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Abstract

The sea slug Plakobranchus ocellatus (Sacoglossa, Gastropoda) retains photosynthetically active chloroplasts from ingested
algae (functional kleptoplasts) in the epithelial cells of its digestive gland for up to 10 months. While its feeding behavior has
not been observed in natural habitats, two hypotheses have been proposed: 1) adult P. ocellatus uses kleptoplasts to obtain
photosynthates and nutritionally behaves as a photoautotroph without replenishing the kleptoplasts; or 2) it behaves as a
mixotroph (photoautotroph and herbivorous consumer) and replenishes kleptoplasts continually or periodically. To address
the question of which hypothesis is more likely, we examined the source algae for kleptoplasts and temporal changes in
kleptoplast composition and nutritional contribution. By characterizing the temporal diversity of P. ocellatus kleptoplasts
using rbcL sequences, we found that P. ocellatus harvests kleptoplasts from at least 8 different siphonous green algal
species, that kleptoplasts from more than one species are present in each individual sea slug, and that the kleptoplast
composition differs temporally. These results suggest that wild P. ocellatus often feed on multiple species of siphonous
algae from which they continually obtain fresh chloroplasts. By estimating the trophic position of wild and starved P.
ocellatus using the stable nitrogen isotopic composition of amino acids, we showed that despite the abundance of
kleptoplasts, their photosynthates do not contribute greatly to the nutrition of wild P. ocellatus, but that kleptoplast
photosynthates form a significant source of nutrition for starved sea slugs. The herbivorous nature of wild P. ocellatus is
consistent with insights from molecular analyses indicating that kleptoplasts are frequently replenished from ingested
algae, leading to the conclusion that natural populations of P. ocellatus do not rely on photosynthesis but mainly on the
digestion of ingested algae.
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Introduction

Since the discovery of ‘‘chloroplast retention’’ in Elysia atroviridis

by Kawaguti & Yamasu [1], it has been widely accepted that many

species of sacoglossan sea slugs (Sacoglossa, Gastropoda, Mollusca)

retain chloroplasts of ingested algae in digestive gland cells [2]. A

sequestered chloroplast is called a ‘‘kleptoplast’’ [3]. The klepto-

plasts are not passed on to progeny, so new kleptoplasts must be

acquired in each generation [4–7]. Food algae of sacoglossan species

have been studied in laboratory feeding experiments. Most

sacoglossan species have a fairly high feeding preference for one

or a few algal species [7–9], and hence their kleptoplasts come from

a limited number of source algae. For example, Bosellia mimetica only

feed on Halimeda tuna [6–8] and algae ingested by Oxynoe antillarum

are limited to 2 species: Caulerpa racemosa and C. sertularioides [7].

Kleptoplasts retain photosynthetic activity for a few days to several

months in some sacoglossan species [10,11]. Laboratory experiments

showed that the photosynthetic products of kleptoplasts (e.g., sugars

and amino acids) are transferred to and used by sea slugs when they

are starved [12–14]. This ‘‘functional kleptoplasty’’ [15] permits sea

slugs to have a mixotrophic lifestyle involving photosynthesis via

kleptoplasts and heterotrophy by feeding on algae [16]. However, the

relative importance of these feeding mechanisms under natural

conditions has not been characterized in detail.

The retention period of functional kleptoplasts in the tropical

Indo-Pacific species Plakobranchus ocellatus van Hasselt, 1824 has
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been estimated to be up to 10 months from linear extrapolation of

the photosynthetic activity measured by pulse amplitude modu-

lation (PAM) fluorometry [10,17]. The natural algal source species

for kleptoplasts in P. ocellatus have not been determined [17,18],

but P. ocellatus are known to feed on multiple siphonous green algae

of the order Bryopsidales under artificial conditions, i.e.,

Chlorodesmis hildebrandtii, Rhipidosiphon javensis, Caulerpella ambigua,

and Bryopsis sp. [18–20]. It has been proposed that once the sea

slug acquires functional kleptoplasts, they are not replenished [21].

This hypothesis is based on the knowledge that the chlorophyll

contents of kleptoplasts remain unaffected in starved P. ocellatus for

27 days under 500 ft-candle lighting ( = 109.5 mmol photons

m22 s21 equivalent of incandescent light) [10], that P. ocellatus

are mostly found on sandy beaches where potential food algae are

rare [21], and that feeding behavior has never been observed in

their natural habitats [21]. However, Dunlap [20] reported that

the chlorophyll content and 14C-inorganic carbon fixation rate

diminished after 2 months of incubation under outdoor lighting

conditions, and concluded that kleptoplasts in P. ocellatus must be

replaced continually or at periodic intervals to replace those that

have degenerated. These two hypotheses remain to be examined.

Before addressing which hypothesis is more likely, a number of

questions must be answered. First, which algae are the sources of

kleptoplasts for the sea slugs? Second, do kleptoplasts in each P.

ocellatus individual derive from a single or multiple algal species?

Finally, to what degree does the sea slug’s nutrition depend on

kleptoplast photosynthesis and on algivory?

To address these questions, we identified the source algae of

kleptoplasts based on sequences of the RuBisCO (ribulose 1,5-

bisphosphate carboxylase/oxygenase) large subunit gene (rbcL),

which is encoded in the chloroplast genome [9,22,23] and has

been sequenced for a wide range of siphonous green algae [22].

