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REDUCED DYNAMICS AND LAGRANGIAN SUBMANIFOLDS OF

SYMPLECTIC MANIFOLDS

E. GARCÍA-TORAÑO ANDRÉS, E. GUZMÁN, J.C. MARRERO, AND T. MESTDAG

Abstract. In this paper, we will see that the symplectic creed byWeinstein ”everything
is a Lagrangian submanifold” also holds for Hamilton-Poincaré and Lagrange-Poincaré
reduction. In fact, we show that solutions of the Hamilton-Poincaré equations and of
the Lagrange-Poincaré equations are in one-to-one correspondence with distinguished
curves in a Lagrangian submanifold of a symplectic manifold. For this purpose, we will
combine the concept of a Tulczyjew triple with Marsden-Weinstein symplectic reduction.
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1. Introduction

Lagrangian and Hamiltonian mechanics can both be formulated in the context of symplec-
tic geometry. For a Hamiltonian system, one may simply consider the canonical symplec-
tic form on the cotangent bundle of the configuration space. For the case of a Lagrangian
system, the regularity of the Lagrangian plays a role: if the Lagrangian is (hyper)regular,
one may use the Legendre transformation to pull back the canonical symplectic form to
obtain a symplectic form on the tangent bundle, the so-called Poincaré-Cartan two-form.
Less known is that even in the case when the Lagrangian is singular, there exist sym-
plectic formulations of the dynamics. One such formulation is provided by the so-called
Tulczyjew triple [23, 24], which consists of three (anti)symplectomorphic manifolds. We
will provide all details when needed, but, briefly speaking, it describes the dynamics in
terms of Lagrangian submanifolds of the spaces of the triple, and it ultimately provides
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a unified picture where both Hamiltonian and Lagrangian mechanics can be treated on
the same footing (see [23, 24] and Section 2). The ideas behind this triple have been ex-
tended to more general structures (such as Lie algebroids [9] or Dirac structures [8]) and
to more general classes of systems (such as systems with constraints [7], time dependent
systems [10] and field theories [2], [6], [15]).

Reduction theories provide a way to benefit from symmetry properties of dynamical sys-
tems. One such theory is that of Lagrange-Poincaré reduction which, in a few words,
uses the symmetry group of the dynamics to reduce Hamilton’s principle. The Hamilton-
ian analogue of Lagrange-Poincaré reduction is Hamiltonian-Poincaré reduction. In the
literature, there exist many distinct geometric models for the equations that result from
this procedure, mostly for the case of a regular Lagrangian [4, 5, 14, 22]. It has also been
observed that the Lagrange-Poincaré equations may be considered as Euler-Lagrange
equations on a Lie algebroid, for the case of the so-called Atiyah algebroid [9, 14]. One of
the objectives of this paper is to provide a new framework in which also the case of singular
Lagrangians can be included. In [5] Lagrange-Poincaré reduction and Hamilton-Poincaré
reduction is said to be ”outside the realm of symplectic (and Routh) reduction”. The
main goal of this paper is to show Tulczyjew’s ideas concerning dynamics on the one hand
and symplectic reduction on the other hand can be combined to a model for Lagrange-
Poincaré reduction and Hamilton-Poincaré reduction within a reduced Tulczyjew triple.
The core idea behind the new triple is that it is purely composed of symplectic mani-
folds, as was its unreduced version. To do so, we will need to discuss first the reduction
(via the Marsden-Weinstein procedure) of an invariant Lagrangian submanifold. Then, we
will describe Hamilton-Poincaré and Lagrange-Poincaré equations in terms of Lagrangian
submanifolds of symplectic manifolds. So, we may conclude that the symplectic creed as
formulated by Weinstein [25] in the form ”everything is a Lagrangian submanifold” also
holds in this theory.

In the literature one may find three seemingly related approaches. In [9] the authors
obtain a Tulczyjew triple in a Lie algebroid setting. If one applies these results to the
case when the Lie algebroid is the Atiyah algebroid, one obtains rather a Poisson answer
than a symplectic one. We will relate our approach to theirs in the last section. In a
second approach [14] one may find a different Tulczyjew triple for Lie algebroids. This
triple consists of so-called prolongation bundles of Lie algebroids, which are all so-called
’symplectic Lie algebroids’. The concept of a symplectic Lie algebroid is a generalization
of a symplectic manifold to the level of a vector bundle, but not a genuine symplectic
manifold in its own right. A third approach (in e.g. [26, 27]) also deals with singular
Lagrangian systems, but within the context of Dirac structures.

The paper is structured as follows. In Section 2, we recall some basic results on Tulczy-
jew’s triple and on Marsden-Weinstein symplectic reduction. In Section 3, we show that
an invariant Lagrangian submanifold of a symplectic manifold endowed with a Hamilton-
ian action may, under additional assumptions, be reduced to a Lagrangian submanifold
of the reduced symplectic manifold. In Section 4, we give a one-to-one correspondence
between solutions of the Hamilton-Poincaré equations on the one hand, and distinguished
curves in a Lagrangian submanifold of a symplectic manifold on the other hand. In Sec-
tion 5, we discuss two interesting special cases: the case where the configuration space
is the symmetry Lie group and the case where the configuration space is the product of
the symmetry Lie group with a base manifold. In Section 6, we prove that there exists a
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one-to-one correspondence between solutions of the Lagrange-Poincaré equations and dis-
tinguished curves in a Lagrangian submanifold of the same symplectic manifold as in the
Hamiltonian side. Finally, in Section 7, we show that, for a hyperregular Lagrangian, the
corresponding Lagrangian submanifolds in the Lagrangian and Hamiltonian side coincide.
The paper ends with our conclusions and with some directions for future research.

2. Tulczyjew’s triple and Marsden-Weinstein reduction

We explain the main characteristics of the Tulczyjew triple in some detail. Let Q be the
configuration manifold of a mechanical system. A Lagrangian function L on TQ defines
a submanifold dL(TQ), which is Lagrangian with respect to the canonical symplectic
structure ωTQ on T ∗TQ.

This submanifold can be mapped into TT ∗Q via the inverse of Tulczyjew’s diffeomorphism

AQ : TT ∗Q → T ∗TQ,

(q, p, q̇, ṗ) 7→ (q, q̇, ṗ, p).

This map is a symplectomorphism when we consider on TT ∗Q the symplectic structure
ωc
Q, which is given by the complete lift of the canonical symplectic form ωQ on T ∗Q.

Therefore, also SL = A−1
Q (dL(TQ)) is a Lagrangian submanifold. In [23, 24], it is shown

that solutions of the Euler-Lagrange equations are in one-to-one correspondence with
curves in SL which are tangent lifts of curves in T ∗Q.

In the Hamiltonian formulation it is possible to proceed in a similar way. Here, the
Lagrangian submanifold dH(T ∗Q) of (T ∗T ∗Q, ωT ∗Q) may be mapped into TT ∗Q via the
isomorphism vector bundle

bωQ
: TT ∗Q → T ∗T ∗Q,

(q, p, q̇, ṗ) 7→ (q, p,−ṗ, q̇),

which is induced by the symplectic form ωQ. Since this map is an anti-symplectomorphism,
SH = b−1

ωQ
(dH(T ∗Q)) is a Lagrangian submanifold of (TT ∗Q, ωc

Q). In fact, it is the image
of the Hamiltonian vector field XH . As in the Lagrangian case, solutions of the Hamilton
equations are in one-to-one correspondence with curves in SH which are tangent lifts of
curves in T ∗Q.

The following diagram, which is known as Tulczyjew’s triple, illustrates the previous
situation

SL

  

SH

{{
(T ∗TQ, ωTQ)

πTQ

%%▲▲
▲▲

▲▲
▲▲

▲▲
▲

(TT ∗Q, ωc
Q)

bωQ //
AQoo

TπQyysss
ss
ss
ss
s

τT∗Q ''❖❖
❖❖

❖❖
❖❖

❖❖
❖

(T ∗T ∗Q, ωT ∗Q)
πT∗Q

vv♥♥♥
♥♥
♥♥
♥♥
♥♥
♥

TQ
FL //

dL

ee▲▲▲▲▲▲▲▲▲▲▲

τQ
%%▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
(T ∗Q, ωQ)

dH

66♥♥♥♥♥♥♥♥♥♥♥♥

πQ

ww♦♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦

Q

Throughout the next sections, we shall often apply the Marsden-Weinstein reduction
theorem. For completeness, we now give a concise outline of this technique. This will
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allow us to fix the notations used in the rest of the paper. For a detailed treatment of
this topic, see [1, 20].

It is well known that if a Lie group G acts freely and properly on a manifold M , the space
of orbits M/G is a smooth manifold and M is the total space of a principal G-bundle
with bundle projection pM : M → M/G.

An action φ : G × M → M of a Lie group G on a symplectic manifold (M,ω) is called
G-Hamiltonian if for each g ∈ G the map φg : M → M is a symplectomorphism (i.e.
φ∗
gω = ω) and φ admits an Ad∗-equivariant momentum map J : M → g

∗. Here Ad∗-
equivariance means

J (φg(x)) = Ad∗g−1J(x), for any x ∈ M , g ∈ G,

where Ad∗ : G×g
∗ → g

∗ is the dual of the adjoint action. The momentum map J guaran-
tees that the infinitesimal generators ξM of the action φ are globally Hamiltonian vector
fields: ξM becomes a Hamiltonian vector field for the Hamiltonian function Jξ : M → R

defined as

Jξ(x) = 〈J(x), ξ〉 , for all x ∈ M and ξ ∈ g,

that is, iξMω = dJξ. Throughout the paper, unless otherwise stated, we will impose the
following two assumptions:

(1) We assume that µ ∈ g
∗ is a regular value of the momentum map, which guarantees

that J−1(µ) is an embedded submanifold of M . If we consider the isotropy group of
µ with respect to the coadjoint action,

Gµ =
{
g ∈ G : Ad∗g−1µ = µ

}
,

one can prove that Gµ is a closed subgroup of G which, due to the equivariance
condition of the momentum map, leaves J−1(µ) invariant. Thus, it makes sense to
consider the Gµ-action on J−1(µ),

φµ : Gµ × J−1(µ) → J−1(µ).

