frequencies. We discuss examples of this in
Appendices E and F.

3.4. The RGB-calibrated models

In Paper I, we showed that the effective temperature on the red-
giant branch varied within a range of around 50 K between the
solar-calibrated models. This variation is summarised in Fig. 12,
which shows the differences between the effective temperatures
in the RGB- and solar-calibrated models. (The differences are
small for the ASTEC models, earlier versions of which were used
to set the target values for the RGB calibration). As discussed
in Sect. 3.2, Teff directly enters νmax and hence shows a much
better agreement in the RGB- than in the solar-calibrated case
(cf. Fig. 7); in particular, the differences in the latter case closely
reflect the differences in Teff , shown in Fig. 12.

Other results for the RGB-calibrated modes are provided as
tables and figures in Appendix B. A comparison between the
various asteroseismic quantities between the RGB- and solar-
calibrated cases (not illustrated) shows differences that are to
some extent, but not completely, related to the differences in Teff

and are somewhat smaller than the differences between the dif-
ferent model calculations. Consequently, the variations between

Fig. 12. Relative differences in effective temperature Teff between the
RGB- and solar-calibrated models, in the sense (RGB-calibrated) –
(solar-calibrated). The different codes are identified by the symbol
shape and colour (cf. caption to Fig. 3).

the codes in the RGB-calibrated case are qualitatively very sim-
ilar to the variations discussed in the previous sections.

4. Discussion

The goal of the present project is to provide a secure basis for
the analysis of observed frequencies of red-giant stars by identi-
fying and eliminating errors and other uncertainties in the com-
putation of stellar models and their frequencies. Paper I con-
sidered differences between different stellar evolution codes in
the basic properties of stellar models, computed with tightly
constrained parameters and physics. Here we address the cor-
responding properties of the oscillations of these models.

The errors in the computed frequencies include intrinsic
errors in the frequency calculation, for a given stellar model.
These are relatively easy to control, at least for the cases con-
sidered in the present investigation. The example illustrated in
Fig. A.2 indicates that the intrinsic numerical errors are well
below the requirements imposed by current observations in the
relevant frequency range for the oscillation code used here. Even
so, there is a definite need for comparisons, planned in a future
publication, between the results of independent oscillation calcu-
lations to detect possible systematic errors in the implementation
of the oscillation equations in the codes.

A more important contribution to the errors in the computed
frequencies is likely the error in the implementation and solu-
tion of the equations of stellar structure and evolution. The goal
of the present investigation is to estimate these errors, by com-
paring results of stellar evolution calculations with independent
codes using, as far as possible, the same physical assumptions
(see Paper I). In fact, the analysis in the present project has iden-
tified, and led to the elimination of, a number of issues that have
in some cases been present for many years in the codes that
have taken part. Even so, following these corrections the results
in Sect. 3 show that the model differences, reflecting potential
errors in the modelling, in many cases do not yet match the con-
straints of the observational uncertainties. The estimates of νmax
(cf. Table 3 and Fig. 7) agree substantially better than the rel-
atively large observational uncertainty in this quantity. The dif-
ferences in the large frequency separation ∆νfit obtained from
fits to the radial-mode frequencies (cf. Table 1 and Fig. 4) are
close to matching, or somewhat exceed, the accuracy of the
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observations. Finally, the root-mean-square differences of radial-
mode frequencies (Fig. 3) are substantially bigger than the obser-
vational uncertainties in individual frequencies.

For the use of scaling relations based on acoustic modes, the
correction factor f∆ν (cf. Eq. (10)) is particularly important. The
spread in f∆ν of ±0.2% between the different evolution codes
(see Eq. (6)) translate into variations of around 0.4 and 0.8%
in determinations of radius and mass from asteroseismic scaling
relations, which are hardly insignificant.

Analyses of the properties of mixed modes provide detailed
diagnostics of the deep interior of the star, owing to the sensitiv-
ity of the details of the acoustic resonances and the g-dominated
modes. The analysis is often carried out in terms of fits of the
frequencies to the asymptotic expression (e.g. Mosser et al.
2018), resulting in estimates of the g-mode period spacing ∆Π1,
the quantity q characterising the coupling between the g- and
p-mode cavities and the gravity offset εg. Here we represented
the effects of the model differences in terms of the asymptotic
period spacing (cf. Eq. (6)). A more detailed analysis in terms
of a fit to the computed frequencies would have been interest-
ing but is beyond the scope of this paper. However, a sample
check for a single model case showed that the asymptotic period
spacings are fully representative of the results based on period
spacings obtained from such a fit. We note, on the other hand,
that very interesting analyses of the information about stellar
structure provided by q and εg were provided by Takata (2016),
Pinçon et al. (2019).

The sensitivity of the computed asymptotic dipolar period
spacings (cf. Table 4 and Fig. 8) to the detailed structure of the
deep interior of the models is reflected in a substantial spread
between the models, far bigger than the observational errors. In
most cases, the relative differences are between ±2%, with the
YaPSI models showing somewhat bigger deviations. As a rough
estimate we note from Table 4 that over the range 1−1.5 M� in
stellar mass, keeping the radius fixed at 7 R�, a change of one
per cent in ∆Π1 corresponds on average to a change of more
than 0.1 M� in mass or a change in the inferred age of more than
30%. Even though a model fit based solely on ∆Π1 is probably
unrealistic, this estimate provides some indication of the effects
of the uncertainties in stellar modelling on the asteroseismic
inferences.

