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ON TAUBER’S SECOND TAUBERIAN THEOREM

RICARDO ESTRADA AND JASSON VINDAS

Abstract. We study Tauberian conditions for the existence of Cesàro
limits in terms of the Laplace transform. We also analyze Tauberian
theorems for the existence of distributional point values in terms of an-
alytic representations. The development of these theorems is parallel
to Tauber’s second theorem on the converse of Abel’s theorem. For
Schwartz distributions, we obtain extensions of many classical Taube-
rians for Cesàro and Abel summability of functions and measures. We
give general Tauberian conditions in order to guarantee (C, β) summa-
bility for a given order β. The results are directly applicable to series
and Stieltjes integrals, and we therefore recover the classical cases and
provide new Tauberians for the converse of Abel’s theorem where the
conclusion is Cesàro summability rather than convergence. We also
apply our results to give new quick proofs of some theorems of Hardy-
Littlewood and Szász for Dirichlet series.

1. Introduction

Tauberian Theory was initiated in 1897 by two simple theorems of Tauber
for the converse of Abel’s theorem [36] (see also [19, p. 11]). The present
article is dedicated to providing extensions of Tauber’s second theorem, in
several directions.

Let us state Tauber’s original theorems. Let us recall from [12, 19] that
a sequence of complex numbers {cn}∞n=0 is said to be Abel summable to the
number γ if F (r) =

∑∞
n=0 cnr

n converges for |r| < 1 and limr→1− F (r) = γ.
In such a case one writes

∞∑
n=0

cn = γ (A) .
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2 RICARDO ESTRADA AND JASSON VINDAS

Theorem 1.1 (Tauber’s first theorem). If
∑∞

n=0 cn = γ (A) and

(1) cn = o

(
1

n

)
, n→∞ ,

then
∑∞

n=0 cn converges to γ.

Theorem 1.2 (Tauber’s second theorem). If
∑∞

n=0 cn = γ (A) and

(2)
N∑
n=1

ncn = o(N) , N →∞ ,

then
∑∞

n=0 cn converges to γ.

Tauber’s theorems are very simple to prove [36, 12]. In 1910, Littlewood
[20] gave his celebrated extension of Tauber’s first theorem, where he sub-
stituted the Tauberian condition (1) by the weaker one cn = O

(
n−1

)
and

obtained the same conclusion of convergence as in Theorem 1.1. Actually,
it can be shown that the hypotheses imply the (C, β) summability for any
β > −1 [13]. It turns out that Littlewood’s theorem is much deeper and
difficult to prove than Theorem 1.1. Two years later, Hardy and Littlewood
[13] conjectured that the condition ncn > −K would be enough to ensure
the convergence; indeed, they provided a proof later in [14].

A version of Tauber’s second theorem for Stieltjes integrals appeared in
[47] (see [19, p. 28]).

Extensions of Theorem 1.2 are also known. It is natural to ask whether
the replacement of (2) by a big O condition would lead to convergence;
unfortunately, it does not suffice (see [30] for example). Nevertheless, one
gets (C, 1) summability as shown in the next theorem of Szász [34] (see also
[29, 30, 35]), where even less is assumed.

Theorem 1.3 (Szász, [34]). Suppose that
∑∞

n=0 cn = γ (A). Then the
Tauberian condition

(3)
N∑
n=1

ncn > −KN ,

for some K > 0, implies that
∑∞

n=0 cn = γ (C, 1).

We will actually show (see Corollary 4.17 below) that if a two-sided con-
dition is assumed instead of (3), then the series is summable (C, β) for all
β > 0. It should be noticed that Theorem 1.3 includes Hardy-Littlewood’s
theorem quoted above (just apply Hardy’s theorem for (C, 1) summability
[12, p. 121]). Versions of Theorem 1.3 for Dirichlet series can be found in
[34] and [3, Sec. 3.8].

Tauberian theorems for power series have stimulated the creation of many
interesting methods and theories in order to obtain extensions and easier
proofs of them. Among the classical ones, one could mention those of Wiener
[48] and Karamata [17, 18]. Other important ones come from the theory of
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generalized functions. In [44], Vladimirov obtained a multidimensional ex-
tension of Hardy-Littlewood type theorems for positive measures. Later
on, the results from [44] were generalized to include tempered distributions,
resulting in a powerful multidimensional Tauberian theory for the Laplace
transform [5, 46] (see also [6]). Distributional Abelian and Tauberian the-
orems for other integral transforms are investigated in [22, 25, 26]. Other
related results are found in [23, 24, 27]. Some Tauberian results for distri-
butions have interesting consequences in the theory of Fourier series [11].

Recently, the authors were able to deduce Littlewood’s Tauberian the-
orem [20] from a Tauberian theorem for distributional point values [41];
actually, the method recovered the more general version for Dirichlet series
proved first by Ananda Rau [1]. A similar approach, but with a more com-
prehensive character, will be taken in this paper. In Section 2, we collect
some known results and explain the notation to be used in the course of the
article. Section 3 is devoted to the study of Cesàro limits and summability
in the context of Schwartz distributions; we extend the known definitions in
order to consider fractional orders of summability, then we provide several
technical Tauberian theorems which will establish the link between results
for generalized functions and Stieltjes integrals. The main part of the article
is Section 4. There, we first show a theorem for distributional point values
which generalizes Theorem 1.3. Moreover, our theorem is capable to recover
Theorem 1.3, and it is applicable to much more situations. Finally, Section
5 is dedicated to applications of the distributional method, we generalize
[35, Thm. B] from series to Stieltjes integrals, and we also give quick proofs
of some classical Tauberians of Hardy-Littlewood [15] and Szász [32, 33, 34]
for Dirichlet series.

2. Preliminaries and notation

We will assume the reader is familiar with the basic notions from the
theory of summability of numerical series and Stieltjes integrals, specifically
with the summability methods by Cesàro, Riesz and Abel means. There is
a very rich and extensive literature on the subject; for instance, we refer to
[3, 12, 19].

The spaces of test functions and distributions D(R), S(R), D′(R), and
S ′(R) are well known for most analysts. The space of all C∞-functions
over the real line with its canonical topology is denoted by E(R); hence, its
dual, E ′(R), is the space of distributions with compact support. We refer to
[31, 45] for properties of these spaces.