We assessed the temporal kleptoplast composition in field-collected

P. ocellatus to determine whether the sea slugs acquire kleptoplasts

only once or repeatedly and estimated the trophic positions of the

sea slugs in their natural habitat and during starvation in the

laboratory based on the nitrogen isotopic composition of glutamic

acid and phenylalanine [24,25], which can be expected to serve as

a proxy of the nutritional contribution of functional kleptoplasts to

the sea slugs. Based on this combination of techniques, we aimed

to gain insight into the ecological role of functional kleptoplasty in

natural circumstances.

Materials and Methods

Sampling and DNA extraction of P. ocellatus
We collected P. ocellatus for DNA analyses by snorkeling or scuba

diving in a 200-m6200-m near-shore area off Tenija, Okinawa,

Japan (26u339N 128u089E). No permission was required for sample

collection. Samples were taken each month from April to December

2005, and from May 2007 to April 2008. However, the sea slug was

seldom found in winter (December 2005 and December 2007 to

April 2008). Collected sea slugs were fixed in 99% ethanol at room

temperature and preserved at 230uC until use.

With a DNeasy blood and tissue kit (Qiagen, Hilden, Germany),

the DNA of P. ocellatus was extracted from part of the parapodial

tissue (about 56562 mm) (Figure S1), which included the digestive

gland (retaining kleptoplasts) but not the stomach [26]. Although a

previous study showed chloroplasts on the outside of the stomach cells

of P. ocellatus, no such ‘‘extracellular’’ chloroplasts were observed in

the cavity of the parapodial digestive gland [26], and hence we

believe that the sequences obtained did not include contaminant

DNA from extracellular chloroplasts in the digestive tract.

Genetic analysis of P. ocellatus
Because it has been proposed that P. ocellatus is a cryptic species

complex [19,27], we checked the genetic homogeneity of the

collected individuals by sequencing the mitochondrial 16S rRNA

gene (mt16S rDNA). To identify the source algae of the

kleptoplasts, rbcL in 7 individuals of P. ocellatus collected in

nonconsecutive months were also sequenced. Fragments of rbcL

and of mt16S rDNA were amplified by PCR with their respective

primer sets (Table 1).

The PCR mixture (50 ml) contained 5 ml of 106Ex Taq Buffer

(Takara Bio, Otsu, Japan), 4 ml of dNTP mixture (10 mM), 0.2 ml

of TaKaRa Ex Taq (Takara Bio), 1 ml of the template DNA, and

39.8 ml of H2O. The thermal cycle was completed under the

following conditions: initial denaturation at 96uC for 1 min

followed by 35 cycles of 20 s at 96uC, 45 s at 50–55uC, and

1 min 45 s–2 min at 72uC. Amplicons of rbcL and mt16S rDNA

were purified using a Wizard SV Gel and a PCR Clean-Up

System (Promega, Heidelberg, Germany).

Purified amplicons of the rbcL genes were cloned using a TOPO

TA Cloning Kit with Top 10 E. coli (Invitrogen, Carlsbad, CA)

according to the manufacturer’s instructions. The insert size was

checked with PCR, and amplicons with the expected size were

Table 1. Primer list for sequencing and T-RFLP.

Gene Primer name Sequences (59–39) Reference

16S rDNA (on P. ocellatus (mitochondria) 16sar-F*{ CGC CTG TTT ATC AAA AAC AT Palumbi et al. [56]

16sbr-H*{ CCG GTC TGA ACT CAG ATC ACG T Palumbi et al. [56]

rbcL (on kleptoplasts and chloroplasts) rbc1*{ CCA MAA ACW GAA ACW AAA GC Hanyuda et al. [57]

U3-2*{ TCT TTC CAA ACT TCA CAA GC Hanyuda et al. [57]

2 U{ TTG GTW ACW GAA CCT TCT TC Hanyuda et al. [57]

rbc5{ GCT TGW GMT TTR TAR ATW GCT TC Hanyuda et al. [57]

trbcL-F{ CTK GCD GYD YTT MGD ATG ACA C This study

trbcL-R{ MRG CWA RWG AAC GTC CTT CAT T This study

Primers used for PCR and sequencing of mitochondrial 16S rDNA and kleptoplast (chloroplast) rbcL genes, and for T-RFLP analysis of rbcL.
*Primers for PCR.
{Primers for sequencing.
{Primer for T-RFLP.
doi:10.1371/journal.pone.0042024.t001
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purified by Sap/ExoI digestion. The sequencing reactions were

performed using a BigDye Terminator v3.1 Cycle Sequencing Kit

(Applied Biosystems, Foster City, CA) with the primers used for

the PCR experiments and two internal primers (Table 1). The

nucleotide sequences were determined with an ABI 3130xl

Sequencer (Applied Biosystems). If the genetic distance between

two or more rbcL sequences was less than 0.001 in p-distance, those

sequence differences were considered as a PCR error and the

minor different sequences were excluded from further analyses.

Using the Blastn search and tree reconstruction on partial

sequences [28], two chimera sequences were detected and

excluded from further processing.

Purified amplicons of sea slug mt16S rDNA were directly

sequenced with the primers used for the PCR experiments

(Table 1). The sequencing was performed as described above.

