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1. Introduction

The mechatronic systems represents one of the most challenging control applications due to their interdisciplinary

nature [1–3]. Numerous control algorithms have been proposed to deal with nonlinear dynamics of the mechatronic

systems. For linear mechatronic systems, the proportional-integral-derivative (PID) controller is often used owing

to its simple structure and robustness [4]. The advantage of the PID controller is that it can be easily tuned in

a wide range of operating conditions [4, 5]. However, the design of conventional integer-order PID controllers

should be based on the model.

∗ E-mail: Cosmin.Copot@UGent.be
† E-mail: Yu.Zhong@UGent.be
‡ E-mail: ClaraMihaela.Ionescu@UGent.be
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Another approach in dealing with mechatronic systems challenges is the fractional-order (FO) control strategies.

The concept of FO or non-integer order systems refers to those dynamical systems whose model structure contains

arbitrary order derivatives and/or integrals [6–8]. In recent years, many studies and applications of fractional-

order systems in areas such as science and engineering have been presented, but there is still much room for

developing these emerging tools. With the development of the fractional-calculus, researchers in the engineering

field realized that many real processes are described more adequately by fractional-order state equations [9–11].

Thus, the conventional integer-order PID controller becomes less suitable for the control of the fractional-order

reality. A suitable way to improve the control performance is to use a controller with a similar structure as in

natural world [12], i.e. a fractional-order PIλDµ controller.

Recently, fractional-order control of nonlinear systems has started to attract the interest for applications in control

engineering [13, 14]. By expanding derivative and integral terms to fractional-order in the controller, we can adjust

the control system’s frequency response directly and continuously. Fractional-order PID controllers have been

used in industrial applications [8] and various areas such as mechatronic systems [15, 16], and bio-medical systems

[17–19].

In this paper, two design methods of a fractional-order PIλDµ controller for a mechatronic system are presented.

The first method employs a genetic algorithm as a global optimization method to obtain the five parameters for

the fractional-order controller in time domain. The benefit of this method is that it requires less knowledge about

the process. The second method is numerical and based on an auto-tuning strategy. In order to analyze the

performances of the controllers, a typical mechatronic system composed of a Steward platform with 6 degrees of

freedom (d.o.f.) is employed. To control the position of the ball on the platform, a visual feedback is necessary.

This feedback is given by a camera mounted on the top of the platform, while the Hough transform algorithm is

used to detect the center of the ball. The experimental results reveal good performances and show a stable and

convergent behavior of the Steward platform when dealing with fractional-order control. Both fractional-order

controllers are implemented, tested and validated and their performances are analyzed.

The paper is organized as follows: in Section 2 the Steward platform (i.e. ball and plate system), its inverse

kinematics, theoretical model, the visual feedback and the system identification and validation of the theoretical

model are presented. In Section 3, we briefly introduce the integer-order and the fractional-order controllers,

followed by two tuning methods for the fractional-order controllers: i) based on artificial intelligence and ii) based

on frequency domain. The results of tuning, along with some implementation aspects followed by the experimental

outcomes are presented in Section 4. The conclusions are detailed in the last Section.

2. Steward Platform (ball and plate system)

The Steward platform consists of a table which is sloped by servo or electric motors and a ball that roll freely on

the table. This ball and plate system can be considered as the two-dimensional extension of the ball and beam
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system.

2.1. Hardware design

In order to move the ball, the plate is tilted using 6 servo-motors and thus the platform has 6 d.o.f. in which a

freely-suspended body can move. Three linear movements on x, y, z axis (lateral, longitudinal and vertical), and

three rotations (pitch, roll and yaw) are available, but in this case the main movements for the ball and plate

system are on the pitch and roll rotations. The remaining degrees of freedom can be exploited to optimize the

control but this falls out of the scope of this paper.

The motion platform is called a Stewart platform [20]. This is a type of parallel robot that incorporates six

actuators which are mounted in pairs to the base, crossing over to three mounting points on a top plate (Figure

1). R/C servos are devices, typically employed in radio controlled models, where they are used to provide

actuation for various mechanical systems. A servomechanism is an automatic device that uses error-sensing

negative feedback to control mechanical parameters, in this case position. Due to their affordability, reliability,

and simplicity of control by microprocessors, R/C servos are often used in small-scale robot applications. R/C

servos are composed of an electric motor mechanically linked to a potentiometer. A controller sends pulse-width

modulation (PWM) signals to the servo with a 50 Hz frame rate. The electronics inside the servo translate the

width of the pulse into a position. A downside is that there is no feedback from the servo. The microcontroller

is unaware of the effective position of the servo.

movements x, y, z (lateral, longitudinal and vertical), and three rotations (pitch, roll and yaw). The 

main movements for the ball and plate system are the two rotations pitch and roll. The remaining 

degrees of freedom can be exploited to optimize the control but this falls out of the scope of this 

paper. 

