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Abstract

In a companion paper, we introduced a notion of multi-Dirac structures, a graded version
of Dirac structures, and we discussed their relevance for classical field theories. In the
current paper we focus on the geometry of multi-Dirac structures. After recalling the
basic definitions, we introduce a graded multiplication and a multi-Courant bracket on
the space of sections of a multi-Dirac structure, so that the space of sections has the
structure of a Gerstenhaber algebra. We then show that the graph of a k-form on a
manifold gives rise to a multi-Dirac structure and also that this multi-Dirac structure
is integrable if and only if the corresponding form is closed. Finally, we show that the
multi-Courant bracket endows a subset of the ring of differential forms with a graded
Poisson bracket, and we relate this bracket to some of the multisymplectic brackets found
in the literature.

1. Introduction

Dirac structures were introduced by Courant (1990) as a simultaneous generalization
of pre-symplectic and Poisson structures. It was quickly realized that these structures
have remarkable properties that make them into a fundamental tool in geometry as
well as in classical mechanics, where they are used to describe mechanical systems with
symmetry, constraints, or interconnected systems; see Yoshimura and Marsden (2006a,b);
Dalsmo and van der Schaft (1999) for more details.

The present paper arose out of the need for a similar structure to describe classical
field theories. Based on a variational principle for field theory, in Vankerschaver et al.
(2011) we defined a multi-Dirac structure of degree n on a manifold to be a subbundle
of the exterior algebra

E :=
∧•

(TZ)⊕
∧•

(T ∗Z) (1)
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of multivector fields and forms satisfying a certain maximally isotropic property reminis-
cent of the usual maximally isotropic property of Dirac structures. The advantages of
the use of multi-Dirac structures for the description of classical field theories is that they
yield the field equations in implicit form and are hence well-suited for field theories with
constrained momenta due to gauge symmetry or nonholonomic constraints.

In the current paper, which should be seen as a companion paper to Vankerschaver
et al. (2011), we describe the mathematical properties of multi-Dirac structures in some-
what greater detail. We recall the definition of a multi-Dirac structure D and show
that there exists a graded multiplication and a graded bracket (referred to as the multi-
Courant bracket) on the space of sections of D and that the latter is endowed with the
structure of a Gerstenhaber algebra with respect to these two operations. The multi-
Courant bracket then allows us to define a multi-Poisson bracket on a distinguished
subset of the space of forms and we show that this bracket satisfies the graded Jacobi
identity up to exact forms, while the multi-Courant bracket satisfies the graded Jacobi
identity exactly, as required by the definition of a Gerstenhaber algebra.

The multi-Dirac structures introduced in this paper also turn out to have unexpected
links with other kinds of Dirac-like structures. Not only do multi-Dirac structures include
standard Dirac structures developed by Courant (1990) as a special case, it was also
shown by Zambon (2010) that multi-Dirac structures are in a one-to-one correspondence
with higher-order Dirac structures. While this correspondence is relatively easy to state,
the implications are not entirely straightforward: while multi-Dirac structures give rise
to Gerstenhaber algebras, higher-order Dirac structures are related to L∞-algebras, an
observation due to Rogers (2010) for multisymplectic forms and extended to higher-order
Dirac structures by Zambon (2010). The relation between both algebraic structures,
however, is as yet unclear.

Furthermore, the multi-Dirac structures in this paper generalize the “multi-Poisson”
bracket of Cantrijn et al. (1996) on the space of Hamiltonian forms. However, while the
latter satisfies the graded Jacobi identity only up to exact forms, our structures (through
the associated Gerstenhaber algebra) satisfy the graded Jacobi and Leibniz identities
exactly, making them easier to understand. Finally, while Gerstenhaber structures were
studied previously in field theory (see Kanatchikov (1995)), our approach does not rely
on any extraneous structures for its definition, such as the choice of a background metric
or connection, and is therefore more canonical.

Conventions. Throughout this paper, all manifolds and maps are smooth. We denote
the exterior algebra of the tangent and cotangent bundle of Z by

∧•
(TZ) and

∧•
(T ∗Z),

respectively. Multivector fields are sections of the former, while forms are sections of the
latter. For the signs in the definition of the Schouten-Nijenhuis bracket on

∧•
(TZ), we

use the convention of Forger et al. (2005) and Marle (1997). A brief overview of the most
important properties of multivector fields can be found in appendix Appendix A.
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2. The Graded Courant Bracket

In this section, we show that the space of sections of the exterior algebra (1) of
multivector fields and forms on a manifold Z is equipped with a graded multiplication
and a bracket of degree -1. Furthermore, we show that closed forms on Z give rise to
automorphisms of these structures. This makes the exterior bundle

∧•
(TZ)⊕

∧•
(T ∗Z)

into the graded analogue of TZ ⊕ T ∗Z equipped with the usual Courant bracket (see
Courant (1990)). As the latter is the standard example of a Courant algebroid, we can
consider

∧•
(TZ)⊕

∧•
(T ∗Z) as a “graded Courant algebroid.”