These differences in oscillation properties must reflect dif-
ferences in the model structure, discussed in detail in Paper I,
which arise despite the attempt to compute the models under
identical assumptions; however, the connection is in most cases
not immediately obvious. We analysed two examples in some
detail. Appendix E considers differences in the acoustic-mode
frequencies in the original GARSTECmodels (cf. Fig. E.1), which
were found to be caused by differences in the implementation of
the OPAL equation of state, illustrated in Fig. E.2. Appendix F
analyses the fairly substantial differences found in the asymp-
totic ∆Π1 and the g-m mode frequencies for the original LPCODE
model with 2.5 M�, 10 R�. As discussed in detail in the appendix,
this is related to differences in the hydrogen profile arising from
a smaller main-sequence convective core in the LPCODE model,
caused by inadequacies in the opacities. This deficiency has been
corrected in the LPCODE results shown in Sect. 3, as perhaps the
most dramatic of the many corrections to the modelling result-
ing from this challenge. It should be noted that the oscillation
calculations act as a strong “magnifying glass” on irregularities
in the model structure, further motivating such improvements to
the modelling; an example is discussed in Appendix A.4.

In the analysis of the results, we chose to emphasise the case
of models where the mixing-length parameter was chosen based

on the calibration of a 1 M�, 1 R� model (the so-called solar-
calibrated case). This procedure matches the common practice
of using such a calibration in general calculations of stellar mod-
els, including those that are used for asteroseismic fitting. From a
physical point of view one might argue that the RGB-calibration,
based on fixing the effective temperature on the red-giant branch,
is more interesting since by doing this (at the assumed fixed
radii) one also fixes the luminosity and hence important aspects
of the internal structure of the stars. In fact, the results for the
two different calibrations are quite similar, and hence the choice
does not affect the overall conclusions of this study.

5. Conclusions

The huge amount of high-accuracy oscillation data resulting
from the Kepler mission, which is currently being augmented
by the ongoing TESS mission, provides an opportunity to inves-
tigate stellar properties in considerable detail, thereby helping to
improve our understanding of stellar structure and evolution. The
use of observed oscillation frequencies as diagnostics of stellar
global and internal properties in most cases relies on the com-
parison with frequencies of stellar models. For this to be mean-
ingful and hence ideally to utilise fully the accuracy provided by
the observed frequencies, the numerical errors in the computed
frequencies should be constrained, in principle to be well below
the observational uncertainties. With data of the quality obtained
from the Kepler mission, this is an ambitious goal.

The analyses presented in this paper and Paper I represent
a significant step towards a coordinated and coherent modelling
of stars and their oscillation frequencies. Compared with other
common uses of stellar modelling, such as diagnostics based on
observed properties of colour-magnitude diagrams or isochrone
fitting, the results obtained here already demonstrate a reason-
able convergence towards consistent stellar models for given
physics, with differences at the level of a few tenths of and up
to a few per cent. However, continuing efforts will be required
to investigate the remaining differences in the individual cases,
starting with the differences in the results of the evolution mod-
elling, and the possible required further improvements to the
codes. We hope that by presenting the results in some detail in
the present paper and as an on-line resource, they can also serve
as useful references in comparisons with other codes that have
not been involved in the present project or in the development of
techniques for the analysis of observational data.

The sensitivity of the frequencies to even quite small details
in the models demonstrates the potential of the oscillation data
for probing subtle features of the stellar interiors. This will be
further explored in a future publication, where the modellers will
consider individually selected physical properties of the models,
moving closer to the realistic modelling to be used in fits of the
observed data. Based on these efforts, we expect to be in a better
position to interpret the results of such fits in terms of the physics
of stellar interiors, which, after all, is an important goal of aster-
oseismic investigations. Also, we hope that the investigations
will help in improving the understanding of and reducing the
systematic errors in the resulting global stellar properties
inferred from asteroseismology, in particular the age. This is an
important part of the analysis of existing data and, in particu-
lar, the preparation for the upcoming ESA PLATO mission (e.g.
Rauer et al. 2014), where asteroseismic stellar characterisation
is a key part of the data analysis.
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Appendix A: Frequency calculations

A.1. Computational procedures

The models were provided by the participants in the so-
called fgong format, which includes a substantial number of
model variables at all meshpoints in the evolution computation,
together with global parameters. The model is transferred to the
amdl format required for the calculation of adiabatic frequen-
cies. Subsequently, the model is moved to a new mesh opti-
mised for the frequency calculation, which is then carried out by
the ADIPLS code (cf. Christensen-Dalsgaard 2008a), with output
both in binary form and in the form of an ASCII fobs file. In the
following, we describe each of these steps in a little more detail.

Models computed with general stellar evolution codes some-
times contain features of little importance to general stellar evo-
lution but harmful for oscillation calculations. Such problems in
particular concern the Ledoux discriminant

A =
1
Γ1

d ln p
d ln r

−
d ln ρ
d ln r

, (A.1)

related to the buoyancy frequency by N2 = gA/r, which is highly
sensitive to irregularities in the composition profile. Particularly
harmful are negative spikes in A in the stellar core, where g is
large, which leads to (unrealistically) strong convective insta-
bility. In the transfer to the amdl format, such spikes are sim-
ply replaced by interpolation from neighbouring points, setting
A = 0 if the result is negative. We note that such resetting of A
without corresponding changes to other variables formally leads
to inconsistency in the model, a point that deserves further atten-
tion. The models are tested for double points, with identical r at
the accuracy of the model format, and such points are removed,
except if they are associated with discontinuities in the model
structure (see below). Finally, the oscillation calculation requires
second derivatives of p and ρ at r = 0; if these are not available
in the original model they are estimated from the behaviour of
these quantities near the central meshpoint.