A distribution f ∈ D′(R) is said to have a distributional point value (in
the sense of  Lojasiewicz [21]) at x = x0 ∈ R if limε→0 f(x0 + εx) = γ in the
weak topology of D′(R); that is, for each φ ∈ D(R),

(4) lim
ε→0

1

ε

〈
f(x), φ

(
x− x0
ε

)〉
= γ

∫ ∞
−∞

φ(x)dx .
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In this case we write f(x0) = γ, distributionally. Suppose that f ∈ S ′(R),
it is then natural to ask whether (4) would hold for φ ∈ S(R); the answer is
positive, as shown in [9, 43].

More generally, one can consider asymptotic relations

(5) f (x0 + εx) ∼ εαg(x) as ε→ 0+ ,

in the weak topology of D′(R) or S ′(R). These relations are then particu-
lar cases of the so called quasiasymptotic behavior of distributions at finite
points [10, 27, 43, 46]. The distribution g in (5) must necessarily be homo-
geneous of degree α [26, 27]. We also have that for tempered distributions
the asymptotic relation (5) in D′(R) implies the same asymptotic behavior
in S ′(R) [9, 43]. The same is true for the relations f(x0 + εx) = O(εα) as
ε→ 0+ [9, 39]. Observe also that (5) is a local property, thus, it still makes
sense if the distribution f is only defined in a neighborhood of x = x0.

We say that f ∈ D′(R) is distributionally bounded at x = x0 ∈ R if
f(x0 + εx) = O(1) as ε→ 0+ in D′(R).

These notions have their obvious analogs at infinity [10, 27, 37, 39, 46];
indeed, one considers the behavior of f(λx) as λ→∞ in the weak topology
of a distribution space.

Let f ∈ D′(R). A function U(z), harmonic for =m z > 0, is said to be
a harmonic representation of f if limy→0+ U(x + iy) = f(x) in D′(R) (see
[2]). In such a case we write f(x) = U(x + i0). If f(x) = U(x + i0) and
f(x0) = γ, distributionally, then U(z) → γ as z → x0, in an angular (or
nontangential) fashion [4, 9, 27, 39]; however, the converse is not true in
general [8]. In the case of boundary values of analytic functions, we have
the following Tauberian theorem [41].

Theorem 2.1. Let F be analytic in a rectangular region of the form (a, b)×
(0, R). Suppose f(x) = F (x + i0) in D′(a, b). Let x0 ∈ (a, b) such that
F (x0 + iy) → γ as y → 0+. The Tauberian condition “f is distributionally
bounded at x = x0” implies that f(x0) = γ, distributionally.

We shall employ several special distributions in this article. We will follow
the notation from [10]. The Dirac delta distribution is denoted by δ, as
usual. H is the Heaviside function, i.e., the characteristic function of (0,∞).
Let Γ be the Euler gamma function. The analytic family of distributions

xβ−1+ /Γ(β) is given by〈
tβ−1+

Γ(β)
, φ(t)

〉
=

1

Γ(β)

∫ ∞
0

tβ−1φ(t)dt ,

whenever <e β > 0, and they are obtained by analytic continuation of
the last equation in the other cases [10, p. 65]. In particular, we have

(xβ−1+ /Γ(β)) |β=0 = δ(x), the Dirac delta distribution.
We will work with the Fourier transform

φ̂(x) =

∫ ∞
−∞

φ(t)e−ixtdt ,



ON TAUBER’S SECOND THEOREM 5

defined for φ ∈ S(R), and by duality on S ′(R).
Let s be a function of local bounded variation. Furthermore, suppose

that s has support in [0,∞). We shall always assume that s is normalized
at x = 0, in the sense that s(0) = 0, so that the distributional derivative,
s′ ∈ D′(R), of s is given by the Stieltjes integral〈

s′(t), φ(t)
〉

=

∫ ∞
0

φ(t)ds(t) .

Let µ be a Radon measure, that is, a continuous linear functional over
the space of continuous functions with compact support. We can always
associate to it a function of local bounded variation, which we shall denote
by sµ, so that µ = dsµ, i.e., 〈µ(t), φ(t)〉 =

∫∞
−∞ φ(t)dsµ(t). If |µ| is the

variation measure associated to µ, we also denote it by |dsµ|.

3. Tauberian theorems for (C) summability

In this section we show Tauberian theorems for (C) summability of dis-
tributions and measures related to Theorems 1.2 and 1.3. We first study
Cesàro limits and boundedness, of fractional orders, for distributions; then
these notions are extended to distributional evaluations, which include as
particular cases those of series and Stieltjes integrals. Next, a convexity
theorem is shown. Finally, we present the Tauberian theorems.

3.1. Cesàro limits and boundedness. Suppose that s is locally bounded
on [0,∞). Recall [12, 19] that we write limx→∞ s(x) = γ (C, β), β > 0, if

(6) lim
x→∞

β

x

∫ x

0
s(t)

(
1− t

x

)β−1
dt = γ .

When s is of local bounded variation, we may also denote this relation by∫∞
0 ds(t) = γ (C, β), and the limit in the above equation might be replaced

by the limit of
∫ x
0 (1− (t/x))β ds(t), as integration by parts shows (here we

use the assumption s(0) = 0). If 1 ≤ β, the notion (6) makes also sense for
s being merely locally integrable.

The Cesàro behavior can also be defined for distributions [7, 10]. It in-
cludes the case of classical functions and Stieltjes integrals. We adopt in this
paper new definitions, our purpose is to include fractional orders for Cesàro
limits and boundedness of distributions at infinity; a similar approach has
been followed in [42]. In the case of integral orders, it coincides with the
definition from [7]. We will also define one-sided boundedness.

Given f ∈ D′(R), with support bounded at the left, its β-primitive is
given by the convolution [45, p. 72]

f (−β) = f ∗
xβ−1+

Γ(β)
.
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Definition 3.1. Let f ∈ D′(R), and β ≥ 0. We say that f is bounded at
infinity in the Cesàro sense of order β (in the (C, β) sense), and write

f(x) = O(1) (C, β), as x→∞ ,

if for a decomposition f = f− + f+ as sum of two distributions with the
supports bounded on the right and left, respectively, one has that the β-
primitive of f+ is an ordinary function (locally integrable) for large argu-
ments and satisfies the ordinary order relation

f
(−β)
+ (x) = O

(
xβ
)
, x→∞ .

A similar definition applies for the little o-symbol. We denote

lim
x→∞

f(x) = γ (C, β)

if

f(x) = γ + o(1) (C, β) , as x→∞ ,

that is, f
(−β)
+ is locally integral for large arguments and

f
(−β)
+ (x) ∼

γxβ+
Γ(β + 1)

, x→∞ .

in the ordinary sense.

