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Abstract
Magnetic material properties of an electromagnetic device can be recovered by solving an
inverse problem where measurements are adequately interpreted by a mathematical forward
model. The accuracy of these forward models dramatically affects the accuracy of the material
properties recovered by the inverse problem. The more accurate the forward model is, the
more accurate recovered data are. However, the more accurate ‘fine’ models demand a high
computational time and memory storage. Alternatively, less accurate ‘coarse’ models can be
used with a demerit of the high expected recovery errors. This paper uses the Bayesian
approximation error approach for improving the inverse problem results when coarse models
are utilized. The proposed approach adapts the objective function to be minimized with the a
priori misfit between fine and coarse forward model responses. In this paper, two different
electromagnetic devices, namely a switched reluctance motor and an EI core inductor, are used
as case studies. The proposed methodology is validated on both purely numerical and real
experimental results. The results show a significant reduction in the recovery error within an
acceptable computational time.
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1. Introduction

Magnetic materials are indispensable components in all
electromagnetic devices (EMDs) and are widely used in
electrical power applications, such as rotating electrical
machines. The magnetic material properties in these EMDs
are classically identified by means of standard techniques.
Measurements are then carried out on a separate sheet
of the same material as the EMD by using an Epstein
frame, single sheet tester or ring core measurements [1].
However, this requires extra samples of the electrical steel
sheet of which the EMD is manufactured, which are often
unattainable. Moreover, the magnetic material characteristic

may be changed during the construction of the EMD, e.g.
due to the introduced cutting stresses [2]. Therefore, it is
convenient to characterize the magnetic properties on the
specific geometry of the EMD itself.

Recently, an inverse problem has been proposed where
a set of well-chosen measurements are interpreted through
the use of a computer model [3]. These measurements are
carried out on the geometry of the EMD itself. In practice, two
major aspects can reduce the accuracy of the recovered solution
when solving the inverse problem, specifically: measurement
noise and inaccurate modeling [4]. Measurement noise can be
eliminated or reduced to some extent by accurately performing
the measurements, see [5]. On the other hand, modeling
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errors are basically originated from two main sources: the
uncertain ‘geometrical’ model parameters and the way of
modeling of the physical phenomena of the EMD. The effect
of the uncertain geometrical model parameters on the solution
of the inverse problem has been extensively investigated
by the authors, see [6, 7]. In these references, the EMD
models are assumed to be perfect, i.e. all physical phenomena
are modeled, or in other words, the EMD models exactly
simulate the reality. However, in practice, this assumption
never happens. In this paper, we focus only on the modeling
error due to the inaccurate modeling.

Generally, there are two approaches to model an EMD:
analytical models and numerical models. Analytical models
are computationally fast but less accurate. Numerical models
can be divided into several accuracy levels depending on
the degree of freedom and discretization. The two- or three-
dimensional finite-element (2D-FE or 3D-FE) models are
commonly used with different mesh discretization levels. In
general, numerical models are often more accurate than the
analytical ones, but much more time consuming: the higher
the degree of freedom, the more the time consumed [8].

In order to solve an inverse problem with the highest
accuracy, one may incorporate the measurements with the
most accurate (fine) model ‘3D numerical FE model’ of an
EMD. However, the computational time of this approach may
be prohibitive. Alternatively, less accurate (coarse) models can
be used with an expected higher recovery error compared to
the fine models.

In this paper, we propose the use of the Bayesian
approximation error approach [9] for improving the inverse
problem solution when the coarse model is utilized.
The proposed approach adapts the objective function to
be minimized with the a priori misfit between the fine and
coarse forward model responses, in which the modeling error
is represented in a stochastic way.

The Bayesian approximation error approach has been
successfully applied onto applications such as electrical
impedance tomography (EIT) [9] and optical diffusion
tomography [10]. In these applications, biomedical inverse
problems are solved and different types of modeling
errors are discussed: modeling errors caused by domain
truncation, reduced discretization and unknown electrode
contact impedances [11]; modeling errors due to unknown
domain boundary [12]. It is the first time that the Bayesian
approximation error approach is applied for the magnetic
material characterization of an EMD. Moreover, we propose
in this paper a novel criterion for selecting the best coarse
model from different coarse models with varying fidelity.
The proposed criterion is based on evaluating the degree of
the coarseness of the coarse model that provides an a priori
indication about the usefulness of the applicability of the
Bayesian approximation error approach.

In order to validate the proposed methodology, purely
numerical results are used for recovering the magnetic
material characteristics of a switched reluctance motor (SRM).
Moreover, the proposed methodology is applied for retrieving
the material parameters of an EI core inductor by solving
an inverse problem starting from real experimental data
performed externally on this specific EMD.

The methodology is presented in section 2. Three
techniques for modeling EMDs are shown in section 3.
In section 4.1, the proposed methodology is applied to a
SRM in order to reduce the recovery error in the inverse
solution resulting from inaccurate modeling. In this case
study, numerical results are used, i.e. no measurements
are performed. In section 4.2, the proposed methodology
is validated ‘experimentally’ by solving an inverse problem
starting from real experimental data on an EI core inductor. In
this case study, two relative coarse models, compared to the
fine model, are tested. The conclusions are drawn in section 5.