In the relevant frequency range in red giants, the number of
radial nodes in the g-mode region may exceed 1000, requiring
a very dense radial mesh to resolve the eigenfunctions. This is,
in general, not satisfied by the mesh in the evolution calcula-
tion, requiring for the model to be transferred to a new mesh
with a higher number of points and an appropriate distribution.
Guidance for the mesh distribution follows from the asymp-
totic behaviour of the modes (see also Hekker & Christensen-
Dalsgaard 2017). In the g-mode region, where the modes behave
as internal gravity waves, the eigenfunction varies approximately
as

Ag(r) sin
( L
ω
υ
)
, (A.2)

where L =
√

l(l + 1) and

υ =

∫ r

0
N

dr
r

(A.3)

is the buoyancy radius. The predominantly acoustic behaviour in
the p-mode region has the form

Ap(r) sin(ωτ), (A.4)

where

τ =

∫ R

r

dr
c

(A.5)

Fig. A.1. Properties of the mesh used for the oscillation calculation
in the 1.0 M�, 12 R� case. The solid black line shows the logarithm
of the fractional radius, against the mesh-point number (left ordinate
scale). The red crosses show the nodes in the horizontal-displacement
eigenfunction in a dipolar mode with frequency 20.0 µHz (right ordinate
scale).

is the acoustic depth. In Eqs. (A.2) and (A.4) Ag and Ap are
slowly varying amplitude functions. Thus, a reasonable distribu-
tion of the mesh involves approximately uniform spacing in υ
and τ in the g- and p-mode regions, respectively, with a suitable
distribution in the intermediate region. The appropriate balance
between the relative number of points assigned to the g- and p-
mode regions can be determined from the asymptotic analysis,
given the frequency range to be considered.

In the present calculations, a mesh with 19 200 points was
used. The properties of the mesh are illustrated in Fig. A.1,
which shows the fractional radius against the mesh-point num-
ber. It is evident that by far the majority of the points are in
the core, within 3 × 10−3R, to match the g-mode-like behaviour
in this region. Also shown are the locations of the nodes in
the horizontal-displacement eigenfunction. In the g-mode region
these are almost uniformly spaced, with approximately 20 mesh-
points between adjacent nodes. The comparatively few nodes in
the p-mode region have a wider spacing, the mesh satisfying also
the requirement of adequately resolving the variation in the over-
all amplitude of the eigenfunctions.

Adiabatic oscillations satisfy a fourth-order system of equa-
tions. Boundary conditions at r = 0 are defined by regularity
conditions. At the outermost meshpoint, one boundary condition
is obtained from the continuity of the perturbation to the grav-
itational potential and its gradient and a second from requiring
that the solution transits continuously to the analytical solution
of the adiabatic oscillation equations in an assumed isothermal
atmosphere continuously matched to the model at the outermost
point. The oscillation equations were solved using a fourth-order
numerical scheme (Cash & Moore 1980). The eigenfrequencies
were obtained from the condition of continuous matching of
solutions integrated from the surface and the centre, at a suitable
point in the core. This was achieved through a careful scan in
frequency, reflecting the asymptotic distribution of frequencies,
to ensure that no modes were missed. A test of the completeness
was carried out on the basis of the mode orders, determined as
discussed in Appendix A.4.

A special problem concerns discontinuities in composition
and hence density, which give rise to a delta-function behaviour
of A (cf. Eq. (A.1)) and, hence, in the buoyancy frequency.
This occurs, for example, at the edge of the dredge-up region
caused by the convective envelope, given that these models do
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Fig. A.2. Absolute value of relative frequency differences, at fixed radial
order, between computations with 38 400 and 19 200 points for the
1.0 M�, 12 M� case.

not include diffusion and settling. A proper treatment in the
model of a discontinuity would be to include it as a double point,
at the same values of the continuous variables, but more typi-
cally it appears as a rapid variation in composition and density
between adjacent meshpoints. A discontinuity in the model gives
rise to discontinuities in the eigenfunctions, and these should
ideally be dealt with by solving the equations separately on the
regions separated by the discontinuities, applying jump condi-
tions on the solution at these points. In the present calculations,
each density discontinuity was replaced in the code resetting the
mesh by a thin region with a very steep linear density gradient,
fully resolved, and the oscillation equations were solved across
this region; we ensured that the integral over the region of A,
represented as a box function, was consistent with the jump in
density. We confirmed that the relevant jump conditions on the
eigenfunctions are satisfied to adequate accuracy at these points.
One remaining issue is that the variation in composition is not
adequately resolved in some of the models included in the com-
parison. In these cases, further resetting of the model (or, ideally,
improvements to the evolution codes) would be desirable, and
the treatment of such features in the model will also be a topic in
future development and comparisons of oscillation codes.

A.2. Numerical precision

Given the rapid variation in the eigenfunctions, the numerical
accuracy is a concern, even given the precautions discussed
above. As a test of the accuracy, we computed frequencies for
all ASTEC models, doubling the number of meshpoints; the dif-
ferences between the original and refined computations then give
a measure of the numerical error in the former. Figure A.2 shows
the results in the worst case, the most evolved 1 M� model.
Except for g-dominated modes of degree l = 2 at relatively low
frequency, the relative errors are generally below 10−4; for the
radial and p-dominated nonradial modes the errors are below
10−5, with the effects of the p-m nature being particularly vis-
ible for l = 1. We also note that, given that the models compared
are very similar, these numerical errors largely cancel in com-
parisons between models computed with different codes. Thus,
the results obtained in the main text are unaffected by numerical
errors. Even so, a comparison between different oscillation codes
is obviously of interest and is planned for a future publication.

A perhaps more serious issue is the numerical accuracy of
the evolution calculation resulting in the ASTECmodels that have

Fig. A.3. Relative frequency differences at fixed radial order for 1 M�,
12 R�, between an ASTEC model using 8509 timesteps from the ZAMS
and the model used as reference with 4250 timesteps. For symbol types,
see Fig. A.2.

been used as reference in the present frequency comparisons.
The models were computed with a fixed number of 1200 mesh-
points, whose distribution changes in response to the changing
structure as the models evolve. We verified that doubling the
number of mesh points in the evolution calculation has a neg-
ligible effect on the results. The same is true of the number
of timesteps in the model calculation, which is controlled by a
parameter determining the maximum allowed change between
two successive timesteps in a suitable number of model vari-
ables, throughout the stellar interior. To illustrate this, Fig. A.3
shows relative frequency differences between a 1 M� model
requiring 8509 timesteps to reach the radius 12 R� and the refer-
ence case with half as many steps.