Naturally, there is some consistency to be checked in Definition 3.1. We
show in the next proposition that Definition 3.1 is independent of the choice
of f+.

Proposition 3.2. Suppose that f has compact support. If β ≥ 0 and α >
−1, then f (−β)(x) = o(xβ+α), x→∞. In particular,

lim
x→∞

f(x) = 0 (C, β), for each β ≥ 0 .

Proof. If β is a non-negative integer, the conclusion is obvious. Assume
β > 0 is not a positive integer. We show that f (−β) is locally integrable for
large arguments and f−β(x) = o(xβ+α), x→∞. Let k be a positive integer

such that f (−k) is continuous over the whole real line. Then f (−k) = P +F ,

where P (x) =
∑k−1

j=0 aj(x
j
+/j!), for some constants, and F is continuous on

a certain compact interval [a, b], and F (x) = 0 for x /∈ (a, b). We have that

f = P (k) + F (k). Note first that

P (k) ∗ x
β−1

Γ(β)
=

k−1∑
j=0

ajδ
(k−1−j) ∗

x
(β−1)
+

Γ(β)
=

k−1∑
j=0

aj
x
(β+j−k)
+

Γ(β + 1 + j − k)

= O
(
xβ−1

)
= o

(
xβ+α

)
, x→∞ .

So, it is enough to show that

F (k) ∗
(
xβ−1/Γ(β)

)
= F ∗

(
xβ−k−1/Γ(β − k)

)
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is locally integrable for large arguments and satisfies an order estimate
o(xβ+α) as x → ∞. Indeed, we show it is locally integrable on (b + 1,∞).
If φ ∈ D(R) is so that suppφ ⊆ (b + 1,∞), then suppφ ∗ F (−t) ⊆ [1,∞),
hence, 〈

F ∗ xβ−k−1, φ(x)
〉

=
〈
xβ−k−1, (F (−t) ∗ φ) (x)

〉
=

∫ ∞
1

xβ−k−1
(∫ ∞
−∞

F (t− x)φ(t)dt

)
dx

=

∫ ∞
−∞

(∫ ∞
1

tβ−k−1F (x− t)dt
)
φ(x)dx .

On the other hand if x > b+ 1, we obtain, as x→∞,∫ ∞
1

tβ−k−1F (x− t)dt =

∫ b

a
(x− t)β−k−1F (t)dt = O

(
xβ−1−k

)
= o

(
xβ+α

)
.

�

We now define one-sided boundedness. Recall that a positive distribution
is nothing but a positive Radon measure.

Definition 3.3. Let f ∈ D′(R), β ≥ 0, and α > −1. We say that f
is bounded from below (or left bounded) near infinity by OL(xα) in the
Cesàro sense of order β, and write

f(x) = OL(xα) (C, β), as x→∞ ,

if there exist a decomposition f = f−+f+, as sum of two distributions with
the supports bounded on the right and left, respectively, a constant K > 0,

and an interval (a,∞) such that <e f (−β)+ +Kxα+β+ and =mf
(−β)
+ +Kxα+β+

are positive distributions on (a,∞). A similar definition applies for right
boundedness, in such a case we employ the symbol OR(xα).

In case f is one-sided bounded by OL(1) or OR(1), we simply say that f
is one-sided bounded. Our definitions of Cesàro behavior have the following
expected property.

Proposition 3.4. If f is Cesàro bounded (resp. has Cesàro limit, or is
one-sided bounded) at infinity of order β, then it is Cesàro bounded (resp.

has Cesàro limit, or is one-sided bounded) at infinity of order β̃ > β.

Proof. It follows immediately from Proposition 3.2. �

Observe that, because of Proposition 3.2, we can always assume in Defi-
nitions 3.1 and 3.3 that f = f+, if needed. When we do not want to make
reference to the order β in (C, β), we write (C). Most statements below
are about complex-valued distributions. We will often drop x → ∞ from
the notation. Note that if f(x) = O(1), x → ∞, then f+ ∈ S ′(R) (here
f = f−+ f+ as in Definitions 3.1 and 3.3). In addition, it should be noticed
that if both conditions f(x) = OL(1) and f(x) = OR(1) hold in the (C, β)
sense, then f(x) = O(1) (C, β).
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3.2. Cesàro summability of distributional evaluations and the con-
nection with series and Stieltjes integrals. It is convenient for future
purposes to use the notion of Cesàro summability of distributional evalua-
tions [7, 10]. It will provide the link between our theorems for distributions
and results for series and Stieltjes integrals. Let g be a distribution with the
support bounded at the left and let φ ∈ E(R); we say that the distributional
evaluation 〈g(x), φ(x)〉 exists and is equal to a number γ in the Cesàro sense
(of order β ≥ 0), and write

〈g(x), φ(x)〉 = γ (C, β) ,

if the primitive G of φg with the support bounded at the left, i.e., G =
(φg)(−1), satisfies limx→∞G(x) = γ (C, β). Note that when s is of local
bounded variation with s(x) = 0 for x ≤ 0, we have∫ ∞

0
φ(t)ds(t) = γ (C, β)

if and only if 〈
s′(t), φ(t)

〉
= γ (C, β) ;

and it explicitly means that

lim
x→∞

∫ x

0
φ(t)

(
1− t

x

)β
ds(t) = γ .

A similar consideration applies for Cesàro boundedness. In particular, when
s(x) =

∑
λn<x

cn, where λn ↗∞, we have

∞∑
n=0

cn = γ (R, {λn} , β)

if and only if 〈 ∞∑
n=0

cnδ (x− λn) , 1

〉
= γ (C, β) ,

where here (R) stands for the Riesz method by typical means [3, 10, 12].
Using the well-known equivalence between summability by (R, {n}) means

and Cesàro means [12, 16], we have that if β ≥ 0, then
∑∞

n=0 cn = γ (C, β)
if and only if 〈 ∞∑

n=0

cnδ (x− n) , 1

〉
= γ (C, β) .

Finally, we will need the following observation in the future. Given a
sequence {bn}∞n=0 and β > 0, write

bN = O(N) (C, β) ,

if the Cesàro means of order β of the sequence (not to be confused with the
Cesàro means of a series) are O(N), that is,
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N∑
n=0

(
N − n+ β − 1

N − n

)
bn = O(Nβ+1) .

Likewise, we define the symbolsOR andOL in the Cesàro sense for sequences.
Following Ingham’s method [16], we obtain the following useful equivalence.