2. Methodology

An electromagnetic inverse problem procedure requires a large
number of evaluations in forward models. Classically, for the
sake of simulating as close as possible the reality, a very
fine numerical model is used [13]. However, the forward
model calculation and consequently the inverse problem is
time demanding especially for complex geometries such as
a rotating electrical machine. In order to overcome this
problem, two-level methods can be used, e.g. space mapping
[14]. In these two-level methods, an additional coarse model
is incorporated besides the fine model so as to accelerate
the inverse procedure. In fact, the two-level technique is
successfully applied for magnetic material identification of a
SRM [15]. Moreover, the authors presented in [8] a two-level
refined direct method for electromagnetic inverse problems,
in which the coarse model is based on the numerical fine
model but with coarse discretizations. Although the results
presented in [8] are acceptable, the implementation of these
two-level techniques requires advanced computations, such
as the computation of Kriging metamodels. Moreover, in the
two-level methods, both fine and coarse models are solved in
the iterative inverse approach. Therefore, a much easier and
faster inverse scheme is needed. In this paper, we propose the
use of the Bayesian approximation error for compensating
the modeling error when the coarse model is used in the
inverse problem instead of the fine model. In section 2.1,
the modeling error is represented in a stochastic way. The
traditional Bayesian and the modified Bayesian approximation
error approaches are presented in sections 2.2.1 and 2.2.2,
respectively.

2.1. Stochastic representation of the modeling error

Assume that we have two computer models of an EMD: a
fine and a coarse model. The fine model is assumed to be the
most accurate model, but much more time consuming, e.g. a
3D-FE model. The coarse model is assumed to be less accurate
model, but computationally fast, e.g. an analytical model. In
fact, it is impossible to construct an exact computer model
combining the whole physical phenomena as in the reality.
However, in order to solve an inverse problem, a computer
model is needed with the highest possible accuracy: the most
accurate the model, the most accurate the recovery results.

In this part, we assume that the fine model is close to the
reality where we assume that the modeling error in the fine
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model is negligible. However, the modeling error in the coarse
model is referred to as the misfit between the fine and coarse
forward model responses. We present the stochastic modeling
error as follows.

The behavior of a magnetic system can be represented
by a mathematical model with a set of partial differential
equations. This model is parameterized by the following
model parameters: the unknown parameters u ∈ R

p, i.e. the
parameters to be reconstructed by the inverse problem and the
precisely known parameters d ∈ R

r.
Indeed, the fine and coarse forward model responses,

� f ∈ R
K and �c ∈ R

K respectively, depend on u, where
K is the total number of observations. Since the exact value
of u is not known, we assume Z hypothetical values of the
unknown model parameters, with ûz, z = 1, . . . , Z, being a
hypothetical value. These Z hypothetical values are chosen in
such a way that they are random and cover the domain defined
by the lower and upper bounds of these parameters.

The error between the fine and coarse forward models,
at each model observation k and at each test value ûz, can be
represented by

em,k (̂uz) = � f ,k (̂uz) − �c,k (̂uz), (k = 1, . . . , K),

(z = 1, . . . , Z), (1)

with K and Z being the total number of discrete model
observations and the total number of the assumed hypothetical
values of the unknown model parameters, respectively. By
performing Z coarse and fine forward model computations,
and assuming that the modeling error at each model
observation k (em,k) follows the normal distribution, i.e. (em,k ∼
N (μm,k, σ

2
m,k)), one may calculate the mean modeling error

and its variance, μm,k and σ 2
m,k, respectively:

μm,k = 1

Z

Z∑
z=1

em,k (̂uz), σ 2
m,k = 1

Z

Z∑
z=1

(em,k (̂uz) − μm,k)
2.

(2)

Based on the calculated μm,k and σ 2
m,k, the approximate

overall probability distribution function (PDF), at each model
observation k, can be visualized as

f (em,k) = 1√
2πσ 2

m,k

· exp(−(em,k−μm,k )
2/(2σ 2

m,k )). (3)

The assumption of the modeling error to be Gaussian
distributed is a possible means of statistically expressing the
modeling error, see [9]. The vector representations of the
modeling mean error and its variance at all model observations
K are

μm = [μm,1, μm,2, . . . , μm,K]T ,

σ2
m = [σ 2

m,1, σ
2
m,2, . . . , σ

2
m,K]T . (4)

Since the modeling error is assumed uncorrelated, i.e. em,i

does not depend on em, j (i, j = 1, . . . , K, i �= j), the

covariance matrix of the modeling error (�
2
m ∈ R

K×K) can
be written as �

2
m = diag(σ 2

m,1, σ
2
m,2, . . . , σ

2
m,K ). The mean and

the covariance of the modeling error are used in the following
section for the modeling error compensation.

2.1.1. Model coarseness criterion. In fact, a fine model
can be simplified by several coarse models depending on
the fidelity of the model. Of course, the more accurate the
coarse model, the less modeling errors are introduced and
vice versa. We are convinced that the Bayesian approximation
error approach is helpful for reducing the modeling error to
an acceptable value when the used coarse model is accurate
enough to simplify the fine model. Therefore, there is a
need to define a criterion to measure ‘quantitatively’ the
coarseness degree of a model. This model coarseness criterion
is implemented here for selecting a priori the best coarse model
that gives acceptable results when the Bayesian approximation
error approach is utilized.