The motion platform build is called a Stewart platform [12]. This is a type of parallel robot that 

incorporates six actuators. These are mounted in pairs to the mechanism’s base, crossing over to 

three mounting points on a top plate. In this case six servo actuators were used. 

RC servos are devices, typically employed in radio controlled models, where they are used to 

provide actuation for various mechanical systems. A servomechanism is an automatic device that 

uses error-sensing negative feedback to control mechanical parameters, in this case position. Due 

to their affordability, reliability, and simplicity of control by microprocessors, RC servos are often 

used in small-scale robot applications. 

RC servos are composed of an electric motor mechanically linked to a potentiometer. A controller 

sends pulse-width modulation (PWM) signals to the servo with a 50 Hz frame rate. The 

electronics inside the servo translate the width of the pulse into a position. A downside is that there 

is no feedback from the servo. The microcontroller is unaware of the effective position of the 

servo. 

  

Fig. 1 Six DoF Motion Platform with camera for vision feedback. (a)

 

(b)

Figure 1. Six DoF Motion Platform with camera for vision feedback; (a) the schematic representation; (b) the real system
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2.2. Inverse kinematics

Based on the theoretical developments from [21], the inverse kinematic model is designed. The analytical method

is derived in order to compute the position of the servo-motors for a given platform position. Each servo-motor

has a local coordinate system defined as in Figure 2. The center of a servo-motor is the point A with coordinates

(xa, ya, za). Let r be the length of the servo arm (AB) while BC is the shaft that connects the servo arm with

the platform in the point C and has the length `. As the position of the platform is known, the position of each

connection (C) is also known (specified by the controller). The position of the servo (A) and its orientation (θ) are

determined by the motion platform construction. The absolute distance between the point A and C is denoted

by `1. The angle of the servo-motor relative to its neutral position (the angle of the servo arm with the xy-plane),

is indicated by ϕ (ϕ = 0◦ in neutral position).

2.2 Inverse kinematics  

The inverse kinematics are based on [13]. Here an analytical method is derived for calculating the 

positions of the servos for a given platform position. As the position of the platform is known, the 

position of each connection (C) is also known (specified by the controller). The position of the 

servo (A) and its orientation (θ) are determined by the motion platform construction. The 

connection of the servo lever and the vertical rod is indicated as B (Fig. 2). 

 

Fig. 2 Local coordinate frame for a servo control unit. 

The result of the inverse kinematics is: 

𝜑 = ±arccos 
𝑀

 𝐾2+𝐿2
 + arctan 

𝐿

𝐾
 ,        (1) 

where: 

𝑀 = 𝑙2 − 𝑙1
2 − 𝑟2             

𝐾 = 2 𝑥𝑎 − 𝑥𝑐 𝑟cos𝜃 + 𝑥𝑎 + 2 𝑦𝑎 − 𝑦𝑐 𝑟sin𝜃 + 𝑦𝑎 .     (2) 

𝐿 = 2 𝑧𝑎 − 𝑧𝑐 𝑟             

 

Fig. 3 Mapping of possible solutions for (1). 

As can be seen in (1), four solutions exist. All possible solutions are shown in Fig. 3. Due to the 

Figure 2. Local coordinate frame for a servo control unit

The output of the inverse kinematics is:

ϕ = ± arccos

(
M√

K2 +H2

)
+ arctan

(
H

K

)
+ kπ, ∀k ∈ Z, (1)

where:

M = `2 − `21 − r2

K = 2 (xa − xc) r cos θ + xa + 2 (ya − yc) r sin θ + ya

H = 2 (za − zc) r

. (2)
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2.2 Inverse kinematics  

The inverse kinematics are based on [13]. Here an analytical method is derived for calculating the 

positions of the servos for a given platform position. As the position of the platform is known, the 

position of each connection (C) is also known (specified by the controller). The position of the 

servo (A) and its orientation (θ) are determined by the motion platform construction. The 

connection of the servo lever and the vertical rod is indicated as B (Fig. 2). 

 

Fig. 2 Local coordinate frame for a servo control unit. 