Lemma 3.5. Let β ≥ 0. The conditions

(7)

N∑
n=0

cn = O(N) (C, β)

and

(8)
∞∑
n=0

cnδ(x− n) = O(1) (C, β + 1) , as x→∞ ,

are equivalent. The same holds for the symbols OR and OL.

Proof. Repeating the arguments from [16], with the obvious modifications,
one is led to the equivalence between (7) and the relation∑

n<x

(x− n)β cn = O(xβ+1), (resp. OR and OL),

which turns out to be the meaning of (8). �

3.3. A convexity (Tauberian) theorem. We now show a convexity the-
orem for the Cesàro limits of distributions. It generalizes [12, Thm. 70].

Theorem 3.6. Let f ∈ D′(R). Suppose that limx→∞ f(x) = γ (C, β2), for
some β2 > 0. If f(x) = OL(1) (C, β1), then limx→∞ f(x) = γ (C, β) for any
β ≥ β1 + 1. The same conclusion holds if we replace OL(1) by OR(1). If
now f(x) = O(1) (C, β1), as x → ∞, then limx→∞ f(x) = γ (C, β) for any
β > β1.

Theorem 3.6 follows immediately from the next proposition. For the first
part we give a proof based on the distributional ideas of Drozhzhinov and
Zavialov [5, Lem. 3]; it may also be deduced from the classical results on
asymptotics of derivatives (see [19, pp. 34–37], [12, Thm. 112]). We give a
direct proof of the second part.

Proposition 3.7. Let µ be a (real-valued) Radon measure supported in
[0,∞) and α > −1. Suppose that for some β1 > 1,

(9)

∫ x

0
(x− t)β1−1dsµ(t) ∼ γΓ (β1) Γ (α+ 1)

Γ (β1 + α+ 1)
xα+β1 , x→∞ .

If the one-sided condition µ = OL(xα) is satisfied, i.e., in a neighborhood of
infinity

Cxα+ + µ is a positive measure,
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for some constant C, then for any β ≥ 1,

(10)

∫ x

0

(
1− t

x

)β−1
dsµ(t) ∼ γΓ(β)Γ (α+ 1)

Γ (β + α+ 1)
xα+1 , x→∞ .

If in addition µ is absolutely continuous with respect to the Lebesgue measure,
and the two-sided condition

Fµ(x) = O (xα) , x→∞ ,

is satisfied, where Fµ ∈ L1
loc(R) is such that dsµ(t) = Fµ(t)dt, then (10)

holds whenever β > max {−α, 0}.

Proof. Let us show the first part of the theorem. By adding Cxα+ to µ, we
may assume C = 0, and so we are assuming that µ is a positive measure.
Next (9) directly implies that µ has the quasiasymptotic behavior

(11) µ(λx) = γλαxα+ + o (λα) as λ→∞ in D′(R),

[5, 37, 46], that is, for each test function φ ∈ D(R),

〈µ(λx), φ(x)〉 =
1

λ

∫ ∞
0

φ
(x
λ

)
dsµ(x) ∼ γλα

∫ ∞
0

φ(x)xαdx .

But it is well known that for positive measures the quasiasymptotic behavior
(11) is equivalent to the asymptotics of the primitive, i.e., (10) for β = 1,

sµ(λ) =

∫ λ

0
dsµ(t) ∼ γ λ

α+1

α+ 1
, λ→∞ ,

from which (10) follows for any β ≥ 1. This completes the proof of the first
part.

For the second part, write F := Fµ and s(x) := sµ(x) =
∫ x
0 F (t)dt.

We assume that |F (x)| ≤ Mxα for some constant M and x large enough.
Moreover, by Proposition 3.2, it is clear that we can assume this condition
to hold for all x. We obtain from the first part that s(x) ∼ γxα+1/(α+ 1),
x→∞. We also have that if 0 < r < 1,

|s(rx)− s(x)| ≤M
∫ x

rx
tαdt =

M

α+ 1
(1− r)α+1xα+1 .
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Hence, if max {−α, 0} < β < 1,∫ x

0
F (t)

(
1− t

x

)β−1
dt = lim

r→1−

∫ rx

0
F (t)

(
1− t

x

)β−1
dt

= lim
r→1−

(
s(rx)(1− r)β−1 +

β − 1

x

∫ rx

0
s(t)

(
1− t

x

)β−2
dt

)

= lim
r→1−

(
(1− r)α+β s(rx)− s(x)

(1− r)α+1
+ s(x)(1− r)β−1

+
β − 1

x

∫ rx

0
s(t)

(
1− t

x

)β−2
dt

)

= s(x) + lim
r→1−

β − 1

x

∫ rx

0
(s(t)− s(x))

(
1− t

x

)β−2
dt

= (β − 1)

∫ 1

0
(s(xt)− s(x)) (1− t)β−2dt+ γ

xα+1

α+ 1
+ o(xα+1)

= xα+1

(
(β − 1)

∫ 1

0

s(xt)− s(x)

xα+1(1− t)
(1− t)β−1dt+

γ

α+ 1
+ o(1)

)
= γ

β − 1

α+ 1
xα+1

(∫ 1

0
(tα+1 − 1)(1− t)β−2 +

1

β − 1
+ o(1)

)
= γ

β − 1

α+ 1
xα+1

(
Γ(β − 1)Γ(α+ 2)

Γ(β + α+ 1)
− 1

β − 1
+

1

β − 1
+ o(1)

)
= γ

Γ(β)Γ(α+ 1)

Γ(β + α+ 1)
xα+1 + o

(
xα+1

)
, x→∞ .

�

3.4. Tauberian theorems for (C) summability. We now analyze Taube-
rian conditions of Tauber’s second type. For that, we need the following
formula. Given g ∈ S ′(R), with the support bounded at the left, its Laplace
transform is denoted by L{g; z} :=

〈
g(t), e−zt

〉
, for <e z > 0.

Lemma 3.8. Suppose that f ∈ D′(R) has the support bounded at the left.
Then

(12) (xf)(−β) = xf (−β) − βf (−β−1) .