2.1. Multivectors and Forms

Let Z be an arbitrary manifold. We denote the k-th exterior power of TZ and T ∗Z
by
∧k

(TZ) and
∧k

(T ∗Z), respectively. We consider a form-valued pairing between

Σ ∈
∧k

(T ∗Z) and Γ ∈
∧l

(TZ), given by

〈Σ,Γ〉 = iΓΣ ∈
∧k−l

(T ∗Z), (2)

for k ≥ l, and 〈Σ,Γ〉 = 0 for k < l. For fixed n ≤ dimZ, we introduce the product
bundles

Lr :=
∧r

(TZ)×Z
∧n+1−r

(T ∗Z), (3)

where r = 1, . . . , n. Using the pairing (2), we can then define graded commutative and
graded anticommutative pairings between the elements of Lr and Ls (for r, s = 1, . . . , n)
as follows. For (Γ,Σ) ∈ Lr and (Γ′,Σ′) ∈ Ls, we put

〈〈(Γ,Σ), (Γ′,Σ′)〉〉− :=
1

2
(〈Σ,Γ′〉 − (−1)rs 〈Σ′,Γ〉)

=
1

2
(iΓ′Σ− (−1)rsiΓΣ′) , (4)

and

〈〈(Γ,Σ), (Γ′,Σ′)〉〉+ :=
1

2
(〈Σ,Γ′〉+ (−1)rs 〈Σ′,Γ〉)

=
1

2
(iΓ′Σ + (−1)rsiΓΣ′) . (5)

Note that both pairings take values in
∧n+1−r−s

(T ∗Z). As a consequence, both pairings
are trivially zero whenever r + s > n+ 1.

There is a slight difference between our notation and the one used by Courant (1990).
Here, the subscript ‘+’ and ‘-’ in the pairing reflects the fact that the pairing is graded
commutative and graded anti-commutative, respectively, but this is opposite to the no-
tational convention of Courant.
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2.2. The Multi-Courant Bracket and Multiplication on the Space of Sections

There exists a wedge product between sections of Lr and Ls, defined in the following
way. For (Γ,Σ) ∈ Lr and (Γ′,Σ′) ∈ Ls, with r + s ≤ n, we define

(Γ,Σ) ∧ (Γ′,Σ′) :=
(
Γ ∧ Γ′, 〈〈(Γ,Σ), (Γ′,Σ′)〉〉+

)
=

(
Γ ∧ Γ′,

1

2
(iΓ′Σ + (−1)rsiΓΣ′)

)
. (6)

Note that (Γ,Σ) ∧ (Γ′,Σ′) ∈ Lr+s. If r + s > n, we let (Γ,Σ) ∧ (Γ′,Σ′) = 0.
Furthermore, there exists a canonical bracket on the space of sections of L which

is reminiscent of the usual Courant bracket. This multi-Courant bracket is defined by
means of the following bracket on the homogeneous sections. On sections of Lr × Ls,
define the multi-Courant bracket [[·, ·]] : Lr × Ls → Lr+s−1 by

[[(Γ,Σ), (Γ′,Σ′)]]

:=
(

[Γ,Γ′], (−1)(r−1)s£ΓΣ′ + (−1)s£Γ′Σ− (−1)sd 〈〈(Γ,Σ), (Γ′,Σ′)〉〉+
)

(7)

when r + s ≤ n + 1. When r + s > n + 1, we define the bracket to be zero. In the
above, [Γ,Γ′] is the Schouten-Nijenhuis bracket of the multivector fields Γ and Γ′, and
the Lie derivatives denote the generalized Lie derivatives of a form along a multivector
field. Note that (7) takes values in Lr+s−1. Some properties of the Schouten-Nijenhuis
bracket and the generalized Lie derivative are described in Appendix Appendix A.

2.3. Automorphisms of the Multi-Courant Bracket

Just like in the case of the standard Courant bracket, there exists a distinguished
class of automorphisms of the multi-Courant bracket, defined by means of closed forms
as follows. For every closed (n+ 1)-form σ, define the mapping Φσ : Lr → Lr by

Φσ(Γ,Σ) = (Γ,Σ + iΓσ). (8)

For notational convenience, we let L := ⊕nr=1Lr and we denote the map induced by (8)
on L by Φσ : L→ L.

Proposition 2.1. For every closed (n + 1)-form σ, the associated map Φσ : L → L is
an automorphism of the multiplication (6) and the multi-Courant bracket (7):

Φσ ([[(Γ,Σ), (Γ′,Σ′)]]) = [[Φσ(Γ,Σ),Φσ(Γ′,Σ′)]] (9)

and
Φσ ((Γ,Σ) ∧ (Γ′,Σ′)) = Φσ(Γ,Σ) ∧ Φσ(Γ′,Σ′) (10)

for all (Γ,Σ), (Γ′,Σ′) ∈ L.

Proof. We have that the right-hand side of (9) is given by

[[Φσ(Γ,Σ),Φσ(Γ′,Σ′)]] =

[[(Γ,Σ), (Γ′,Σ′)]] +
(

0, (−1)(r−1)s£ΓiΓ′σ + (−1)s£Γ′ iΓσ − (−1)sdiΓ′ iΓσ
)
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The terms involving σ can be rewritten as

(−1)(r−1)s£ΓiΓ′σ + (−1)s£Γ′ iΓσ − (−1)sdiΓ′ iΓσ

= (−1)(r−1)s£ΓiΓ′σ − iΓ′£Γσ − (−1)riΓ′ iΓdσ

= i[Γ,Γ′]σ − (−1)riΓ∧Γ′dσ,

where we have used the Koszul identity (A.2) in the last step. Since dσ = 0, this shows
us that

[[Φσ(Γ,Σ),Φσ(Γ′,Σ′)]] = [[(Γ,Σ), (Γ′,Σ′)]] + (0, i[Γ,Γ′]σ)

= Φσ ([[(Γ,Σ), (Γ′,Σ′)]]) .