The result of the inverse kinematics is: 

𝜑 = ±arccos 
𝑀

 𝐾2+𝐿2
 + arctan 

𝐿

𝐾
 ,        (1) 

where: 

𝑀 = 𝑙2 − 𝑙1
2 − 𝑟2             

𝐾 = 2 𝑥𝑎 − 𝑥𝑐 𝑟cos𝜃 + 𝑥𝑎 + 2 𝑦𝑎 − 𝑦𝑐 𝑟sin𝜃 + 𝑦𝑎 .     (2) 

𝐿 = 2 𝑧𝑎 − 𝑧𝑐 𝑟             

 

Fig. 3 Mapping of possible solutions for (1). 

As can be seen in (1), four solutions exist. All possible solutions are shown in Fig. 3. Due to the 

Figure 3. Mapping of possible solutions for (1)

As can be observed, equation (1) has four solutions:

ϕ1 = arccos

(
M√

K2+H2

)
+ arctan

(
H
K

)
+ π

ϕ2 = − arccos

(
M√

K2+H2

)
+ arctan

(
H
K

)
+ π

ϕ3 = arccos

(
M√

K2+H2

)
+ arctan

(
H
K

)
ϕ4 = − arccos

(
M√

K2+H2

)
+ arctan

(
H
K

)
. (3)

All possible solutions are shown in Figure 3. By using mathematical methods, a second point C′ is found, so

solutions 3 (ϕ3) and 4 (ϕ4) are discarded. Because the servo-motor can move only in the interval [−90◦, 90◦], the

solution 1 (ϕ1) will be selected.

2.3. Modeling

The motion of the ball on the plate can be described by using the Euler-Lagrange equation:

d

dt

∂L

∂q̇
− ∂L

∂q
= Q, (4)

where L is the Lagrangian and represents the difference between kinetic energy T and potential energy V and

q = [x, y]T is the vector of generalized coordinates. These are the coordinates of the ball on the platform (Figure

4).

The kinetic energy is the sum of the translation of the center of the ball and the rotation of the ball about its

center. The rotation of the ball as a result of the rotation of the platform is not taken into account. The kinetic

energy can be computed using:

T =
1

2
m
(
ẋ2 + ẏ2

)
+

1

2
J
(
ω̇2
x + ω̇2

y

)
=

1

2

(
m+

J

r2b

)(
ẋ2 + ẏ2

)
, (5)
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2.3 Modeling 

The theoretical continuous state space model is derived in this section. The motion of the ball on 

the plate can be described by using the Euler-Lagrange equation: 

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞 
−

𝜕𝐿

𝜕𝑞
= 𝑄,           (11) 

where L is the difference between kinetic energy T and potential energy V, and q is the vector of 

generalized coordinates [x, y]
T
. 

The kinetic energy can be written as: 

𝑇 =
1

2
𝑚 𝑥 2 + 𝑦 2 +

1

2
𝐽 𝜔 𝑥

2 +𝜔 𝑦
2 =

1

2
 𝑚 +

𝐽

𝑟2
  𝑥 2 + 𝑦 2 ,  (12) 

where m is the mass of the ball, ωx and ωy is the angular velocity with respect to x and y directions, 

r is the radius of the ball and J is the moment of inertia. 

The potential energy can be written in the forms of (Fig. 4): 

𝑉 = 𝑚𝑔ℎ = 𝑚𝑔(𝑥 sin 𝜃𝑥 + 𝑦 sin 𝜃𝑦).       (13) 

where g is the gravity and h is the altitude. 

 

Fig. 4 Schematic drawing of the ball and plate arrangement 

When we substitute the Lagrangian L into the Euler-Lagrange equation (11), it follows that: 

 
 𝑚 +

𝐽

𝑟2
 𝑥 + 𝑚𝑔 sin 𝜃𝑥 = 0

 𝑚 +
𝐽

𝑟2
 𝑦 + 𝑚𝑔 sin 𝜃𝑦 = 0

         (14) 

For a sufficiently small angle θ, we can replace the term sinθ by θ itself, and the linearization of 

this model can be obtained as: 

𝒙 = 𝑨𝒙 + 𝑩𝒖            (15) 

Figure 4. Schematic drawing of the ball and plate arrangement

where rb is the radius of the ball, ωx and ωy represents the angular velocity of the ball related with x and y

directions, m is the mass of the ball and J is the moment of inertia.

The potential energy can be written as following:

V = mgh = mg (x sin θx + y sin θy) , (6)

with g the gravitational acceleration, h the height of the ball with respect to a reference level and θx and θy the

rotations of the platform along the x-axis and y-axis.