The model coarseness criterion is defined based on the
95% confidence interval. As shown above, the modeling error
at each model observation k, i.e. em,k, is assumed to follow
the Gaussian ‘normal’ distribution. Based on the mean and
the standard deviation of the modeling error at each model
observation k, i.e. μm,k, σm,k, one may calculate the 95%
confidence interval.

The modeling error (at this model observation k) is
assumed to be ‘True’, which means that the error is small
enough, if the zero error is located inside the 95% confidence
interval, as shown in figure 1(a). However, the modeling error
(at this model observation k) is assumed to be ‘False’, which
means that the error is large, if the zero error is located outside
the 95% confidence interval, as shown in figure 1(b). The
percentage degree of the model coarseness η is defined as
the number of ‘True’ cases divided by the total number of
the model observations K. The coarse model is assumed to
be ‘statistically’ acceptable for implementing the Bayesian
approach if η exceeds a predefined threshold value, e.g.
η � 50%.

2.2. Bayesian approach: traditional and approximation error

In the inverse problem framework, in order to estimate the
unknown parameters u, an inverse problem has to be solved
by iteratively minimizing the quadratic residuals between the
experimental observations of the magnetic system W ∈ R

K×1

and the modeled ones � ∈ R
K×1, with K being the total

number of discrete experimental observations. In other words,
the functional

OF(u) = [�(u) − W]T [�(u) − W] (5)

needs to be minimized:

ũ = arg min
u

OF(u), (6)

with ũ being the recovered value of the unknown model
parameters. In practice, the actual measurements W can be
expressed as W = �(u∗) + e, with e being the uncertainty
‘error’ vector. A possible difference between the simulated
responses �(u∗) with the actual model parameters u∗ and the
measurements W can arise from two reasons, and is denoted
by

e = en + em, (7)

with en being the uncertainty due to measurement noise and
em being the uncertainty due to modeling uncertainties. Due to
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Figure 1. The normal distribution with the 95% confidence interval. (a) ‘True’ case (the probability of observing a zero error is within the
95% interval), (b) ‘False’ case (the probability of observing a zero error is outside the 95% interval).

the random nature of the measurement noise, it is assumed to
be normally white distributed with zero mean (μn,k = 0) and
a variance of σ 2

n,k, i.e. (en,k ∼ N (0, σ 2
n,k)) [6]. Similarly,

μn = [μn,1, μn,2, . . . , μn,K]T = 0,

σ2
n = [

σ 2
n,1, σ

2
n,2, . . . , σ

2
n,K

]T
. (8)

Since the measurement noise is assumed uncorrelated, i.e. en,i

does not depend on en, j (i, j = 1, . . . , K, i �= j), the covariance

matrix of the measurement noise (�
2
n ∈ R

K×K) can be written
as �

2
n = diag

(
σ 2

n,1, σ
2
n,2, . . . , σ

2
n,K

)
.

The modeling error is also represented in the normal
distribution, see section 2.1. Due to these uncertainties, when
minimizing the cost function (5), the values of the recovered
parameters ũ and u∗ are not necessary equal, i.e. ũ �= u∗.
Therefore, we propose the use of the statistical Bayesian
approach. In sections 2.2.1 and 2.2.2, a brief summary of the
statistical inversion theory is presented. The core of these two
sections is mainly based on [9, 16, 17].

2.2.1. Traditional Bayesian approach. In the Bayesian
framework, the identification problem is seen as a statistical
inference problem, sometimes referred to as stochastic
regularization [18], in which the measurements and the
modeled response are assumed to be random [9]. In the
traditional Bayesian approach, the modeling error is assumed
to be negligible, i.e. W = �(u∗) + en.

In the well-known Bayes’ formula, the posterior
probability density function of the measurements W given
the unknown model parameters u ‘P(u|W)’ is given by [17]

P(u|W) = P(u)P(W|u)

P(W)
, (9)

which can be written in a non-normalized form:

P(u|W) ∝ P(u)P(W|u), (10)

with P(u) being the prior probability density function of the
unknown model parameters. In our application, no information
is given for P(u). So we assume that the unknown model
parameters follow the uniform distribution between lower and
upper bounds:

P(u) = 1

uUB − uLB
, u ∈ [uLB, uUB], (11)

with uLB and uUB being the lower and upper bounds of the
unknown model parameters, respectively, which can be known
from the reasonable physical representation of u.

Assuming that the measurement noise en does not depend
on the unknown model parameters u, the likelihood density
function of the measurements W given the unknown model
parameters u can be written as [17]

P(W|u) = 1

(2π)K/2
∏K

k=1 σn,k

· exp

(
− 1

2

[ [
W − �(u) − μn

]T
(
�

2
n

)−1

[
W − �(u) − μn

] ])
. (12)

Therefore, in order to solve this inverse problem, the
maximum a posteriori (MAP) estimate is used, in which the
MAP of the unknown model parameters u is given by

uMAP = arg max
u

P(u|W). (13)

Substituting (10) and (12) into (13), and (μn = 0),

uMAP,Trad = arg max
u

P(W|u)

= arg max
u

{
exp

(
− 1

2

[
[W − �(u)]T

(
�

2
n

)−1

× [W − �(u)]
])}

= arg min
u

{
[W − �(u)]T

(
�

2
n

)−1
[W − �(u)]

}
= arg min

u
‖Ln(W − �(u))‖2, (14)

with Ln being the Cholesky factor of the covariance of the
measurement noise, i.e. (�

2
n)

−1 = LT
n Ln. The solution of (14)

is the recovered model parameter (uMAP,Trad ≡ ũ) using the
inverse problem in the traditional Bayesian framework.