For the proof of (10), we observe that

Φσ ((Γ,Σ) ∧ (Γ′,Σ′)) = Φσ (Γ ∧ Γ′, iΓ′Σ)

=

(
Γ ∧ Γ′,

1

2
(iΓ′Σ + (−1)rsiΓΣ′) + iΓ∧Γ′σ

)
,

while

Φσ(Γ,Σ) ∧ Φσ(Γ′,Σ′) = (Γ,Σ + iΓσ) ∧ (Γ′,Σ′ + iΓ′σ)

=

(
Γ ∧ Γ′,

1

2

[
iΓ′(Σ + iΓσ) + (−1)rsiΓ(Σ′ + iΓ′σ)

])
so that (10) holds without any conditions on σ.

3. Geometry of Multi-Dirac Structures

In this section, we define a multi-Dirac structure on a manifold Z as a subbundle
of
∧•

(TZ) ⊕
∧•

(T ∗Z) which is maximally isotropic with respect to the graded anti-
symmetric pairing 〈〈·, ·〉〉− introduced in (4). After defining a notion of integrability
for multi-Dirac structures, we then prove the main result of this paper (Theorem 3.5):
the space of sections of an integrable multi-Dirac structure can be equipped with the
structure of a Gerstenhaber algebra.

Definition 3.1. Let Vr be a subbundle of Lr. The s-orthogonal complement of Vr is
the subbundle (Vr)

⊥,s of Ls which consists of all (Γ′,Σ′) ∈ Ls such that

〈〈(Γ,Σ), (Γ′,Σ′)〉〉− = 0 for all (Γ,Σ) ∈ Vr.

Note that (Vr)
⊥,s ⊂ Ls for r + s ≤ n + 1 and (Vr)

⊥,s = Ls whenever r + s > n + 1,
irrespective of Vr.

We can now introduce graded multi-Dirac structures in an analogous way to the
original definition of standard Dirac structures by Courant (1990).

Definition 3.2. A multi-Dirac structure of degree n on Z is a sequence of sub-
bundles Dr ⊂ Lr, r = 1, . . . n satisfying the maximally s-isotropic property:

(Dr)
⊥,s = Ds (11)

for r, s such that r+s ≤ n+1. We set D := D1⊕. . .⊕Dn, so that D ⊂
∧•

(TZ)⊕
∧•

(T ∗Z)
and we say that D is maximally isotropic.

5



Multi-Dirac structures have a number of properties which are reminiscent of standard
Dirac structures. The remainder of this section is devoted to these properties.

3.1. Integrability of Multi-Dirac Structures

A special class of Dirac structures consists of those for which the space of sections
is closed under the wedge product and the multi-Courant bracket. Note first that for
a multi-Dirac structure, the wedge product and multi-Courant bracket take on slightly
simpler forms:

(Γ,Σ) ∧ (Γ′,Σ′) = (Γ ∧ Γ′, iΓ′Σ) (12)

and
[[(Γ,Σ), (Γ′,Σ′)]] =

(
[Γ,Γ′], (−1)(r−1)s£ΓΣ′ − iΓ′dΣ

)
(13)

for all (Γ,Σ) ∈ Dr and (Γ′,Σ′) ∈ Ds, where r, s = 1, . . . , n. Now, it is easy to show
that the wedge product always takes values in D: with the notations of above, and with
(Γ′′,Σ′′) ∈ Dt, we have

〈〈(Γ,Σ) ∧ (Γ′,Σ′), (Γ′′,Σ′′)〉〉− =
1

2

(
iΓ′′ iΓ′Σ− (−1)(r+s)tiΓ∧Γ′Σ′′

)
=

(−1)st

2
iΓ′
(
iΓ′′Σ− (−1)rtiΓΣ′′

)
= (−1)stiΓ′ 〈〈(Γ,Σ), (Γ′′,Σ′′)〉〉− ,

which is identically zero. Hence, the wedge product of two sections of D is always
again a section of D. In contrast, the multi-Courant bracket of two sections of D is not
necessarily again a section of D. When this is nevertheless the case, we will say that D
is an integrable multi-Dirac structure.

Definition 3.3. A multi-Dirac structure D of degree n is said to be integrable if the
space of sections of D is closed under the multi-Courant bracket (7). That is, for all
(Γ,Σ) ∈ Dr and (Γ′,Σ′) ∈ Ds (where r, s = 1, . . . , n) the following holds:

[[(Γ,Σ), (Γ′,Σ′)]] ∈ Dr+s−1.

The integrability of multi-Dirac structures can be determined by the vanishing of a
certain integrability tensor, which we now define. First of all, consider a multi-Dirac
structure D = D1 ⊕ · · · ⊕ Dn of degree n and let (Γ,Σ) ∈ Dr, (Γ′,Σ′) ∈ Ds, and
(Γ′′,Σ′′) ∈ Dt be arbitrary homogeneous sections of D and consider the following map:

TD((Γ,Σ), (Γ′,Σ′), (Γ′′,Σ′′)) = 2 〈〈(Γ,Σ), [[(Γ′,Σ′), (Γ′′,Σ′′)]]〉〉− . (14)

In appendix Appendix B, we show that TD is a tensor.
By definition, D is integrable if and only if TD vanishes identically. In the following

lemma, we give a clearer expression for TD.