Inserting q = [x, y]T in the Euler-Lagrange equation (4) and if we substitute the Lagrangian L, the following

dynamic model is obtained: 
(
m+ J

r2
b

)
ẍ+mg sin θx = 0(

m+ J
r2
b

)
ÿ +mg sin θy = 0

(7)

Taking into account that for a sufficiently small angle θx or θy the term sin θx and sin θy can be replaced with θx

and θy, the linearization of the model can be written as:

ẋ = Ax + Bu (8)

where

x =



x

ẋ

y

ẏ


; u =

 θx
θy

 ; A =



0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0


; B = − mg

m+ J
r2



0 0

1 0

0 0

0 1


. (9)

Replacing the inertial term J = 5
2
mr2, we can write the matrix B as:

B = −5

7
g



0 0

1 0

0 0

0 1


. (10)
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2.4. Visual feedback

In order to control the ball, a feedback of the position of the ball is necessary. This feedback is obtained using a

visual sensor mounted on the top of the platform (Figure 1). This camera captures frames at 20Hz. The frames

are interpreted by a self-written vision algorithm which, after calibration, determines the position of the ball on

the platform.

Based on the Hough transform, which can be used to isolate features of a particular shape within an image, the

center of the ball can be detected. The position of the ball in the image plane is assigned to a position on the

platform using the pinhole camera model which is a mathematical relationship between the coordinates of a 3D

point and its projection onto the image plane. Let P = [xP, yP, zP]T be a point in Cartesian space, its projection

in the image plane is the point P′ = [uP′ , vP′ ]T expressed in pixels:


uP′

vP′

1

 = ΥΠ0



xP

yP

zP

1


(11)

where:

Υ =


lsx lsθ ox

0 lsy oy

0 0 1

 , Π0 =


1 0 0 0

0 1 0 0

0 0 1 0

 . (12)

In (12) Υ represents the matrix of the intrinsic parameters, l is the focal length, sx, sy are the scalar factors on

x and y directions and ox, oy are the coordinates of the center of the image expressed in pixels. The intrinsic

camera parameters are determined using the Camera Calibration Toolbox from Matlab. The extrinsic parameters

describe the position of the camera with respect to the world frame. An algorithm was developed to determine the

extrinsic parameters by selecting three markers in the camera picture, which are placed on well known positions

on the platform (Figure 5(a)). Each time the position of the camera is changed, a new calibration should be

preformed.

The algorithm that assigns a pixel in a camera frame to a position in Cartesian space is illustrated in Figure

5(b). Knowing the position of the camera in the world frame (extrinsic parameters) and the position of the image

projection plane with respect to the optical center (intrinsic parameter), the light beams related to each pixel

can be reconstructed. Taking into account that the position of the platform in the world frame is also known, it

can be easily seen that the intersection of the light ray with the platform is in accordance with the pixel in the

camera frame.
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To use this camera model, the camera should be calibrated
by determining its parameters. These parameters can be
divided in two classes. Intrinsic parameters are specific for
each camera, such as the focal length. These parameters
should be determined only once. The extrinsic parameters
describe the position of the camera with respect to the world
frame. Each time the position of the camera is changed,
a new calibration should be preformed. An algorithm was
developed to determine the extrinsic parameters by selecting
tree markers in the camera picture, which are placed on well
known positions on the platform (figure 7).

The algorithm that assigns a pixel in a camera frame to a
position is illustrated in figure 8. Because the position of the
camera is known in the world frame (extrinsic parameters)
and the position of the image projection plane is known with
respect to the optical center (intrinsic parameter), the light
beams related to each pixel can be reconstructed. Also the
position of the platform is known in the world frame. This
means that the intersection of the light ray with the platform
is in accordance with the pixel in the frame.

Because the actual position of the RC-servo’s is unknown
while there are moving from one position to the next, the real
platform position also is unknown. Because the presence of
a linear dynamic model, a Kalman filter was implemented to
reduce this noise.

VI. CONTROLLERS

To demonstrate the capabilities of the ball and plate sys-
tem, two controllers were implemented. The controllers are
compered to eachother by there closed loop step response, a
move from 0 to 200mm in the x-direction.

The first controller is a Proportional Derivative (PD)
controller. This controller was tuned with FRtool (A Fre-
quency Response Tool for CACSD in Matlab) [?]. This
CAD-software uses frequency charts of a linear model as
a controller design tool. The results are shown in figure 9.