A.3. Large frequency separation from frequency fitting

To determine ∆νfit we largely follow White et al. (2011) and
carry out a weighted quadratic least-squares fit of radial-mode
frequencies νn0 as functions of radial order n by minimising

Σnw
2
n

(
ν(fit)

n0 − νn0

)2
, (A.6)

where
ν(fit)

n0 = ν0 + ∆νfit[(n − nmax) + α(n − nmax)2] (A.7)
(Kjeldsen et al. 2005; Mosser et al. 2013). Here ν0 is a reference
frequency and nmax is the (generally non-integral) order corre-
sponding to νmax, obtained by linear interpolation of n as a func-
tion of νn0. Also,

w = exp
[
−(νn0 − νmax)2

2σ2

]
, (A.8)

where

σ = γ
νmax

2
√

2 ln 2
, (A.9)

such that the full width at half maximum of w is γνmax. In the fits
White et al. (2011) used γ = 0.25. However, we instead followed
Mosser et al. (2012) and evaluated γ as
γ = 0.66(νmax/1 µHz)−0.12, (A.10)
based on a Gaussian approximation to the envelope of power;
this value of γ changes from around 0.25 for the Sun to 0.45
for the (1 M�, 12 R�) models, which have the lowest νmax (cf.
Table 3). As an example, Fig. A.4 shows the residuals from the
fit for the 1 M�, 7 R� ASTEC model.
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Fig. A.4. Determination of ∆νfit for the solar-calibrated ASTEC 1.0 M�,
7 R� model. The solid line shows the residual between the radial-mode
frequencies and the fitted function ν(fit)

n0 (cf. Eq. (A.7)), the diamonds
indicating the location of the actual frequencies. The dashed line shows
the weight function w (cf. Eq. (A.8)), using the right-hand ordinate.

A.4. Dipolar-mode order

Although the analysis of the frequency comparison in Sect. 3.3
showed the limitations in using a formal mode order not directly
related to the physical nature of the mode, a reliable formal deter-
mination of the mode order is an important feature of the fre-
quency calculation. The order should be defined such that it is
invariant for a given mode as the star evolves. This, for exam-
ple, allows reliable interpolation between frequencies of modes
at successive time steps in the model calculation. Also, it has
been applied to ensure that all modes have been found in the
frequency ranges considered. Determination of a well-defined
mode order for mixed modes requires that the different charac-
ters of the eigenfunction in the g- and p-mode cavities is taken
into account. For modes of degree l ≥ 2, this can be achieved
by considering the behaviour in a phase diagram defined by the
vertical ξr and horizontal ξh displacement amplitudes (Scuflaire
1974; Osaki 1975). The eigenfunction defines a curve in the
(ξr, ξh) diagram, and a node in ξr provides a positive (negative)
contribution to the mode order if the curve crosses the ξr = 0
axis in the counter-clockwise (clockwise) direction.

For centrally condensed stars, such as red giants, this pro-
cedure fails for dipolar modes. Following Takata (2006), we
instead determined the order of such modes by means of a phase
diagram based on

Y1 = (3 − U)
ξr

r
+

1
g

(
Φ′

r
−

dΦ′

dr

)
, (A.11)

and

Y2 = (3 − U)
p′

ρgr
+

1
g

(
Φ′

r
−

dΦ′

dr

)
· (A.12)

Here r is distance to the centre, g is the local gravitational accel-
eration, Φ′ is the Eulerian perturbation to the gravitational poten-
tial and p′ is the Eulerian pressure perturbation. Also,

U =
d ln m
d ln r

=
4πr3ρ

m
, (A.13)

where m is the mass internal to r. As shown by Takata, and
in general confirmed numerically, determining the mode order
based on zero crossings ofY1 and the direction of rotation in the
phase diagram provides a unique labelling of the modes.

Fig. A.5. Behaviour of U (cf. Eq. (A.13)), in three models with M =
1 M�, R = 7 R�. The dotted curve shows the original YREC model, the
pluses marking the mesh points in the evolution calculation. The solid
line shows the same model, after application of the correction proce-
dure discussed in the text. For comparison, the dashed curve shows the
corresponding ASTECmodel, for which no correction had to be applied.
The thin dot-dashed line marks U = 3.

The properties of Y1 and Y2 near r = 0 depend strongly on
the behaviour of 3 − U. Expanding ρ to O(r2) as

ρ = ρc(1 − %2r2 + . . .), (A.14)

where ρc is the central density, we obtain

U = 3
(
1 −

2
5
%2r2 + . . .

)
· (A.15)

Stability requires that ρ decreases with increasing r, and hence
%2 > 0. Thus, 3 − U tends smoothly to 0 for r → 0 through
positive values, and the factor does not affect the topology of the
first terms in Y1 and Y2.