Sampling and genetic analysis of algae
In order to expand the reference dataset of rbcL sequences of

potential source algae from the study region, species belonging to

the siphonous green algal order Bryopsidales were collected at

Tenija, Bise (26u429N 127u529E), Seragaki (26u309N 127u529E),

and Maeda (26u269N 127u459E) in Okinawa, at Faro de San

Rafael (24u189N 110u209W) in Mexico, and at Asuncion Island

(19u419N 145u239E) in the Mariana Islands. No permission was

required for sample collection. The samples were fixed in 99%

ethanol and kept at 230uC until use. The species sampled were

Rhipidosiphon lewmanomontiae, Rhipidosiphon sp., Caulerpa subserrata,

Halimeda borneensis, Chlorodesmis fastigiata, and Poropsis sp.

We pressed voucher specimens from part of each sample and

deposited them in the Herbarium of the Coastal Branch of the

Natural History Museum and Institute, Chiba (CMNH) (specimen

numbers CMNH-BA-6809–6816), Japan, or in the Ghent

Herbarium, Belgium (G.008 and HV1774). The DNA was

extracted from the ethanol-fixed algal tissues with a DNeasy

blood and tissue kit (Qiagen), an Isoplant kit (Nippon Gene,

Toyama, Japan), or a DNeasy plant kit (Qiagen). Then, algal rbcL

genes were amplified by PCR and directly sequenced with the

same primers used for PCR (Table 1) as described above.

Phylogenetic analyses of kleptoplast rbcL
The rbcL sequences obtained from P. ocellatus and algae were

aligned with those of Bryopsidales and Dasycladales species in the

DNA Data Bank of Japan (DDBJ) using MAFFT version 6.818b

[29] with the ‘‘—auto’’ option. Ambiguously aligned sites were

removed automatically using trimAl version 1.2 [30] with the ‘‘-

automated1’’ option. The multiple sequence alignment finally

showed 1254 positions. Phylogenetic analyses were performed

with MEGA5 [31] for the neighbor-joining (NJ) method, and with

RAxML version 7.2.8 [32] for the maximum likelihood (ML)

method. For the NJ method, the maximum composite likelihood

method for nucleotide sequences [33] was employed. Kakusan4

[34] was used to select the appropriate model of nucleotide

evolution for ML analysis, and the general time-reversible model

[35] incorporating among-site rate variation approximated by a

discrete gamma distribution with 4 categories (GTR+C) was

chosen. The nonparametric bootstrap was used to examine the

robustness of phylogenetic relationships (1000 pseudoreplicates for

NJ and 300 for ML).

Terminal restriction fragment-length polymorphism
analysis of rbcL from P. ocellatus

We performed terminal restriction fragment-length polymor-

phism (T-RFLP) analysis [36] to assess the diversity of kleptoplasts

in the sea slugs and the seasonality of their relative abundance. To

avoid the biases of the amplification efficiency of PCR due to the

high/low matching of the primers, we newly designed nested

consensus primers for T-RFLP based on the rbcL sequences

obtained (Table 1). The primers were designed to amplify the

fragment including a specific restriction site for distinguishing

different source algae of the kleptoplasts. We digested the rbcL

regions obtained from P. ocellatus with various restriction enzymes

in silico using TRiFLe [37]. TaiI (Thermo Fisher Scientific,

Waltham, MA) was found to be the most suitable to identify the

multiple-source algal species of kleptoplasts (Table 2).

The rbcL fragments were amplified from the DNA templates of

P. ocellatus by PCR with the fluoresceinated primer trbcL-F and the

nonfluoresceinated primer trbcL-R (Table 1). Thermal cycling was

performed under the following conditions: initial denaturation at

96uC for 1 min followed by 35 cycles of 20 s at 96uC, 45 s at

57uC, and 1 min at 72uC. The composition of the PCR mixture

was the same as that for clone sequencing. Amplicons in the

reaction mixtures (50 ml) were purified with a Wizard SV Gel and

PCR Clean-Up System (Promega, Madison, WI). The purified

amplicons were digested with 0.5 ml of FastDigest TaiI (Fermentas,

Vilnius, Lithuania) and then 0.5 ml of 106 FastDigest Buffer

(Fermentas) in a total volume of 5 ml at 65uC for 15 min. The

Table 2. In silico T-RF lengths of rbcL sequences.

Clade in Figure 1 Predicted T-RF length in silico (bp) T-RFLP-category1 Abbreviation (clade)

Clade A (Proposis spp.)* 306 Proposis spp./Halimeda borneensis Prsp/Habo (A/D)

Clade B (Rhipidosiphon lewmanomontiae) 331 Rhipidosiphon lewmanomontiae Rhle (B)

Clade C (Rhipidosiphon spp.) 366 Rhipidosiphon spp. Rhsp (C)

Clade D (Halimeda borneensis)* 306 Proposis spp./Halimeda borneensis Prsp/Habo (A/D)

Clade E (Halimedineae spp. 1){ 138 Halimedineae spp. 1/Rhipiliaceae spp. Hasp1/Risp (E/G)

Clade F (Caulerpella spp.){ 191/291 Caulerpella spp. Casp (F)

Clade G (Rhipiliaceae spp.){ 138 Halimedineae spp. 1/Rhipiliaceae spp. Hasp1/Risp (E/G)

Clade H (Halimedineae spp. 2) 260 Halimedineae spp. 2 Hasp2 (H)

*T-RF lengths of Proposis spp. and Halimeda borneensis were the same and indistinguishable.
{T-RF lengths of Halimedineae spp. 1 and Rhipiliaceae spp. were identical and indistinguishable.
{Caulerpella spp. was composed of two subtypes having two distinct T-RFs (191 and 291 bp, respectively).
1See Figures 3 and 4.
doi:10.1371/journal.pone.0042024.t002
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digestion product was mixed with 9 ml of Hi-Di formamide

(Applied Biosystems) and 0.5 ml of GS 1200 (Liz) (Applied

Biosystems) and then denatured by heating at 95uC for 2 min.