Fig. 7: Calibration of the extrinsic parameters with tree
markers

Fig. 8: Assigning a pixel to a 3D position on the platform
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Fig. 9: Step response of with a PD controller

The second control algorithm is a Linear Quadratic con-
troller. The feedback gain is based upon the minimization
of a quadratic cost function. The gain matrix can be trans-
formed to an equivalent PD controller. This equivalent PD
controller has similar Kp and Kd gains as the one tuned with
FRTool. This is reflected in a similar step response, shown
in figure 10.

The difference between the simulation and the actual
measurements is the result of linearisation, and other sim-
plifications like the neglection of the rotation speed of the
platform (θ̇x and θ̇y).

Both controllers can also be used for path following. The

(a)
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(b)

Figure 5. (a) Calibration of the extrinsic parameters with tree markers; (b) Assigning a pixel to a 3D position on the platform

2.5. Model validation

The signal used for the identification is a PRBS (pseudo random binary signal) signal. The length of the signal

is 27 − 1 = 127. To generate this PRBS signal, the following command is used in Matlab:

� idinput(127, ’PRBS’, [0 1/1], [-1 1]).

This command results in the following signal (Figure 6(a)), and the system response is shown in Figure 6(b).

 

(a)         (b) 

Fig. 6 (a) PRBS signal for identification; (b) Output of the x-position of the ball. 

By using Prediction Error Method (PEM), the system’s model is defined as: 

𝐺 𝑠 =
𝐾𝑝

𝑠(1+𝑇𝑝1∗𝑠)
           (36) 

In which Kp=-1.641*10
11

, and Tp1=8.774*10
9
. The model performance is given in Fig. 7(a). 

 

(a)         (b) 

Fig. 7 (a) Integral order identification result; (b) Fractional-order identification result. 

While using fractional order identification, the system’s model is defined as in (37), and the model 

performance is shown in Fig. 7(b). 

𝐺 𝑠 =
−24.8537

0.255∗𝑠2.2691
          (37) 

When we compare the identification results from both integral-order identification and 

fractional-order identification, we can notice that although both models are quite close to the 

theoretical model, the fractional-order model gives a better presentation of the real process. Thus 

we will use the fractional-order model in the following tuning steps to obtain the parameter values 

in the PD controllers. 
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Figure 6. (a) PRBS signal for identification; (b) Output of the x-position of the ball.
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By using the Prediction Error Method (PEM) for identification [22], the system’s model is defined as:

G(s) =
Kp

s(1 + Tp1s)
(13)

In which Kp = −1.641 · 1011, and Tp1 = 8.774 · 109. The model performance is given in Figure 7.
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3. Fractional-order Controller Design

Due to the integrator within the process model, a PD controller is enough to control the process for an ideal system

where there is no input disturbance. However, in practice, as with most industrial applications, a disturbance

always exists (Figure 8). Hence, a proportional-integral-derivative PID controller is necessary in order to reject

such input disturbance, otherwise the output of the system will have a steady-state error. 

 

 

Controller 

(C) 

Process 

(G) 

reference output 

disturbance 

+ 
+ 

+ _ 

Figure 8. Closed-loop structure of the system

Based on the identified model from (13), two fractional-order PIλDµ controllers are designed using: i) genetic

algorithm and ii) auto-tuning method. In industrial applications, PID controllers are the most widely used

feedback controller. Standard textbook representation of a PID controller is given by:

u(t) = Kpe(t) +Ki

t∫
0

e(τ)dτ +Kd
d

dt
e(t) (14)
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and the continuous transfer function of the PID controller is obtained by means of the Laplace transformation

as given by:

C(s) = Kp +
Ki

s
+Kds. (15)

Generalization of (15) leads to:

C(s) = Kp +
Ki

sλ
+Kds

µ. (16)

Comparing (15) with (16), it can be noticed that a fractional-order controller provides more flexibility in the

controller design because it has five parameters to select in order to fulfill some desired specifications. However,

this also implies that the tuning procedure will be more complex.

3.1. Tuning in the Time Domain

Many advanced optimization techniques like particle swarm optimization [23, 24] and genetic algorithm (GA)

[25, 26] are applied to tune the PIλDµ controller in the time domain. Here we will discuss the implementation

of GA to tune the PIλDµ controller.

The genetic algorithm is a stochastic search algorithm that mimics the mechanism of natural selection and natural

genetics [27]. This heuristic procedure is routinely used to generate useful solutions for optimization and search

problems. Genetic algorithms belong to the largest class of evolutionary algorithms, which generate solutions for

optimization problems using techniques inspired by natural evolution, such as inheritance, mutation, selection,

and crossover [27].

