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Abstract—Recently, the sleep-wake states have been analysed using novel complexity measures, complementing
the classical analysis of EEGs by frequency bands. This new approach consistently shows a decrease in EEG’s
complexity during slow-wave sleep, yet it is unclear how cortical oscillations shape these complexity variations.
In this work, we analyse how the frequency content of brain signals affects the complexity estimates in freely mov-
ing rats. We find that the low-frequency spectrum – including the Delta, Theta, and Sigma frequency bands –
drives the complexity changes during the sleep-wake states. This happens because low-frequency oscillations
emerge from neuronal population patterns, as we show by recovering the complexity variations during the
sleep-wake cycle from micro, meso, and macroscopic recordings. Moreover, we find that the lower frequencies
reveal synchronisation patterns across the neocortex, such as a sensory-motor decoupling that happens during
REM sleep. Overall, our works shows that EEG’s low frequencies are critical in shaping the sleep-wake states’
complexity across cortical scales. � 2022 The Authors. Published by Elsevier Ltd on behalf of IBRO. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION

The sleep-wake cycle is one of the most prevalent

biological rhythms in the animal kingdom, being crucial

to regulate physiological functions. The cycle is divided

into 3 main states: wakefulness (Wake), rapid-eye

movement (REM), and non rapid-eye movement sleep

(NREM). At the neocortical level, Wake is characterised

by asynchronous and irregular neuronal activity (Evarts,

1964; Vyazovskiy et al., 2009; Watson et al., 2016b).

REM sleep is strikingly similar to Wake’s activity, with

the difference that muscular activity is absent (Chase

and Morales, 1983; Chase et al., 1989). In contrast,

NREM exhibits neuronal synchronous silences that con-

form the nominative slow waves recorded in electroen-

cephalograms (EEG) (Evarts, 1964; Vyazovskiy et al.,
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2009; Watson et al., 2016b; Nir et al., 2011; Todorova

and Zugaro, 2019).

In order to understand cortical function during the

sleep-wake cycle, classical analysis divides EEG

oscillations into specific frequency bands (Buzsáki and

Draguhn, 2004). These divisions stem from the oscilla-

tions being: 1) state-dependent, i.e., happen in relation

to specific sleep-wake states, 2) related to different phys-

iological functions, and 3) produced by distinct neuronal

circuits. For example, frequencies up to 12Hz contain

the Delta (1-4Hz), Theta (4-8Hz), and Sigma (8-12Hz)

bands, which have been associated to state-dependent

oscillations (Gervasoni et al., 2004; Watson et al.,

2016b). On the other hand, higher frequencies, like Beta

(15-30Hz) or Gamma (30-150Hz), have been predomi-

nantly associated to cognitive functions (Kisley and

Cornwell, 2006; Kanayama et al., 2007; Bastos et al.,

2015; Richter et al., 2017; Bastos et al., 2020; Wiesman

et al., 2020) – even during sleep (Carr et al., 2012;

Valderrama et al., 2012; Eichenlaub et al., 2020).
/licenses/by/4.0/).
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Recently, the classical analysis of EEG per frequency

bands has been complemented by the study of EEG’s

complexity (Jordan et al., 2008; Ouyang et al., 2010;

Nicolaou and Georgiou, 2011; Sitt et al., 2014; Abásolo

et al., 2015; Sarasso et al., 2015; Bandt, 2017;

González et al., 2019; González et al., 2020; Varley

et al., 2020; Hou et al., 2021; Mateos et al., 2021;

Varley et al., 2021; González et al., 2021); Sarasso

et al., 2021 provides a up-to-date literature review. Com-

plexity analyses usually focus on the EEG signal as a

whole, instead of its frequency components (or bands).

Under this framework, it has been shown that EEG’s com-

plexity changes according to the behavioural state, but

irrespective of the animal species (including mice, rats,

cats, monkeys, and humans). In particular, it has been

consistently reported (Nicolaou and Georgiou, 2011;

Abásolo et al., 2015; Bandt, 2017; González et al.,

2019; González et al., 2020; Mateos et al., 2021; Varley

et al., 2021; González et al., 2021; Pascovich et al.,

2021) that Wake is a highly complex state, that complexity

decreases during NREM when consciousness is lost, and

that it increases during REM sleep when a state of altered

consciousness emerges, i.e., dreams. However, it is still

unclear how these complexity results are related

to the classical frequency bands during the sleep-wake

states.