2.2.2. Bayesian approximation error approach. In the
traditional Bayesian approach, the modeling error em was
assumed to be negligible. However, in the Bayesian
approximation error approach, em is taken into account. As
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discussed earlier in section 2.2, the modeling error exists
only when the coarse model is incorporated in the inverse
problem, so the forward model can be rewritten as W =
�c(u∗) + en + em. Due to the Gaussian distribution of both
the measurement noise and modeling error, the overall error e
is therefore also Gaussian distributed. Similarly, (14) can be
reformulated as follows:

uMAP,Compensated = arg max
u

P(W|u)

= arg min
u

‖Ln+m(W − �c(u)− μm)‖2,

(15)

with Ln+m being the Cholesky factor of the covariance
of the overall error, i.e.

(
�

2
n + �

2
m

)−1 = LT
n+mLn+m.

The solution of (15) is the recovered model parameter
(uMAP,Compensated ≡ ũ) using the inverse problem in
the Bayesian approximation error approach, in which the
modeling error is compensated. It is worth mentioning that
under the assumption of uncorrelatedness, the covariance
matrices are diagonal, i.e. the Cholesky factorization is reduced
to taking the square root.

Note that, if it is possible to solve traditionally the inverse
problem, the Bayesian approximation error (15) can then
be solved, provided enough Z samples for calculating the
μm and Ln+m using (2). In the case of high-dimensional
inverse problems, i.e. a high number of parameters need
to be recovered, a large number of evaluations in the
forward models (1) are needed, since the larger the number
of parameters, the larger the Z. A possible limitation of
the methodology is thus that the methodology becomes
computationally prohibitive to calculate in the case of
high-dimensional inverse problems. The high-dimensionality
challenge is notorious and a possibility of improving the
Bayesian approximation error approach when solving high-
dimensional inverse problems is to use one of the following
strategies: the reduction of design space, decomposition of
problems into sub-problems, screening of the significant
variables, etc [23]. Other possibilities are the use of distributed
computing and adaptive sampling based on em,k outputs for the
reduction of the number of evaluations in the forward models.

3. EMD modeling

There are several techniques to model an EMD. Basically,
these techniques can be subdivided into two main categories:
numerical (e.g. finite element, finite difference, boundary
elements, etc) and analytical techniques. Apart from numerical
techniques, the finite-element method is commonly used for
modeling EMDs. In this section, we propose three different
models of an EMD, sections 3.2–3.4. These models are chosen
with different accuracy levels. In all these models, the magnetic
material is modeled as presented in section 3.1.

3.1. Magnetic material modeling

For all the EMD models, to be mentioned in sections 3.2–
3.4, the normal magnetizing B–H curve of the core material is
characterized by [6]

H

H0
=

(
B

B0

)
+

(
B

B0

)ν

, (16)

with the parameters u = [H0(A/m), B0(T), ν]. The values of
these parameters are unknown and need to be identified using
an inverse approach.

3.2. 3D-FE model

As a very fine model, the numerical model of an EMD is
constructed using the 3D-FE model which solves the nonlinear
static Maxwell’s equation:

∇ ×
(

1

μ0μr (A)
∇ × A

)
= J (17)

for the magnetic vector potential A with the nonlinear relative
magnetic permeability μr = B/(μ0H), defined by (16),
with μ0 being the magnetic permeability of air, and the
current density J, which is related to the enforced current
in the excitation windings. In the 3D-FE model, J and hence
magnetic field and induction have three components, i.e. Jx, Jy

and Jz (J = Jxix + Jyiy + Jziz). The EMD can be discretized
into several tetrahedrons. The degree of the model fineness,
and consequently the complexity, increases with the increase
of the density of the mesh discretization.

3.3. 2D-FE model

Due to the fact that the construction of the 3D-FE model
is usually a hard task, and the computational time is too
expensive, the simplified 2D-FE model is commonly used for
modeling an EMD. The 2D-FE model solves the nonlinear
static Maxwell’s equation (17). However, in this case, the
current density J is perpendicularly oriented in the plane of
the magnetic circuit (J = Jziz being the current density in the
z-direction). Consequently, the magnetic induction and field
are also oriented in this plane. The vector potential has thus a
component perpendicular to the plane of the magnetic circuit:
A = Aziz. The Maxwell equation (17) can in this way be
reduced to

∇ ×
(

1

μ0μr (Az)
∇ × Az

)
= −Jz. (18)

The EMD is discretized here into several triangles. As
mentioned in the 3D-FE, the degree of the model fineness,
and consequently the complexity, increases with increasing the
density of the mesh discretization. When using 2D-FE models,
the EMD is assumed to be infinitely long in the z-direction and
thus a simplification of the 3D-FE models. Hence, the 3D stray
magnetic fluxes are not modeled properly in 2D-FE models.
Therefore, the 3D-FE models are more accurate than the 2D-
FE models, but are computationally more demanding.

