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We present a configuration interaction method in which the Hamiltonian of an N -

electron system is projected on Slater determinants selected according to the seniority-

number criterion along with the traditional excitation-based procedure. This proposed

method is especially useful to describe systems which exhibit dynamic (weak) correla-

tion at determined geometric arrangements (where the excitation-based procedure is

more suitable) but show static (strong) correlation at other arrangements (where the

seniority-number technique is preferred). The hybrid method amends the shortcom-

ings of both individual determinant selection procedures, yielding correct shapes of

potential energy curves with results closer to those provided by the full configuration

interaction method.

a) Author to whom correspondence should be addressed. Electronic mail: qfplapel@lg.ehu.es

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55888935?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

I. INTRODUCTION

It is well known that the full configuration interaction (FCI) method provides the

exact solutions of the Schrödinger equation for an N -electron system in a given Hilbert

space. Unfortunately, its factorial growth with respect to the number of electrons and

the number of basis set orbitals demands a prohibitive computational cost. One of the

most popular approaches used to reduce this computational cost is to limit the number

of Slater determinants in the configuration space; this idea constitutes the foundation

of the configuration interaction (CI) methods. This technique requires to select, ac-

cording to a determined criterion, the Slater determinants in which the N -electron

Hamiltonian is projected. Most often, this selection is performed in terms of the num-

ber of spin-orbitals excited with respect to a given reference determinant. However,

more recently an alternative CI procedure has been proposed; in this case the selection

of the Slater determinants is accomplished according to the seniority number of the de-

terminants used to project the Hamiltonian1−5 (the seniority number has been defined

as the number of singly occupied orbitals in a determinant).6,7 On the other hand, the

electronic correlation energy is usually decomposed into two components which have

been denominated as dynamic (weak) and static (strong) correlations.8−12 The correla-

tion is essentially dynamic when a single-determinant reference is a good zeroth-order

wave function. The static (nondynamic) correlation is important in systems with strong

multireference character and necessarily requires the use of wave functions composed of

multiple Slater determinants, even for suitable zeroth-order descriptions. Systems with

near-degenerate ground states, molecules with stretched bonds, radicals, complexes of

transition metals and so forth are examples which fit this correlation model, which has

also been found in bond-breaking processes and in the description of superconductivity

and other properties of materials.

The performance of both excitation- and seniority-number-based selection crite-

ria in CI expansions to describe N -electron systems has been tackled in Ref. 1 which

reports studies of atoms and molecular species in which either dynamic or static cor-

relation is dominant. The conclusions reported in that reference indicate that the
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excitation-based configuration selection procedure is more efficient than the seniority-

based approach when the system presents essentially dynamic correlation. However, in

those situations where the static correlation is important, the seniority-number-based

selection procedure leads to better results. In the description of dissociation processes

or bond breaking, one often finds molecular systems that show mainly dynamic corre-

lation at arrangements near the equilibrium distances but present static correlation at

stretched arrangements. A global study of such systems raises the problem of choos-

ing one of these two above mentioned CI expansion construction criteria. The aim of

this work is to propose a method that combines both CI expansion types, providing

a framework that accounts efficiently for both types of correlation. In our procedure,

the N -electron Hamiltonian is projected on a set of Slater determinants which possess

a determined seniority number plus the additional Slater determinants needed to com-

plete a given excitation level with respect to a reference. The method turns out to be

suitable to describe any system and is especially useful for wave functions which un-

dergo dramatic changes in the dominances of the Slater determinants as a consequence

of the stretching of the internuclear distances within molecular systems.

This work has been organized as follows. In Sec. II we review the main theoretical

aspects involved in the proposed methodology, indicating the formulation of the N -

electron seniority number operator by means of the spin-free second-order replacement

operators and the features of the CI expansions. Section III reports the computational

details as well as the criteria followed to select the molecular orbital basis to perform

this treatment. In Sec. IV we show results obtained from the proposed hybrid method;

in this work the treatment involves all Slater determinants whose seniority number is

zero, augmented with those of the single and double excitation configuration interaction

(CISD) method not yet included. These results have been compared with those arising

from the seniority-number approach (at zeroth seniority-number level), with those of

the CISD or single, double and triple excitation configuration interaction (CISDT)

methods and with those of the FCI procedure. This Section also reports the number

of Slater determinants required in each method, in order to assess the computational
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expense. Finally, in Sec. V we summarize the main conclusions of this work.

II. THEORETICAL REVIEW

The N -electron seniority number operator Ω̂ can be formulated by means of the

spin-free replacement operators as2

Ω̂ =
K∑

i=1

(Êi
i − Êii

ii) (1)

in which Êi
i =

∑
σ a†iσaiσ and Êii

ii =
∑

σ1,σ2
a†iσ1a

†
iσ2aiσ2aiσ1 are the spin-free first-

and second-order replacement operators respectively.13−15 In this formalism a†iσ and aiσ

denote the standard creation and annihilation fermion operators corresponding to a

spin-orbital iσ, where σ = α, β means the spin coordinate and i represents an orbital

of an orthonormal basis set composed of K functions. According to Eq. (1), the

expectation value of the operator Ω̂ for an N -electron Slater determinant < Ω̂ > = Ω

is the difference between the total number of electrons N (i.e.
∑K

i=1 < Êi
i >) and

the number of electrons corresponding to doubly occupied orbitals in the determinant

(
∑K

i=1 < Êii
ii >). In other words, Ω is a positive integer meaning the number of

unpaired electrons in the determinant.