Here, we study intracranial EEG (ECoG) complexity

during the states of Wake, NREM, and REM sleep by

dividing the ECoG recordings into low and high

frequency-bands. We find that the low frequency band –

including the classic Delta, Theta, and Sigma bands –

contains most of the information that determines the

state’s complexity. Importantly, we show that this low

frequency-band preserves information across neuronal

scales, from the activity of neuronal ensembles, up to

the local field potentials and ECoGs. This means that

our division effectively denoises ECoG signals, revealing

the underlying neural oscillations. Moreover, we find

novel synchronization patterns across the cortex. In

particular, we find that although Wake and REM sleep

have similar complexity values at the local level, cortical

sensory-motor integration is severely compromised

during REM sleep. Overall, our work supports classical

EEG analyses that focus on the low-frequency

oscillations in order to study the sleep-wake cycle, since

these frequency bands contain highly relevant

information.
2. RESULTS

The complexity of a signal can be quantified by means of

its information content, for example, by finding the signal’s

Shannon Entropy (Shannon, 1948). However, for finite

and real-valued signals, such as an electro-corticogram

(ECoG), estimating the Shannon Entropy is challenging.

Instead, we encode the ECoG signal into a finite alphabet

using Ordinal Patterns (OPs), and then find the entropy –

known as Permutation Entropy (Bandt and Pompe, 2002;

Zanin et al., 2012). This quantification depends on the OP

dimension, D (number of data points), and embedding

delay, s (resampling). In order to increase differences
between close OP distributions, we use the Permutation

Minimum-Entropy (PME) instead of its classical value

(Zunino et al., 2015).

2.1. Frequency bands affect the complexity of sleep-
wake states differently

We study the effects that ECoG’s low and high frequency

bands have on the PME of brain signals for Wake, REM,

NREM sleep. We divide the recordings from 12 rats

(under freely moving conditions through their sleep-

wake cycle) into a frequency band 6 12Hz and

frequency band > 12Hz. This division separates the

classic frequencies commonly employed to visually

classify sleep-wake states from the higher frequencies,

which are prone to noise contamination. In particular,

the low frequency-band contains different sub-bands,

such as the Delta band (i.e., d ¼ f1; 4gHz) related to

slow-wave activity, the Theta band (i.e., h ¼ f4; 8gHz)
related to exploratory behaviour and cognitive functions

during REM sleep, and the Sigma band (i.e.,

r ¼ f8; 12gHz) related to sleep spindles and memory.

Fig. 1A shows the rat’s brain, where we record the

activity from the primary motor cortex (M1), primary

somatosensory cortex (S1) and secondary visual cortex

(V2). As it can be seen from Fig. 1B, the ECoG in each

cortex changes as a function of the behavioural state,

from an asynchronous state during Wake and REM

sleep, to a synchronous slow-wave activity during

NREM sleep. We analyse the PME [Eq. (3)] per

frequency band during each sleep-wake state (Fig. 1B),

finding the optimal temporal scale for encoding the

frequency bands into OPs. Namely, we find a state-

dependent embedding delay, sI, for the OP encoding of

each band [Eq. (5)].

Resultant PME values for low and high-frequency

bands are respectively shown in Fig. 1C and D. We can

see that these values are similar across cortical areas,

suggesting that PME is a cortical-area independent

measurement. In particular, we find that Wake is the

most complex state (regardless of the frequency band),

while NREM sleep shows significantly lower complexity

values for both frequency bands. Interestingly, REM’s

PME strongly depends on the frequency content,

showing Wake-like PME values for the lower

frequencies, and NREM-like PME values for the higher

frequencies.

We also show that the low-frequency band’s PME

robustly differentiates the sleep-wake states even when

the frequency cutoff is changed – as can be seen in

Fig. 1E, where we set a range of cut-off frequencies

from 8 to 20Hz. For example, when the frequency cut-

off is 8Hz, the PME values in Fig. 1E for the

frequencies 6 8Hz are similar to those from Fig. 1C. As

the cut-off is increased, higher frequencies are included

in the low-frequency band, affecting the PME values

and revealing a cortical dependence, where S1 and V2

behave similarly (middle and bottom panels in Fig. 1E)

approaching an intermediate PME value between Wake

and NREM sleep.

Overall, these results suggest that the low frequency-

band contains most of the relevant information of sleep-



Fig. 1. Permutation Minimum-Entropy (PME) for different sleep-wake states, cortical locations, and frequency bands. (A) Cortical locations for the

ECoG sensors: primary Motor cortex (M1), primary Somato-sensory cortex (S1), and secondary Visual cortex (V2). (B) Examples of ECoG

recordings for wakefulness (Wake), rapid-eye-movement sleep (REM), and non-REM sleep (NREM). Top traces correspond to the raw ECoG signal

and bottom traces show the respective low- and high-frequency oscillations (6 12Hz and > 12Hz, respectively). Box plots show population PME

values (12 rats) for the low (panel C) and high (panel D) frequency-bands at the M1, S1, and V2 cortical locations according to the sleep-wake state.