The mixture was immediately chilled on ice and then electropho-

resed with an ABI 3730xl Sequencer (Applied Biosystems).

T-RFLP profiles were analyzed using GeneMapper ver. 3.7

(Applied Biosystems). The internal size standards in electropho-

resis gave an indication of the length of the terminal restriction

fragments (T-RFs) obtained. Based on the different lengths (base

pairs [bp]) of T-RFs, the source algae of the kleptoplasts were

distinguished. Relative amounts of the respective rbcL sequences

were estimated from the heights of T-RF peaks in T-RFLP

electropherograms [36,38].

Chromatograms with high-quality value (QV.75) were selected

for further analyses. Fragments smaller than 100 bp and larger

than 1200 bp were considered noise and excluded from further

analyses. Each T-RF was identified by matching to the in silico

digestion lengths of rbcL sequences from kleptoplasts (Table 2).

The relative abundance was calculated from relative peak heights

using the formula RA (%) = HT-RF/Htotal*100 (where RA is

relative abundance, HT-RF is the peak height of a specific T-RF,

and Htotal is the total of all T-RF peak heights in each

chromatogram). The statistical significance of the differences in

rbcL abundance between seasonally collected samples was assessed

with the permuted Brunner-Munzel test [39] implemented in the

‘‘lawstat’’ package for ‘‘R’’ [40].

Amino acid nitrogen isotopic analysis
To estimate the trophic position of the sea slugs under natural

conditions and during starvation, we used amino acid nitrogen

isotopic analysis [24,25]. The individuals of P. ocellatus for the

amino acid nitrogen isotopic analysis were collected off Toguchi,

Okinawa, Japan (26u219N 127u449E). No permission was required

for sample collection. About 50 individuals were collected on 27

April 2010. For transport to the laboratory in Kanagawa, Japan,

they were kept alive in artificial seawater (Rhotomarine, Rei-Sea,

Tokyo, Japan) at room temperature for 3 days without lighting.

Three healthy individuals were randomly selected and dissected,

and parapodial tissues were frozen and kept in liquid nitrogen as

wild samples. The samples for starvation were collected on 8 April

2008 (about 50 individuals) and incubated in an aquarium filled

with artificial seawater not containing macroalgae at 24uC under

light (13 mmol photons m22 s21) with day–night (14-h light/10-h

dark) rhythms. After incubation for 156 days (about 5 months), 3

individuals were randomly selected and dissected. Their parapo-

dial tissues were also frozen and kept in liquid nitrogen until

analysis.

The nitrogen isotope analysis of amino acids was performed

according to the method of Chikaraishi et al. [25]. Part of the

frozen parapodial tissue of each P. ocellatus individual was

hydrolyzed in 12N HCl at 100uC. The hydrolysate was washed

with n-hexane/dichloromethane (6:5, v/v) to remove any hydro-

phobic constituents. After derivatization with thionyl chloride/2-

propanol (1:4, v/v) and subsequently with pivaloyl chloride/

dichloromethane (1:4, v/v), the derivatives of the amino acids were

extracted with n-hexane/dichloromethane (6:5, v/v). The nitrogen

isotopic composition of each amino acid was determined by gas

chromatography/combustion/isotope ratio mass spectrometry

using a Delta plus XP isotope ratio mass spectrometer (Thermo

Finnigan MAT, Bremen, Germany) coupled to an 6890N gas

chromatograph (Agilent Technologies, Massy, France) via com-

bustion and reduction furnaces. Nitrogen isotopic compositions

were expressed in d-notation against atmospheric N2 (air). The

trophic position of the organism was calculated from the nitrogen

isotopic ratio in glutamic acid and phenylalanine (TPGlu/Phe value)

with the formula TPGlu/Phe = (d15NGlu2d15NPhe23.4)/7.6+1 [24].

We also determined the TPGlu/Phe value of a giant clam,

Tridacna crocea, harboring a symbiotic dinoflagellate, zooxanthellae

(Symbiodinium spp.) [41], and of an identified kleptoplast source

alga, R. lewmanomontiae. Three individuals of T. crocea were

collected off Sesokojima, Okinawa (26u389N 127u529E) on 19

November 2011. After 3 days of incubation without feeding and

light for transport to the laboratory, the mantle tissues containing

zooxanthellae and adductor muscles without zooxanthellae were

dissected from each individual. The adductor muscles were

analyzed using the same method as for the tissue of P. ocellatus.

To isolate zooxanthellae, mantles of each individual were cut into

pieces, homogenized with a polytron-type homogenizer (T-10

basic homogenizer, IKA, Staufen, Germany) with 20 ml of

artificial seawater, and centrifuged at 7506g for 3 min [42]. After

decantation of the supernatant, the pellet was suspended with

20 ml of artificial seawater. The suspension was filtered through a

20-mm mesh nylon cloth to remove host tissue debris and washed

two times with 20 ml of artificial seawater. Pelleted zooxanthellae

were used for the amino acid nitrogen isotopic analysis. A thallus

of R. lewmanomontiae was collected at the same site with P. ocellatus

Table 3. Number of clones obtained from kleptoplast rbcL clone sequences.