Unfortunately, some of the models involved in the frequency
comparison do not satisfy this behaviour of U near the centre.
This is particularly serious when U, unphysically, exceeds 3,
such that 3 − U changes sign; this was the case for three codes.
An example is shown in Fig. A.5; here U exceeds 3 at the inner-
most points of the model resulting from the evolution code, indi-
cating an inconsistency in the way the inner boundary condition
is applied. If not corrected, this behaviour causes severe prob-
lems with the determination of the order of dipolar modes. For
comparison the corresponding ASTEC model is also shown; here
U tends smoothly to 3 as r → 0. To secure a proper determi-
nation of the order, the problematic models have been corrected
in a manner that provides a reasonable behaviour of U near the
centre. Specifically, in models where U exceeds 3 in the core
the outermost point rU where U ≥ 3 was located. For r ≤ rU ,
U was reset to the result of the expansion, Eq. (A.15), based on
the expansion of ρ. On the interval [rU , 5rU] a gradual transition
was made to the original U, using a cubic polynomial determined
such that U and its first derivative are continuous. The resulting
corrected U is also shown in Fig. A.5. This modification was
applied in the code that transfers the original model to a mesh
suitable for the oscillation calculations (see Appendix A.1). To
minimise the impact on the original models, the procedure was
applied only in cases where the uncorrected model was found
to yield problematic dipolar mode orders. These were identified
as cases where one or more adjacent computed modes did not
correspond to mode orders differing by one.

The resetting of U was carried out without any other read-
justments of the structure, thus raising legitimate concern about
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the internal consistency of the resulting model. In fact, the com-
puted frequencies for the reset and original models show relative
frequency differences of less than 10−6, and in almost all cases
less than 10−7, so that this has minimal consequences for the fre-
quency comparisons carried out in the present paper. Even so,
it must clearly be a goal to revise the relevant modelling codes
to correct this problem at its root. In general, the treatment of
the innermost points in the model causes problems in several
cases, reflected in incorrect behaviour of U, although with no
direct effect on the mode order; in these cases no resetting of
the model was carried out, and the effects on the frequencies are
likely insignificant, although again revisions of the modelling
codes are desirable.

Appendix B: Results for the RGB-calibrated models

Fig. B.1. Root-mean-square relative differences for RGB-calibrated
models in radial-mode frequencies relative to the ASTEC results, in the
sense (model) – (ASTEC); the different codes are identified by the sym-
bol shape and colour (cf. caption to Fig. 3).

Fig. B.2. Relative differences for RGB-calibrated models in the large
frequency separations ∆νfit obtained from fits to the radial-mode fre-
quencies as functions of mode order (cf. Appendix A.3), compared with
the ASTEC results, in the sense (model) – (ASTEC); the different codes
are identified by the symbol shape and colour (cf. caption to Fig. 3).

For completeness, we include a full set of results for the RGB-
calibrated models even though, as discussed in Sect. 3.4, they
are in most cases very similar to those for the solar-calibrated
models.

Fig. B.3. Correction factor f∆ν for RGB-calibrated models in the scaling
relation for the large frequency separation ∆νfit obtained from fits to the
radial-mode frequencies (cf. Eq. (10)). The different codes are identified
by the symbol shape and colour (cf. caption to Fig. 3), with the addition
of AST (for ASTEC).

Fig. B.4. Differences relative to the ASTECmodel in the RGB-calibrated
case, in the sense (model) – (ASTEC), in the correction factors f∆ν (cf.
Eq. (10)) relating the large frequency separation ∆νfit obtained from a fit
to radial-mode frequencies and the value obtained from homology scal-
ing. The different codes are identified by the symbol shape and colour
(cf. caption to Fig. 3).

Fig. B.5. Relative differences for RGB-calibrated models in the asymp-
totic period spacing ∆Π1, compared with the ASTEC results, in the sense
(model) – (ASTEC); the different codes are identified by the symbol
shape and colour (cf. caption to Fig. 3).
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Table B.1. Large frequency separations ∆νfit in µHz obtained from fits to radial-mode frequencies as functions of mode order (cf. Eq. (3) and
Appendix A.3) for RGB-calibrated models.

M/M� R/R� ASTEC BaSTI CESAM GARSTEC LPCODE MESA MONSTAR YAP YREC

1.0 7.0 7.087 7.097 7.092 7.083 7.090 7.081 7.079 7.096 7.089
1.0 12.0 3.130 3.129 3.133 3.128 3.131 3.128 3.126 3.135 3.131
1.5 7.0 8.783 8.778 8.785 8.774 8.780 8.773 8.757 8.782 8.782
1.5 12.0 3.876 3.875 3.880 3.873 3.876 3.872 3.871 3.880 3.876
2.0 10.0 5.949 5.948 5.952 5.945 5.949 5.944 5.936 5.947 5.950
2.5 10.0 6.740 6.745 6.739 6.732 6.738 6.730 6.733 6.746 6.738

Table B.2. Correction factors f∆ν (cf. Eq. (10)) between the large frequency separation ∆νfit obtained from a fit to radial-mode frequencies and the
value obtained from homology scaling, for RGB-calibrated models.

M/M� R/R� ASTEC BaSTI CESAM GARSTEC LPCODE MESA MONSTAR YAP YREC

1.0 7.0 0.9656 0.9666 0.9656 0.9651 0.9660 0.9662 0.9650 0.9677 0.9657
1.0 12.0 0.9572 0.9567 0.9575 0.9566 0.9574 0.9579 0.9564 0.9594 0.9573
1.5 7.0 0.9771 0.9763 0.9766 0.9760 0.9768 0.9774 0.9747 0.9778 0.9768
1.5 12.0 0.9677 0.9674 0.9681 0.9671 0.9678 0.9683 0.9669 0.9697 0.9676
2.0 10.0 0.9786 0.9781 0.9784 0.9779 0.9786 0.9792 0.9769 0.9792 0.9785
2.5 10.0 0.9917 0.9921 0.9909 0.9905 0.9914 0.9916 0.9911 0.9934 0.9911

Table B.3. Frequency νmax, in µHz, of maximum oscillation power estimated from Eq. (8) for RGB-calibrated models.