PME [Eq. (3)] values obtained by encoding the ECoG signals with ordinal-patterns of dimension D ¼ 5 and embedding delay, sI (Bandt and Pompe,

2002), where sI ¼ 25 for Wake, sI ¼ 21 for REM, and sI ¼ 17 for NREM low frequency bands and sI ¼ 1 for all states in the high frequency band.

(E) Population average PME (error bars represent the 95% confidence interval) for each state and cortical location as a function of the maximum

frequency included in the low-frequency band (frequency cut-off) for the sI in panel C. * p < 0:05, ** p < 0:01, **** p < 0:0001, ***** p < 0:00001.
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wake states and their raw ECoG signals (i.e., before

filtering). In particular, we find that in this band, Wake

and REM sleep show similar PME values, which aligns

with previous results by González et al., 2019 using PE.

On the contrary, the high frequency-band PME variations

correlate to the changes in muscular activity during sleep

(Fig.S1). Consequently, for the following analysis we

focus on the low-frequency band.
2.2. Dependence of the embedding delay on the
frequency band

A signal’s information-content changes when looking at

different frequency bands. This implies that the

encoding needs to take into account the signal’s

frequency content by adjusting the encoding

parameters. In our work, when encoding an ECoG
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signal with ordinal patterns (OPs), we need to analyse the

resultant PME [see Eq. (3)] as a function of the

embedding delay, s, for each frequency band. In Fig. 2

we show the results of finding the optimal embedding

delay, sI [see Eq. (5)], for the ECoG’s low frequency-

band across the sleep-wake states and cortical locations.

Fig. 2A shows ECoG’s power spectra. We find that

Wake and REM sleep have similar low-frequency

content (shaded rectangle) in all neocortical areas, with

a peak in the Theta range (h ¼ ½4; 8�Hz). On the other

hand, NREM sleep shows more power at the sleep-

spindles (r ¼ ½8; 12�Hz) and slow-wave range

(d ¼ ½1; 4�Hz). In Fig. 2B we show how the PME

changes as we increase s from 1 (OP constructed with

consecutive data points) to 35 (OP constructed with

data taken every 35 points) for the low frequency-band.

We note increasing complexity values for all sleep-wake

states – independently of the neocortical area. However,

the growth is non-monotonic, as Fig. 2C reveals by the

PME rates [see Eq. (4)]; that is, the PME tangents.

At the maximum PME rate, the encoding captures the

optimal information content generated by the low

frequencies. From Fig. 2C, we can see that this is

obtained by an optimal embedding delay, sI [see Eq.

(5)], which depends on the behavioural state (coloured

curves) but is independent of the cortical location

(panels). In particular, we find that Wake’s PME rate

peaks at sI ¼ 25, NREM’s at sI ¼ 17, and REM’s at

sI ¼ 21. We note that during REM sleep, we cannot

statistically differentiate between PME Rate(s ¼ 21) and

PME Rate(s ¼ 25) in the M1 area (left panel in Fig. 2C),

so we set sI ¼ 21 to match the other neocortical sites.

These sI values are the ones used in Fig. 1C. We then

conclude that the optimal temporal scale to study ECoG

dynamics solely depends on the behavioural state of the

low frequencies. On the other hand, doing the same

analysis to the high frequency band results in sI ¼ 1 for

all sleep-wake states and cortical locations (Fig.S2),

since at this band entropy is generally driven by the

high frequencies, which require a high sampling rate

(i.e., that of the raw signal).

2.3. ECoG’s lower frequencies contain neuronal
information across recording scales

Our findings show that Wake and REM sleep ECoG’s low

frequency-bands have larger PME than NREM sleep.

Now we analyse whether these PME values are

conserved across cortical scales; that is, if Local-Field

Potentials (LFP) and neuronal spiking activity has the

same complexity features according to the animal’s

behavioural state. In addition, we use the spiking activity

binary signals to construct synthetic LFP (sLFP), which

we generate by making convolutions with a decreasing

exponential and then taking a population average. The

resultant signal is similar to an LFP, which mainly

originates from the spatial average of excitatory post-

synaptic potentials (Buzsáki et al., 2012). We then per-

form the same analysis as in Fig. 2 to LFP and sLFP sig-

nals focusing on their low frequency-bands (6 12Hz).