Lemma 3.4. The integrability tensor TD can be written as

TD((Γ,Σ), (Γ′,Σ′), (Γ′′,Σ′′)) = (−1)t(r−1)
[
− (−1)(r+s)tdiΓ′ iΓ′′Σ

+ (−1)s(t−1)iΓ′£ΓΣ′′ + (−1)r(s−1)iΓ£Γ′′Σ′ + (−1)t(r−1)iΓ′′£Γ′Σ
]

(15)

where (Γ,Σ) ∈ Dr, (Γ′,Σ′) ∈ Ds, and (Γ′′,Σ′′) ∈ Dt.
6



Proof. The expression (14) is given in full by

TD = (−1)(s−1)t iΓ£Γ′Σ′′︸ ︷︷ ︸
(A)

− iΓiΓ′′dΣ′︸ ︷︷ ︸
(B)

−(−1)r(s+t−1) i[Γ′,Γ′′]Σ︸ ︷︷ ︸
(C)

,

where we have suppressed the arguments of TD for the sake of clarity. We now tackle
terms (A), (B), and (C) individually.

Term (A) can be rewritten as

iΓ£Γ′Σ′′ = iΓdiΓ′Σ′′ − (−1)siΓiΓ′dΣ′′

= iΓdiΓ′Σ′′ − (−1)rs+siΓ′ iΓdΣ′′

= iΓdiΓ′Σ′′ − (−1)(r−1)(s−1) (iΓ′£ΓΣ′′ − iΓ′diΓΣ′′) .

For term (B), we have

iΓiΓ′′dΣ′ = (−1)tiΓ (diΓ′′Σ′ −£Γ′′Σ′) ,

while term (C) is given by

i[Γ′,Γ′′]Σ = (−1)(s−1)t£Γ′ iΓ′′Σ− iΓ′′£Γ′Σ

= (−1)(s−1)t (diΓ′ iΓ′′Σ− (−1)siΓ′diΓ′′Σ)− iΓ′′£Γ′Σ.

Collecting all of these expressions together, we have that

TD = −(−1)(s−1)t+(r−1)(s−1)iΓ′£ΓΣ′′ + (−1)tiΓ£Γ′′Σ′

− (−1)r(s+t−1)
(

(−1)(s−1)tdiΓ′ iΓ′′Σ− iΓ′′£Γ′Σ
)
, (16)

where we have used the fact that

iΓ′Σ′′ − (−1)stiΓ′′Σ′ = 2 〈〈(Γ′′,Σ′′), (Γ′,Σ′)〉〉 = 0

and

iΓΣ′′ − (−1)rtiΓ′′Σ = 2 〈〈(Γ′′,Σ′′), (Γ,Σ)〉〉 = 0,

since (Γ,Σ), (Γ′,Σ′), and (Γ′′,Σ′′) are elements of D. After rearranging the signs in (16),
we obtain (15).

We now arrive at the main result of this section: the space of sections of an integrable
multi-Dirac structure forms a Gerstenhaber algebra (for the definition of a Gerstenhaber
algebra, see Gerstenhaber (1963); Kanatchikov (1995); Cannas da Silva and Weinstein
(1999)).

Theorem 3.5. Let D be an integrable multi-Dirac structure of order n. The space of
sections of D forms a Gerstenhaber algebra: for all (Γ,Σ) ∈ Dr, (Γ′,Σ′) ∈ Ds, and
(Γ′′,Σ′′) ∈ Dt, we have

• Graded anti-commutativity: [[(Γ,Σ), (Γ′,Σ′)]] = −(−1)(r−1)(s−1) [[(Γ′,Σ′), (Γ,Σ)]];
7



• Graded Leibniz identity:

[[(Γ,Σ), (Γ′,Σ′) ∧ (Γ′′,Σ′′)]] =

[[(Γ,Σ), (Γ′,Σ′)]] ∧ (Γ′′,Σ′′) + (−1)(r−1)s(Γ′,Σ′) ∧ [[(Γ,Σ), (Γ′′,Σ′′)]] ;

• Graded Jacobi identity:

[[(Γ,Σ), [[(Γ′,Σ′), (Γ′′,Σ′′)]]]] + (−1)(t−1)(r+s) [[(Γ′′,Σ′′), [[(Γ,Σ), (Γ′,Σ′)]]]]

+ (−1)(r−1)(s+t) [[(Γ′,Σ′), [[(Γ′′,Σ′′), (Γ,Σ)]]]] = 0 (17)

Proof. The proofs of the first two properties are tedious but straightforward verifications,
which we leave to the reader. For the proof of the Jacobi identity, we proceed as follows.
We first introduce the Jacobiator J ((Γ,Σ), (Γ′,Σ′), (Γ′′,Σ′′)) as the left-hand side of
(17). Our goal is to show that J = 0 when restricted to D.

With the notations of the theorem, we have that

[[(Γ,Σ), [[(Γ′,Σ′), (Γ′′,Σ′′)]]]] =(
[Γ, [Γ′,Γ′′]], (−1)(r−1)(s+t−1)£Γ

(
(−1)(s−1)t£Γ′Σ− iΓ′′dΣ′

)
− i[Γ′,Γ′′]dΣ

)
and similar expressions for the other terms in the Jacobi identity can be obtained through
cyclic permutation. We now collect all the terms that involve Σ, finding

−i[Γ′,Γ′′]dΣ + (−1)t£Γ′′ iΓ′dΣ + (−1)st+1£Γ′£Γ′′Σ,

which can be rewritten as

(−1)s+t
(
di[Γ′,Γ′′]Σ + £Γ′′diΓ′Σ

)
.