Corresponding clades (in Figures 1 and 2) of clones Total

A B C D E F G H

ID of the individual (month of collection)

Po-2005-A (Apr.) 1 - - - 7 - - 8 16

Po-2005-B (May) 18 - 1 - 2 - - - 21

Po-2005-C (June) 7 5 4 - - 3 - - 19

Po-2005-D (Aug.) 10 3 4 - - 7 - - 24

Po-2005-E (Aug.) 82 - - 1 - - 5 2 90

Po-2005-F (Sept.) 11 - - - - 4 - - 15

Po-2005-G (Nov.) 13 - 4 1 - 6 - - 24

Total number of clones 142 8 13 2 9 20 5 10 209

Number of clones obtained in kleptoplast rbcL clone sequencing from each of 7 Plakobranchus ocellatus individuals. The source algae were identified from the
phylogenetic analysis (Figure 1).
doi:10.1371/journal.pone.0042024.t003
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Figure 1. Phylogenetic tree based on rbcL sequences. Maximum likelihood (ML) phylogeny of the class Ulvophyceae based on 1254 nucleotide
positions of the chloroplast-encoded rbcL gene. The phylogram of the entire tree on the upper left is colored to match the inset. Chlamydomonas
reinhardtii (class Chlorophyceae) was chosen as the outgroup. Red, rbcL sequences from P. ocellatus. Black, algal rbcL sequences. Bootstrap support
(BS) values .50% are provided at the nodes (neighbor-joining/ML). ‘‘-‘‘, BS ,50%; ‘‘NC’’, nonconsensus node that was not observed in the neighbor-
joining tree.
doi:10.1371/journal.pone.0042024.g001
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Figure 2. Phylogenetic tree based on rbcL sequences (continued).
doi:10.1371/journal.pone.0042024.g002
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(off Toguchi, Okinawa) on 27 April 2010 and its d15N was

analyzed as described above.

Results

Identification of P. ocellatus kleptoplasts
To confirm the genetic homogeneity of P. ocellatus collected and

identify the source algae of kleptoplasts, we sequenced their mt16S

rDNA and rbcL. The sequences of mt16S rDNA fragments

[443 bp: DNA Data Bank of Japan (DDBJ) accession number,

AB700359] were identical among all examined P. ocellatus

individuals collected off Tenija, Okinawa, Japan, suggesting that

all samples belonged to the same species.

By clone sequencing, we obtained 209 rbcL sequences of

kleptoplasts from 7 individuals of P. ocellatus collected in 2005

(Table 3). After unifying highly similar sequences (p-dis-

tance,0.001), 59 sequences were used for subsequent analyses

(DDBJ accession numbers, AB619256–AB619314).

Blastn analyses showed that the kleptoplast rbcL sequences were

the most similar to those from green algae belonging to the

suborder Halimedineae (order Bryopsidales). In the phylogenetic

tree (Figures 1 and 2), the kleptoplast sequences did not form a

monophyletic clade but were divided into eight clades within the

Halimedineae (clades A–H in Figures 1 and 2). Clade B sequence

AB619290 was identical to R. lewmanomontiae from Tenija

(AB700351). Clade D corresponded to reference sequences of H.

borneensis (FJ624514 and AB700353). The remaining 6 clades of

kleptoplasts (A, C, E, F, G, H) could not be identified at the species

level and were assigned to higher taxa. Clade A clustered with

Poropsis sp., clade C with Rhipidosiphon sp., clade F with the genus

Caulerpella, and clade G with the family Rhipiliaceae. Familial

relationships were unclear for clades E and H, but they both

belong to the higher taxon Halimedineae. For convenience, the

source algae with such imperfect identifications are indicated with

a higher taxon name+spp. (e.g., Rhipiliaceae spp.).

Based on the rbcL sequences cloned from the 7 individuals, it

was already clear that individual sea slugs contained kleptoplasts

from multiple source species. As shown in Table 3, no single

individual had only one type of kleptoplast. In most cases,

kleptoplasts from 3 or 4 algal species were present in P. ocellatus

individuals.

Seasonality of P. ocellatus kleptoplasts
To examine whether the composition of kleptoplasts changed

over time, T-RFLP analysis of rbcL with TaiI digestion was

performed. Halimedineae spp. 1 (clade E) and Rhipiliaceae spp.

(clade G) could not be distinguished in this analysis because their

predicted T-RF lengths were identical at 138 bp (Table 2). They

are hereafter referred to as ‘‘Hasp1/Risp (clade E/G).’’ The T-RF

of Poropsis spp. (clade A) could not be differentiated from that of H.

borneensis (clade D) (T-RF length = 306 bp, Table 2), and they are

referred to as ‘‘Prsp/Habo (clade A/D).’’ The heights of those T-

RF peaks were regarded as the sum of the respective two algal

source clades (Table 2).

To establish the applicability of in silico T-RF predictions in

actual T-RFLP analysis, we compared the predicted T-RF

fragment lengths with those of PCR-amplified rbcL fragments

from two algae, H. borneensis and R. lewmanomontiae. We obtained a

single T-RF peak in each algal species, and its T-RF length was

identical with that predicted in silico (H. borneensis = 306 bp and R.

lewmanomontiae = 331 bp) (Table 2, Figure 3A, B).