From top to bottom, Fig. 3A shows low-frequency

band signals for an M1 ECoG of our experiments on 12
freely-moving rats (Cavelli et al., 2017; Cavelli et al.,

2018) and a frontal cortex LFP, sLFP, and spike trains

(units) of the data-set with 11 rats from the work by

Watson et al., 2016b. Fig. 3B shows box plots of the resul-

tant PME values from our analysis of these recording

scales in all animals, where the top panel is the same

as the left panel in Fig. 1C. Here, we can see that NREM’s

PMEs are significantly smaller than Wake’s and REM’s

PMEs across cortical scales; that is, our findings are con-

sistent for ECoG, LFP, and sLFPs. We also find that PME

grows with increasing s for all recording scales (Fig. 3C),

which we previously observed in Fig. 2B for the ECoG sig-

nals. Similarly, PME rates in Fig. 3D for ECoGs, LFPs,

and sLFPs exhibit comparable behaviours, where we note

that sI values are always larger during Wakefulness or

REM sleep than during NREM sleep. Consequently, our

findings show that low frequency-bands contain state-

dependent information that stems from the spiking activ-

ity, which is conserved across the recording scales.

2.4. Sensory-motor integration is compromised
during REM sleep

Having shown that the low-frequency ECoG band

contains state-dependent spiking information, we now

study how this activity is integrated across the

neocortex. We do this by quantifying the Permutation

Minimum-Mutual-Information (PMMI) between the low-

frequency ECoG recordings of every pair of cortical

locations, where we encode each ECoG signal into

ordinal patterns (Bandt and Pompe, 2002) of length

D ¼ 5 and optimal embedding delay sI for each sleep-

wake state (i.e., sI ¼ 25 for Wake, sI ¼ 21 for REM,

and sI ¼ 17 for NREM, as it can be seen from Fig. 2C).

Fig. 4A shows the low-frequency ECoG signals during

each sleep-wake state. During Wake (left panel in

Fig. 4A), we note synchronous h oscillations on M1

(primary motor), S1 (primary somato-sensory), and V2

(secondary visual) cortical regions. During NREM sleep

(middle panel in Fig. 4A), slow waves appear almost

synchronously in all cortices. On the other hand, we

note that during REM sleep (right panel in Fig. 4A), the

M1 cortex decouples from the rest, while S1 and V2

exhibit synchronous h rhythms that resemble Wake.

In line with these observations, PMMI values [see Eq.

(6)] between cortical areas show a dependence on both

the distance between cortices and the sleep-wake state

(Fig. 4B). The inter-electrode distance for S1-V2 and

M1-S1 is ’ 5mm, but is ’ 10mm for the M1-V2

combination. In particular, Fig. 4B shows that PMMI is

significantly higher for cortical pairs that are ’ 5mm
apart in comparison to those that are ’ 10mm,

regardless of the sleep-wake state. However, we find a

significant decrease in PMMI during REM sleep when

comparing the equidistant pairs S1-V2 and M1-S1,

which is absent during Wake or NREM sleep. These

results point to a loss in sensory-motor integration

during REM sleep that is not emerging because of

cortical distances.

When comparing PMMI from different sleep-wake

states, we find that REM’s M1-S1 and M1-V2 PMMI are

significantly smaller than those from Wake. For



Fig. 2. Power spectra and entropy variations for wakefulness (Wake), rapid-eye movement (REM)

and non-REM (NREM) sleep. (A) Power spectral densities for different cortical locations and sleep-

wake states. Shaded rectangular areas signal the low frequency band (6 12Hz). (B) Permutation

Minimum-Entropy (PME) values for the EEG’s low frequency-band as the embedding delay, s, of the
ordinal pattern (OP) is increased (i.e., data sampled at increasing steps) in each cortical location from

Fig. 1A. (C) Corresponding PME rates [Eq. (4)] from panel B, i.e., PME tangents as a function of s.
OP dimension in panels B and C is D ¼ 5 data points (as in Fig. 1C). All panels show population

averages (solid curves) with their 95% confidence interval (coloured shading) after 1000 bootstrap

samples.
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example, REM’s and Wake’s population-averaged PMMI

between M1 and V2 is 0:09 and 0:12 (normalised units),

respectively. We highlight that this decrease in PMMI

between M1 and V2 low frequencies happens even

though their PME values for Wake and REM are similar

(Fig. 1C). On the contrary, the decrease in PMMI values

happening during NREM sleep between M1-V2 in

comparison to Wake can be explained from the

significantly smaller PME values that NREM shows in all

cortical areas (Fig. 1C).
3. DISCUSSION

Complex neural dynamics are thought to be necessary for

consciousness (Tononi and Edelman, 1998; Oizumi et al.,

2014). Different reports show that cortical activity exhibits
complex patterns during Wakeful-

ness, that are reduced during deep

NREM sleep (Ouyang et al., 2010;

Nicolaou and Georgiou, 2011;

Abásolo et al., 2015; Schartner

et al., 2017(1):niw022; Bandt,

2017; González et al., 2019;

González et al., 2020; Hou et al.,

2021; Mondino et al., 2021;

Mateos et al., 2021) or anesthesia

(Jordan et al., 2008; Sitt et al.,

2014; Sarasso et al., 2015;

Fagerholm et al., 2016; Thul et al.,

2016; Varley et al., 2020; Varley

et al., 2021). However, it was

unclear how the different frequency

bands contribute to the observed

complexity changes in EEG

analyses.