M/M� R/R� ASTEC BaSTI CESAM GARSTEC LPCODE MESA MONSTAR YAP YREC

1.0 7.0 69.76 69.77 69.77 69.76 69.77 69.76 69.76 69.76 69.76
1.0 12.0 24.29 24.29 24.29 24.30 24.30 24.30 24.29 24.29 24.29
1.5 7.0 102.58 102.59 102.58 102.58 102.59 102.58 102.58 102.58 102.58
1.5 12.0 35.76 35.76 35.77 35.77 35.77 35.77 35.76 35.76 35.76
2.0 10.0 67.05 67.06 67.05 67.05 67.06 67.08 67.06 67.05 67.05
2.5 10.0 82.70 82.71 82.68 82.71 82.71 82.67 82.70 82.70 82.70

Table B.4. Asymptotic dipolar g-mode period spacings ∆Π1 in s (cf. Eq. (6)) for RGB-calibrated models.

M/M� R/R� ASTEC BaSTI CESAM GARSTEC LPCODE MESA MONSTAR YAP YREC

1.0 7.0 72.12 71.76 72.27 72.22 72.74 72.88 73.08 76.03 73.12
1.0 12.0 58.36 57.83 58.18 58.31 58.50 58.74 58.91 60.31 58.95
1.5 7.0 69.91 69.64 70.13 70.06 70.45 70.86 70.97 74.43 71.03
1.5 12.0 57.31 56.79 57.26 57.23 57.34 57.59 57.75 59.52 57.88
2.0 10.0 78.72 78.57 77.73 76.82 78.12 77.39 79.30 81.91 79.39
2.5 10.0 123.90 123.45 120.69 120.83 122.43 122.61 124.47 125.03 123.53

Appendix C: Properties of the asymptotic large
frequency separation

Although we argue in Sect. 2.1 that the asymptotic large fre-
quency separation ∆νas does not provide an adequate accuracy
for comparisons with observations (see also Mosser et al. 2013),
it still represents the contribution from the bulk of the model
to the frequency separation. Thus, it is of interest to compare
∆νas between the different evolution codes. Tables C.1 and C.2
show ∆νas for the solar-calibrated and RGB-calibrated models,
computed from Eq. (4). For simplicity we replace R∗ by Rphot,
the photospheric radius, to avoid possible effects of differences
in the models of the stellar atmospheres. The dominant varia-
tion of ∆νas with stellar properties follows the homology scaling,

∆ν ∝ (GM/R3)1/2 (see also Eq. (7)) which, as discussed in
Paper I, is essentially fixed. Thus, the variations between codes
reflect more subtle differences in the computed structure. These
variations are illustrated in Fig. C.1, using the ASTEC results as
reference. We note that the differences are substantially smaller
than those found for ∆νfit (cf. Fig. 4). This may be caused by
differences in the structure of the near-surface layers and atmo-
spheres in the stellar models, which would affect ∆νas less than
the individual frequencies. Also, these differences would have
the strongest effect on high-frequency modes, and hence may
affect ∆νfit more strongly than reflected in the root-mean-square
frequency differences shown in Fig. 3.

The relation between the asymptotic value, ∆νas, of the large
frequency separation (see Tables C.1 and C.2) and ∆νfit is of
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Table C.1. Asymptotic acoustic-mode frequency separation ∆νas in µHz (cf. Eq. (4)) for solar-calibrated models.

M/M� R/R� ASTEC BaSTI CESAM GARSTEC LPCODE MESA MONSTAR YAP YREC

1.0 7.0 7.792 7.794 7.799 7.790 7.793 7.794 7.789 7.801 7.796
1.0 12.0 3.507 3.509 3.512 3.505 3.507 3.507 3.506 3.512 3.509
1.5 7.0 9.504 9.505 9.512 9.500 9.504 9.505 9.497 9.513 9.507
1.5 12.0 4.263 4.264 4.267 4.260 4.263 4.263 4.260 4.268 4.264
2.0 10.0 6.432 6.434 6.435 6.430 6.432 6.433 6.427 6.435 6.433
2.5 10.0 7.227 7.229 7.228 7.221 7.226 7.224 7.221 7.229 7.228

Table C.2. Asymptotic acoustic-mode frequency separation ∆νas in µHz (cf. Eq. (4)) for RGB-calibrated models.

M/M� R/R� ASTEC BaSTI CESAM GARSTEC LPCODE MESA MONSTAR YAP YREC

1.0 7.0 7.792 7.793 7.797 7.788 7.793 7.795 7.787 7.800 7.796
1.0 12.0 3.507 3.508 3.510 3.504 3.508 3.508 3.505 3.511 3.509
1.5 7.0 9.504 9.505 9.509 9.498 9.504 9.506 9.496 9.513 9.507
1.5 12.0 4.263 4.263 4.266 4.260 4.263 4.264 4.259 4.267 4.264
2.0 10.0 6.432 6.433 6.435 6.429 6.432 6.433 6.426 6.435 6.433
2.5 10.0 7.228 7.228 7.226 7.220 7.226 7.225 7.221 7.229 7.228

Fig. C.1. Relative differences in the asymptotic large frequency sep-
aration ∆νas, compared with the ASTEC results, in the sense (model)
– (ASTEC); the different codes are identified by the symbol shape and
colour and labelled by the abbreviated name of the code (see caption to
Fig. 3). Top panel: results for solar-calibrated models and bottom panel:
for the RGB-calibrated models.

some interest. Figure C.2 shows their ratios. It is evident that
∆νas substantially over-estimates the actual value of ∆ν, no doubt
to a large extent owing to the choice of Rphot for the upper limit

Fig. C.2. Ratios ∆νfit/∆νas between the large frequency spacing result-
ing from fit to the radial-mode frequencies and the asymptotic values.
The symbols correspond to the different modelling codes, as defined in
the caption to Fig. 3, with the addition of AST (ASTEC). Upper panel:
results for the solar-calibrated models, and lower panel: for the RGB-
calibrated models.

in the integral in Eq. (4) rather than the location of the proper
acoustic surface (see the discussion below Eq. (4), and Sect. 3.2).
This deserves further analysis.
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Appendix D: Problems with the MESA atmosphere
models

Fig. D.1. Top panel: pressure p in (1 M�, 1 R�) models computed with
MESA (solid line) and ASTEC (dashed line). Bottom panel: pressure gra-
dient divided by density for these models.