Proof. We first assume that f ∈ S ′(R). We make use of the injectivity of
the Laplace transform. Set F (z) = L{f(t); z}. Then,

L
{
tf (−β)(t); z

}
= − d

dz

(
L
{
f (−β)(t); z

})
= − d

dz

(
F (z)L

{
t
(β−1)
+

Γ(β)
; z

})

= β
F (z)

zβ+1
− F ′(z)

zβ
= L

{
βf (−β−1) + (tf)(−β) ; z

}
,
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which shows (12). In the general case we take a sequence {fn}∞n=0, with
each fn being tempered and having support on some fixed interval [a,∞),
such that fn → f in D′(R); then (12) is satisfied for each fn. Thus, the
continuity of the fractional integration operator [45], on D′[a,∞), shows
(12) for f , after passing to the limit. �

We now connect Tauber’s second type conditions with Cesàro bounded-
ness.

Lemma 3.9. Let f ∈ D′(R). Suppose that f(x) = O(1) (C, β2), as x→∞,
for some β2 ≥ 0. Then, the condition

(i) xf ′(x) = O(1) (C, β1 + 1) holds if and only if f(x) = O(1) (C, β1),
(ii) xf ′(x) = OL(1) (C, β1+1) holds if and only if f(x) = OL(1) (C, β1).

The same is true if OL(1) is replaced by OR(1).

Proof. We show (i). Assume that f has the support bounded on the left.
We can assume that β2 has the form β2 = β1 + k, for some k ∈ N. Let
g = xf ′, then, by Lemma 3.8,

xf (−β1−k+1)(x) = β2f
(−β1−k)(x)+g(−β1−k)(x) = g(−β1−k)(x)+O

(
xβ1+k

)
, x→∞ ;

then f(x) = O(1) (C, β1 + k − 1) if and only if g(x) = O(1) (C, β1 + k), as
x → ∞. A recursive argument shows that f(x) = O(1) (C, β1) if and only
if g(x) = O(1) (C, β1 + 1).

The same proof applies for one-sided boundedness. �

So, we immediately obtain the following result from Theorem 3.6.

Theorem 3.10. Let f ∈ D′(R). Suppose that limx→∞ f(x) = γ (C, β2) for
some β2 ≥ 0. The Tauberian condition xf ′(x) = O(1) (C, β1 + 1), for some
β1 ≥ 0, implies that limx→∞ f(x) = γ (C, β) for all β > β1.

Proof. Indeed, we obtain, by Lemma 3.9, f(x) = O(1) (C, β1), as x → ∞;
hence, an application of Theorem 3.6 gives the result. �

Theorem 3.11. Let f ∈ D′(R). Suppose that limx→∞ f(x) = γ (C, β2) for
some β2 ≥ 0. The Tauberian condition xf ′(x) = OL(1) (C, β1+1), for some
β1 ≥ 0, implies that limx→∞ f(x) = γ (C, β) for all β ≥ β1 + 1. The same
holds if we replace OL(1) by OR(1).

Proof. From Lemma 3.9, we have f(x) = OL(1) (C, β1), as x → ∞; hence,
again, we can an apply Theorem 3.6. �

We also analyze a little o condition. It generalizes [12, Thm. 65] to
distributions.

Theorem 3.12. Let f ∈ D′(R). Suppose that limx→∞ f(x) = γ (C, β2).
If β2 > β1 ≥ 0, a necessary and sufficient condition for the limit to hold
(C, β1) is xf ′(x) = o(1) (C, β1 + 1).
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Proof. We retain the notation from the proof of Lemma 3.9. If we have
limx→∞ f(x) = γ (C, k + β1), for some k > 0, then the relation

xf (−β1−k+1)(x) = g(−β1−k)(x) + (β1 + k)f (−β1−k)(x)

= g(−β1−k)(x) +
γxβ1+k

Γ(β1 + k)
+ o

(
xβ1+k

)
shows the equivalence at level k − 1. A recursive argument proves that the
equivalence should hold for k = 1. �

We may state our results in terms of (C) summability of distributional
evaluations. We obtain the next series of corollaries directly from Theorems
3.10, 3.11, and 3.12.

Corollary 3.13. Let g ∈ D′(R) and φ ∈ E(R). Suppose that supp g is
bounded at the left and

(13) 〈g(x), φ(x)〉 = γ (C) .

(i) If xφ(x)g(x) = O(1) (C, β1 + 1), as x→∞, for β1 ≥ 0, then

〈g(x), φ(x)〉 = γ (C, β) , for all β > β1 .

(ii) If xφ(x)g(x) = OL(1) (C, β1 + 1), as x→∞, for β1 ≥ 0, then

〈g(x), φ(x)〉 = γ (C, β) , for all β ≥ β1 + 1 .

(iii) Given β ≥ 0, a necessary and sufficient condition for (13) to hold
(C, β) is xφ(x)g(x) = o(1) (C, β + 1), as x→∞.

4. Tauber’s second type theorems for distributional point
values and (A) summability

4.1. Tauberian theorem for distributional point values. We are ready
to show the main theorem of this article.

Theorem 4.1. Let F be analytic in a rectangular region of the form (a, b)×
(0, R). Suppose f(x) = F (x + i0) in D′(a, b). Let x0 ∈ (a, b) such that
F (x0 + iy)→ γ as y → 0+. The Tauberian condition f ′(x0 + εx) = O(ε−1)
as ε→ 0+ in D′(a, b) implies that f(x0) = γ, distributionally.

Proof. Clearly, by a translation, we can assume that x0 = 0. We first
show that it may be assumed f ∈ S ′(R) and F is the standard Fourier-
Laplace representation [2, 45]. Let C be a smooth simple curve contained
in (a, b) × [0, R) such that C ∩ (a, b) = [x0 − σ, x0 + σ], for some small
σ, and which is symmetric with respect to the imaginary axis. Let τ be a
conformal bijection [28] between the upper half-plane and the region enclosed
by C such that the image of the imaginary axis is contained on the imaginary
axis and τ extends to a C∞-diffeomorphism from R to C \(C ∩ iR+). Then,
F ◦ τ(iy)→ γ as y → 0+, and f (τ(εx)) = O(ε−1) as ε→ 0+ in D′(R) if and
only if F (iy) → γ and f(εx) = O(ε−1) in D′(R). Moreover, f ◦ τ(0) = γ
if and only if f(0) = γ, distributionally [21]. In addition F ◦ τ is bounded
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away from an open half-disk about the origin, hence it is the Fourier-Laplace
analytic representation of f ◦ τ . We can therefore assume that f ∈ S ′(R)
and

F (z) =
1

2π

〈
f̂(t), eizt

〉
.