Unlike conventional search techniques, a GA starts with an initial set of random solutions, called a population,

satisfying boundary and/or system constraints to the problem. Each individual in the population is called a

chromosome, which represents a possible solution to the problem. Usually, a chromosome is a string of symbols,

but not necessarily a binary bit string. The chromosomes evolve through successive iterations called generations.

During the evolution from one generation to another generation, the chromosomes are evaluated by a function to

obtain a fitness value. To create the next generation, new chromosomes, which are called offspring, are formed by

i) either merging two chromosomes from the current generation using a crossover operator ii) either by modifying

a chromosome using a mutation operator. The selection of parent chromosomes is based on the fitness values

i.e. fitter chromosomes will have higher probability of being selected. As s result, a new generation is formed

by ranking all the parent chromosomes and offspring. The fittest ones will be kept constant according to the

population size. The following steps will guide the reader through a single iteration of a simple genetic algorithm

[28]:

1. Evaluate the fitness of all chromosomes in the current population.

2. Select parent chromosomes from the population (with probability proportional to fitness).

3. Crossover and/or mutate parent chromosomes to form offspring.

4. Add offspring chromosomes to the next generation.

10
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solutions to optimization and search problems. Genetic algorithms belong to the larger class of 

evolutionary algorithms (EA), which generate solutions to optimization problems using techniques 

inspired by natural evolution, such as inheritance, mutation, selection and crossover.  

 

Fig. 5 The general structure of a genetic algorithm 

Unlike conventional search techniques, a GA starts with an initial set of random solutions, called a 

population, satisfying boundary and/or system constraints to the problem. Each individual in the 

population is called a chromosome, which represents a possible solution to the problem. Usually, a 

chromosome is a string of symbols, but not necessarily a binary bit string. The chromosomes 

evolve through successive iterations called generations. During the evolution from generation to 

generation, the chromosomes are evaluated by a function to obtain a fitness value. To create the 

next generation, new chromosomes, which are called offspring, are formed by either merging two 

chromosomes from the current generation using a crossover operator or by modifying a 

chromosome using a mutation operator. The selection of parent chromosomes is based on the 

fitness values. Fitter chromosomes will have higher probability of being selected. Then ranking all 

the parent chromosomes and offspring forms a new generation. The fittest ones will be kept 

according to the population size constant. The following steps will guide the reader through a 

single iteration of a simple genetic algorithm [27]. 

1. Evaluate the fitness of all chromosomes in the current population. 

2. Select parent chromosomes from the population (with probability proportional to fitness). 

Figure 9. The flowchart structure of a genetic algorithm

5. Remove enough chromosomes from the next generation (with probability of being removed inversely

proportional to fitness) to restore the number of population to N .

There are various time domain integral performance indices which can be used as fitness functions [29]. From

control system designer’s point-of-view, the Integral of square error (ISE) is the most popular. This performance

index represents the H2-norm of the closed loop system in the frequency domain. In this paper, the ISE is used

to indicate the individual fitness value as:

Fitness =

∫
e2(t)dt, (17)

where e is the error between the system step response and the step reference. The corresponding GA parameters

are given in Table 1.
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Table 1. GA parameters

Number of Decision Variables 5 (Kp,Kd, µ,Ki, λ)

Number of Individuals 50

Maximum Number of Generations 50

Number of Objectives 1

Selection Method Tournament Selection

Crossover Rate 0.9

Mutation Rate 0.1

3.2. Tuning in the Frequency Domain

In the frequency domain, the PIλDµ controller from (16) can be written as:

C(jω) = Kp +
Ki

ωλ cos λπ
2

+ jωλ sin λπ
2

+Kd

(
ωµ cos

µπ

2
+ jωµ sin

µπ

2

)
(18)

and the system needs to fulfill specifications as [30]:

1. Phase margin ϕm specification:

ϕm = arg [C(jωcg)G(jωcg)] + π (19)

2. Gain crossover frequency ωcg specification:

|C(jωcg)G(jωcg)|dB = 0 (20)

3. Robustness to variations in the gain of the plant:

d (arg (C(jωcg)G(jωcg)))

dω

∣∣∣∣
ω=ωcg

= 0 (21)

4. High-frequency noise rejection:

∣∣∣∣T (jω) =
C(jω)G(jω)

1 + C(jω)G(jω)

∣∣∣∣
dB

≤ A ,

∀ω ≥ ωt ⇒ |T (jωt)|dB = A

(22)

where T (jω) is a sensitivity function and A the desired noise attenuation for frequencies ω ≥ ωt rad/s.