High-quality T-RFLP electropherograms (quality value .75)

were obtained from 30 individuals of P. ocellatus collected in 2005

and from 20 collected in 2007 (Figure 4A). One to five peaks were

found in each P. ocellatus individual (Figures 3C and 4A, Table S1).

Except for the peak corresponding to Halimedineae spp. 2 (clade H)

(260 bp), all predicted restriction profiles were recovered. Forty-four

out of 50 individuals of P. ocellatus showed multiple T-RF peaks (28

individuals in 2005 and 16 in 2007) (Figure 4A, Table S1).

Assuming that the genome copy number in the chloroplasts did

not change before and after sequestration, the relative abundance

of rbcLs was used to estimate that of the corresponding kleptoplasts.

As shown by the boxplots in Figure 4B, the relative abundance of

kleptoplasts showed marked seasonal changes. Some of the

observed changes occurred over a relatively short time-span. For

example, in 2005, the abundance of Hasp1/Risp (clade E/G) in

August was significantly higher than that in June (p-value = 0.025)

(Figure 4B). Similarly, in 2007, the percentage of Caulerpella spp.

(clade F) significantly increased from July to August (p-

value = 0.010), while that of R. lewmanomontiae (clade B) signifi-

cantly decreased in the same period (p-value = 0.020) (Figure 4B).

In 2005, clear changes in abundance were also observed for

Rhipidosiphon spp. (clade C), R. lewmanomontiae (clade B), and

Hasp1/Risp (clade E/G) but these were not significant in the

permuted Brunner-Munzel test (p-value = 0.097, 0.571, and 0.102,

respectively) (Figure 4B).

Trophic position of P. ocellatus
To estimate the trophic position of P. ocellatus, the d15N values of

glutamic acid (d15NGlu) and phenylalanine (d15NPhe) of the freshly

collected and starved samples of P. ocellatus were measured, and

TPGlu/Phe values were calculated. The mean TPGlu/Phe value of 3

freshly collected P. ocellatus individuals was 1.960.1 (mean 6 ‘‘1s
for the TP values,’’ n = 3) (Table 4). On the other hand, the mean

TPGlu/Phe values of P. ocellatus that had been starved under light for

about 5 months (156 days) was 1.360.1 (n = 3) (Table 4). The

TPGlu/Phe value of R. lewmanomontiae, which was a source alga of

kleptoplasts in P. ocellatus, was 1.0 (n = 1). The mean TPGlu/Phe

value of T. crocea adductor muscle was 2.060.1 (n = 3), and that of

zooxanthellae isolated from T. crocea mantle was 0.960.0 (n = 3).

Discussion

By combining different methods, our results offer several new

insights into the ecology of functional kleptoplasty in P. ocellatus.

Because unincubated wild individuals were studied, the results

shed light on the natural state of this sea slug species.

Multiple algal sources of kleptoplasts in P. ocellatus
The phylogenetic analyses of the chloroplast-encoded rbcL gene

identified at least 8 algal sources of kleptoplasts in P. ocellatus

(Figure 1). This number exceeds the estimates from previous

laboratory feeding experiments on P. ocellatus [18,20] Our data

demonstrate that P. ocellatus has one of the broadest food algal

spectra in the Sacoglossa, including at least 8 species in 5 different

algal genera [7]. The multiplicity of kleptoplasts in individual sea

Figure 3. Electropherograms of T-RFLP analysis. T-RFLP electropherograms from (A) Rhipidosiphon lewmanomontiae, (B) Halimeda borneensis,
and (C) a single individual of Plakobranchus ocellatus (sample no. Ploc051113A). Fragment lengths and corresponding source algae are shown in the
box under the peak. Only a single peak with a length identical to that predicted by in silico T-RFLP was obtained from each algal individual (Table 2).
The electropherogram from the sea slug (C) showed multiple peaks corresponding to those of in silico T-RFLP of the kleptoplast source algae (Table 2).
doi:10.1371/journal.pone.0042024.g003
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Figure 4. Time series of rbcL sequence composition in Plakobranchus ocellatus. (A) Relative abundance of respective rbcL in individuals of
Plakobranchus ocellatus collected monthly in 2005 and 2007. Source algae of kleptoplasts are shown by abbreviations of the clades (Table 2). (B)
Tukey’s boxplots of the relative abundance of rbcL sequences. Data points of fewer than three individuals of P. ocellatus are shown as diamonds. The
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slug specimens also confirms that individuals have multiple food

sources. This multiplicity of kleptoplasts was first reported in a

sacoglossan, Elysia clarki (2–4 species) [9], and also recently

suggested in P. ocellatus [17]. These findings strongly suggest that,

in the natural setting, the sea slugs feed on several species and

retain their chloroplasts in digestive gland cells.