Our aim is to show that f is distributionally bounded at x = 0. Indeed,
if one established this fact then f(0) = γ, distributionally, by Theorem 2.1.
The condition f ′(εx) = O(ε−1) still holds in S ′(R) [9, 38]. If we integrate
this condition [43], we obtain from the definition of primitive in S ′(R) that
there exists a function c, continuous on (0,∞), such that

f(εx) = c(ε) +O(1) ,

as ε→ 0+ in S ′(R), in the sense that for each φ ∈ S(R),

〈f(εx), φ(x)〉 = c(ε)

∫ ∞
−∞

φ(x)dx+O(1) ,

as ε→ 0+. Fourier transforming the last relation, we have that

f̂(λx) = 2πc
(
λ−1

) δ(x)

λ
+O

(
1

λ

)
,

as λ→∞ in S ′(R). Evaluating at e−x, we obtain, as y → 0+, F (iy) = O(1)
and

F (iy) =
1

2π

〈
f̂(t), e−yt

〉
=

1

2πy

〈
f̂
(
y−1t

)
, e−t

〉
= c(y) +O(1) .

Hence, c is bounded near the origin, and thus f(εx) = c(ε) + O(1) = O(1)
as ε→ 0+ in S ′(R), as required. �

So, we obtain the following Tauberian theorem in terms of the Laplace
transform.

Theorem 4.2. Let G ∈ D′(R) have the support bounded at the left. Neces-
sary and sufficient conditions for

(14) lim
λ→∞

G(λx) = γ in D′(R) ,

are

(15) lim
y→0+

yL{G; y} = lim
y→0+

L
{
G′; y

}
= γ,

and

(16) λxG′(λx) = O(1) as λ→∞ in D′(R).

Proof. Either (14) or (16) implies that G is a tempered distribution and
hence its Laplace transform is well defined for <e z > 0. The necessity is
clear. Now, the condition (16) translates into f ′(εx) = O(ε−1) in S ′(R),

where f̂ = 2πG′. Relation (25) gives F (iy) = L{G′; y} → γ as y → 0+, for
the Fourier-Laplace representation of f , hence by Theorem 4.1, f(0) = γ in
S ′(R). Hence, taking Fourier inverse transform, we conclude that G′(λx) ∼
λ−1γδ(x) as λ→∞ in S ′(R), which implies (14) [40]. �
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4.2. Tauberian results for Abel limits. Let us define Abel limits for
distributions. Let g ∈ D′(R), it is called Laplace transformable on the strip
a < <e z < b if e−ξtg(t) is a tempered distribution for a < ξ < b (see [31]);
in such a case its Laplace transform is well defined on that strip.

Definition 4.3. Let f ∈ D′(R). We say that f has a limit γ at infinity in
the Abel sense, and write

lim
x→∞

f(x) = γ (A) ,

if there exists a distribution f+ with support bounded at the left such that
f+ coincides with f on an open interval (a,∞), f+ is Laplace transformable
for <e z > 0, and

(17) lim
y→0+

yL{f+; y} = γ .

Notice that Definition 4.3 is independent of the choice of f+, because
every compactly supported distribution satisfies (17) with γ = 0. The case of
locally integrable functions is of interest; it is analyzed in the next example.

Example 4.4. If f ∈ L1
loc[0,∞) is such that the improper integral

(18) L{f ; y} =

∫ ∞
0

f(t)e−tydt converges for each y > 0 ,

and

(19) lim
y→0+

yL{f ; y} = γ ,

then f has γ as an Abel limit in the sense of Definition 4.3. However, the
Abel limit of f , in the sense of Definition 4.3, exists under weaker assump-
tions, namely, under the existence of the Laplace transform as integrals in
the Cesàro sense, i.e.,

(20) L{f ; y} =

∫ ∞
0

f(t)e−tydt (C) exists for each y > 0 ,

and (19). Observe that the order of (C) summability might change in (20)
with each y. Conversely, the reader may verify that the existence of the
Abel limit, interpreted as in Definition 4.3, of a locally integrable function
is equivalent to (20) and (19).

Observe that (17) coincides with (15). Therefore, using the well-known
equivalence between Cesàro behavior and parametric (quasiasymptotic) be-
havior [10, 37, 39], we may reformulate Theorem 4.2.

Corollary 4.5. Let f ∈ D′(R). A necessary and sufficient condition for

(21) lim
x→∞

f(x) = γ (C)
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is

lim
x→∞

f(x) = γ (A) and xf ′(x) = O(1) (C) , as x→∞ .

We now combine Corollary 4.5 with the results from Section 3.4 to obtain
more precise information about the Cesàro order in (21).

Theorem 4.6. Let f ∈ D′(R). Suppose that limx→∞ f(x) = γ (A). The
Tauberian condition xf ′(x) = O(1) (C, β1 + 1), as x → ∞, implies that
limx→∞ f(x) = γ (C, β) for all β > β1.

Proof. It follows directly from Corollary 4.5 and Theorem 3.10. �

We can also consider a one-sided Tauberian condition.

Theorem 4.7. Let f ∈ D′(R). Suppose that limx→∞ f(x) = γ (A). Let
β1 ≥ 1. The one-sided Tauberian condition xf ′(x) = OL(1) (C, β1), as
x→∞, implies limx→∞ f(x) = γ (C, β) for all β ≥ β1.

Proof. We may assume that f is real-valued and supp f ⊆ [1,∞). If xf ′(x) =
O(1) (C) is established, we could apply first Corollary 4.5 and then Theorem
3.11 to obtain the desired conclusion. By assumption, there exist K > 0 and
k ∈ N such that g(−k) ∈ L∞loc(R) and g(−k)(x) ≥ −Kxk for all x ≥ 1, where

g(x) = xf ′(x). We consider T (x) = g(−k)(x)/x. If we show that T (x) =
O(xk−1) (C, 1), then it would immediately follow g(x) = O(1) (C, k + 1),

as required. By Lemma 3.8, we have the equality T (x) = f (−k+1)(x) −
kf (−k)(x)/x ; therefore, going to the Laplace transforms,

L{T ; y} = y−kyL{f ; y} − k
∫ ∞
y

u−kL{f ;u} du =
γ

yk
− k γ

kyk
+ o

(
1

yk

)
= o

(
1

yk

)
,

y → 0+. Using now the inequality 0 ≤ Kxk−1 + T (x), we have

T (−1)(x) =

∫ x

1
(T (t) +Ktk−1)dt+O(xk)

≤ e
∫ x

0
e−t/x(T (t) +Ktk−1)dt+O(xk)

≤ eL
{
T ;

1

x

}
+O(xk) = o(xk) +O(xk)

= O(xk) ;

hence T (x) = O(xk−1) (C, 1). The proof is complete. �

We obtain from Theorem 4.7 an extension of a classical important result
of Szász [34, Thm.1].
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Theorem 4.8. Let f ∈ L1
loc[0,∞). Suppose that limx→∞ f(x) = γ (A)

in the sense that it satisfies (20) and (19). Then, the one-sided Tauberian
condition

(22) xf(x)−
∫ x

0
f(t)dt = OL(x)

implies that

(23) f (−1)(x) =

∫ x

0
f(t)dt ∼ γx, x→∞ .