3.1. Low-frequency oscillations
drive complexity changes during
the states of wake and sleep

In this work, we show that the intra-

cranial EEG (ECoG) frequencies

up to 12Hz are sufficient to

reproduce the complexity

variations that are typically

observed across the sleep-wake

states. According to our findings

(Figs. 1C and 2), Delta, Theta,

and Sigma bands are the most

important frequencies contributing

to the state’s complexity and its

decrease during NREM sleep.

Thus, our work highlights the fact

that EEG complexity critically

depends on the modulation of the

thalamocortical loops (Llinás et al.,

1999; Llinás et al., 2005), particu-

larly in the orchestration of the

slow-wave activity (1-4Hz) during

NREM sleep (Pigorini et al., 2015;

D’Andola et al., 2018; Rosanova

et al., 2018; Dasilva et al., 2021;

Sarasso et al., 2021; González
et al., 2021). Consistent with these results, we have

shown that population DOWN states trap cortical activity

into recurrent dynamics (González et al., 2021), explain-

ing why slow-oscillations – caused by DOWN states and

synchronised by the thalamus (Steriade et al., 1993;

Vyazovskiy et al., 2009; Nir et al., 2011; Todorova and

Zugaro, 2019; Hay et al., 2021) – reduce the complexity

of cortical activity during sleep.

Our present results also suggest that ECoG’s high

frequencies (> 12Hz) contain muscular information,

which we can explain as follows. On the one hand,

REM sleep shows the least complex EEG signals in the

high frequency range (Fig. 1D), in spite of having

neuronal activity resembling that of wakefulness

(Abásolo et al., 2015; González et al., 2021). The fact that



Fig. 3. Permutation Minimum-Entropy (PME) across recording scales. (A) Brain recordings at different scales. From top to bottom, electro-

corticograms (ECoG), local field potential (LFP), synthetic LFP (obtained by the convolution of the spike trains and a decreasing exponential kernel),

and units (spikes from individual neurons recorded from the extracellular medium). ECoG data comes from our experiments, as in Figs. 1 and 2, but

the other recordings come from the work by Watson et al., 2016b (data-set available at: CRCNS.org). We note that we inverted both LFP and ECoG

recordings for representation purposes. (B): Box plots show PME values for the ECoGs (from Fig. 1C), LFPs, and sLFPs data-sets.* p < C PME as

a function of s (delay embedding); as in Fig. 2B. (C) PME Rate as a function of s; as in Fig. 2C. The solid lines show the population average values

and the shaded areas their 95% confidence interval.* p < 0:05, ** p < 0:01, **** p < 0:0001, ****** p < 0:000001.
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muscular tone is absent during REM sleep (Fig.S1) can

explain this discrepancy between neuronal activity and

ECoG’s complexity values. On the other hand, we find

that the optimal delay embedding for encoding high-

frequency signals is always sI ¼ 1 (Fig.S2) for all

sleep-wake states and cortical locations. This sI ¼ 1

implies that the ordinal patterns can encode most of the

information coming from frequencies in the range

1024Hz=5 � 200Hz up to 512Hz – according to Eq. (1).

This range is higher than any up-to-date physiological fre-

quency band, making the high-frequency band analysis

with ordinal patterns prone to capture extra-neural

sources, such as electrical muscular activity.

Because muscular activity is intrinsically random and

our approach is to maximise the entropy rates, we could

be missing relevant information from the frequencies

contained in the 12 to 200Hz when analysing the high-

frequency range. This limitation in our high-frequency

band analysis could require the inclusion of an

intermediate band of frequencies. Such intermediate

frequencies could contain the Beta (15-30Hz) and

Gamma (30-150Hz) bands, potentially capturing

complementary information to our present work; but

outside of its current scope. Nevertheless, our results
remain practically unchanged when we choose a

different cut-off frequency to define the low and high

frequency bands (Fig. 1E), exploring cut-off values

between 8 to 20Hz.
3.2. Frequency Content of an Ordinal Pattern

When trying to measure the content of information from

an ECoG signal, we need to tune the encoding to match

the relevant frequencies of the signal under study. In

our case, the Ordinal Pattern (OP) encoding has the

embedding dimension, D, and delay, s parameters,

which set the number of points to be taken as a single

OP and at which sampling rate. Consequently,

depending on their values, an OP can see different

frequencies, m. Specifically, we can estimate the OP

frequency range by

ms
DsI

K mK ms
2sI

; ð1Þ

where ms is the sampling frequency of the signal (in our

case, ms ¼ 1024Hz), D is the OP’s embedding

dimension, and sI is the optimum embedding delay from

Eq. (5).