5. Disturbance rejection:

∣∣∣∣S(jω) =
1

1 + C(jω)G(jω)

∣∣∣∣
dB

≤ B ,

∀ω ≤ ωs ⇒ |S(jωs)|dB = B

(23)

with S(jω) a sensitivity function and B the desired value of the sensitivity function for frequencies ω ≤ ωs rad/s.

6. Zero steady-state error. The closed loop system exhibits zero steady-state error if λ > 0 [30].
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If for fractional-order controllers such as PIλ or PDµ, only three specifications must be met, the design problem

of a PIλDµ controller relies on solving a system with five nonlinear equations and five unknown parameters

(Kp,Ki, λ,Kd, µ). This method implies a set of complex equations related to the design specifications and the

obtained solution may not be the optimal one. Thus, for the tuning of the PIλDµ controller we use the auto-tuning

method proposed in [30], which provides an analytical solution.

Hence, the PIλDµ controller can be written as a Lead-Lag Compensator:

C(s) = Kcη
µ

(
ζs+ 1

s

)λ(
ϑs+ 1

ηϑs+ 1

)µ
, (24)

which implies:

PDµ(s) = Kcη
µ

(
ϑs+ 1

ηϑs+ 1

)µ
, (25)

PIλ(s) =

(
ζs+ 1

s

)λ
. (26)

By analogy to standard PID form it follows: Kp = k′(ζ)−λ, Td = ϑ(1 − η), Ti = ζ. The fractional-order

PDµ controller (25) corresponds to the lead part of the compensator, while the lag part can be identified as

a fractional-order PIλ controller (26). The controller design will be performed first for the PIλ + G, then the

PDµ + (PIλ +G). In the method proposed by [30], the integer controller is tuned in order to obtain a flat phase

around the frequency point ωcg and based on relay tests. In this way, the fractional-order PIλ controller (26) is

used to cancel the slope of the phase of the plant given by:

υ =
φu − φn−1

ωu − ωn−1
(27)

where φu is the plant phase corresponding to the frequency of interest ωu = ωcg and ωn−1 is the frequency after

n− 1 experiments with the relay test and φn−1 its corresponding plant phase.

The phase and magnitude of the plant in the frequency domain can be expressed as:

arg (G(jωu)) = −π + ωuδ (28)

|G(jωu)| = πa

4d
(29)

where d is the relay amplitude, a is the amplitude of the output signal and G(jωu) is the transfer function of the

plant at the frequency ωu. In (28), ωu is the frequency of the output signal relative to the delay δ. In order to

get a value of the frequency of the output signal approximately equal with a specific frequency (ωu ' ωcg), the

corresponding value of δ is determined using an iterative method [30]:

δ =
ωu − ωn−1

ωn−1 − ωn−2
(δn−1 − δn−2) + δn−1, (30)
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where n is the current number of iteration. The corresponding frequency ωu together with (28) are used

in (27) to determine the slope of the phase of the plant. The phase of the fractional PIλ controller is

ψ = λ
(
arctan(ζ ω)− π

2

)
. The derivative of the phase of the fractional-order PIλ controller at the frequency

point ωcg
(
i.e. λ ζ

1+(ζ ωcg)2

)
must be equal with −υ in order to cancel the slope of the phase curve of the plant.

The derivative of λ ζ
1+(ζ ωcg)2

with respect to parameter ζ has a maximum at ζ = 1
ωcg

. Choosing the zero frequency

ωzero = 1
ζ

= ωcg, the slope of the plant at the frequency ωcg will be canceled with the maximum slope of the

fractional-order controller.

Once ζ is available, the fractional order λ is given by:

λ =
−υ
(
1 + (ζωcg)

2
)

ζ
. (31)

The PDµ controller is designed in such a way that the open-loop system satisfies the phase margin ϕm and

the gain crossover frequency ωcg specifications. Now, if we define the new process as F (s) = G(s)PIλ(s), the

open-loop transfer function of the new loop is L(s) = F (s)PDµ(s).

In the complex plane, the next relation for the open-loop can be defined:

F (jωcg)k
′
(
jϑωcg + 1

jηϑωcg + 1

)µ
= ej(−π+ϕm)

⇒
(
jϑωcg + 1

jηϑωcg + 1

)
=
ej(−π+ϕm)

F (jωcg)k′
= a1 + jb1

⇒
(
jϑωcg + 1

jηϑωcg + 1

)
= (a1 + jb1)

1
µ = a+ jb

(32)

where (a1, b1) is the ”design point” [30] and k′ = Kcη
µ is the value of the compensator gain and is set to 1 in this

case .