In Fig. 9 we found an increase in magnitude in the frequency
differences between the MESA and the ASTEC models at high fre-
quency. This reflects what appears to be a general problem with
the structure of the atmospheric models in version 6950 of MESA
used in the present comparison. We illustrate this by consider-
ing the (1 M�, 1 R�) model in the solar-calibrated comparison
track. Very similar effects are found in the other MESA cases
considered.

Figure D.1 compares the pressure and its derivative in the
MESA and ASTEC models. The top panel shows substantial dif-
ferences between the atmospheric pressures in the two models,
whereas they are essentially in agreement below the pho-
tosphere. The difference between the models is even more
dramatic in the bottom panel: this shows −ρ−1dp/dr, which
according to the equation of hydrostatic equilibrium should be
equal to the gravitational acceleration g and hence essentially
constant in the outermost parts of the model. This is satisfied
in the ASTEC model but not in the MESA model. The effect on
the computed frequencies is shown in Fig. D.2, compared also
with the results for the corresponding LPCODE model. For the
MESA model there are clearly significant differences, particularly
at high frequency, as expected for model differences confined to
the outermost layers; no such differences are found in the case
of the LPCODE (although there are differences at low frequency,
which reflect structure differences deeper in the model).

For the present comparisons these problems with the MESA
models have a relatively minor effect, compared with the more
substantial differences found for various other aspects of the

Fig. D.2. Relative frequency differences for the (1 M�, 1 R�) solar-
calibrated case between MESA and ASTEC, in the sense (MESA) –
(ASTEC), for l = 0 (open circles), l = 1 (open triangles) and l = 2
(filled squares) in black. The differences are evaluated at fixed radial
order. The red circles show corresponding results for radial modes in
the LPCODE model.

structure. However, they would affect the comparison between
observations and the MESA models, and more generally it has
clearly been desirable to correct these problems with such a
convenient and widely used code. We note that they have been
resolved in MESA since revision 11877.

Appendix E: Asteroseismic effects
of thermodynamic properties

The original results for the GARSTEC models showed rather
substantial differences, relative to the ASTEC reference, in the
acoustic-mode properties. These arose from a separate treatment
in the version of GARSTEC used then of the low-temperature
region in the implementation of the OPAL equation of state. This
has been updated in the results shown in the main part of this
paper. However, since the results provide insight into the sensi-
tivity of the frequencies to the model structure it is of interest to
discuss them in some detail.

Frequency differences between the original GARSTEC and
the ASTEC models for the 1.5 M�, 7 R� solar-calibrated case are
shown in the top panel of Fig. E.1. Compared with the gen-
eral trends in the average radial-mode frequency differences
shown in Fig. 3, there are substantial differences in the radial-
mode frequencies and in the asymptotic frequency spacing and
a significant discrepancy between the differences in the asymp-
totic and actual radial-mode frequencies. The differences in the
asymptotic period spacing and consequently in the g-dominated
mode frequencies are comparatively small; they are coinciden-
tally similar to the radial-mode frequency differences.

These differences in acoustic behaviour between the original
GARSTEC and ASTECmodels are directly related to differences in
the structure of the outer layers of the models. Figure E.2 shows
the logarithmic differences in squared sound speed c2 = Γ1 p/ρ
and Γ1. It is evident that much of the sound-speed difference
comes from the difference in Γ1, in the region of helium ioni-
sation. This is the result of significant differences between the
models in the treatment of the equation of state in these regions.
As shown by the red curves, these differences have been very
substantially reduced by the revision of the GARSTEC models.

With the revised GARSTEC equation of state the differences in
acoustic behaviour between GARSTEC and ASTEC are very small,
as illustrated by the bottom panel of Fig. E.1.
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Fig. E.1. Relative differences in computed frequencies for the GARSTEC
1.5 M�, 7 R� solar-calibrated models, compared with the ASTEC results,
in the sense (GARSTEC) – (ASTEC). Top panel: results for the original
GARSTEC model, and bottom panel: revised model, with updated treat-
ment of the equation of state. The differences are evaluated at fixed
radial order.

Fig. E.2. Logarithmic differences between the original GARSTEC and
ASTEC 1.5 M�, 7 R� solar-calibrated models, in the sense (GARSTEC)
– (ASTEC), in the outer layers of the model. The solid line shows the
difference in squared sound speed c2 and the dashed line the difference
in adiabatic exponent Γ1. For comparison, the thinner red lines show the
corresponding differences between the revised GARSTEC and the ASTEC
models.

Appendix F: Asteroseismic effects of the
convective-core size

Fig. F.1. Relative differences in computed frequencies for the LPCODE
2.5 M�, 10 R� solar-calibrated model, compared with the ASTEC results,
n′ the sense (LPCODE) – (ASTEC). Top panel: original LPCODE model,
bottom panel: revised model.