Fig. 4. Permutation Minimum Mutual Information (PMMI) for Wakefulness, NREM and REM sleep. (A) Standardised ECoG recordings of the

primary Motor cortex (M1), primary Somato-sensory cortex (S1), and secondary Visual cortex (V2) in each sleep-wake state. (B) Box-plots with the

pair-wise PMMI values [Eq. (6)] between the 3 neocortical areas during each of the sleep-wake states. � signals a P < 0:05 Wilcoxon signed-rank

test with a Benjamini-Hochberg multiple comparisons correction.
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Eq. (1) implies that for our low frequency-band ECoG

analysis (� 12Hz), when we have D ¼ 5 and sI ¼ 25

(corresponding to wakefulness), the OP lower and

upper frequency limits are approximately equal to 8Hz
and 20Hz, respectively. This means that the D ¼ 5 OP

encoding will be quantifying the information content from

a signal mostly within 8 and 20Hz. However, we note

that for different D and sleep-wake states, we find

different sI – although independently of the cortical

location. The optimal sI of the low frequency band for

each sleep-wake states can be seen in Fig. 2C. On the

other hand, for the high frequency-band ECoG analysis

(> 12Hz), we find sIðDÞ ¼ 1 independently of the

embedding dimension or sleep-wake state (see Fig.

S2C). In this case, the OP has an upper limit of 512Hz,

coinciding with the Nyquist-Shannon criterion, but a

lower limit that depends on D, being 256Hz if D ¼ 4 and

approximately 200Hz if D ¼ 5.

It is worth noting that, although Eq. (1) sets a

frequency range that an OP can capture for a given D
and sI, this range only considers part of the information

that an OP captures. Specifically, frequencies m that are

smaller than the lower bound, ms=DsI, are still captured

by the OP. For example, a slow wave oscillation would

constitute monotonically increasing or decreasing OPs,

which would (strictly) have insufficient data-points to

represent the slow-wave’s period, but still contain local
information about the signal and contribute to

differentiate it to other frequencies.
3.3. Low-frequency ECoG oscillations recover
neuronal dynamics

We find that we can bridge several cortical scales by

focusing on the lower ECoG frequencies (Fig. 3). We

note that decoding specific neuronal firing patterns from

a field recording, such as an ECoG, is an ill-posed

problem, but we can approximate (to a degree) the

amount of information that neuronal populations

generate during each sleep-wake state. In this sense,

our analysis shows that Wake and REM’s neuronal

dynamics and field recordings are complex across

scales (Fig. 3B). In contrast, the appearance of DOWN

states in neuronal populations and slow-waves in field

recordings make NREM activity more predictable and

less complex (González et al., 2021).

We note that although our frequency band division is a

simple procedure, invariant complexity across scales

disappears when considering the whole ECoG signal

frequency content. In particular, if we include the high

frequencies, extra-neural contamination likely confounds

the complexity results and brakes the scale invariance

we are finding in this work. Moreover, extra-neural

sources of contamination above 20Hz are already
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reported by Whitham (Whitham et al., 2007) for scalp

EEG, which supports our decision to use a division at

12Hz – making it available for scalp EEG analysis.
3.4. Low-frequency synchronization reveals cortical
sensory-motor decoupling during REM sleep

Finally, our mutual information analysis of the low

frequency band reveals particular synchronization

patterns between neocortical areas during REM sleep.

We find that the motor cortex decouples from sensory

and visual cortices (Fig. 4), in spite of the different

cortical areas maintaining complex patterns of activity.

Given that the activity of these lower frequencies

correlates with true neuronal dynamics (Fig. 3B), it

seems unlikely that the sensory-motor decoupling is

spurious. Because REM sleep is characterized by

muscle atony and a decreased proprioceptive sensory

entrance (Chase and Morales, 1983; Chase et al., 1989;

Soja et al., 1993), a reduction in the mutual information

between the motor cortex and the rest of the brain is

expected (Fig. 4B). We argue that a possible cause for

this sensory-motor decoupling (i.e., less information shar-

ing between motor areas and the rest of the neocortex), is

because motor feedback signals are unable to synchro-

nize the sensory cortices with the motor areas due to

motor pathways being inhibited.
4. EXPERIMENTAL PROCEDURES

Experimental procedures are in agreement with the

National Animal Care Law (No. 18611) and with the

‘‘Guide to the care and use of laboratory animals” (8th

Edition, National Academy Press, Washington DC,

2010), and approved by the Institutional Animal Care

Committee, Uruguay (Exp. No 070153–000332-16). The

experiments involve 12 Wistar adult rats, sustaining a

controlled 12h light/dark cycle (light comes on at 07:00

UYT) with unrestricted access to food and water.