Putting everything together, the left-hand side of (17) can then be written as

J ((Γ,Σ), (Γ′,Σ′), (Γ′′,Σ′′)) = (−1)s+t
(
di[Γ′,Γ′′]Σ + £Γ′′diΓ′Σ

)
+ (−1)(r−1)(s+t)+r+t

(
di[Γ′′,Γ]Σ

′ + £ΓdiΓ′′Σ′
)

+ (−1)t(r+s)
(
di[Γ,Γ′]Σ

′′ + £Γ′diΓΣ′′
)
.

(18)

Now we rewrite the terms involving Schouten-Nijenhuis brackets using the Koszul identity
(A.2) as follows:

di[Γ′,Γ′′]Σ = (−1)(s−1)(t−1)£Γ′diΓ′′Σ− diΓ′′£Γ′Σ

= (−1)(s−1)(t−1)+rt£Γ′diΓΣ′′ − diΓ′′£Γ′Σ,

and similarly for the other terms. Note that the first term on the right hand side cancels
exactly with the last term in (18). Similar cancellations occur for the other terms as
well, and we are eventually left with

J ((Γ,Σ), (Γ′,Σ′), (Γ′′,Σ′′))

= −(−1)s+rtd
(

(−1)(r−1)tiΓ′′£Γ′Σ + (−1)(s−1)riΓ£Γ′′Σ′ + (−1)(t−1)siΓ′£ΓΣ′′
)

= −(−1)rs+rt+r+s+td (TD((Γ,Σ), (Γ′,Σ′), (Γ′′,Σ′′))) ,

8



where we used Lemma 3.4 and the fact that d2 = 0. Hence, the Jacobiator is simply
the exterior derivative of the integrability tensor, and the Jacobi identity is satisfied
whenever the multi-Dirac structure is integrable, i.e., when TD ≡ 0.

Finally, let D = D1⊕· · ·⊕Dn be an integrable multi-Dirac structure on a manifold Z.
The sections of D form a Gerstenhaber algebra, but are also “anchored” to the base man-
ifold Z in a special way. To elucidate this, we recall that the exterior algebra

∧•
(TZ) of

multi-vector fields, equipped with the wedge product and the Schouten-Nijenhuis bracket,
is the standard example of a Gerstenhaber algebra (see Marle (1997)). It is not hard to
show that the projection map ρ : D →

∧•
(TZ), given by

ρ((Γ1,Σ1), . . . , (Γn,Σn)) = (Γ1, . . . ,Γn)

is a homomorphism of Gerstenhaber algebras. In most cases, this map is neither injective
nor surjective.

4. Examples

4.1. Dirac Structures and Higher-Order Dirac Structures

Dirac Structures. Let D be a multi-Dirac structure of degree one on a manifold Z. We
claim that D is a standard Dirac structure in the sense of Courant (1990). Indeed, D
is by definition a subbundle of TZ ⊕ T ∗Z, and the graded anti-commutative pairing (4)
becomes in this case

〈〈(Γ,Σ), (Γ′,Σ′)〉〉− =
1

2
(iΓ′Σ + iΓΣ′) ,

where Γ,Γ ∈ TZ and Σ,Σ′ ∈ T ∗Z. The requirement that D is maximally isotropic under
this pairing then makes D into a Dirac structure.

It is also instructive to consider the multi-Courant bracket in the degree-one case.
Putting r = s = 1 in (7), we have that the bracket on TZ ⊕ T ∗Z is given by

[[(Γ,Σ), (Γ′,Σ′)]] =

(
[Γ,Γ′],£ΓΣ′ −£Γ′Σ− 1

2
d (iΓ′Σ− iΓΣ′)

)
,

which is precisely the standard bracket of Courant (1990). We conclude that Dirac
structures are a special case of multi-Dirac structures.

Higher-Order Dirac Structures. Dirac structures in the sense of Courant (1990) fit into
a hierarchy of higher-order structures, which were described by Hitchin (2003), Gualtieri
(2004) and Zambon (2010); see also the references therein. We now show that every
multi-Dirac structure induces a higher-order Dirac structure. Under some regularity
assumptions, Zambon (2010) has shown that there is in fact a one-to-one correspondence
between multi-Dirac structures and higher-order Dirac structures.

Let D be a multi-Dirac structure of degree n on Z, and consider the component
D1 ⊂ L1 = TZ ⊕

∧n
(T ∗Z). We claim that D1 is in itself a higher-order Dirac structure

of degree n. This follows when we examine the pairing (4), restricted to elements of L1:

〈〈(Γ,Σ), (Γ′,Σ′)〉〉− =
1

2
(iΓ′Σ + iΓΣ′) ,
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where now Γ,Γ′ ∈ TZ and Σ,Σ′ ∈
∧n

(Z). As a special case of the maximally isotropic
property (11), we then have that

(D1)⊥,1 = D1,

which makes D1 into a higher-order Dirac structure of degree n. Restricting the multi-
Courant bracket to sections of L1, we have that the bracket is again given by

[[(Γ,Σ), (Γ′,Σ′)]] =

(
[Γ,Γ′],£ΓΣ′ −£Γ′Σ− 1

2
d (iΓ′Σ− iΓΣ′)

)
,

which is nothing but the Courant bracket on sections of L1.

Links with Lie Algebroids. Let D = D1⊕· · ·Dn be an integrable multi-Dirac structure on
a manifold Z. We have just demonstrated that D1 is a higher-order Dirac structure. As
a result, D1 is a Lie algebroid over Z with bracket the multi-Courant bracket restricted
to D1 and anchor the projection ρ : D1 → TZ onto the first factor. The image ρ(D1)
of ρ forms an integrable singular distribution on Z so that Z is foliated by integral
submanifolds. It can now be shown that these leaves are pre-multisymplectic manifolds,
that is, they are equipped with a form ΩD of degree n which is closed but not necessarily
nondegenerate.1 The form ΩD is defined as follows: let (v1, α1), . . . , (vn, αn) be sections
of D1, and define

ΩD(v1, . . . , vn) := αn(v1, . . . , vn−1).