(2) We will assume that Gµ acts freely and properly on J−1(µ). Then, the space of orbits
J−1(µ)/Gµ admits a manifold structure such that the canonical projection

pJ−1µ : J
−1(µ) → J−1(µ)/Gµ

is the bundle projection of a principal Gµ-bundle. The main result in [20] is that
the reduced manifold J−1(µ)/Gµ admits a symplectic form ωµ characterized by the
equation p∗J−1(µ)ωµ = i∗ω, where i : J−1(µ) → M is the canonical inclusion.

Remark 2.1. The following observations are important in the forthcoming sections:

i) In the presence of a G-action φ on M , it is customary to simply write gx for φg(x).
We will use this notation when there is no risk of confusion.

ii) For the rest of the paper we will assume, unless otherwise stated, that all the actions
are free and proper. Under these conditions, the assumptions on the regularity of the
momentum map and on the freeness and properness of φµ hold. Indeed in this case
J is a submersion and the induced action of Gµ on J−1(µ) is free and proper, and it
follows that the quotient space M/G is a manifold and that pM : M → M/G is the
bundle projection of a principal G-bundle. Moreover, the connected component of
J−1(µ)/Gµ may be identified with the symplectic leaf of the Poisson manifold M/G.
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Recall that the symplectic manifold M induces a Poisson structure {., .}M/G on M/G
which is defined by

{f, h}M/G ◦ pM = {f ◦ pM , h ◦ pM}M , for all f, h ∈ C∞(M/G),

where {., .}M is the Poisson bracket on M defined by the symplectic structure.

iii) In what follows, we will mainly use Marsden-Weinstein reduction for the case where
µ = 0. In that case, however, it actually coincides with coisotropic reduction (see [1]).

Example 2.2. A typical example of Marsden-Weinstein reduction is cotangent bundle
reduction. A G-action φ on M may be lifted to a G-action φT ∗M on T ∗M which is given
by cotangent lifts:

gαx =
(
T ∗
gxφg−1

)
(αx), for all αx ∈ T ∗M and g ∈ G.

If φ is free and proper, then so is φT ∗M . This action preserves the Liouville one-form λM ,
and therefore it also preserves the canonical symplectic form ωM of the cotangent bundle
T ∗M . It admits an Ad∗-equivariant momentum map JT ∗M : T ∗M → g

∗ given by

〈JT ∗M(αx), ξ〉 = 〈αx, ξM(x)〉 , for all αx ∈ T ∗M and ξ ∈ g.

As the assumptions of the aforementioned reduction apply, it follows that J−1
T ∗M(µ)/Gµ is a

symplectic manifold. In [17], one finds a broad study of cotangent bundle reduction which
characterizes the cases in which the reduced symplectic manifold J−1

T ∗M(µ)/Gµ is again a
cotangent bundle and in particular, it is shown that for µ = 0 one has an identification

(
J−1
T ∗M(0)/G, (ωM)0

)
∼=

(
T ∗(M/G), ωM/G

)
.

The vector bundle isomorphism Ψ0 : J
−1
T ∗M(0)/G → T ∗(M/G) (over the identity in M/G)

which realizes this identification is characterized by the following condition:〈
Ψ0

(
pJ−1

T∗M
(0)(αx)

)
, (TxpM) (vx)

〉
= 〈αx, vx〉 ,

for αx ∈ J−1
T ∗M(0) and vx ∈ TM . In fact, J−1

T ∗M(0) is identified with the annihilator
V ◦pM of the vertical bundle V pM of the canonical projection pM : M → M/G. Thus,
J−1
T ∗M(0)/G = V ◦pM/G and the latter space is canonically identified with T ∗(M/G). ⊳

Finally, we recall that if two symplectomorphic manifolds are both Marsden-Weinstein
reducible for the same symmetry group and have compatible actions, then the reduced
spaces are also symplectomorphism (see, for example, [12]). More specifically, let f : M1 →
M2 be a symplectomorphism between the symplectic manifolds (M1, ω1) and (M2, ω2) and
suppose that both M1 and M2 admit G-Hamiltonian actions with Ad∗-equivariant mo-
mentum maps J1 and J2 respectively. If f is G-equivariant and J2 ◦ f = J1, then for a
fixed value µ ∈ g

∗ it follows that the reduced manifolds J−1
1 (µ)/Gµ and J−1

2 (µ)/Gµ are
symplectomorphic, with symplectomorphism

[fµ] :
(
J−1
1 (µ)/Gµ, ω1µ

)
→

(
J−1
2 (µ)/Gµ, ω2µ

)
.

In the next lines, we will briefly explain how this map is defined. Observing that the
map f : M1 → M2 preserves the momentum maps, it follows that f

(
J−1
1 (µ)

)
= J−1

2 (µ)

for each value µ ∈ g
∗. If we denote by fµ : J

−1
1 (µ) → J−1

2 (µ) the restriction of the map
f to the submanifold J−1

1 (µ), then fµ is a Gµ-equivariant diffeomorphism (because f is
G-equivariant) which therefore descends to the quotient. In other words, there exists a
symplectomorphism

[fµ] : J
−1
1 (µ)/Gµ → J−1

2 (µ)/Gµ,
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which is defined by [fµ] (pM1
(x)) = pM2

(f(x)), for all x ∈ J−1
1 (µ), where pMi

: Mi → Mi/G
are the canonical projections for i ∈ {1, 2}.

3. Reduced Lagrangian submanifolds

In this section, we will prove a result which will be important for the rest of the paper.
We will show that in the presence of a G-Hamiltonian action on a symplectic manifold
(M,ω), a Lagrangian submanifold ofM can be reduced to a submanifold on the symplectic
reduced space and that, under certain conditions, it retains its Lagrangian character.

We first need the following preparatory lemma.

Lemma 3.1. Let φ : G ×M → M be a (free and proper) action of a Lie group G on a
manifold M and S be a G-invariant embedded (respectively connected, closed) submanifold
of M . Then the quotient manifold S/G is a embedded (respectively connected, closed)
submanifold of M/G.

Proof. The action restricts to a (free and proper) action φS : G× S → S, and therefore,
S/G is a smooth manifold. We will denote by pS : S → S/G the canonical projection, by

i : S → M the canonical inclusion of S on M and by ĩ : S/G → M/G the corresponding
inclusion between the quotient manifolds.

Since pS : S → S/G is a surjective submersion there exists, for all x ∈ S, an open

subset Ũ ⊆ S/G with pS(x) ∈ Ũ and a smooth local section s̃ : Ũ → S of pS satisfying
s̃ (pS(x)) = x. In fact,

ĩ|Ũ = pM ◦ i ◦ s̃,

where pM : M → M/G is the canonical projection. This implies that the map ĩ is smooth.
Due to the fact that i : S → M is an immersion and due to the commutativity of the
following diagram

S

pS
��

i // M

pM
��

S/G
ĩ // M/G

we obtain that ĩ is an immersion as well. Next we will show that if i : S → M is an
embedding, then ĩ : S/G → M/G is also an embedding. Recall that the topology on S/G

is the final topology for the projection pS : S → S/G. This means that a set Ũ ⊆ S/G

is open in S/G if, and only if, p−1
S (Ũ) is open on S. Since S has the induced topology

by M , there exists an open subset V on M such that p−1
S (Ũ) = V ∩ S. We also observe

that pM : M → M/G is an open map and thus pM(V ) = Ṽ is an open set of the quotient

manifold M/G. Now, using that S is G-invariant we conclude that pM(V ∩S) = Ṽ ∩S/G.
This last statement follows from the relation pM(V ∩ S) = pM(G · V ∩ S). Therefore,

ĩ(Ũ) = Ṽ ∩ S/G. This concludes the proof that ĩ is an embedding.

The statements about closedness and connectedness can readily be checked. �

We are now ready to prove the main result we had announced at the beginning of the
section.
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Theorem 3.2. Let φ : G × M → M be a (free and proper) G-Hamiltonian action on
a symplectic manifold (M,ω) and let J : M → g

∗ be the corresponding Ad∗-equivariant
momentum map. Suppose that S is a Lagrangian submanifold of M which is closed,
connected and embedded. Then:

(1) There exists a value µ ∈ g
∗ such that the submanifold S is contained in the level set

J−1(µ).

(2) The space of orbits Sµ = S/Gµ is an isotropic submanifold of the reduced symplectic
manifold (J−1(µ)/Gµ, ωµ).

(3) The submanifold Sµ is Lagrangian if, and only if, g = gµ.

Proof. Recall that S being Lagrangian is equivalent to the following two conditions:
dimS = 1/2 dimM , and S is isotropic, i.e.

TxS ⊂ (TxS)
⊥ = {u ∈ TxM : ω(x)(u, v) = 0, for all v ∈ TxS} ,

for all x ∈ S.

(1) We must prove that J|S : S → g
∗ is a constant map or equivalently, that for each

ξ ∈ g, the real function Jξ |S : S → R given by

Jξ |S(x) = 〈J(x), ξ〉 for all x ∈ S,

is constant. Since S is connected it suffices to show d(Jξ)|S = 0. From the G-
invariance of S, we have ξM(x) ∈ TxS, and this fact, together with the isotropy
condition on S (namely TxS ⊂ (TxS)

⊥), implies
〈
d(Jξ)|S(x), v

〉
= 〈(dJξ)(x), v〉 = 〈(iξMω)(x), v〉 = ω(ξM(x), v) = 0, for v ∈ TxS.