A common conclusion of our work and previous feeding studies on

P. ocellatus [7,18,20] is that their food/source algae are all siphonous

green algae of the order Bryopsidales. The genus Caulerpella, which

was identified as a food source in a previous study [20], was shown to

be a major contributor to the kleptoplast pool. On the other hand, we

did not detect 3 algal species that were eaten by P. ocellatus in a

laboratory setting in previous studies: C. hildebrandtii (Udoteaceae);

Bryopsis sp.; and R. javensis [18,20]. Such discordance may be because

the algae in question are not preferred by P. ocellatus in their natural

habitats, or because the algae are ingested but their chloroplasts are

not retained. For some of the algal species involved, misidentifications

could also lead to the mismatch. For example, Rhipidosiphon is a genus

of diminutive, fan-shaped algae in which there are several

morphologically similar but genetically distinct species (Verbruggen,

unpublished results), and kleptoplast clade C may originate from

algae that closely resemble R. javensis. Similarly, it is possible that in

the previous studies the source algae belonging to clade A (genus

Poropsis) could have been misidentified as C. hildebrandtii. Because these

taxa are anatomically very similar, and because the genus Poropsis is

little known and not commonly included in taxonomic reference

works, it may have been regarded as C. hildebrandtii in previous studies.

Our kleptoplast survey also revealed several new food algae of P.

ocellatus. Among them are R. lewmanomontiae (clade B), H. borneensis

(clade D), Rhipiliaceae spp. (clade G), and potentially Rhipidosiphon

spp. (clade B). In addition to these taxa, we found kleptoplasts of two

lineages that could not be readily assigned to a family (Halimedineae

spp. 1 and spp. 2). The most closely related rbcL sequences of these

two clades are Pseudochlorodesmis species (Figure 1). The diminutive

siphon of Pseudochlorodesmis, if branched at all, does so only a few

times [43]. Because the algae rarely exceed a few millimeters in

length, it should not come as a surprise that they may have been

overlooked in previous studies. The observed ulvophyceaen

macroalgae in sampling sites are listed in Table S3.

An interesting observation is that P. ocellatus do not seem to

discriminate among food sources based on size. Among the sources

of kleptoplasts are some larger seaweeds such as H. borneensis (10 cm)

and R. lewmanomontiae (3 cm) as well as several millimeter-scale taxa

(Pseudochlorodesmis, Caulerpella). One commonality between these

algae is that they all belong to suborder Halimedineae of the order

Bryopsidales (Figure 1) [44], which is consistent with the hypothesis

on the relationships between the radular tooth shape and food algal

cell wall components [45]. The radular tooth of P. ocellatus has a

triangular shape suitable for puncturing a hole in the halimedineaen

cell wall, which is composed of xylan [45,46], after which the

cytoplasm can be ingested.

Changing annual kleptoplast composition
T-RFLP analysis showed that the kleptoplast rbcL composition

of the sea slugs changed considerably from month to month.

Because kleptoplasts have not been observed to divide [2,17], these

changes must result from the replacement of kleptoplasts with

newly obtained chloroplasts by feeding, different spans of longevity

among kleptoplasts derived from various source algae, and/or

differential kleptoplast DNA replication (multimerization) rates

[47,48] due to those source algae.

Different spans of longevity and change in chloroplast genome

multimerizations of the kleptoplasts would leave a specific imprint

on the kleptoplast composition over time, i.e., the recovered

kleptoplast composition would remain the same but their relative

abundance should increase/decrease gradually over time. Our

results do not suggest such a pattern but rather suggest that large,

apparently stochastic changes occur in kleptoplast composition.

Although we cannot entirely exclude the possibility that P. ocellatus

individuals immigrated into the population at the collection sites,

previous studies suggested that P. ocellatus breed in a restricted

season in spring and rarely migrate as adults [18,49]. Therefore,

the hypothesis that kleptoplasts are replaced with newly obtained

chloroplasts from ingested algae appears to be the most plausible

explanation for our results. Although the seasonal change in the

brackets with ‘‘*’’ indicate a significant difference of the percentage value in the permuted Brunner-Munzel test. The value beside the symbol ‘‘*’’
indicates p-value.
doi:10.1371/journal.pone.0042024.g004

Table 4. d15N values of amino acids and estimated trophic positions of Plakobranchus ocellatus, the alga Rhipidosiphon
lewmanomontiae, and the giant clam Tridacna crocea.

Specimen Number of specimens Averaged d15N value1 (SD) Trophic position#

Glutamic acid Phenylalanine

Plakobranchus ocellatus

Freshly collected* (Apr. 2010) 3 17.4 (0.9) 7.3 (1.3) 1.9 (0.08)

Starved{ (Apr.–Nov. 2008) 3 20.0 (0.5) 14.4 (0.9) 1.3 (0.07)

Rhipidosiphon lewmanomontiae (Apr. 2010) 1 12.3 8.8 1.0

Tridacna crocea (Nov. 2011)

Adductor muscle 3 16.1 (0.6) 5.5 (0.1) 2.0 (0.07)

Zooxanthellae{ 3 8.2 (0.4) 5.3 (0.1) 0.9 (0.04)

*Collected off Toguchi, Okinawa, Japan.
{Starved for 156 days (5 months) in a laboratory aquarium after collection off Toguchi.
{Symbiodinium spp. isolated from the mantle of T. crocea.
1%, relative to air.
#Trophic position (TPGlu/Phe) = (d15NGlu2d15NPhe23.4)/7.6+1.
doi:10.1371/journal.pone.0042024.t004
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algal community may affect the kleptoplast compositions in P.

ocellatus, this point remains to be studied in future.