Because of isotropy, ΩD is totally antisymmetric in all of its arguments.

4.2. The Graph of a Differential Form

In this section, we show that the graph (in some suitable sense) of a differential form
determines a multi-Dirac structure. This multi-Dirac structure was already defined in
Vankerschaver et al. (2011). We refer to that paper for an overview of applications in
classical field theory, and for proofs of the basic theorems. In this paper, we investigate
the geometric aspects of the multi-Dirac structure in further detail: in particular, we
show that the resulting multi-Dirac structure is integrable if and only if the underlying
form is closed.

Let Ω be a form of degree n+1. We define the graph of Ω as the sequence of subspaces
Dr ⊂ Lr given by

Dr := {(Γ, iΓΩ) ∈ Lr | Γ ∈
∧r

(TZ)} (19)

for r = 1, . . . , n.

Proposition 4.1. The sequence (19) of bundles Dr satisfies the maximally s-isotropic
property (11): whenever r, s are such that r + s ≤ n+ 1, the following holds:

(Dr)
⊥,s = Ds.

Hence, the direct sum D = D1 ⊕ · · · ⊕Dn is a multi-Dirac structure of degree n.

1This observation, and the construction of ΩD, are due to Eduardo Mart́ınez.
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Proof. See Vankerschaver et al. (2011).

We now turn to the question whether this multi-Dirac structure is integrable.

Proposition 4.2. The canonical multi-Dirac structure (19) is integrable if and only if
the underlying form Ω is closed: dΩ = 0.

Proof. The bracket is closed if, for arbitrary sections (Γ, iΓΩ) ∈ Dr and (Γ′, iΓ′Ω) ∈ Ds,
we have that [[(Γ, iΓΩ), (Γ′, iΓ′Ω)]] ∈ Dr+s−1 or(

[Γ,Γ′], (−1)(r−1)s£ΓΣ′ − iΓ′dΣ
)
∈ Dr+s−1

with Σ = iΓΩ and Σ′ = iΓ′Ω. This is the case if

i[Γ,Γ′]Ω = (−1)(r−1)s£ΓiΓ′Ω− iΓ′diΓΩ. (20)

The left-hand side of (20) can be rewritten using the Koszul identity (A.2) as

i[Γ,Γ′]Ω = (−1)(r−1)s£ΓiΓ′Ω− iΓ′£ΓΩ

= (−1)(r−1)s£ΓiΓ′Ω− iΓ′diΓΩ + (−1)riΓ′ iΓdΩ.

Comparing this with the right-hand side of (20), we see that (20) holds if and only if

iΓ′ iΓdΩ = 0,

for all Γ ∈
∧r

(TZ) and Γ′ ∈
∧s

(TZ). This is the case if and only if dΩ = 0.

Contravariant Multi-Dirac Structures. Given the fact that a Poisson tensor field gives
rise to a Dirac structure (see Courant (1990)), one can now ask whether a multivector
field of higher degree induces a multi-Dirac structure. Unfortunately, this does not hold
in full generality: in Zambon (2010) it is shown that if Λ is a multivector of degree k
on a manifold Z, then Λ gives rise to a higher-order Dirac structure if and only if either
Λ = 0 or k is equal to 2 (in which case Λ is a Poisson bivector) or to the dimension of
Z. By the results of section 4.1, the same is true for multi-Dirac structures.

5. The Multi-Poisson Bracket

In this section, we analyze some of the properties of the multi-Courant bracket. We
start from an integrable multi-Dirac structure D of degree n, and show that the multi-
Courant bracket defines a graded Poisson bracket on certain spaces of forms. This bracket
is graded anti-commutative but only satisfies the graded Jacobi identity up to exact forms.

Definition 5.1. Let D = D1 ⊕ · · · ⊕Dn be an integrable multi-Dirac structure of degree
n on Z. A (n− r)-form Σ is said to be admissible if there exists an r-multivector field
ΓΣ such that (ΓΣ,dΣ) ∈ Dr, where r = 1, . . . , n.

We define a new grading on the space of admissible forms as follows: let Σ be an
admissible s-form. We then define the new degree of Σ to be given by

|Σ| := n− s− 1. (21)
11



The set of all admissible forms of degree k (in the sense of definition (21)) is denoted by
Ωkadm, where k = 0, . . . , n− 1.

Following Cantrijn et al. (1996), we define a graded Poisson bracket on the space on
admissible forms as follows. Let Σ ∈ Ωkadm and Σ′ ∈ Ωladm and denote the corresponding
multivector fields by ΓΣ and ΓΣ′ . We then let

{Σ,Σ′} := −(−1)kiΓΣ′ dΣ.

Note that the right-hand side only depends on Σ′ and not on the particular choice of
multivector field ΓΣ′ . Indeed, let Γ̄Σ′ be any other multivector field so that (Γ̄Σ′ ,dΣ′) ∈
Dl. Since (Γ̄Σ′ − ΓΣ′ , 0) ∈ Dl, we have that

〈〈
(Γ̄Σ′ − ΓΣ′ , 0), (ΓΣ,dΣ

〉〉
− = 0, or

iΓ̄Σ′ dΣ = iΓΣ′ dΣ.