Veterinarians of the institution determined the animals

were all in good health and we took extra care to

minimise pain, discomfort, and stress in the animals.

Also, we made an effort to use the minimum number of

animals necessary to obtain reliable data.

Surgical procedures imply chronically implanting

electrodes to the animals, where we follow procedures

carried in previous studies by Cavelli et al., 2017,

Cavelli et al., 2018. Anaesthesia is induced by a mixture

of ketamine-xylazine (90mg=kg and 5mg=kg i.p.,

respectively), the rat is then positioned in a stereotactic

frame, and the skull is exposed to attach 8 stainless-

steel screw-electrodes, which record the intra-cranial

EEG. 6 electrodes are placed bilaterally above motor

(M1), somato-sensory (S1), and visual (V2) cortices.

Remaining electrodes are placed in the right olfactory

bulb (OB) and cerebellum (taken as the reference elec-

trode). EMG registration is done by inserting 2 elec-

trodes into the neck muscle. All electrodes are

soldered into a 12-pin socket and fixed onto the skull

with acrylic cement. At the end of the surgical proce-

dures, an analgesic (Ketoprofen, 1mg=kg, s.c.) is admin-

istered. After the animals recover from these surgical
procedures, they are left to adapt in separate transpar-

ent cages (40� 30� 20cm) for 1 week before data is

collected. Cages contain wood-shaving material in a

temperature-controlled room (set to 21–24 �C), with

water and food ad libitum.

Experimental sessions are conducted during the light

period, between 10AM and 4PM UYT. Data from each

rat is collected individually in a sound-attenuated

recording chamber with a Faraday shield by a rotating

connector that allows free movement within the cage.

Polysomnographic recordings are amplified (�1000),

acquired (by a 16 bits AD converter set at a 1024Hz
sampling frequency), and stored using DASY LAB SOFTWARE

– recordings available upon request. The states of

REM, NREM and Wake are determined in 10s epochs.

Wake is defined by low-voltage fast-waves in M1, strong

theta-rhythm (4–7Hz) in V2, and relatively high EMG

activity. REM sleep is defined by low-voltage fast-

frontal-waves, a regular theta-rhythm in V2, and a silent

EMG (except for occasional twitches). NREM sleep is

determined by the presence of high-voltage slow-

cortical-waves (1–4Hz), sleep spindles in M1, S1, and

V2, and a reduction in EMG amplitudes. Additionally, a

visual scoring is performed to discard artifacts and

transitional states.

Frontal cortex data-set We also employ the data-set

from Watson et al., 2016b,Watson et al., 2016a to study

population dynamics and local field potentials in the fron-

tal cortex; freely available at CRCNS.org. For these

recordings, silicon probes were implanted in frontal corti-

cal areas of 11 male Long-Evans rats. Recording sites

include the medial prefrontal cortex (mPFC), anterior cin-

gulate cortex (ACC), pre-motor cortex/M2, and orbito-

frontal cortex (OFC). Recordings took place during light

hours in the home cage, including 25 sessions with mean

duration of 4:8hs � 2:2 std, at a 20kHz sampling fre-

quency. We exclude BWRat19_032413 from our analy-

ses because the recording lack REM sleep data. We

extract Local-Field Potentials (LFPs) by applying low-

pass filters to the recordings and resampling at 1250Hz.
We extract neuronal spikes by applying a high-pass filter

at 800Hz and then by detecting threshold crossings.

Spike sorting is carried by means of the KLUSTAKWIK

open-source software. Sleep-wake states are identified

by means of Principal Component (PC) analysis. In partic-

ular, SWS exhibits high LFP PC1 (power in the low

< 20Hz) and low EMG. REM sleep shows high Theta with

low EMG cluster, and a diffuse cluster of low broadband

LFP with high EMG. Wake has a diffuse cluster of low

broadband LFP with higher EMG, and a range of Theta

oscillations.
5. DATA ANALYSIS

Pre-processing of field recordings is done by a 1st-order

Finite-duration Impulse Response (FIR1) band-pass

½0:1; 450�Hz. We divide these signals into Low-

Frequency Oscillations (LFO) by a ½0:1; 12�Hz FIR1

band-pass and High-Frequency Oscillations (HFO) by a

½13; 450�Hz FIR1 band-pass, which corresponds to

making a division according to the classical
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polysomnographic frequency bands (Buzsáki and

Draguhn, 2004). Then, we fix the total signal length, T,
to a range between 3� 10

5
to 3� 10

6
data points for all

cortical locations and sleep-wake states. This means that

the shortest [largest] signals last

TDt ¼ 3� 10
5=1024Hz ’ 5 minutes [TDt ’ 50 minutes].