Proof. Note that the relations (22) and (23) exactly mean that xf ′(x) =
OL(1) (C, 1) and limx→∞ f(x) = γ (C, 1), respectively. So, Theorem 4.7
yields (23). �

In particular, we have the ensuing corollary.

Corollary 4.9 (Szász [34]). Let f ∈ L1
loc[0,∞) satisfy (18) and (19). The

one-sided Tauberian condition (22) implies (23).

Remark 4.10. If β ≥ 0, we might replace (22) in Theorem 4.8 and Corollary
4.9 by

xf(x)−
∫ x

0
f(t)dt = OL(x) (C, β), as x→∞ ,

then the same arguments apply to conclude limx→∞ f(x) = γ (C, β + 1).

We can use Theorem 3.12 to obtain a Tauber type characterization of
(C, β) limits; the next result follows easily from Corollary 4.5 and Theorem
3.12.

Theorem 4.11. Let f ∈ D′(R) and β ≥ 0. A necessary and sufficient
condition for limx→∞ f(x) = γ (C, β) is limx→∞ f(x) = γ (A) and xf ′(x) =
o(1) (C, β + 1).

4.3. Tauberians for Abel summability of distributional evaluations.
In order to give applications to the classical cases, let us give sense to
Abel summability of distributional evaluations [10]. Let g ∈ D′(R) with
the support bounded at the left and φ ∈ E(R). We say that the distri-
butional evaluation 〈g(x), φ(x)〉 exists and equals γ in the Abel sense if
e−yxφ(x)g(x) ∈ S ′(R) for every y > 0 and

lim
y→0+

〈
φ(t)g(t), e−yt

〉
= γ .

In such a case we write

(24) 〈g(x), φ(x)〉 = γ (A) .

Notice that (24) holds if and only if limx→∞G(x) = γ (A), where G is
the first order primitive of φg with the support bounded at the left, that
is, G = (φg)(−1) = (φg) ∗ H (here H is the Heaviside function). So, our
theorems from Section 4.2 give at once the following results.
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Theorem 4.12. Let g ∈ D′(R) with the support bounded at the left and
φ ∈ E(R). Suppose that

(25) 〈g(x), φ(x)〉 = γ (A) .

The Tauberian condition xg(x)φ(x) = OL(1) (C, β1 + 1), as x → ∞, for
β1 ≥ 0, implies

(26) 〈g(x), φ(x)〉 = γ (C, β)

for all β ≥ β1 + 1. Moreover, the stronger Tauberian condition xg(x)φ(x) =
O(1) (C, β1 + 1) implies that (26) holds for all β > β1.

Theorem 4.13. Let g ∈ D′(R) with the support bounded at the left and φ ∈
E(R). A necessary and sufficient condition for (26) is 〈g(x), φ(x)〉 = γ (A)
and xg(x)φ(x) = o(1) (C, β + 1) as x→∞.

The case when g = f̂ and φ(x) = eix0x is interesting, since it provides
the order of summability in the pointwise Fourier inversion formula for
 Lojasewicz point values [40]. This is the content of the next corollary.

Corollary 4.14. Let f ∈ S ′(R) be such that supp f̂ is bounded at the left
and

1

2π

〈
f̂(x), eix0x

〉
= γ (A) .

Then xeix0xf̂(x) = OL(1) (C, β1 +1), for some β1 ≥ 0, implies that f(x0) =
γ, distributionally. Moreover, the pointwise Fourier inversion formula holds
in the (C, β) sense for any β ≥ β1 + 1, that is,

(27) f(x0) = γ, distributionally, and
1

2π

〈
f̂(x), eix0x

〉
= γ (C, β) .

Furthermore, the stronger Tauberian condition xeix0xf̂(x) = O(1) (C, β1+1)
implies that (27) holds for all β > β1.

4.4. Tauberians for series and Stieltjes integrals. The cases of Stieltjes
integrals and series are also of importance. We obtain directly from Theorem
4.12 the following corollary.

Corollary 4.15. Let s be a function of local bounded variation such that
s(x) = 0 for x ≤ 0. Suppose that the Cesàro integral

(28) L{ds; y} =

∫ ∞
0

e−yxds(x) (C) exists for each y > 0 ,

and that

lim
y→0+

L{ds; y} = γ .

Let β1 ≥ 0. Then, the Tauberian condition

(29)

∫ x

0
tds(t) = OL(x) (C, β1)
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implies that for all β ≥ β1 + 1,

(30) lim
x→∞

s(x) = γ (C, β) .

Moreover, if we replace OL(x) by O(x) in (29), we conclude that (30) holds
for all β > β1.

Observe that in particular Corollary 4.15 holds if we replace (28) by the
stronger assumption of the existence of the improper integrals∫ ∞

0
e−yxds(x) = lim

t→∞

∫ t

0
e−yxds(x) , for each y > 0 .

Let λn ↗ ∞ be an increasing sequence of non-negative real numbers.
Recall that we write

∑∞
n=0 cn = γ (A, {λn}) if the Dirichlet series F (z) =∑∞

n=0 cne
−zλn converges on <e z > 0 and limy→0+ F (y) = γ (see [12]).

Corollary 4.16. Suppose that
∑∞

n=0 cn = γ (A, {λn}). The Tauberian con-
dition

∑
λn<x

λncn = OL(x) (C, β1), for β1 ≥ 0, implies that
∑∞

n=0 cn =
γ (R, {λn} , β) for all β ≥ β1 + 1. The stronger Tauberian hypothesis∑

λn<x
λncn = O(x) (C, β1) implies the (R, {λn} , β) summability of the se-

ries to γ for all β > β1.

Furthermore, we may formulate a much stronger version of Corollary 4.16
if we assume

F (y) =

∞∑
n=0

cne
−yλn (R, {λn}) exists for each y > 0 ,

and limy→0+ F (y) = γ, instead of the more restrictive hypothesis of (A, {λn})
summability. On the other hand, if we specialize Corollary 4.16 to power
series, we now obtain a general form of the Theorem 1.3 stated at the intro-
duction.