Secondly, let Σ ∈ Ωkadm and Σ′ ∈ Ωladm and note that

|{Σ,Σ′}| = |Σ|+ |Σ′| .

We now show that the bracket is again admissible. Indeed, this follows easily from the
fact that

[[(ΓΣ,dΣ), (ΓΣ′ ,dΣ′)]] = ([ΓΣ,ΓΣ′ ], (−1)kld{Σ,Σ′}),

where k = |Σ| and l = |Σ′|.
We show the multi-Poisson bracket is graded anti-commutative. Let Σ,Σ′ be admis-

sible forms with |Σ| = k and |Σ′| = l, and consider the associated multivector fields ΓΣ

and ΓΣ′ . We then have that

〈〈(ΓΣ,dΣ), (ΓΣ′ ,dΣ′)〉〉− =
1

2

(
iΓ′dΣ− (−1)(k−1)(l−1)iΓdΣ′

)
=

(−1)k

2

(
{Σ,Σ′}+ (−1)kl{Σ′,Σ}

)
,

but since the left-hand side is zero, we conclude that

{Σ,Σ′} = −(−1)kl{Σ′,Σ}. (22)

A natural question now is whether the multi-Poisson bracket satisfies the graded
Jacobi identity. This turns out to not be the case, even when the multi-Dirac structure
is integrable, as is shown in the following lemma.

Lemma 5.2. Consider an integrable multi-Dirac structure D of degree n. Let Σ ∈ Ωkadm,
Σ′ ∈ Ωladm, and Σ′′ ∈ Ωmadm be admissible forms. The multi-Poisson bracket satisfies the
relation

(−1)km{{Σ,Σ′},Σ′′}+ (−1)lk{{Σ′,Σ′′},Σ}+ (−1)ml{{Σ′′,Σ},Σ′}
= (−1)(k+l)(m−1)diΓΣ′ iΓΣ′′ dΣ,

(23)

where ΓΣ, ΓΣ′ and ΓΣ′′ are the multivector fields associated to Σ, Σ′ and Σ′′, respectively.
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Proof. This follows easily from the observation that

{{Σ,Σ′},Σ′′} = (−1)k+liΓΣ′′ d{Σ,Σ′} = (−1)kiΓΣ′′ diΓΣ′ dΣ = (−1)kiΓΣ′′ £ΓΣ′ dΣ

and the expression (15) for TD: putting everything together, we have that

TD((ΓΣ,dΣ), (ΓΣ′ ,dΣ′), (ΓΣ′′ ,dΣ′′)) =

− (−1)k(m−1)
(

(−1)km{{Σ,Σ′},Σ′′}+ (−1)lk{{Σ′,Σ′′},Σ}+ (−1)ml{{Σ′′,Σ},Σ′}

− (−1)(k+l)(m−1)diΓΣ′ iΓΣ′′ dΣ
)
,

while the left-hand side vanishes as D is integrable.

We summarize the properties of the multi-Poisson bracket in the following theorem:

Theorem 5.3. The multi-Poisson bracket is graded anti-commutative, and satisfies the
graded Jacobi identity up to exact forms.

The fact that the graded Jacobi identity is satisfied only up to exact forms is not new
and arises also when considering multi-Poisson brackets associated to multisymplectic
structures; see Forger et al. (2005). Following a similar procedure as in Cantrijn et al.
(1996), we may now consider the quotient space of admissible forms modulo exact forms
(which are trivially admissible). The multi-Poisson bracket drops to this space, and
endows it with the structure of a graded Lie algebra.

Another interpretation was given by Baez et al. (2010) (see also the work of Rogers
(2010) and Zambon (2010)), where the exact forms on the right-hand side of (23) signal
the fact that the space of admissible forms has the structure of an L∞-algebra.

6. Outlook and Future Work

In this paper, we have focused on the definition of multi-Dirac structures and the
induced Gerstenhaber algebra on the space of sections. In a previous paper, we have
shown that multi-Dirac structures play a similar role in classical field theory as standard
Dirac structures in mechanics. Much remains to be done, and we now give an outline of
a few interesting questions related to the geometry of multi-Dirac structures as well as
their applications in classical field theory.

• Many geometric structures have a straightforward, natural interpretation in terms
of graded geometry (see Cattaneo and Zambon (2009)). Given that multi-Dirac
structures appear as a graded analogue of standard Dirac structures, a natural
question is therefore whether multi-Dirac structures can be understood in terms of
graded geometry as well.

• Multi-Dirac structures are in a one-to-one correspondence to higher-order Dirac
structures (see Zambon (2010)), but their algebraic properties seem at first sight
to be different. While the space of sections of a multi-Dirac structure is equipped
with the structure of a Gerstenhaber algebra, higher-order Dirac structures instead
give rise to L∞-algebras. It would be of considerable interest to understand the
link between these two algebraic structures directly.
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• In the context of classical field theories, a few questions naturally arise. First of all,
in addition to the multi-Poisson brackets in section 5, there are several other kinds
of brackets that can be used to write down the field equations (see Marsden et al.
(1986); Castrillón López and Marsden (2003); Forger and Romero (2005) and the
references therein). Furthermore, in Bridges (2006) multi-symplectic structures
were considered on the exterior algebra of a Riemannian manifold. It would be
interesting to see if these brackets and structures induce corresponding multi-Dirac
structures.