Encoding of signals into Ordinal Patterns (OPs)

[Bandt and Pompe, 2002] is done to quantify the signals’

randomness and how it changes during the sleep-wake

states. This encoding involves dividing a signal,

X ¼ fxðtÞ : t ¼ 0; . . . ; ðT� 1ÞDtg (where 1=Dt is the sam-

pling frequency of the signal), into sliding vectors with D
data-points (such that D 	 T) at a new sampling s, where
D P 2 is known as the embedding dimension and s as the
delay embedding. For example, fxðtÞ; xðtþ sÞ; xðtþ 2sÞg
is a vector at time t with D ¼ 3 data points and sampled at

sP 1 times. Each of these vectors is assigned an OP

according to the relative magnitude of its D elements

and how many permutations are needed to order them

increasingly. In other words, an OP represents the neces-

sary permutations needed to order the elements of the

embedded vector, which has up to D! possible permuta-

tions. In what follows, we set D ¼ 5 (meaning there are

5! ¼ 120 possible OPs), and analyse how results change

for different s. We note that similar results for both the low

and high-frequency bands are obtained employing D ¼ 4

(see Fig.S3).

Permutation Entropy (Bandt and Pompe, 2002) (PE)

quantifies the temporal randomness of a signal X after

encoding it into OPs. It is defined from the probability dis-

tribution of OPs (PðD; sÞðafXgÞ, with a ¼ 1; . . . ;D! and s the

delay embedding) by

PEXðD; sÞ ¼ �
XD!
a¼1

PðD; sÞðaÞ
log2 PðD; sÞðaÞ

� �
log2 D!½ �

¼ �
XD!
a¼1

PðD; sÞðaÞ logD! PðD; sÞðaÞ
� �

; ð2Þ

which depends on D and s and is normalised by the

maximum PE, log2ðD!Þ; namely, 0 6 PEX 6 1 for any

signal X, dimension D, or delay s. In general, there are

slight changes in the probability distribution of OPs when

analysing different consciousness states. This means

that PE values from Eq. (2) are similar and differences

can be hindered in the statistical comparisons. In order

to enhance these differences, we use the Permutation
Minimum-Entropy (PME), which is the infinit limit of the

Rényi entropy (Rényi et al., 1961; Rényi, 1965; Zanin

et al., 2012; Zunino et al., 2015), is defined by

PMEXðD; sÞ ¼
min
a
f�log2 pðaÞ½ �g
log2 D!½ � ¼ �logD! max

a
fpðaÞg

h i
: ð3Þ

Entropy Rates are the incremental variations that

entropy has when a parameter is changed. In our case,

a PME rate is given by changes in the delay

embedding, s ¼ 1; . . . ; 40, for a fixed embedding

dimension; namely, D ¼ 4 or 5. We are interested on

the entropy rates because of the low and high

frequency-bands, which imply different relevant

frequencies. Specifically, we find the PME rate of a

signal X by
DPMEX

Ds
¼ PMEXðD; sþ DsÞ � PMEXðD; sÞ

Ds
; ð4Þ

where we choose Ds ¼ 4 for most of the PME analysis (we

also explore finer values, using Ds ¼ 1; results not shown

here). In particular, we optimise s by selecting the

maximum PME for each cortical location and sleep-wake

state. Namely,

sIðDÞ ¼ s : max
s

DPMEX

Ds

� �� �
: ð5Þ

Mutual Information, IðX;YÞ, is the amount of shared

information between 2 random signals, X and Y. It is a

non-linear measure of the correlation between the

signals, found from

IðX;YÞ ¼ HðXÞ þ HðYÞ � HðX;YÞ;HðXÞ [HðYÞ] being the

marginal entropy of signal X [Y] and HðX;YÞ being their

joint entropy. In this work, we use the PME [Eq. (3)] to

quantify the entropy of a signal, so we use this entropy

to quantify a Permutation Minimum-Mutual-Information
(PMMI) between pairs of signals. Namely,

PIX;YðD; sÞ ¼ PMEXðD; sÞ þ PMEYðD; sÞ � PMEX;YðD; sÞ; ð6Þ
where PMEX;YðD; sÞ is the joint permutation minimum-

entropy at a given D and s (meaning that we are

comparing both signals after they have been encoded

into OPs).
5.1. Statistics

We present data as regular boxplots showing the median,

the 1st and 3rd quartiles, and the distribution range.

Because of the complexity metrics we analyse, we

employ non-parametric statistics. In particular we use

the Friedman test (available with the scipy.stats) to

compare the results among states (Wake-NREM-REM)

with the Siegel post hoc test applying the Benjamini-

Hochberg false discovery rates correction (available with

the scikitlearn python 3 package (https://scikit-learn.org/

stable/)). We set p < 0:05 for a result to be considered

significant.
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