We conclude that there exists a µ ∈ g
∗ such that S ⊆ J−1(µ).

(2) When we apply Lemma 3.1 to the induced Gµ-action on J−1(µ), it follows that
Sµ = S/Gµ is a closed connected embedded submanifold of the reduced symplectic
manifold (Mµ = J−1(µ)/Gµ, ωµ).

Now, we will show that S/Gµ is an isotropic submanifold of (J−1(µ)/Gµ, ωµ). This
means that

T(pS(x))S/Gµ ⊆
(
T(pS(x))S/Gµ

)⊥
, for all pS(x) ∈ S/Gµ,

where pS : S → S/Gµ is the canonical projection and the orthogonality ⊥ is under-
stood with respect to the symplectic structure ωµ. Let u, v ∈ TxS, then TxpS(u)
and TxpS(v) are elements of TpS(x)(S/G). By considering the following commutative
diagram

S

pS

��

iS // J−1(µ)

pJ−1µ

��

S/Gµ

iSµ // J−1(µ)/Gµ

it follows that

ωµ(pS(x))(TxpS(u), TxpS(v)) = ωµ(pJ−1µ(x))(TxpJ−1µ(u), TxpJ−1µ(v))

= ((pJ−1µ)
∗ωµ)(x)(u, v).
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Recall that the symplectic form ωµ on J−1(µ)/Gµ is characterized by
(
pJ−1µ

)∗
ωµ =

i∗ω, where i : J−1(µ) → M is the canonical inclusion. Then
(
(pJ−1µ

)∗
ωµ)(x)(u, v) = (i∗ω)(x)(u, v) = ω(x)(u, v) = 0,

where in the last equality we have used the assumption that S is Lagrangian (in
particular, that it is isotropic).

(3) Since by assumption dimS = 1/2 dimM and since

dim
(
J−1(µ)/Gµ

)
= dim M − dim G− dim Gµ,

dim (S/Gµ) = dim S − dim Gµ,

it follows that S/Gµ is Lagrangian if, and only if, dim G = dim Gµ. In other words,
S/Gµ is Lagrangian if, and only if, g = gµ.

�

Example 3.3. Let φ : G×M → M be an action of a Lie group G on a connected manifold
M and H ∈ C∞(M) a G-invariant function. Then, the image of the differential of
H , dH(M), is a Lagrangian submanifold of the cotangent bundle (T ∗M,ωM) which is
invariant with respect to the cotangent lifted action φT ∗M of φ. Indeed,

φT ∗M
g (dH(q)) = d(H ◦ φg−1)(gq) = dH(gq),

for each g ∈ G and q ∈ M , where the last equality holds by the invariance of the function
H .

Applying Theorem 3.2 to the (closed, connected and embedded) Lagrangian submani-
fold dH(M), there exists a value µ of the momentum map JT ∗M : T ∗M → g such that
dH(M) ⊆ J−1

T ∗M(µ). In fact,

〈JT ∗M(dH(q)), ξ〉 = 〈dH(q), ξM(q)〉 = ξM(H)(q) = 0,

for all ξ ∈ g and q ∈ M , where again the last equality is a consequence of the invariance
of H . This shows that dH(M) ⊆ J−1

T ∗M(0), so in this particular case µ = 0.

Given that the submanifold dH(M) is G-invariant, we may consider the reduced sub-
manifold dH(M)/G of the reduced symplectic manifold J−1

T ∗M(0)/G and, in view of The-
orem 3.2, dH(M)/G is Lagrangian. Actually, as we have already seen (Example 2.2),
J−1
T ∗M(0)/G may be identified with T ∗(M/G) and, under this identification, the La-

grangian submanifold dH(M)/G is just dh(M/G), where h : M/G → R is the reduced
Hamiltonian induced by H . ⊳

4. Hamilton-Poincaré reduction

In this section we will obtain an intrinsic description of the solutions of the Hamilton-
Poincaré equations.

Let φ : G × M → M be an action on the symplectic manifold (M,ω), and consider its
tangent and cotangent lift to TM and T ∗M respectively. Unlike the cotangent action,
the tangent action is not always Hamiltonian. Only when φ is required to be Hamiltonian
so will also be φTM

g = Tφg, as we show next.
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We will make use the following result from [23]. Let ω be a closed two-form on a manifold
M and consider the vector bundle morphism

bω : TM → T ∗M

induced by ω, which sends vx ∈ TxM to the 1-form defined by 〈bω(vx), wx〉 = ω(vx, wx),
for all wx ∈ TxM . One can show that the canonical symplectic form ωM of T ∗M and the
complete lift ωc of the closed two-form ω to TM are related by the morphism bω in the
following way:

(4.1) b∗ω(ωM) = −ωc.

This equation may in fact be used as an alternative definition of the complete lift of the
form ω. From the definition of bω, it is clear that it is a vector bundle isomorphism in
case ω is non-degenerate. Combined with (4.1), this shows that ωc is a symplectic form
on TM (and that bω is an anti-symplectomorphism).

Theorem 4.1. Let (M,ω) be a symplectic manifold with a Hamiltonian action φ : G ×
M → M and equivariant momentum J : M → g

∗. Then:

(1) The vector bundle isomorphism bω : TM → T ∗M is G-equivariant with respect to the
actions φTM : G× TM → TM and φT ∗M : G× T ∗M → T ∗M .

(2) φTM is a G-Hamiltonian action on the symplectic manifold (TM, ωc) whose associated
Ad∗-equivariant momentum map JTM : TM → g

∗ is given by

〈JTM(vx), ξ〉 = vx(Jξ), for all vx ∈ TM and for all ξ ∈ g.

Equivalently, JTM satisfies JTM = −JT ∗M ◦ bω, where JT ∗M : T ∗M → g
∗ is the mo-

mentum map associated with the symplectic action φT ∗M .

Proof. (1) If x ∈ M and g ∈ G, using that the action φ : G×M → M is symplectic, it is
straightforward that

bω(φg(x)) ◦ Txφg = T ∗
φg(x)φg−1 ◦ bω(x).

(2) Recall that the equivariant momentum map associated to the cotangent action is
given by (see Example 2.2)

〈JT ∗M(αx), ξ〉 = 〈αx, ξM(x)〉 , for all αx ∈ T ∗M and for all ξ ∈ g.

Define JTM : TM → g
∗ by the equality JT ∗M ◦ bω = −JTM . Using that bω is an

equivariant anti-symplectomorphism, it follows easily that JTM is an equivariant mo-
mentum map which satisfies

〈JTM(vx), ξ〉 = −〈bω(vx), ξM(x)〉 = −ω(x)(vx, ξM(x)) = vx(Jξ),

for all vx ∈ TM and ξ ∈ g.

�

Applying the previous theorem to the case of a cotangent bundle (T ∗Q, ωQ, JT ∗Q), it fol-
lows that the vector bundle isomorphism (which is an anti-symplectomorphism) bωQ

: TT ∗Q

→ T ∗T ∗Q is G-equivariant with respect to the G-Hamiltonian actions φTT ∗Q and φT ∗T ∗Q

defined as the tangent and cotangent lift of φT ∗Q. Moreover bωQ
preserves the momentum

maps of these actions in the way explained above, namely

JT ∗T ∗Q ◦ bωQ
= −JTT ∗Q.
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Here JT ∗T ∗Q and JTT ∗Q are defined as
〈
JT ∗T ∗Q(βαq), ξ

〉
=
〈
βαq , ξT ∗Q(αq)

〉
,

〈
JTT ∗Q(vαq), ξ

〉
= vαq((JT ∗Q)ξ),

for all βαq ∈ T ∗T ∗Q, vαq ∈ TT ∗Q and ξ ∈ g. Using the results on symplectic re-

duction from Section 2, the symplectic orbit spaces J−1
TT ∗Q(0)/G and J−1

T ∗T ∗Q(0)/G are

anti-symplectomorphic via the map [(bωQ
)0] : J

−1
TT ∗Q(0)/G → J−1

T ∗T ∗Q(0)/G which is char-
acterized by the condition

(4.2) [(bωQ
)0] ◦ pJ−1

TT∗Q
(0) = pJ−1

T∗T∗Q
(0) ◦ bωQ |J−1

TT∗Q
(0)
.

Let us focus on the range of the map [(bωQ
)0], i.e. the symplectic space (J−1

T ∗T ∗Q(0)/G,
(ωT ∗Q)0) obtained by a cotangent reduction at the (regular) value µ = 0. In Exam-
ple 2.2 we explained how this space is symplectomorphic to the canonical symplectic space
T ∗(T ∗Q/G), where the symplectomorphism Ψ0 : (J

−1
T ∗T ∗Q(0)/G, (ωT ∗Q)0) → (T ∗(T ∗Q/G),

ωT ∗Q/G) is defined by

(4.3)
〈
Ψ0(pJ−1

T∗T∗Q
(0)(αβq)), TβqpT ∗Q(vβq)

〉
=

〈
αβq , vβq

〉
,

for all βq ∈ T ∗Q, αβq ∈ J−1
T ∗T ∗Q(0) and vβq ∈ TT ∗Q. On the other hand, the symplectic

space on the domain of [(bωQ
)0], J

−1
TT ∗Q(0)/G, is not symplectomorphic to a tangent bun-

dle. However, it is possible to define a vector bundle morphism Ξ (over the identity of
T ∗Q/G)

Ξ: J−1
TT ∗Q(0)/G → T (T ∗Q/G)

which is characterized by the condition

(4.4) Ξ(pJ−1
TT∗Q

(0)(vαq)) = TpT ∗Q(vαq),

for all vαq ∈ J−1
TT ∗Q(0).