The original comparisons found substantial differences in
g-mode frequencies between the 2.5 M�, 10 R� LPCODE and
ASTEC models, as illustrated in the top panel of Fig. F.1. Here
there is excellent agreement for the radial-mode frequencies,
while the g-dominated modes, and the asymptotic period spac-
ing, show differences of around 5%. The pattern of differences
is qualitatively similar to Fig. 9, with smaller differences for the
p-dominated modes. Similar effects were found in the 2.0 M�,
10 R� case, as illustrated by ∆Π1 in Table F.1. These differences
were caused by differences in the H profile in the region located
between the H-burning shell and the H-discontinuity left by the
first dredge-up episode (see the bottom panel in Fig. F.2). Dif-
ferences in the chemical profile can be traced back to a smaller
receding convective core during main-sequence evolution due to
an underestimation of the radiative opacities in the core. The lat-
ter was caused by the fact that the OPAL routines (Iglesias &
Rogers 1993) were using the Type II set of opacity tables2 as
soon as C and O were transformed into N by the CNO cycles. As
the C and O decrement was not balanced by the N-enhancement
in the opacity tables, this led to a slight underestimation of the
Rosseland opacity of the core. This has now been corrected in
LPCODE, as shown in Sect. 3 and the bottom panel of Fig. F.1.
However, the results provide an illustrative example of the
effect on red-giant frequencies of changes to the main-sequence

2 See https://opalopacity.llnl.gov/existing.html
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Table F.1. Asymptotic dipolar g-mode period spacings ∆Π1 in s (cf.
Eq. (6)) for the solar-calibrated ASTEC and the original and corrected
LPCODE models.

M/M� R/R� ASTEC LPCODE LPCODE
(original) (corrected)

2.0 10.0 78.72 73.37 78.14
2.5 10.0 123.62 117.11 122.32

Fig. F.2. Top panel: variation with age in the fractional mass of the con-
vective core, in 2.5 M� solar-calibrated models. Bottom panel: resulting
profiles of the hydrogen-abundance X in the 10 R� red-giant model. The
solid and dot-dashed lines show the original and revised LPCODE mod-
els, and the dashed lines show the corresponding ASTEC model.

convective core and hence deserves a more detailed analysis.
Here we focus on the solar-calibrated case; the RGB-calibrated
case is very similar.

Relevant properties of the evolution and structure are pre-
sented in Fig. F.2 (see also Paper I). The top panel shows the evo-
lution in the fractional mass of the convective core, which defines
the hydrogen profile at the end of the main sequence. It is evident
that the convective core is significantly smaller, and the main-
sequence phase correspondingly shorter, in the original LPCODE

evolution, whereas the corrected evolution is very similar to the
ASTEC case. In the 10 R� model this is reflected in a slightly
smaller helium-rich region in the original LPCODE model. Cor-
recting the opacity increases the size of the convective core to
close to but still slightly smaller than the ASTECmodel, resulting
in the much smaller frequency differences shown in the bottom
panel of Fig. F.1.

To investigate how the differences in structure affect the
asymptotic period spacing, we express Π0 (cf. Eq. (6)) as

Π0 = 2π2I(rbcz)−1, (F.1)

where rbcz is the radius at the base of the convective envelope,
and

I(r) =

∫ r

0
N

dr
r
· (F.2)

Also, using the equation of hydrostatic support we introduce

N2 = BG, (F.3)

separating N2 in a dynamical and a thermodynamic part, with

B =
g2ρ

p
, G =

(
1
Γ
−

1
Γ1

)
, (F.4)

where

1
Γ

=
d ln ρ
d ln p

· (F.5)

From Eq. (F.1) it follows that

δ ln Π0 ' −
δrI(rbcz)
I(rbcz)

, (F.6)

neglecting the small contribution from the difference in rbcz
between the models; here, from Eqs. (F.2)–(F.4),

δrI(r) '
1
2

∫ r

0
N(δr lnB + δr lnG)

dr
r
, (F.7)

where δr denotes the difference at fixed fractional radius. The
result of the analysis is shown in Fig. F.3. It is clear that Eq. (F.7)
provides a reasonable approximation to the difference in I,
which is dominated by the contribution δrI[δrB] from δr lnB.

To delve deeper into the origin of these differences, Fig. F.4
shows the hydrogen abundance in the LPCODE and ASTEC mod-
els, as well as the logarithmic differences between the models
in p, ρ, g (i.e. the mass) and B. The differences are predomi-
nantly in and just above the core of the model, probably related
to the difference in the hydrogen profile. The change in the par-
tial integral I(r) (cf. Fig. F.3) is dominated by the core, where
the LPCODE model has a higher central condensation and the
larger gravitational acceleration dominates the difference in B. It
is interesting that the asymptotic period spacing and the mixed-
mode frequencies so clearly reflect the relatively subtle differ-
ence in the hydrogen profile.
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Fig. F.3. Differences in the partial integrals for differences in Π0 (cf.
Eq. (F.7)) between the original LPCODE 2.5 M�, 10 R� solar-calibrated
model and the ASTEC model, in the sense (LPCODE) – (ASTEC). The
dashed and dash-dotted lines show the contributions δrI[δrB] and
δrI[δrG] from δrB and δrG, respectively, and the solid line shows their
sum. For comparison, the dotted line shows the relative difference in I.

Fig. F.4. Top panel: hydrogen abundance in the ASTEC (dashed) and
the original LPCODE (solid) 2.5 M�, 10 R� solar-calibrated models. Bot-
tom panel: differences δr ln p (dashed), δr ln ρ (dot-dashed), δr ln g (long
dashed) and δr lnB (solid) between the ASTEC and the original LPCODE
2.5 M�, 10 R� models, in the sense (LPCODE) – (ASTEC).

A165, page 21 of 21

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936766&pdf_id=31
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936766&pdf_id=32

	Introduction
	Properties of red-giant oscillations
	General properties
	Observational properties
	Oscillation properties of red-giant models

	Results of model comparisons
	Stellar models
	Acoustic properties
	Mixed modes
	The RGB-calibrated models

	Discussion
	Conclusions
	References
	Frequency calculations
	Computational procedures
	Numerical precision
	Large frequency separation from frequency fitting
	Dipolar-mode order

	Results for the RGB-calibrated models
	Properties of the asymptotic large frequency separation
	Problems with the MESA atmosphere models
	Asteroseismic effects of thermodynamic properties
	Asteroseismic effects of the convective-core size