In this context we also mention the concept of Stokes-Dirac structures (see van der
Schaft and Maschke (2002)), where the calculus of forms on a manifold and the
Stokes theorem are used to develop a concept of Dirac structures suitable for field
theories. In Vankerschaver et al. (2010), we have shown that these structures arise
through Poisson reduction of infinite-dimensional structures. When a space-time
splitting is chosen, it can be shown that a multi-Dirac structure induces an infinite-
dimensional Dirac structure on the space of fields. The precise relation between
both points of view and the implications for the different kinds of Poisson brackets
mentioned before will be the subject of forthcoming work.

One further question relates to the formulation of the field equations of classical
field theory. When a multi-Dirac structure D = D1⊕· · ·⊕Dn on the jet extension
J1Y of a fiber bundle π : Y → X is given, we showed in Vankerschaver et al.
(2011) that the field equations can then be expressed in terms of Dn. It is not
clear, however, what role is played by the other components Dr, with r < n.

One answer might be found in the link with admissible forms and multi-Poisson
brackets of section 5. Admissible forms of degree n can be integrated over spatial
hypersurfaces in X and correspond to classical observables of the theory (see Ki-
jowski (1973)). In the same vein, admissible forms of lower degree might correspond
to observables with support on lower-dimensional submanifolds.

Appendix A. Properties of Multivector Fields and Generalized Lie Deriva-
tives

In this appendix we give a quick account of multivector fields and their properties.
We follow the exposition and the sign conventions for multivectors and Lie derivatives
of Forger et al. (2005) and Marle (1997).

Multivector Fields. Let M be a manifold. A multivector field of degree k on M is
a section of the k-th exterior power

∧k
(TM). We say that a k-multivector field Γ is

decomposable if it can be written as a wedge product of k vector fields X1, . . . , Xk on
M :

Γ = X1 ∧ · · · ∧Xk.

We denote the space of all k-multivector fields on M by Xk(M). The Schouten-
Nijenhuis bracket is the unique R-bilinear map

[·, ·] : Xk(M)× Xl(M)→ Xk+l−1(M)

with the following properties: for multivector fields Γ,Γ′ and Γ′′ of degree k, l and m
respectively, we have that
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1. The Schouten-Nijenhuis bracket vanishes on functions: for f, g ∈ C∞(M), we have
[f, g] = 0;

2. It is graded anticommutative:

[Γ,Γ′] = −(−1)(k−1)(l−1)[Γ′,Γ];

3. It coincides with the Lie bracket when restricted to vector fields;

4. It satisfies the graded Leibniz rule:

[Γ,Γ′ ∧ Γ′′] = [Γ,Γ′] ∧ Γ′′ + (−1)(k−1)lΓ′ ∧ [Γ,Γ′′];

5. It satisfies the graded Jacobi identity:

(−1)(k−1)(m−1)[Γ, [Γ′,Γ′′]] + cyclic perm. = 0.

It follows that the set X(M) of all multivector fields equipped with the Schouten-
Nijenhuis bracket forms a Gerstenhaber algebra (see Gerstenhaber (1963)).

The Lie Derivative. We define the contraction of a decomposable multi-vector field
Γ = X1 ∧ · · · ∧Xk and a differential form α to be

iΓα = iXk
. . . iX1

α.

This operation can then be extended to arbitrary, non-decomposable multi-vector fields
by linearity. The Lie derivative £Γα of the form α along a multi-vector field Γ of
degree k is defined by means of a generalization of Cartan’s formula:

£Γα = diΓ − (−1)kiΓdα,

where k is the degree of Γ. The Lie derivative satisfies the following useful properties:

Proposition Appendix A.1 (Prop. A.3 in Forger et al. (2005)). For any two multi-
vector fields Γ and Γ′ of degree k and l respectively, and any differential form α, we
have

d£Γα = (−1)k−1£Γdα (A.1)

i[Γ,Γ′]α = (−1)(k−1)l£ΓiΓ′α− iΓ′£Γα (A.2)

£[Γ,Γ′]α = (−1)(k−1)(l−1)£Γ£Γ′α−£Γ′£Γα (A.3)

£Γ∧Γ′α = (−1)liΓ′£Γα+ £Γ′ iΓα. (A.4)

Throughout the paper, (A.2) is referred to as the Koszul identity.

Appendix B. The Integrability Tensor TD

In this appendix, we show that the expression (14) for TD determines a tensor, by
extending the argument due to Courant (1990) to the case of multi-Dirac structures.
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Straightforward algebraic manipulations show that TD is the restriction to D of the
following form:

T ((Γ,Σ), (Γ′,Σ′), (Γ′′,Σ′′)) = (−1)(r−1)t
[
− 1

3
(−1)rsdiΓ 〈〈(Γ′,Σ′), (Γ′′,Σ′′)〉〉+

+(−1)r(s−1)
(
iΓd 〈〈(Γ′,Σ′), (Γ′′,Σ′′)〉〉+ − (−1)tiΓiΓ′′dΣ′

)
+ (c. p.)

]
,

where (c. p.) stands for cyclic permutations of the terms between square brackets. It is
not hard to show that T is graded anticommutative in its arguments:

T ((Γ,Σ), (Γ′′,Σ′′), (Γ,Σ)) = −(−1)(s−1)(t−1)T ((Γ,Σ), (Γ′,Σ′), (Γ′′,Σ′′)),

and similarly for permutations of the other arguments. From the definition (14), we have
now that TD is obviously F(Z)-linear in its first argument, and as TD is the restriction
to D of a graded anticommutative expression, it must be linear in the other arguments
as well. We conclude that TD is a tensor.
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