3.4. An analytical model

In order to save computational time, analytical models can
be used for modeling an EMD. These analytical models are
much faster than numerical models; however, they are less
accurate, especially for complex geometries. In this paper, we
propose the use of an analytical model of the EI core inductor,
which is based on the magnetic reluctance network theory
[19]. In these analytical models, the EMD is approximated by
a magnetic network of reluctances and a magneto-motive force
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as a source. The magnetic network is constructed in such a way
that every geometrical part of the magnetic circuit of the EMD,
in which we assume a uniform field pattern, is substituted by
a certain reluctance.

4. Results and discussion

In order to validate the presented methodology, we study two
different geometries of EMDs. In section 4.1, the investigation
is performed in a purely numerical way, where no real
measurements are used, to identify the magnetic material
properties of the SRM core material. Then, in section 4.2,
we solve an inverse problem starting from real measurements
in order to recover the magnetic material parameter values of
an EI core inductor.

The two EMDs are chosen in such a way to have
completely different objective function formulations of the
inverse problem. The inverse problem of the SRM is based on
the mechanical output, whereas the inverse problem of the EI
core inductor is based on magnetic measurements. From our
experience [7], we discovered that the noise in the mechanical
measurements is relatively high and that it may be the dominant
error source. In practice, it is difficult to precisely quantify
the measurement noise. Since we aim at reducing the error
originating from the simplified coarse model in the inverse
problem, we validate the proposed methodology in a numerical
way (numerical data as input to the inverse problem) using the
SRM inverse problem. Moreover, the methodology is validated
in an experimental way (real experimental data as input to the
inverse problem) using the EI core inductor inverse problem.

In the two case studies, we use the well-known least-
squares nonlinear algorithm, Levenberg–Marquardt method
with line search [20]. Note that the used optimization
scheme depends on the considered problem. If multiple
local minima exist, it is possible to use multiple starting
values within the deterministic optimization scheme (e.g.
least-squares nonlinear, gradient-based methods) or employ a
time-demanding stochastic optimization scheme (e.g. genetic
algorithm) so as to recover the global optimum.

The inverse problem in this paper is well-posed since the
number of parameters to be recovered (p = 3) is much less than
the number of measurements (K = 19 in the SRM application,
K = 14 in the EI core application). In the case of ill-posed
inverse problems, (14) or (15) becomes more difficult to solve.
In that case, it is necessary to use regularization techniques
such as the Tikhonov regularization technique within the cost
functional (14) or (15).

4.1. Case study (1): a SRM

For this case study, we build the following two computer
models: a fine model based on 2D-FE with fine mesh
discretizations and a coarse model based on a magnetic
reluctance network, see [15].

4.1.1. Studied geometry. Figure 2 shows the schematic
diagram of the 6/4 SRM. The geometry is characterized
by the following geometrical parameters: tsp, trp, Dri, Dre,

Dse

Dsi

Dδ

Dre

tsp

Dri

trp

x.

. x

Figure 2. Schematic diagram of the studied 6/4 SRM. δ is the air gap
at the alignment condition. The length of the motor core is 63.5 cm.

Dδ , Dsi, Dse, δ, where tsp and trp are the stator and
the rotor pole width, Dri and Dre are the internal and
external diameter of the rotor yoke, respectively, Dδ is the
inner stator pole diameter, Dsi and Dse are respectively
the internal and external diameters of the stator yoke and
δ is the air gap thickness. The values of the geometrical
parameters are d = [tsp, trp, Dri, Dre, Dδ, Dsi, Dse, δ] =
[17, 20, 25, 44, 60, 109.2, 135, 0.25] mm.

4.1.2. Inverse problem formulation for the SRM. In order
to identify the magnetic material parameter values u of the
SRM, an inverse problem is solved. In this inverse problem, an
objective function is formulated, which minimizes iteratively
the quadratic difference between the measured and simulated
response. Here, in this case study, we consider the static torque
profile at a fixed excitation current I0 = 8 A, and for K = 19
mechanical rotor angles ξ = [0◦, 2.5◦, . . . , 45◦]. The static
torque value corresponding to the kth rotor angle ξk can be
computed using [7]

Tk(u) = ∂

∂ξ
ϒco(ξ , u)

∣∣∣
(ξ=ξk,I0=8A)

, (19)

where ϒco is the co-energy for a certain fixed excitation current
I0.

As no real measurements are performed, the values of
the material parameters are assumed to be known (u∗ =
[231.6, 1.34, 15.18]). These parameter values are used as
an input of the fine model to generate the ‘numerical
measurement’ of the static torque profile of the SRM. The
‘numerical measurement’ is corrupted by Gaussian noise with
zero mean and a standard deviation of σn, which is given by
σn = (nlTrms) × N [0, 1], where nl is the noise level in the
measurement. Trms is the root mean square of the ‘numerically

measured’ static torque profile: Trms =
√

1
K

∑K
k=1 T 2

k . N [0, 1]
is a normally distributed random number with zero mean and
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Figure 3. The simulated torque profile using the fine and coarse model, Tf and Tc, respectively. Both torque profiles are obtained using
(u∗ = [231.6, 1.34, 15.18]).
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Figure 4. The stochastic representation of the misfit between the 2D-FE and the analytical models for the output static torque profile of the
studied SRM.

a standard deviation of 1. Therefore, equations (14) and (15)
can be rewritten as

uMAP,Trad,SRM = arg min
u

‖Ln(T f (u∗) − Tc(u))‖2 (20)

uMAP,Compensated,SRM = arg min
u

‖Ln+m(T f (u∗)

− Tc(u) − μm)‖2, (21)

with Ln and Ln+m being the Cholesky factors of the covariance
of the measurement noise and the overall error, respectively,
i.e.