Recall from Remark 2.1 that the orbit space T ∗Q/G can be endowed with a Poisson
structure by imposing the projection pT ∗Q : T ∗Q → T ∗Q/G to be a Poisson epimorphism
(see also [19]). Indeed, if {., .}T ∗Q and {., .}T ∗Q/G denote the Poisson brackets on T ∗Q
and T ∗Q/G respectively, then

{ϕ̂ ◦ pT ∗Q, γ̂ ◦ pT ∗Q}T ∗Q = {ϕ̂, γ̂}T ∗Q/G ◦ pT ∗Q

for all ϕ̂, γ̂ ∈ C∞(T ∗Q/G). We will write ♯T ∗Q/G : T
∗(T ∗Q/G) → T (T ∗Q/G) for the

vector bundle morphism induced by the Poisson structure on T ∗Q/G:

(4.5) ♯T ∗Q/G(dϕ̂) = Xϕ̂, for all ϕ̂ ∈ C∞(T ∗Q/G),

where Xϕ̂ is the Hamiltonian vector field on T ∗Q/G given by

Xϕ̂(γ̂) = {γ̂, ϕ̂}T ∗Q/G, for all γ̂ ∈ C∞(T ∗Q/G).

Thus, if X(ϕ̂◦pT∗Q) is the Hamiltonian vector field on T ∗Q corresponding to the function

ϕ̂ ◦ pT ∗Q ∈ C∞(T ∗Q), it follows that

(4.6) TpT ∗Q ◦X(ϕ̂◦pT∗Q) = Xϕ̂ ◦ pT ∗Q.

The next lemma summarizes the relation between the maps introduced before.
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Lemma 4.2. The following diagram

J−1
TT ∗Q(0)/G

Ξ
��

J−1
T ∗T ∗Q(0)/G

[(bωQ
)0]−1

oo

T (T ∗Q/G)

τT∗Q/G &&◆◆
◆◆

◆◆
◆◆

◆◆
◆

T ∗(T ∗Q/G)

πT∗Q/Gww♣♣♣
♣♣
♣♣
♣♣
♣♣

♯T∗Q/G

oo

(Ψ0)−1

OO

T ∗Q/G

is commutative.

Proof. It is sufficient to prove that

♯T ∗Q/G((dϕ̂)(pT ∗Q(αq))) = (Ξ ◦ [(bωQ
)0]

−1 ◦Ψ−1
0 )((dϕ̂)(pT ∗Q(αq))),

for all ϕ̂ ∈ C∞(T ∗Q/G) and αq ∈ T ∗Q.

Consider the function ϕ̂ ◦ pT ∗Q ∈ C∞(T ∗Q). Then, it is clear that d(ϕ̂ ◦ pT ∗Q)(αq) ∈

J−1
T ∗T ∗Q(0). Moreover, from the definition of Ψ0 in (4.3) we have that for all vαq ∈ TT ∗Q

〈Ψ0

(
pJ−1

T∗T∗Q
(0)

(
d(ϕ̂ ◦ pT ∗Q)(αq)

))
, TαqpT ∗Q(vαq)〉 = 〈d(ϕ̂ ◦ pT ∗Q)(αq), vαq〉

= 〈dϕ̂(pT ∗Q(αq)), TαqpT ∗Q(vαq)〉,

and this means

Ψ−1
0 ((dϕ̂)(pT ∗Q(αq))) = pJ−1

T∗T∗Q
(0)(d(ϕ̂ ◦ pT ∗Q)(αq)).

Combining the previous expression with the definition of [(bωQ
)0] in (4.2) it follows that

[(bωQ
)0]

−1(Ψ−1
0 ((dϕ̂)(pT ∗Q(αq)))) = pJ−1

TT∗Q
(0)(X(ϕ̂◦pT∗Q)(αq))

and, recalling (4.4), we get:

(Ξ ◦ [(bωQ
)0]

−1 ◦Ψ−1
0 )((dϕ̂)(pT ∗Q(αq))) = (TαqpT ∗Q)(X(ϕ̂◦pT∗Q)(αq)).

Finally, taking into account ( 4.6), we conclude that

(Ξ ◦ [(bωQ
)0]

−1 ◦Ψ−1
0 )((dϕ̂)(pT ∗Q(αq))) = Xϕ̂(pT ∗Q(αq)) = (♯T ∗Q/G)((dϕ̂)(pT ∗Q(αq))).

�

Let H : T ∗Q → R be a G-invariant Hamiltonian and consider the G-invariant Lagrangian
submanifold dH(T ∗Q) ⊆ J−1

T ∗T ∗Q(0) (Example 3.3). The reduced submanifold dH(T ∗Q)/G

is a Lagrangian submanifold of the reduced symplectic manifold J−1
T ∗T ∗Q(0)/G which can

be mapped into a Lagrangian submanifold of J−1
TT ∗Q(0)/G using the map [(bωQ

)0]. In other

words, if we denote by SH the Lagrangian submanifold (bωQ
)−1(dH(T ∗Q)) of (TT ∗Q, ωc

Q),
then

(4.7) SH/G = [(bωQ
)0]

−1(dH(T ∗Q)/G) ⊂ J−1
T ∗T ∗Q(0)/G

is again a Lagrangian submanifold which coincides with the submanifold

Sh = ([(bωQ
)0]

−1 ◦Ψ−1
0 ◦ dh)(T ∗Q/G) ⊂ J−1

T ∗T ∗Q(0)/G,

where h : T ∗Q/G → R is the reduced Hamiltonian.
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The results above imply the existence of a one-to-one correspondence between curves in
T ∗Q/G and curves in the Lagrangian submanifold Sh. This correspondence is defined as
follows: if γ(t) is a curve in T ∗Q/G, then

t → ([(bωQ
)0]

−1 ◦Ψ−1
0 ◦ dh)(γ(t))

is the corresponding curve in Sh. Conversely, a curve γ̄(t) in Sh projects onto a curve
(πT ∗Q/GΨ0 ◦ (♭ωQ

)0)(γ̄(t)) = (τT ∗Q/G ◦ Ξ)(γ̄(t)) on T ∗Q/G.

The next theorem relates this observation with the Hamilton-Poincaré equations. Roughly
speaking, these equations follow from the symmetry reduction of Hamilton’s equations.
A geometric framework for these equation was first introduced in [5] and since then sev-
eral different approaches have appeared in the literature. Here we shall use the following
characterization from [14]: a curve γ : I → T ∗Q/G is a solution of the Hamilton-Poincaré
equations for H if, and only if, γ : I → T ∗Q/G is an integral curve of the Hamiltonian
vector field Xh ∈ X (T ∗Q/G) with respect to the linear Poisson structure on T ∗Q/G, i.e.

(4.8) ♯T ∗Q/G(dh(γ(t))) = Xh(γ(t)) =
d

dt
γ(t).

Theorem 4.3. Let H : T ∗Q → R be a G-invariant Hamiltonian. Then, in the one-to-one
correspondence between curves in T ∗Q/G and curves in Sh, the solutions of the Hamilton-
Poincaré equations correspond with curves in Sh whose image by Ξ are tangents lifts of
curves in T ∗Q/G.

Proof. If we consider a solution γ : I → T ∗Q/G of the Hamilton-Poincaré equations, using
(4.8) and Lemma 4.2 it follows that

(Ξ ◦ [(bωQ
)0]

−1 ◦Ψ0
−1)(dh(γ(t))) = ♯T ∗Q/G(dh(γ(t))) =

d

dt
γ(t).

Thus, if we take the curve γ̄ : I → Sh defined as

γ̄(t) = ([(bωQ
)0]

−1 ◦Ψ−1
0 )(dh(γ(t)),

we deduce that Ξ ◦ γ̄ is just the tangent lift of γ.

Conversely, let γ̄ : I → Sh be a curve on Sh such that

(Ξ ◦ γ̄)(t) =
d

dt
γ(t),

where γ : I → T ∗Q/G is a curve on T ∗Q/G. Then,

(τT ∗Q/G ◦ Ξ ◦ γ̄)(t) = γ(t),

which implies that
γ̄(t) = ([(bωQ

)0]
−1 ◦Ψ−1

0 )(dh(γ(t)).

As a consequence, γ is the corresponding curve in T ∗Q/G associated with γ̄ and

d

dt
γ(t) = (Ξ ◦ γ̄)(t) = ♯T ∗Q/G(dh(γ(t))).

We conclude that the curve γ on T ∗Q/G solves the Hamilton-Poincaré equations for
H . �

Using the previous theorem, we obtain an intrinsic description of the Hamilton-Poincaré
equations.



REDUCED DYNAMICS AND LAGRANGIAN SUBMANIFOLDS OF SYMPLECTIC MANIFOLDS 13

Corollary 4.4. Let H : T ∗Q → R be a G-invariant Hamiltonian function. A curve
γ : I → T ∗Q/G is a solution of the Hamilton-Poincaré equations for H if, and only if,
the image of Ξ by the corresponding curve in Sh,

t → γ̄(t) = ([(bωQ
)0]

−1 ◦Ψ−1
0 ◦ dh)(γ(t)),

is the tangent lift of γ.