Trophic position of P. ocellatus
Assuming an error in the TPGlu/Phe value (i.e., 1s= 0.12) [24],

the values of wild P. ocellatus (mean TPGlu/Phe value = 1.9) were

identical to the trophic position of algivorous organisms, i.e.,

primary consumers (Table 4, S2). These results clearly indicate

that, under natural circumstances, P. ocellatus individuals mainly

obtain amino acids by digestion of ingested algae. This is in stark

contrast to P. ocellatus individuals that had been starved for 5

months and had a TPGlu/Phe value of 1.3, which is intermediate

between values typical of phototrophic organisms (primary

producers) and algivores (primary consumers).

These results suggest that kleptoplasts of P. ocellatus could

produce amino acids, for which the TPGlu/Phe value would be 1.0,

similar to that of primary producers. The production of amino

acids from inorganic nitrogen was also reported in kleptoplasts of

E. viridis in a tracer experiment using 15N-inorganic nitrogen [14].

Teugels and coworkers have proposed that kleptoplasts synthesize

glutamic acid from ammonium derived from seawater or made

from nitrate and/or urea, and that other amino acids are

synthesized from glutamic acid [14]. It is not clear whether the

enzymes of these pathways remain active in the kleptoplasts [17]

or whether their genes are expressed in the host animal nucleus to

which they were transferred from the algal nuclear genome [50].

When the amount of amino acids from the digestion of algae is

much larger than that from kleptoplasts, the TPGlu/Phe value

would become 2.0. Accordingly, the observed TPGlu/Phe values

(i.e., 1.360.1) for cultured individuals imply some significant

contribution of the kleptoplast-produced amino acids to P. ocellatus

during starvation.

The giant clam T. crocea harbors zooxanthellae, which

contribute significantly to the host nutrition, but it also feeds on

free-living plankters [51]. Previous studies showed that the

zooxanthellae secrete a photosynthate, glycerol or glucose, in the

mantle tissue [42,52,53] but the zooxanthellae are also digested in

the stomach [54,55]. Those previous results suggested that

essential amino acids are derived from the digestion of zooxan-

thellae and plankters. The TPGlu/Phe value of the giant clam T.

crocea was 2.0, which is in agreement with previous results [54,55]

showing that T. crocea gain amino acids by the digestion of

zooxanthellae in symbiotic relationships as well as the digestion of

free-living plankters. The data together with those of natural and

starved individuals suggest that wild P. ocellatus obtain amino acids

mainly from heterotrophic digestion of algae as in the case of T.

crocea, while starved individuals obtain significant amounts of

amino acids from photosynthetic production in kleptoplasts.

Feeding of P. ocellatus under natural conditions
The present results indicate that P. ocellatus gain kleptoplasts

from multiple algal species, that each individual harbors a

heterogeneous population of kleptoplasts from multiple algal

species, that the kleptoplast composition changes with time, and

that the sea slugs mainly gain amino acids by digesting ingested

algae in nature, although kleptoplasts are probably capable of

producing amino acids. These combined findings suggest that wild

P. ocellatus repeatedly feed on siphonous green algae and acquire

new kleptoplasts when there is sufficient algal biomass to feed the

P. ocellatus population. The ecological role of functional klepto-

plasty has been hypothesized to be a nutrition resource during

periods of food insecurity [6,15]. The photosynthetic activity of

kleptoplasts in starved P. ocellatus is reduced by about 10% per

month [10]. Replenishing kleptoplasts equivalent to the photo-

synthetic activity lost is necessary to sustain the required level of

photosynthetic activity.

Although P. ocellatus is capable of retaining kleptoplasts for up to

10 months, our results indicate that the nutritional contribution of

kleptoplasts may be insufficient even in a natural habitat where

food algae are plentiful. In other sacoglossan species such as Elysia

timida, E. viridis, and Thuridilla carlsoni, the nutritional contribution

of functional kleptoplasts may be even less, because the

photosynthetic activity of their kleptoplasts is less and retention

periods are shorter than in P. ocellatus [10]. The ecological role of

kleptoplasts under natural conditions when food is abundant

remains unclear. Functional kleptoplasty may reduce the algal

feeding and the energy cost to ingest their calcified thallus [6]. Our

present study showed that the nutritional yield from kleptoplasts

does not exceed that from food digestion but suggested that they

provide an energy source (e.g., sugars) and essential nutrients (e.g.,

amino acids) under starved conditions. The TPGlu/Phe value of 1.3

during starvation suggests that the contribution of kleptoplasts to

amino acid synthesis is much greater than that of autophagic

digestion of reserved amino acids and proteins, which would

increase the TPGlu/Phe value. It has been proposed that the

function of kleptoplasts may be to complement nutrients under

starved conditions [6]. Our present results support this hypothesis.

Although adult P. ocellatus are thought to be nourished by the

photosynthetic activity of functional kleptoplasty, the present study

suggests that the sea slug continually feeds on siphonous green

macroalgae in its natural habitat and that digested algae are the

major source of nutrition, while kleptoplast photosynthesis plays a

very minor role. Further studies on the feeding behavior,

photosynthetic activity, and nutritional contribution of kleptoplasts

in P. ocellatus are necessary to understand the ecological role of the

functional kleptoplasty of this species.

Supporting Information

Figure S1 Overviews of Plankobranchus ocellatus. (A)

Dorsal views of a freshly collected intact P. ocellatus individual. (B)

An anesthetized individual with spread parapodia. The tissue

region in the red square was dissected and used for DNA

extraction.

(TIF)

Table S1 Percentage abundance of rbcL sequences from
source algae in P. ocellatus*.
(XLS)
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