Corollary 4.17. Suppose that
∑∞

n=0 cn = γ (A). The Tauberian condition∑N
n=1 ncn = OL(N) (C, β1), for β1 ≥ 0, implies that

∑∞
n=0 cn = γ (C, β)

for all β ≥ β1 + 1. The stronger Tauberian condition
∑N

n=1 ncn = O(N)
(C, β1) implies the (C, β) summability of the series to γ for all β > β1.

5. Applications: Tauberian conditions for convergence

This section is devoted to applications of the distributional method in clas-
sical Tauberians for Dirichlet series. Let f ∈ D′(R) have support bounded
at the left. As follows from the results of [10, 40], we have limx→∞ f(x) = γ
(C) if and only if its derivative has the quasiasymptotic behavior

(31) f ′(λx) = γ
δ(x)

λ
+ o

(
1

λ

)
as λ→∞ in D′(R) .

Let 1 < σ < 2. Throughout this section φσ ∈ D(R) is a fixed test function
with the following properties: 0 ≤ φσ ≤ 1, φσ(x) = 1 for x ∈ [0, 1], and
suppφσ ⊆ [−1, σ].
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We first extend a Theorem of Szász [35] (see also [30]) from series to
Stieltjes integrals.

Theorem 5.1. Let s be a function of local bounded variation such that
s(x) = 0 for x ≤ 0. Suppose that limx→∞ s(x) = γ (A). Then, the Tauberian
conditions

(32)

∫ x

0
tds(t) = OL(x) (C, β) ,

for some β ≥ 0, and

(33) lim
σ→1+

lim sup
x→∞

1

x

∫ σx

x
t |ds| (t) = 0

imply that limx→∞ s(x) = γ.

Proof. Corollary 4.15 and (32) imply that limx→∞ s(x) = γ (C). Then s′

has the quasiasymptotic behavior (31), evaluating the quasiasymptotics at
φσ, we obtain

lim sup
λ→∞

|s(λ)− γ| ≤ lim sup
λ→∞

∫ σλ

λ
φσ

(
t

λ

)
|ds| (t)

≤ lim sup
λ→∞

1

λ

∫ σλ

λ
t |ds| (t) .

Since σ is arbitrary, we obtain the convergence from (33). �

We recover the result of Szász mentioned above.

Corollary 5.2 (Szász, [35]). Suppose that
∑∞

n=0 cn = γ (A). Then the
Tauberian conditions

(34) VN =
1

N

N∑
n=0

n |cn| = O(1) ,

and

(35) Vm − Vn → 0, as
m

n
→ 1+ and n→∞ ,

imply the convergence of the series to γ.

Proof. We show that (35) implies (33). Indeed, by (34),

1

x

∑
x<n≤σx

n |cn| =
[σx]− [x]

x
V[σx] +

[x]

x
(V[σx] − V[x])

<
σx− x− 1

x
O(1) + (V[σx] − V[x]) ,

and the last expression tends to 0 as x→∞ and σ → 1+. �

The next Tauberian theorem for Dirichlet series belongs to Hardy and
Littlewood [14] (see also [33] and [34, Thm. 6]).
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Theorem 5.3 (Hardy-Littlewood). Suppose that

∞∑
n=0

cn = γ (A, {λn}) .

Then the Tauberian condition

(36)
∞∑
n=1

(
λn

λn − λn−1

)p−1
|cn|p <∞ ,

where 1 ≤ p <∞, implies the convergence of the series to γ.

Proof. Since the case p = 1 is trivial, we assume 1 < p <∞. Let q = p/(p−
1). Hölder’s inequality implies (32), with β = 0, for s(x) =

∑
λn≤x cn. So,

Corollary 4.16 implies the (R, {λn}), 1) summability. Then
∑∞

n=0 cnδ(x−λn)
has the quasiasymptotic behavior (31), evaluating at φσ and using Hölder’s
inequality, we obtain

lim sup
N→∞

∣∣∣∣∣
N∑
n=0

cn − γ

∣∣∣∣∣ ≤ lim sup
N→∞

∑
λN<λn≤σλN

φσ

(
λn
λN

)
|cn|

≤ lim sup
N→∞

∑
λN<λn≤σλN

|cn|

≤ lim sup
N→∞

 ∑
λN<λn≤σλN

λn − λn−1
λn

1/q

O(1)

≤ (σ − 1)1/qO(1) ,

and by taking σ → 1+, we obtain the result. �

We end this article by proving another theorem of Szász [32, 33, 34] (the
case for power series was discovered first by Hardy and Littlewood).

Theorem 5.4 (Szász, [34]). Suppose that
∑∞

n=0 cn = γ (A, {λn}). Then the
Tauberian condition

(37)

N∑
n=1

λpn (λn − λn−1)1−p |cn|p = O(λN ) ,

for some 1 < p <∞, implies the convergence of the series to γ.

Proof. Let q = p/(p−1). Again, Hölder’s inequality implies (32), with β = 0,
for s(x) =

∑
λn≤x cn. So, Corollary 4.16 implies that

∑∞
n=0 cnδ(x − λn)

has the quasiasymptotic behavior (31), and by evaluating at φσ and using
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Hölder’s inequality, we obtain

lim sup
N→∞

∣∣∣∣∣
N∑
n=0

cn − γ

∣∣∣∣∣ ≤ lim sup
N→∞

∑
λN<λn≤σλN

φσ

(
λn
λN

)
|cn|

≤ lim sup
N→∞

λ
1/p
N

 ∑
λN<λn≤σλN

λn − λn−1
λqn

1/q

O(1)

≤ lim sup
N→∞

 1

λN

∑
λN<λn≤σλN

(λn − λn−1)

1/q

O(1)

= (σ − 1)1/qO(1) .

Since σ is arbitrary, we obtain the convergence. �

Remark 5.5. We have chosen to give direct proofs of Theorems 5.3 and
5.4 to exemplify the distributional method. However, they are easy con-
sequences of Theorem 5.1. Namely, by applying Hölder’s inequality to∑

x<λn≤σx λn |cn|, one deduces that (33) is satisfied. Indeed, any of the

Tauberian hypotheses (36) or (37) yield

1

x

∑
x<λn≤σx

λn |cn| ≤ σ1/p(σ − 1)1/qO(1) .
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[24] S. Pilipović and B. Stanković, Wiener Tauberian theorems for distributions, J.
London Math. Soc. 47 (1993), 507–515.
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