The following diagram summarizes the results above:

Sh(dh(γ(t)))

uu

J−1
TT ∗Q(0)/G

''PP
PP

PP
PP

PP
P

Ξ

ww♦♦♦
♦♦
♦♦
♦♦
♦♦

Ψ0◦[(bωQ
)0]

// T ∗(T ∗Q/G)
πT∗Q/G

ww♥♥♥
♥♥
♥♥
♥♥
♥♥
♥

T (T ∗Q/G)
τT∗Q/G // T ∗Q/G

dh

77♥♥♥♥♥♥♥♥♥♥♥♥

I

γ

OO

d
dt
γ

kk❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

5. Special Cases

It is possible to give local expressions of the results above in full generality. This would
lead to the coordinate version of the so-called vertical and horizontal Hamilton-Poincaré
equations which can be found in e.g. [5, 14, 27, 21]. However in view of the many techni-
calities involved with these local computations (such as invoking a principal connection
and its curvature, choosing adapted coordinates, etc.) we will only treat here two special
cases.

5.1. The case where the configuration space is a Lie group. We will use the action
by left translation on G. This will lead to an interpretation of the Lie-Poisson equations
as distinguished curves in a Lagrangian submanifold. For the sake of clarity, we divide
the example in 4 steps.

1) The vector bundle isomorphism bωG
: TT ∗G → T ∗T ∗G. It is well known that

the cotangent bundle T ∗G of the Lie group G may be identified with the trivial principal
bundle with total space G× g

∗ and base g
∗. Such identification is given by

αg ∈ T ∗
gG → (g, (T ∗

eLg)(αg)) ∈ G× g
∗.

In the same way, we will identify the tangent bundle TG to G with the trivial principal
bundle with total space G × g and base space g. Combining these trivializations we
further identify

TT ∗G ∼= (G× g
∗)× (g× g

∗), T ∗T ∗G ∼= (G× g
∗)× (g∗ × g),

whose elements will be denoted as follows:

((g, π), (ω, π̇)) ∈ (G× g
∗)× (g× g

∗), ((g, π), (π̃, ω)) ∈ (G× g
∗)× (g∗ × g).

Under the identifications above it is obvious that the left translation on G is mapped into
the left translation onto the first factor, and that, therefore

T ∗G/G ∼= g
∗, TT ∗G/G ∼= g

∗ × (g× g
∗), T ∗T ∗G/G ∼= g

∗ × (g∗ × g).
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Using the definitions of the Liouville one-form and the canonical symplectic structure on
T ∗G, it follows that

λG(g, π)((g, π), (ω1, π̇1)) = 〈π, ω1〉 ,

ωG(g, π) (((g, π), (ω1, π̇1)), ((g, π), (ω2, π̇2))) = 〈π̇2, ω1〉 − 〈π̇1, ω2〉+ 〈π, [ω1, ω2]g〉 ,

for all ((g, π), (ω1, π̇1)), ((g, π), (ω2, π̇2)) ∈ (G× g
∗)× (g× g

∗) ∼= T (T ∗G).

Finally, from the expression of the canonical symplectic form ωG it is straightforward that
the vector bundle isomorphism

bωG
: TT ∗G ∼= (G× g

∗)× (g× g
∗) → T ∗T ∗G ∼= (G× g

∗)× (g∗ × g)

is given by

(5.1) bωG
((g, π), (ω, π̇)) = ((g, π), (−π̇ + ad∗ωπ, ω)),

where ad∗ : g× g
∗ → g

∗ is the dual of the infinitesimal adjoint representation given by

(ad∗ωπ)(ω̃) = 〈π, [ω, ω̃]g〉 , for ω, ω̃ ∈ g and π ∈ g
∗.

2) The reduced spaces J−1
TT ∗G(0)/G and J−1

T ∗T ∗G(0)/G. Let JT ∗G : T
∗G ∼= (G×g

∗) →
g
∗ be the momentum map on T ∗G, defined as

〈JT ∗G(g, π), ξ〉 =
〈
T ∗
gLg−1(π), ξG(g)

〉
for all (g, π) ∈ (G× g

∗) and ξ ∈ g.

Since the action on G is the left translation, its infinitesimal generators are the right
invariant vector fields. Therefore

(5.2) 〈JT ∗G(g, π), ξ〉 =
〈
T ∗
gLg−1(π), TeRg(ξ)

〉
= 〈π,Adg−1ξ〉 =

〈
Ad∗g−1π, ξ

〉
,

or, in other words, JT ∗G(g, π) = Ad∗g−1π. With a similar computation we get the following

expression for JT ∗T ∗G : T ∗T ∗G ∼= (G× g
∗)× (g∗ × g) → g

∗:

JT ∗T ∗G((g, π), (π
′, ω)) = Ad∗g−1π′.

In view of the expression for bωG
and Theorem 4.1, we immediately obtain the expression

for the trivialized momentum JTT ∗G:

JTT ∗G((g, π), (ω, π̇)) = Ad∗g−1 (π̇ − ad∗ωπ) .

In particular, on the zero level sets of the momenta, we have:

J−1
T ∗T ∗G(0) = {((g, π), (0, ω)) ∈ (G× g

∗)× (g∗ × g)} ∼= (G× g
∗)× g,

J−1
TT ∗G(0) = {((g, π), (ω, ad∗ωπ)) ∈ (G× g

∗)× (g× g
∗)} ∼= G× g

∗ × g,

and therefore the reduced spaces

J−1
T ∗T ∗G(0)/G = {(π, (π′, ω)) ∈ g

∗ × (g∗ × g) : π′ = 0} ∼= g
∗ × g,

J−1
TT ∗G(0)/G = {(π, (ω, π̇)) ∈ g

∗ × (g× g
∗) : π̇ = ad∗ωπ}

∼= g
∗ × g,

can both be identified with g
∗ × g.

3) The maps [(bωG
)0], Ψ0 and Ξ. In view of the above identifications and (5.1), the

map [(bωG
)0] is simply given by the identity

[(bωG
)0] : g

∗ × g → g
∗ × g

(π, ω) 7→ [(bωG
)0](π, ω) = (π, ω).
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On the other hand, we also have the identifications T ∗(T ∗G/G) ∼= g
∗×g and T (T ∗G/G) ∼=

g
∗ × g

∗, so we may as well work with trivialized expressions for the maps Ψ0 and Ξ. One
can check that these are given by:

Ψ0 : g
∗ × g → g

∗ × g

(π, ω) 7→ Ψ0(π, ω) = (π, ω),

Ξ: g∗ × g → g
∗ × g

∗

(π, ω) 7→ Ξ(π, ω) = (π, ad∗ωπ).

4) The Lie-Poisson dynamics. Let H : T ∗G ∼= G × g
∗ → R be a G-invariant Hamil-

tonian and denote by h : g∗ → R the reduced Hamiltonian. Define the Lagrangian sub-
manifold Sh by (see Example 3.3):

Sh = {(π, dh(π)) ∈ g
∗ × g} ∼= g

∗.

Consider a curve γ(t) = (π(t), ω(t)) ∈ J−1
TT ∗G(0)/G

∼= g
∗ × g with values in Sh and which

is such that its image by Ξ is the tangent lift of a curve t 7→ π̄(t) ∈ T ∗G/G ∼= g
∗. Then,

it is clear that

π(t) = π̄(t), ω(t) = dh(π(t)), ad∗ω(t)π(t) =
d

dt
π̄(t).

Thus, it follows that

ad∗dh(π(t))π(t) =
d

dt
π(t).

Therefore, the curve t 7→ π(t) in g
∗ solves the well known Lie-Poisson equations.

Conversely, assume that a curve in g
∗, t 7→ π(t), is a solution of the Lie-Poisson equations

for H and consider the following curve in Sh:

t 7→ γ(t) = [(bωG
)0]

−1 ◦Ψ−1
0 )(dh(π(t)) = (π(t), dh(π(t)) ∈ g

∗ × g ∼= J−1
TT ∗G(0)/G.

Its image by the map Ξ is the curve

t 7→
(
π(t), ad∗dh(π(t))π(t)

)
∈ g

∗ × g
∗ ∼= T (T ∗G/G).

Using that t → π(t) is a solution of the Lie-Poisson equations, it follows that

dπ

dt |t
= ad∗dh(π(t))π(t),

i.e., the curve Ξ ◦ γ is the tangent lift of the curve t → π(t) ∈ g
∗.

5.2. The case where the configuration space is a product. The second example of
interest is the case where the configuration space Q can be written as G×S and the action
of G on G× S is the left translation on the first factor. If we denote by π1 : Q → G and
π2 : Q → S the projections, the canonical symplectic form ωQ in T ∗Q can be decomposed
as ωQ = π∗

1ωG + π∗
2ωS (where ωS and ωG can be interpreted as the canonical forms on

T ∗S and T ∗G, respectively) and that, as a result, we have

bωQ
= (bωG

, bωS
) : TT ∗G×TT ∗S ≃ T (T ∗G×T ∗S) → T ∗T ∗G×T ∗T ∗S ≃ T ∗(T ∗G×T ∗S),

where bωS
reads like bωQ

in Section 2, with Q replaced by S.

The momentum maps can be computed as before, in the case of a Lie group. In particular,

〈JT ∗Q((g, π), αx), ω〉 = 〈JT ∗G(g, π), ω〉 = 〈π,Adg−1ω〉 ,
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for all ((g, π), αx) ∈ (G×g
∗)×T ∗S, with x ∈ S. As a consequence we obtain directly the

expressions for JTT ∗Q and JT ∗T ∗Q from those in the previous subsection. For example, we
find:

JTT ∗Q(((g, π), (ω, π̇)), Xpx) = JTT ∗G((g, π), (ω, π̇)) = Ad∗g−1(π̇ − ad∗ωπ),

for all (((g, π), (ω, π̇)), Xpx) ∈ ((G× g
∗)× (g× g

∗))×TT ∗S, with px ∈ T ∗S, and similarly
for JT ∗T ∗Q. Therefore, on the zero level sets we have the identifications:

J−1
TT ∗Q(0)/G

∼= J−1
TT ∗G(0)/G× TT ∗S ∼= (g∗ × g)× TT ∗S,

J−1
T ∗T ∗Q(0)/G

∼= J−1
T ∗T ∗G(0)/G× T ∗T ∗S ∼= (g∗ × g)× T ∗T ∗S.