(
�

2
n

)−1 = LT
n Ln,

(
�

2
n + �

2
m

)−1 = LT
n+mLn+m.

Based on the recovered B–H curve at each inverse problem
compared to the original B–H curve, one may calculate the
recovery error (RE). Many formulas can be used; however,
we calculate RE based on the ratio between the area under the
recovered and the original B–H curves, respectively [7]:

RE =
⎛
⎝∫ Hmax

0 Brecovered · dH∫ Hmax

0 Boriginal · dH
− 1

⎞
⎠

2

× 100%, (22)

where Hmax is the maximum magnetic field. Here it is assumed
Hmax = 2000 Am−1.

4.1.3. Stochastic representation of the modeling error in a
SRM. In order to represent the modeling error between
the fine and the coarse model stochastically, the procedure
presented in section 2.1 is used. Several sampling techniques
can be used for generating the Z hypothetical values of u. We
use here the Latin hypercube sampling (LHS) [21], which is
a widely used statistical method for generating a certain set
of samples ({u1, . . . , uZ}) for a given domain. Z needs to be
taken high enough so that an as accurate as possible Gaussian
fit of the modeling error can be performed.

Z forward fine and coarse model computations are solved,
for the input parameters ui, i = 1, . . . , Z, and their static
torque values Tf ,k(ui), Tc,k(ui) (k = 1, . . . , K) are compared.
Figure 3 shows the simulated torque profile using the fine
and coarse model, Tf and Tc, respectively. Here, both static
torque profiles are obtained using the u∗. Figure 4 depicts
the stochastic behavior of the modeling error of the coarse
model compared to the fine model using (1)–(3), at a
certain mechanical rotor angle. It is clear from figure 4
that the stochastic variation of the modeling error can be
‘approximated’ by a Gaussian distribution.
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Figure 5. The recovered B–H curve using the two inverse problems based on the traditional Bayesian approach ‘no modeling error
compensation’ and the Bayesian approximation error approach ‘with modeling error compensation’ compared to the original characteristics.

4.1.4. Theoretical results. In this section, two cases of the
modeling error are discussed. In the first case, the modeling
error is assumed to be uncorrelated, while in the second case,
we consider the correlation in the modeling error.

(i) Uncorrelated modeling error: under the assumption of
uncorrelated modeling error and starting from noisy
‘numerical’ measurements with noise level nl = 10%,
the inverse problem is solved using two approaches. The
first methodology is based on the traditional Bayesian
approach (20), in which the modeling error is not
compensated. The second inverse approach is based on
the Bayesian approximation error approach (21) with
the modeling error compensation. Figure 5 illustrates
the solution of the two inverse methodologies compared
to the original characteristics. It is clear from figure 5
that the inverse problem based on (21) gives better
results compared to the one based on (20). The recovery
error values (RE) for the traditional and the Bayesian
approximation error approaches are 20.5234% and
0.5491%, respectively. Also, it is worth mentioning that
the computational time required for both approaches (20)
and (21) is approximately the same since the modeling
error term is computed in advance. The results presented in
this section validate ‘theoretically’ the proposed approach.

(ii) Correlated modeling error: the modeling error is often
highly correlated. For the simplicity of the analysis,
the ‘numerical’ measurements are assumed noise free.
Therefore, equations (14) and (15) can be rewritten as
(Ln = IK with IK being the Kth-dimensional identity
matrix)

uMAP,Trad,SRM = arg min
u

‖T f (u∗) − Tc(u)‖2 (23)

uMAP,Compensated,SRM = arg min
u

‖Lm(T f (u∗)

− Tc(u) − μm)‖2, (24)

with Lm being the Cholesky factor of the covariance of
the modeling error, i.e. (�

2
m)−1 = LT

mLm.
We solve three types of inverse problems. The first
one is based on (23) where the modeling error is not
compensated. The second and third inverse problems are
solved with the compensation of the modeling error (see
equation (24)) and is assumed uncorrelated and correlated,
respectively. When assuming an uncorrelated modeling
error, the covariance matrix is diagonal and the Cholesky
factorization is reduced to taking the square root. In the
third inverse problem, we use the full correlation matrix
of the modeling error. We calculate the covariance matrix
of the modeling error as (see also equation (2) for the
calculation of the diagonal elements of the covariance
matrix)

Cov(em,k, em,l ) = 1

Z

Z∑
z=1

(em,k (̂uz) − μm,k)

× (em,l (̂uz) − μm,l ). (25)

Figure 6 shows the reconstructed B–H characteristics for
the three different inverse problems. We observe that when
assuming correlated modeling errors, the characteristic is
more accurately recovered compared to when assuming
uncorrelated modeling errors. However, the increase in
accuracy between the second and third inverse solution is
much smaller compared to the increase in accuracy of
the first inverse solution versus the second and third
inverse solution. The recovery error values (RE) for
the three inverse problems are 8.5201%, 0.1475% and
0.0011%, respectively.