It follows that the parameters η and ϑ can be computed using:

η =
a− 1

a(a− 1) + b2
, ϑ =

a(a− 1) + b2

bωcg
. (33)

The fractional order µ is selected from the interval [µmin, 1], where µmin is obtained using an iterative method.

Starting from a small value (e.g. µmin = 0.03), the fractional order µmin is increased with a small step until the

value of η computed with (33) is positive. The system robustness is higher when η is closer to zero, thus the

optimal solution for fractional order is µ = µmin at the end of the iteration procedure. More details about the

auto-tuning of a PIλDµ controller can be found in [30].

4. Implementation details

4.1. Implementation of the controllers

One of the most common problems of fractional-order controllers is their implementation. In order to implement

a fractional-order controller or to perform a simulation with a fractional-order controller, the fractional-order
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transfer functions are replaced by an integer-order transfer functions that have the same behavior as the fractional-

order. In literature, different methods are used to find such approximations [31], but there is no criterion that can

say which of them is the best. In this paper the Modified Oustaloup Filter was used to find the approximations

of fractional-order controllers. The modified filter is given by [30]:

sµ ≈
(
d1ωh
d2

)µ(
d1s

2 + d2ωhs

d1(1− µ)s2 + d2ωhs+ d1µ

) N∏
k=−N

s+ ωbω
(2k−1−µ)/N
l

s+ ωbω
(2k−1+µ)/N
l

(34)

where µ ∈ (0, 1], d1 and d2 are same tuning parameters [30], N is the order of approximation and ωl =
√
ωh/ωb

with ωb and ωh the lower and upper limits of the frequency range. Equation (34) is used to approximate the

derivative term and the integral term from (16). The numerical realization of PIλDµ controllers uses the methods

of the Tustin operator and the above continued fraction expansion.

4.2. Experimental results

A Steward platform with 6 d.o.f. and a visual sensor mounted on the top of the table was considered for the real

time experiments. The controllers obtained with the two tuning methods are implemented, tested and validated.

Table 2 shows the tuning results obtained for PDµ and PIλDµ controllers with the two methods.

Table 2. Controller tuning parameters

parameters PDµ PDµ-GA PIλDµ PIλDµ-GA

Kp -3.202 -2.609 -1.105 -1.008

Kd -80.3 -136.21 -2.32 -1.991

Ki 0 0 0.6538 0.6718

λ 0 0 0.81 0.778

µ 0.728 0.782 0.412 0.407

Firstly, the controllers are compared to each other by their closed-loop step response, a move from 0 to 150 mm

in the x-direction. As observed from Figure 10, when there is no disturbance the PDµ controllers give good

performance without steady-state error. Analyzing Figures 10(a)and 10(b) it can be noticed that the PIλDµ

controllers stabilize the system faster than the PDµ controllers and have somewhat less overshoot. Both tuning

methods give similar results.

The second experiment uses the same platform, but the length ` of the shaft for two links is modified. Thus, an

input disturbance is introduced (as in most of the real-life processes). The closed loop results are shown in Figure

11. It can be noticed that PDµ controllers have steady-state error. Analyzing Figure 11(a) and 11(b) it can be

observed that PIλDµ controllers reject well the disturbance and have similar performance. One advantage of GA

method over the numerical one, is that GA does not require numerical complexity.
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Figure 10. The output of the system without disturbance for: (a) PDµ and PIλDµ controllers design with GA; (b) PDµ and
PIλDµ controllers design with auto-tuning method
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Figure 11. The output of the system with disturbance for: (a) PDµ and PIλDµ controllers design with GA; (b) PDµ and
PIλDµ controllers design with auto-tuning method

5. Conclusions

In this paper, PIλDµ controllers are implemented and tested on a ball and plate system. By changing the

experimental conditions, i.e. change the length of the shaft for two links, we show the effectiveness of the PIλDµ

controllers to reject input disturbance. This result is very important since in the real-life applications, as with

most of the mechatronic systems, a disturbance exists. Two tuning methods for designing the PIλDµ controllers

are presented. One method is based on the artificial intelligence to design the controller, while the other one

tunes the controller in the frequency domain. The experimental results show that both tuning methods obtain

good performances when dealing with mechatronic systems.
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