By taking the previous expressions into account, we deduce that the reduced map [(bωQ
)0]

is of the form

[(bωQ
)0] = ([bωG

]0, bωS
) : J−1

TT ∗G(0)/G× TT ∗S → J−1
T ∗T ∗G(0)/G× T ∗T ∗S.

The map Ψ0 is the identity and the map Ξ : J−1
TT ∗Q(0)/G ≃ (g∗ × g) × TT ∗S →

T (T ∗Q/G) ≃ (g∗ × g
∗)× TT ∗S is given by

Ξ((π, ω), Xpx) = ((π, ad∗ωπ), Xpx).

Now, suppose that H : T ∗Q ≃ G× g
∗ × T ∗S → R is a G-invariant Hamiltonian function

and h : T ∗Q/G ≃ g
∗ × T ∗S → R is the reduced Hamiltonian function. Then, the

Lagrangian submanifold Sh in J−1
TT ∗Q(0)/G ≃ (g∗ × g)× TT ∗S is given by

Sh = {(π, dhαx(π), Xhπ(αx)) | π ∈ g
∗, αx ∈ T ∗S}

where hαx : g∗ → R (respectively, hπ : T ∗S → R) is the real function on g
∗ (respectively,

T ∗S) defined by

hαx(π
′) = h(π′, αx), for π′ ∈ g

∗

(respectively, hπ(α
′
x′) = h(π, α′

x′), for α′
x′ ∈ T ∗S), and Xhπ is the Hamiltonian vector field

in T ∗S of hπ.

Thus, a curve t 7→ (π(t), x(t), px(t)) on g
∗ × T ∗S ≃ T ∗Q/G satisfies the conditions of

Corollary 4.4 if and only if

π̇ = ad∗∂h
∂π

π, ẋ =
∂h

∂px
, ṗx = −

∂h

∂x
,

which are the Hamilton-Poincaré equations for H in this case.

6. Lagrange-Poincaré reduction

To get an intrinsic description of the reduced Lagrangian equations of motion we will
proceed in a similar way as we have done before for the Hamiltonian case.

The first thing to prove is that Tulczyjew’s diffeomorphism AQ : TT ∗Q → T ∗TQ is G-
equivariant and preserves the momentum maps associated to the actions on TT ∗Q and
T ∗TQ. The map AQ may be defined in several ways. One possibility is to define AQ as the
composition of two anti-symplectomorphisms, as we will explain in the next paragraphs.
For more details, see [9].

A first element we need is the vector bundle projection v
∗ : T ∗TQ → T ∗Q, characterized

as 〈
v
∗(αvq), wq

〉
=

〈
αvq , (wq)

v

vq

〉
,
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for all αvq ∈ T ∗TQ and wq ∈ TQ, where (·)vvq : TqQ → TvqTQ is the standard vertical lift:

(6.1) (wq)
v

vq (f) =
d

ds |s=0

(
f(vq + swq)

)
,

for each function f on TQ.

The second element is a vector bundle isomorphism R : T ∗TQ → T ∗T ∗Q over the identity
of T ∗Q between the vector bundles v

∗ : T ∗TQ → T ∗Q and πT ∗Q : T ∗T ∗Q → T ∗Q. It is
completely determined by the condition:

(6.2)
〈
R
(
αvq

)
,W

v
∗(αvq )

〉
= −

〈
αvq , W̄vq

〉
+
〈
W

v
∗(αvq ), W̄vq

〉T
,

for all αvq ∈ T ∗TQ, W̄vq ∈ TTQ and W
v
∗(αvq ) ∈ TT ∗Q satisfiying

(6.3) TτQ
(
W̄vq

)
= TπQ

(
W

v
∗(αvq )

)
.

Here, 〈·, ·〉T : TT ∗Q×TQ TTQ → R is the pairing defined by the tangent map of the usual
pairing 〈·, ·〉 : T ∗Q×Q TQ → R.

The Tulczyjew diffeomorphism AQ is then defined as the composition R−1 ◦ bωQ
.

Lemma 6.1. Consider the anti-symplectomorphism R : T ∗TQ → T ∗T ∗Q. Then:

(1) R is G-equivariant.

(2) R satisfies JT ∗T ∗Q ◦R = −JT ∗TQ

Proof. (1) First, we check that the map v
∗ : T ∗TQ → T ∗Q is G-equivariant. It can readily

be checked that the vertical lift is G-equivariant, or in short g(wq)
v

vq = (gwq)
v

gvq . Thus,
for all αvq ∈ T ∗TQ, wq ∈ TQ and g ∈ G,

〈
v
∗(gαvq), (gwq)

〉
=

〈
gαvq , (gwq)

v

gvq

〉
=

〈
gαvq , g(wq)

v

vq

〉

=
〈
αvq , (wq)

v

vq

〉
=

〈
v
∗(αvq), (wq)

〉
,

where we have used invariance of the natural pairing.

Secondly we check equivariance of R. Using the equivariance of the maps TτQ and
TπQ and the invariance of the pairings, we find

〈
R
(
gαvq

)
, g
(
W

v
∗(αvq )

)〉
= −

〈
gαvq , gW̄vq

〉
+
〈
gW

v
∗(αvq ), gW̄vq

〉T

= −
〈
αvq , W̄vq

〉
+
〈
W

v
∗(αvq ), W̄vq

〉T

,

from where R
(
gαvq

)
= gR

(
αvq

)
follows.

(2) From the definition of the momentum map JT ∗T ∗Q it follows that for all αvq ∈ T ∗TQ
and ξ ∈ g, 〈

JT ∗T ∗Q(R(αvq)), ξ
〉
=

〈
R(αvq), ξT ∗Q(v

∗(αvq))
〉
.

Recalling the definition 6.2 of R for W = ξT ∗Q(v
∗(αvq)) and W̄ = ξTQ(vq) (note that

this choice satisfies (6.3)), it follows that:
〈
R(αvq), ξT ∗Q(v

∗(αvq))
〉
= −

〈
αvq , ξTQ(vq)

〉
+
〈
ξT ∗Q(v

∗(αvq)), ξTQ(vq)
〉T

.
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We now show that the last term vanishes. If we write ϕt for the flow of ξQ around q ∈
Q, i.e. ϕt = exp(tξ)q, then the flows of ξTQ and ξT ∗Q are Tϕt and T ∗ϕt respectively.
With this, using the invariance of the bracket, we conclude:

〈
ξT ∗Q(v

∗(αvq)), ξTQ(vq)
〉T

=
d

dt |t=0

〈
(T ∗ϕt)(v

∗(αvq)), Tϕt(vq)
〉

=
d

dt |t=0

〈
v
∗(αvq), vq

〉
= 0.

Therefore,
〈
JT ∗T ∗Q(R(αvq)), ξ

〉
= −

〈
αvq , ξTQ(vq)

〉
= −

〈
JT ∗TQ(αvq), ξ

〉
.

�

The previous lemma implies the following important result:

Theorem 6.2. Tulczyjew’s diffeomorphism is G-equivariant with respect to the G-Hamil-
tonian actions on TT ∗Q and T ∗TQ and, moreover, JTT ∗Q = JT ∗TQ ◦ AQ.

Proof. This is now an easy consequence of Theorem 4.1 and Lemma 6.1. �

The results above imply the existence of the reduced maps

[R0] : J
−1
T ∗TQ(0)/G → J−1

T ∗T ∗Q(0)/G,

[(AQ)0] : J
−1
TT ∗Q(0)/G → J−1

T ∗TQ(0)/G,

defined by

(6.4) [R0] ◦ pJ−1
T∗TQ

(0) = pJ−1
T∗T∗Q

(0) ◦R|J−1
T∗TQ

(0)

and
[(AQ)0] ◦ pJ−1

TT∗Q
(0) = pJ−1

T∗TQ
(0) ◦ AQ|J−1

TT∗Q
(0),

respectively. Taking into account the definition of Tulczyjew’s diffeomorphism, it is clear
that

[(AQ)0] = [R0]
−1 ◦ [(bωQ

)0].

In fact we could have taken the above expression as an alternative definition. It is then
analogous to the definition of the Tulczyjew’s diffeomorphism. For this reason, we shall
refer to [(AQ)0] as the reduced Tulczyjew diffeomorphism.

Before we enter the discussion about Lagrange-Poincaré reduction we need to introduce
a few more maps. Let us consider the manifold (J−1

T ∗TQ(0)/G, (ωTQ)0) (which is obtained
after a cotangent reduction at µ = 0) and the symplectomorphism

ϕ0 :
(
J−1
T ∗TQ(0)/G, (ωTQ)0

)
→

(
T ∗(TQ/G), ωTQ/G

)

defined by (see Example 2.2):

(6.5)
〈
ϕ0

(
pJ−1

T∗TQ
(0)(αvq)

)
, TvqpTQ(uvq)

〉
:=

〈
αvq , uvq

〉
,

for all αvq ∈ J−1
T ∗TQ(0) and uvq ∈ TTQ.

Next there is a vector bundle morphism Λ: T ∗(TQ/G) → T (T ∗Q/G) (over the identity
in T ∗Q/G) defined by

(6.6) Λ = ♯T ∗Q/G ◦RQ/G.



REDUCED DYNAMICS AND LAGRANGIAN SUBMANIFOLDS OF SYMPLECTIC MANIFOLDS 19

Here, ♯T ∗Q/G : T
∗(T ∗Q/G) → T (T ∗Q/G) is the vector bundle morphism induced by the

Poisson structure on T ∗Q/G (see (4.5)) and the isomorphism

RQ/G : T
∗(TQ/G) → T ∗(T ∗Q/G)

will be described next (see [11] for a general definition).