4.2. Case study (2): an EI core inductor

In this specific case, we build three computer models: a very
fine model based on 3D-FE with fine mesh discretizations
(model a), a moderate fine model based on 3D-FE with coarse

8
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Figure 7. Schematic diagram of the studied EI electromagnetic core
inductor. At position P, the local magnetic induction measurements
are carried out.

mesh discretizations (model b) and a coarse model based on
a magnetic reluctance network (model c) in a similar way as
presented in [22]. Here, we consider ‘model a’ as the fine
model; however, the other two models, i.e. ‘model b’ and
‘model c’, are considered as ‘relatively’ coarse models.

4.2.1. Studied geometry. Figure 7 shows the profile of the
studied geometry. It is an EI core with one ‘middle’ air gap in
the middle limb (g1) and two ‘outer’ air gaps (g2) between E-
and I-yokes. The excitation coil is wound around the middle
limb of the E-core with 356 excitation winding turns. The
dimensions of the EI core inductor are precisely known, as
shown in figure 7. The value of g1 is 0.85 mm. However, the
value of g2 is kept zero in order to eliminate the modeling
uncertainty caused by the uncertain value of g2, see [6]. The

two yokes are fixed together by a mechanical clamp to prevent
the movement of the I-yoke.

4.2.2. Inverse problem formulation for the EI core inductor.
In order to identify the magnetic material parameter values u
of the EI core inductor, an inverse problem is solved. In this
inverse problem, an objective function is formulated, which
minimizes iteratively the quadratic difference between the
measured and simulated response. Here, in this case study,
we consider the local magnetic induction at position P (see
figure 7) for K = 14 amplitudes of the sinusoidal excitation
current.

The local magnetic induction is measured using the needle
probe method. Indeed, the voltage between the needles is
proportional to the rate of change of the local magnetic
induction [5]. We performed these real measurements at
position P as shown in figure 7. The quasi-static magnetic
measurements are performed at 1 Hz for a sinusoidal current
excitation, in order to have a negligible skin effect due to eddy
currents in the magnetic cores, see [5]. We choose the position
on the I-yoke, i.e. P in figure 7, because at this position the best
inverse problem resolution is observed, see the results stated
in [6].

The measurements are carried out five times and the
average measurement values are used in the inverse problem.
In fact, very small variations are noted among the five local
measurements. Therefore, we consider the measurements
as being noise-free measurements, i.e. en = 0. This
assumption is reasonable because the local magnetic induction
measurements contain only a very limited amount of noise. In
addition, this small measurement noise is difficult to quantify
precisely in practice. Hence, (14) and (15) are reformulated as
follows:

uMAP,Trad,EI = arg min
u

‖Bm − Bs(u)‖2 (26)

uMAP,Compensated,EI = arg min
u

‖Lm(Bm

− Bs(u) − μm)‖2, (27)
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Figure 8. The simulated local magnetic induction using the three computer models. All profiles are obtained using
(̂u = [1291.2, 1.197, 10.28]).

where Bm is the measured local magnetic induction at position
P. Bs is the corresponding simulated local magnetic induction
at position P in figure 7. Equation (26) is solved for the three
computer models; however, (27) is solved only for the two
‘relative’ coarse computer models, i.e. ‘model b’ and ‘model
c’, because no modeling error is considered in ‘model a’.

4.2.3. Stochastic representation of the modeling error in
an EI core inductor. In order to represent the modeling
error between the fine and the coarse model stochastically,
the procedure presented earlier in section 2.1 is used. Z
hypothetical values of u are generated using the LHS
technique.

Z forward fine and coarse model computations are solved,
and their responses ‘local magnetic induction measurements’
(i.e. Bs) are compared. Figure 8 shows the simulated local
magnetic induction using the three models a, b and c. All these
simulation results are obtained using a certain hypothetical
value of u, i.e. û = [1291.2, 1.197, 10.28].

Initially, it is clear from figure 8 that model b gives a
better ‘forward problem’ response than model c. In order
to quantify the degree of the coarseness of each model, the
95% confidence interval presented in section 2.1.1 is used.
Table 1 shows the mean and the standard deviation values and
the corresponding ‘True’ (T) and ‘False’ (F) cases for both
models. The percentage degrees of the model coarseness η for
models b and c are 14.29% and 64.29%, respectively. Hence,
we expect that model b will give much better results than
model c. Moreover, we expect that the Bayesian approach will
not be able to reduce the modeling error, originating from the
simplification of model c, to an ‘acceptable’ recovery error,
see the following section.