First of all, we describe how T ∗(TQ/G) can be interpreted as a vector bundle over
T ∗Q/G. Note that T ∗(TQ/G) is a vector subbundle (over TQ/G) of the vector bun-
dle [πTQ] : T

∗TQ/G → TQ/G, with inclusion

i : T ∗(TQ/G) → T ∗TQ/G

defined by

i
(
αpTQ(vq)

)
= pT ∗TQ

(
(T ∗

vqpTQ)(αpTQ(vq))
)
,

for αpTQ(vq) ∈ T ∗(TQ/G) and vq ∈ TQ. T ∗TQ/G is a vector bundle over T ∗Q/G and

with vector bundle projection [v∗] : T ∗TQ/G → T ∗Q/G induced by v
∗. Let the vector

bundle projection

ṽ
∗ : T ∗(TQ/G) → T ∗Q/G

be the composition

ṽ
∗ = [v∗] ◦ i.

We can now mimic the construction of R to introduce the vector bundle map RQ/G. Ex-
plicitly, RQ/G : T ∗(TQ/G) → T ∗(T ∗Q/G) is the isomorphism between the vector bundles

ṽ
∗ : T ∗(TQ/G) → T ∗Q/G and πT ∗Q/G : T

∗(T ∗Q/G) → T ∗Q/G such that:
〈
RQ/G

(
αpTQ(vq)

)
,W

ṽ
∗

(
αpTQ (vq )

)
〉
=(6.7)

−
〈
αpTQ(vq), W̄pTQ(vq)

〉
+
〈
W

ṽ
∗

(
αpTQ (vq )

), W̄pTQ(vq)

〉T

,

for all αpTQ(vq) ∈ T ∗(TQ/G) and W
ṽ
∗(αpTQ (vq ))

∈ T (T ∗Q/G), with W̄pTQ(vq) ∈ T (TQ/G)

satisfying

T [τQ]
(
W̄pTQ(vq)

)
= T [πQ]

(
W

ṽ
∗(αpTQ (vq ))

)
,

where [τQ] : TQ/G → Q/G and [πQ] : T
∗Q/G → Q/G are the canonical projections and

〈·, ·〉T : T (T ∗Q/G) ×T (Q/G) T (TQ/G) → R is the tangent map of the natural pairing
〈·, ·〉 : T ∗Q/G×Q/G TQ/G → R.

The relation between the different maps introduced so far is summarized in the following
Lemma:

Lemma 6.3. The diagram

J−1
TT ∗Q(0)/G

Ξ
��

J−1
T ∗TQ(0)/G

[(AQ)0]−1

oo

T (T ∗Q/G) T ∗(TQ/G)
Λ

oo

(ϕ0)−1

OO

is commutative.
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Proof. On the one hand, we know that the inverse of the reduced Tulczyjew diffeomor-
phism satisfies [(AQ)0]

−1 = [(bωQ
)0]

−1 ◦ [R0]. On the other hand, we also know from
Lemma 4.2 that the diagram

J−1
TT ∗Q(0)/G

Ξ
��

J−1
T ∗T ∗Q(0)/G

[(bωQ
)0]−1

oo

T (T ∗Q/G) T ∗(T ∗Q/G)
♯T∗Q/G

oo

(Ψ0)−1

OO

is commutative. Therefore, it is sufficient to check that the diagram

J−1
T ∗TQ(0)/G

[R0] // J−1
T ∗T ∗Q(0)/G

Ψ0

��
T ∗(TQ/G)

(ϕ0)−1

OO

RQ/G

// T ∗(T ∗Q/G)

is commutative, for then the result will follow directly from diagram chasing:

Λ = ♯T ∗Q/G ◦RQ/G = (Ξ ◦ [(bωQ
)0]

−1 ◦Ψ−1
0 ) ◦ (Ψ0 ◦ [R0] ◦ ϕ

−1
0 ) = Ξ ◦ [(AQ)0]

−1 ◦ ϕ−1
0 .

Let vq ∈ TQ, W
v
∗(αvq ) ∈ TT ∗Q and f ∈ C∞(TQ/G) arbitrary. Using (4.3), (6.4) and

(6.5), we have that
〈(

Ψ0 ◦ [R0] ◦ ϕ
−1
0

)(
df(pTQ(vq))

)
, TpT ∗Q

(
W

v
∗(αvq )

)〉
=

=
〈(

Ψ0 ◦ [R0]
)(

pJ−1
T∗TQ

(0)

(
d(f ◦ pTQ)(vq)

))
, TpT ∗Q

(
W

v
∗(αvq )

)〉

=
〈(

Ψ0 ◦ pJ−1
T∗T∗Q

(0) ◦R
)(

d(f ◦ pTQ)(vq)
)
, TpT ∗Q

(
W

v
∗(αvq )

)〉

=
〈
R
(
d(f ◦ pTQ)(vq)

)
,W

v
∗(αvq )

〉
.

Now, take W̄vq ∈ TTQ satisfying (6.3). From (6.2), it follows that
〈
R
(
d(f ◦ pTQ)(vq)

)
,W

v
∗(αvq )

〉
=

= −
〈
d(f ◦ pTQ)(vq), W̄vq

〉
+
〈
W

v
∗(αvq ), W̄vq

〉T

= −
〈
df(pTQ(vq)), TpTQ(W̄vq)

〉
+
〈
TpT ∗QWv

∗(αvq ), TpTQ(W̄vq)
〉T

=
〈
RQ/G

(
df(pTQ(vq))

)
, TpT ∗Q

(
W

v
∗(αvq )

)〉
.

where in the equality between the second and the third lines,we have used that if 〈·, ·〉T :

T (TQ)×TQT (T
∗Q) → R and 〈·, ·〉T̂ : T (TQ/G)×T (Q/G)T (T

∗Q/G) → R are the canonical
pairings then

〈Xvq , Yαq〉
T = T 〈·, ·〉(Xvq , Yαq) = 〈(TvqpTQ)(Xvq), (TαqpT ∗Q)(Yαq)〉

T̂ ,

for Xvq ∈ T (TQ) and Yαq ∈ T (T ∗Q) such that (TvqpTQ)(Xvq) = (TαqpT ∗Q)(Yαq).

This concludes the proof. �
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Let L : TQ → R be aG-invariant Lagrangian function. Much like in the Hamiltonian case,
we can show that dL(TQ)/G is a Lagrangian submanifold of J−1

T ∗TQ(0)/G which, by means
of the reduced Tulczyjew’s diffeomorphism, can be mapped into Lagrangian submanifold
of J−1

TT ∗Q(0)/G. More precisely, let SL be the invariant Lagrangian submanifold of the

symplectic manifold (TT ∗Q, ωc
Q) defined by SL = (AQ)

−1(dL(TQ)). The space of orbits

SL/G is Lagrangian submanifold of J−1
TT ∗Q(0)/G which satisfies:

(6.8) SL/G = [(AQ)0]
−1(dL(TQ)/G).

An alternative description of this submanifold is:

SL/G = Sl := ([(AQ)0]
−1 ◦ ϕ−1

0 ◦ dl)(TQ/G),

where l : TQ/G → R is the reduced Lagrangian function characterized by the condition
L = l ◦ pTQ.

This implies the existence of a one-to-one correspondence between curves in TQ/G and
curves in the Lagrangian submanifold Sl defined as follows: if γ : I → TQ/G is a curve
in TQ/G, then

t → ([(AQ)0]
−1 ◦ ϕ−1

0 ◦ dl)(γ(t))

is the corresponding curve in Sl.

As was the case for the Hamilton-Poincaré equations, there exist many different geometric
frameworks for Lagrange-Poincaré reduction. We will use a somewhat indirect approach.
In [14] it is shown that the Lagrange-Poincaré equations can be thought of as Euler-
Lagrange equations on a Lie algebroid, where the Lie algebroid is the Atiyah algebroid
TQ/G. In [9] the authors give a characterization of the set of solutions of the Euler-
Lagrange equations on a Lie algebroid, which applied to the case of the Atiyah algebroid
is as follows: a curve σ : I → TQ/G is a solution of the Lagrange–Poincaré equations if,
and only if, it satisfies the equation

(6.9)
d

dt
(Fl ◦ σ)(t) = Λ(dl(σ(t)),

where Fl : TQ/G → T ∗Q/G is the Legendre transformation associated with l defined by

(6.10) Fl(pTQ(vq)) = ṽ
∗(dl(pTQ(vq))),

for all vq ∈ TQ.

Theorem 6.4. Let L : TQ → R be a G-invariant Lagrangian function. Then, in the
one-to-one correspondence between curves in TQ/G and curves in Sl, the solutions of the
Lagrange-Poincaré equations correspond with curves in Sl whose image by Ξ are tangent
lifts of curves in T ∗Q/G.

Proof. Let us assume that a curve σ : I → TQ/G is a solution of the Lagrange-Poincaré
equations for L. Then, using (6.9) and Lemma 6.3, it follows that

d

dt
(Fl(σ(t))) = Λ(dl(σ(t))) = (Ξ ◦ [(AQ)0]

−1 ◦ ϕ−1
0 )(dl(σ(t))).

Thus, if we take the curve σ̄ : I → Sl in Sl associated with σ

σ̄(t) = ([(AQ)0]
−1 ◦ ϕ−1

0 )(dl(σ(t))),

we deduce that the curve Ξ ◦ σ̄ is the tangent lift of the curve Fl ◦ σ.
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Conversely, let σ̄ : I → Sl be a curve in Sl such that

(6.11) (Ξ ◦ σ̄)(t) =
d

dt
γ(t),

where γ : I → T ∗Q/G is a curve in T ∗Q/G. Suppose that σ : I → TQ/G is the curve on
TQ/G associated with σ̄, that is,

(6.12) σ̄(t) = ([(AQ)0]
−1 ◦ ϕ−1

0 )(dl(σ(t))), ∀t ∈ I.

Then, using (6.11) and Lemma 6.3, it follows that

γ(t) = (τT ∗Q/G ◦ Ξ ◦ σ̄)(t) = (τT ∗Q/G ◦ Λ)(dl(σ(t))).

From (6.6), (6.7) and (6.10), we obtain that

γ(t) = ṽ
∗(dl(σ(t))) = Fl(σ(t)).

Using (6.11) and (6.12) and Lemma 6.3, this proves that

d

dt
(Fl ◦ σ)(t) = Λ(dl(σ(t))).

Therefore, σ is a solution of the Lagrange-Poincaré equations for L. �

Using this theorem, we obtain an intrinsic description of the Lagrange-Poincaré equations.

Corollary 6.5. Let L : TQ → R be a G-invariant Lagrangian function, l : TQ/G → R

the reduced Lagrangian function and Fl : TQ/G → T ∗Q/G the Legendre transformation
associated with l. A curve σ : I → TQ/G is a solution of the Lagrange-Poincaré equations
for L if, and only if, the image by Ξ of the corresponding curve in Sl,

t → ([(AQ)0]
−1 ◦ ϕ−1

0 )(dl(σ(t))),

is the tangent lift of the curve Fl ◦ σ.

The following diagram illustrates the previous situation

Sl(dl(σ(t)))

''

T ∗(TQ/G)

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄
J−1
TT ∗Q(0)/G

zz✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉✉

��

Ξ

**❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

ϕ0◦[(AQ)0]oo

T (T ∗Q/G)
τT∗Q/G

tt❤❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤❤❤
❤❤❤

❤

TQ/G

dl

__❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄
Fl // T ∗Q/G

I

σ

ee❏❏❏❏❏❏❏❏❏❏❏

Fl◦σ
99sssssssssss

d
dt
(Fl◦σ)

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

Remark 6.6. Using the above results and proceeding as in the Hamiltonian side (see
Section 5) one may obtain a description of Euler-Poincaré equations (that is, Lagrange-
Poincaré equations for the particular case when the configuration space is a Lie group)
in terms of Lagrangian submanifolds of a symplectic manifold.
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7. The equivalence between the reduced Lagrangian and Hamiltonian
formalism

Consider the Liouville vector field ∆ on TQ given by ∆(vq) = (vq)
v

vq , for all vq ∈ TQ.

Suppose that L : TQ → R is an invariant hyperregular Lagrangian and consider its (G-
invariant) energy EL = ∆(L)−L. The corresponding Hamiltonian function H = EL◦F

−1
L

is also G-invariant. In many papers (see e.g. [16, 23, 24]) it has been shown that the
submanifolds

SL = (AQ)
−1(dL(TQ)) and SH = (bωQ

)−1(dH(T ∗Q))

coincide.

On the reduced level, by making use of (4.7), (6.8) and the previous fact, we obtain:

Theorem 7.1. Let L be an hyperregular Lagrangian. If l : TQ/G → R and h : T ∗Q/G →
R are the reduced Lagrangian and Hamiltonian functions and Sl, Sh are the reduced
Lagrangian submanifolds of the symplectic manifold J−1

TT ∗Q(0)/G, then Sl = Sh.

The reduced Tulczyjew triple below illustrates the situation.

Sl

""

= Sh

||

T ∗(TQ/G)
πTQ/G

&&▲▲
▲▲

▲▲
▲▲

▲▲
▲

J−1
TT ∗Q(0)/G

ϕ0◦[(AQ)0]oo
Ψ0◦[(bωQ

)0]
//

[(TπQ)0]

xxqqq
qq
qq
qq
q [(τT∗Q)0]

&&▼▼
▼▼

▼▼
▼▼

▼▼
T ∗(T ∗Q/G)

πT∗Q/G

xxqqq
qq
qq
qq
qq

TQ/G

[τQ] &&▼▼
▼▼

▼▼
▼▼

▼▼
▼

dl

ff▲▲▲▲▲▲▲▲▲▲▲ Fl // T ∗Q/G

[πQ]xx♣♣♣
♣♣
♣♣
♣♣
♣♣

dh

88qqqqqqqqqqq

Q/G

Here, [(TπQ)0] : J
−1
TT ∗Q(0)/G → TQ/G (respectively, [(τT ∗Q)0] : J

−1
TT ∗Q(0)/G → T ∗Q/G) is

the canonical projection induced by the vector bundle projection
(TπQ)0 = (TπQ)|J−1

TT∗Q
(0) : J

−1
TT ∗Q(0) → TQ (respectively, (τT ∗Q)0 = (τT ∗Q)|J−1

TT∗Q
(0) :

J−1
TT ∗Q(0) → T ∗Q).

8. Conclusions and future work

In this paper, we have described solutions of the Hamilton-Poincaré (respectively, Lagrange-
Poincaré) equations in terms of Lagrangian submanifolds, thereby obtaining a reduced
Tulczyjew triple entirely consisting of symplectic manifolds. In this section, we first want
to place our results better in the context of the existing literature.

Note that, to obtain the dynamics, we have extensively made use of the map Ξ that
we had defined in expression (4.4). This map, actually, allows one to relate our triple
with one that appeared in [9], associated with an arbitrary Lie algebroid A. If we apply
the theory of [9] to the particular case when the Lie algebroid A is the Atiyah algebroid
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[τQ] : TQ/G → Q/G associated with the principal G-bundle pQ : Q → Q/G, then the
resultant construction is the following diagram:

T ∗(TQ/G)
πTQ/G

&&▼▼
▼▼

▼▼
▼▼

▼▼

Λ // T (T ∗Q/G)
τT∗Q/G

&&▼▼
▼▼

▼▼
▼▼

▼▼

T [πQ]

��✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁

T ∗(T ∗Q/G)
πT∗Q/G

xx♣♣♣
♣♣
♣♣
♣♣
♣♣

♯T∗Q/Goo

TQ/G
T̃pQ

%%❑❑
❑❑

❑❑
❑❑

❑❑
T ∗Q/G

T (Q/G)

The space T (T ∗Q/G) is not, in general, a symplectic manifold. In fact, the complete lift
of the linear Poisson structure on T ∗Q/G defines a (non symplectic) Poisson structure
on T (T ∗Q/G). Thus, T (T ∗Q/G) is a Poisson manifold. Moreover, if L : TQ → R is a
G-invariant Lagrangian function and l : TQ/G → R is the reduced Lagrangian function
then (Λ(dl(TQ/G)) is not, in general, a submanifold of T (T ∗Q/G). Note that Λ is not,
in general, a diffeomorphism.

Even though one may find in [9] an elegant way to describe the Lagrange-Poincaré and
Hamilton-Poincaré equations, it seems natural to preserve the symplectic nature of the
Tulczyjew triple after reduction. Since the morphism Ξ: J−1

TT ∗Q(0)/G → T (T ∗Q/G) re-
lates both Tulczyjew’s triples, we have conveniently made use of it to relate the reduced
dynamics, as described in [9], with the reduced Lagrangian submanifolds.

The following diagram illustrates the relation between the two triples.

T (T ∗Q/G) ED

BC

τT∗Q/G

oo

GF

@A

T [πQ]

//

T ∗(TQ/G)

πTQ/G

��✿
✿✿

✿✿
✿✿

✿✿
✿✿

✿✿
✿✿

✿✿
✿✿

Λ
44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

T ∗(T ∗Q/G)

πT∗Q/G

��✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂✂
✂

♯T∗Q/G

kk❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱

J−1
TT ∗Q(0)/G

ϕ0◦[(AQ)0]
jj❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱

Ψ0◦[(bωQ
)0]

33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

Ξ

OO

[(TπQ)0]

xxqqq
qq
qq
qq
q [(τT∗Q)0]

&&▼▼
▼▼

▼▼
▼▼

▼▼

TQ/G
T̃pQ

&&▼▼
▼▼

▼▼
▼▼

▼▼
T ∗Q/G

T (Q/G)

Using some results from [14], one may also deduce that solutions of the Hamilton-Poincaré
(respectively, Lagrange-Poincaré) equations are in one-to-one correspondence with admis-
sible curves in a Lagrangian submanifold of a symplectic Lie algebroid. We remark, how-
ever, that symplectic Lie algebroids cannot be considered genuine symplectic manifolds.
It would therefore be of interest to compare these two different approaches.

We would also like to extend the results in this paper to classical field theories of first
order. For this purpose, we can use the description in [2] (see also [6, 10, 15]) of these
theories in terms of Lagrangian submanifolds of premultisymplectic manifolds and a suit-
able process of reduction of some special premultisymplectic manifolds. This will be the
subject of a forthcoming paper (see [3]).
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The reduction methods we have applied so far mainly made use of the symmetry, and not
so much of the fact that symmetry can sometimes be related to conservations laws (using
e.g. Noether’s theorem). Two reduction techniques which do make use of conservations
laws are so-called Routh reduction (on the Lagrangian side) and cotangent bundle re-
duction (on the Hamiltonian side). In the papers [12, 13, 18] the close relation between
these two theories have been brought in the spotlight, completely within a symplectic
framework. It would therefore be of interest to investigate whether these two reduction
theories can also be cast within a framework of a Tulczyjew triple.
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tal, Universidad de La Laguna, ULL, Avda. Astrof́ısico Fco. Sánchez, 38206 La Laguna,
Tenerife (Spain)

E-mail address : eguzman@ull.es
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