4.2.4. Experimental validation. The recovered magnetic
material characteristics using the inverse problems are
compared with the original normal magnetizing B–H curve
of the material, which is measured using the IEEE standard

Table 1. The mean and the standard deviation values (×10−3), and
the corresponding ‘True’ (T) and ‘False’ (F) cases of the modeling
error for models b and c.

k Model b Model c
μk σk (T or F) μk σk (T or F)

1 0.8 0.2 T −19.3 24.2 T
2 2.2 0.6 T −22.6 2.8 F
3 3.6 1.0 T −37.3 4.6 F
4 5.8 1.7 F −59.3 7.3 F
5 8.7 2.5 F −88.8 10.9 F
6 11.5 3.3 F −118.2 14.5 F
7 14.1 4.2 T −147.7 18.0 F
8 19.0 7.1 F −213.1 29.3 F
9 19.2 11.0 T −246.7 55.7 F

10 9.0 12.0 T −232.9 78.4 F
11 −0.7 24.4 T −199.8 81.1 F
12 −7.4 32.7 T 171.9 76.5 F
13 −24.6 61.6 T −145.1 72.1 F
14 −48.0 102.4 T −145.1 110.8 T

393-1991, see [5]. The original B–H curve is fitted by
equation (16), which results in the actual material parameter
values u∗ = [292 (A m-1), 1.35 (T), 11.99].

Different inverse problems are solved, with the
assumption of en = 0, for each computer model. Then, the
identified magnetic characteristics (single-valued B–H curve)
are compared. For model a, only one inverse problem is solved
based on the traditional Bayesian approach (26). However, for
models b and c, four inverse problems are solved, two for
each computer model. The first inverse problem is based on
the traditional Bayesian approach (26), in which the modeling
error is not compensated, while the other inverse problem is
based on the Bayesian approximation error approach (27), in
which the modeling error is compensated.

Figure 9 illustrates the solution of the five inverse
problems compared to the original characteristics. It is clear
from figure 9 that the inverse problem based on (27) gives
better results compared to the one based on (26) for both
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Figure 9. The recovered B–H curve using the two inverse problems based on the traditional Bayesian approach ‘no modeling error
compensation’ and the Bayesian approximation error approach ‘with modeling error compensation’ for models b and c, and the recovered
characteristics for model a, compared to the original characteristics.

Table 2. The values of the recovery error for the three models.

Model Model a Model b Model b Model c Model c
(no (with (no (with
compensation) compensation) compensation) compensation)

RE % 0.0266 2.0399 0.0161 3.2304 1.5953

relatively coarse models. Of course, model b results in a better
solution compared to model c due to the fact that model c is
coarser than model b. Table 2 shows the values of the recovery
error for the three models.

Also, it is worth mentioning that the computational
time of solving both inverse problems, (26) and (27), is
the same since the modeling error term is computed in
advance. The total computational time required for solving
an inverse problem based on the Bayesian approximation error
approach comprises two parts: the computational time required
for representing the modeling error stochastically and the
computational time required for minimizing (27). However,
the computational time required for solving an inverse problem
based on the traditional Bayesian approach is only the time
required for minimizing (27).

The computational time required for representing the
modeling error stochastically is (Z × (t f + tc)), with t f and
tc being the time required for solving one forward problem
in the fine or coarse model, respectively. On the other side,
the used Levenberg–Marquardt method for minimizing (26)
or (27) solves the forward problem p + 1 times, where
p is the number of unknowns. Hence, one iteration takes
((p + 1) × t f ). Consequently, the total CPU time of the
traditional inverse problem is ((4 × t f ) × no of iterations).
So the total computational time required for solving an
inverse problem based on the traditional Bayesian approach
is (tTrad = (4 × t f ) × no of iterations). And the total
computational time required for solving an inverse problem
based on the Bayesian approximation error approach is
(tCompensated = Z × (t f + tc) + (4 × t f ) × no of iterations).

Table 3. The computational time, in min, required for solving the
traditional Bayesian approach (26) and Bayesian approximation
error approach (27) for models b and c compared to the time
required for solving (26) for model a, assuming Z = 100 and
the number of iterations = 100.

Traditional Bayesian approximation
– t f tc Bayesian error

Model a 10 – 4 × 103 –
Model b – 1 0.4 × 103 1.5 × 103

Model c – 0.1667 66.68 1.08 × 103

Table 3 shows the computational time, in min, required
for solving (26) and (27) for models b and c compared to
the time required for solving (26) for model a, assuming
Z = 100 and the number of iterations equal to 100. It is clear
from table 3 that the time consumed for solving the Bayesian
approximation error approach for model b is appreciably less
than the traditional Bayesian approach for model a, i.e. more
than 2.5 times less.

The results presented in this section validate
‘experimentally’ the proposed approach.

5. Conclusion

In this paper, we proposed a Bayesian statistical approach
for compensating the modeling error originating from the
simplification in the computer model. The main concept of
the approach is to take into account not only the measurement
noise but also the uncertainty arising from the imperfection
of the applied forward model. The prime advantage of
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the proposed approach is the reduction of the error of
reconstruction when using a coarse model, and consequently,
numerically less demanding forward solvers. We applied the
methodology for the magnetic material characterization of two
electromagnetic devices, i.e. a switched reluctance motor and
an EI core inductor. Both numerical and experimental results
are presented in this paper showing a large reduction in the
modeling error within a relatively small computational time.
Moreover, we introduced a new parameter to assess the degree
of the coarseness of a coarse model. This model coarseness
criterion is used for determining a priori the usefulness
of the applicability of the Bayesian approximation error
approach. Future research will be focused on investigating
the applicability of the method toward higher dimensional
inverse problems and onto the modeling error reduction
when neglecting the magnetic anisotropy effects in different
electromagnetic devices, e.g. power transformers.
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