The N -electron Slater determinants constructed with K basis functions and a

determined spin quantum number Sz can be classified according to the values Ω =

0, 2, 4 . . . (for N even) or Ω = 1, 3, 5 . . . (for N odd), satisfying the constraint condition

Ω ≥ 2|Sz|. In both cases, the maximum value of the Ω quantity is Ωmax = N (if

K ≥ N) or Ωmax = 2K − N (if K < N). The projection of the Hamiltonian operator

corresponding to an N -electron system on one or more sets of determinants (each set

including all determinants with a given Ω value) yields an N -electron CI Hamiltonian

matrix. The diagonalization of this matrix provides the eigenvalues and eigenvectors

which are the energies and wave functions of the seniority-number-based CI method

at levels Ω = 0, 2, 4 . . . or Ω = 1, 3, 5 . . .. In the limit, when all possible values of Ω

are taken into account (Ω = 2|Sz|, 2(|Sz|+1), . . . ,Ωmax) the seniority-number-based CI
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energies and wave functions coincide with those arisen from the FCI method, which

utilizes all possible determinants with a particular Sz value, constructed with the K

functions, to perform the Hamiltonian projection. This CI(Ω) procedure constitutes an

alternative to the traditional one, in which the classification of the Slater determinants

to project the Hamiltonian is implemented according to the excitation levels with

respect to a reference determinant.16−19 Both CI approaches lead to different energies,

although they converge to the FCI result when a high number of determinants is used in

the numerical determinations. Furthermore, a basis-set transformation yields changes

in the results arising from both CI methods4 what makes it necessary to properly select

the type of molecular orbitals leading to more efficient wave function expansions.1,4,20,21

The concept of seniority number has also been extended to N -electron spin-

adapted wave functions Ψ(N, S) with a given spin quantum number S and any Sz.
2 In

this case, the expectation value of the seniority number is

< Ω̂ >Ψ(N,S) = < Ψ(N, S)|Ω̂|Ψ(N, S) > =
∑

i

1Di
i − 2

∑

i

2Dii
ii (2)

in which 1Di
i = < Ψ(N, S)|Êi

i |Ψ(N, S) > and 2Dii
ii = 1

2
< Ψ(N, S)|Êii

ii |Ψ(N, S) >

are elements of the spin-free first- and second- order reduced density matrices respec-

tively, corresponding to the wave function Ψ(N, S). In this formulation the Sz quantum

number has been omitted, since these matrix elements are independent of the spin pro-

jection. The expectation value < Ω̂ >Ψ(N,S) is no longer an integer like in a determinant

case but a quantity depending on the nature of the i orbitals. In Refs. 2 and 4 we have

proposed to perform transformations of the molecular basis set so that the expectation

value of the seniority number operator for a FCI state, < Ω̂ >Ψ(N,S), gets a minimum

value. The computational procedure we have used, based on the method reported by

Subotnik et al.,22 allows one to obtain more compact FCI wave functions and CI wave

functions attaining larger correlation energies. The orbitals resulting from that mini-

mization have been denominated Mmin in contrast to the natural orbitals (NO) and the

Hartree-Fock canonical molecular orbitals (CMO). The functions that constitute the
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basis sets Mmin are not, in general, symmetry-adapted orbitals although the molecular

symmetry can be restored. Other applications of the expectation value < Ω̂ >Ψ(N,S)

arise from its relationship with the effectively unpaired electron number corresponding

to the state Ψ(N, S).23,24

As has been mentioned in the Introduction, the excitation-based and the

seniority-number-based CI expansions present advantages and deficiencies respectively

to describe systems requiring a simple determinant as zeroth-order wave functions,

but both of them show the opposite behavior when multideterminantal wave functions

are needed at this level of approximation.1 There are ambiguous situations in which a

system is suitably described by expansions with a very strong dominance of a Slater

determinant at a determined geometrical arrangement but requires several Slater de-

terminants at other arrangements. Consequently, it seems reasonable to study the

performance of the Hamiltonian projection on the union of the sets of determinants

from the seniority-number-based and excitation-based CI methods (at given Ω and

excitation levels). This configuration space is wider than that constituted by each

CI method individually and necessarily provides better results at any geometrical ar-

rangement. CI expansions of hybrid character based on excitations and other features

of the determinants (energies) have also been recently proposed.25 In the next sections

we describe results drawn out at several geometrical arrangements of systems which

present marked changes in the dominances of the Slater determinants.

III. COMPUTATIONAL DETAILS

The reliability of our methodology has been tested by determining ground-state

electronic energies in closed-shell atomic and molecular systems using the hybrid CI

scheme. We have projected the Hamiltonian of these systems on the union of the

Slater determinant sets required in the CI(Ω = 0) and CISD procedures, what has

been denoted as CI
(Ω=0)
SD . The dimensions of this N -electron Hamiltonian matrix is

∑2
i=0

∑i
p=0

(
K−N

2
p

)(N
2
p

)(
K−N

2
i−p

)( N
2

i−p

)
+

(
K
N
2

) − [N
2
(K − N

2
) + 1], in which the first term is

the CISD Hamiltonian matrix size, the second term is the dimension of the Ω = 0
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Hamiltonian matrix and the last one in the number Slater determinants belonging to

both spaces. The results have been compared with those arising from the individ-

ual CI(Ω = 0), CISD and CISDT procedures, as well as with those provided by the

FCI method. The excitation level of the determinants used in the CISD, CISDT, etc,

procedures has been evaluated with respect to a single reference determinant. In the

molecular calculations we have used small basis sets in order to get FCI results at an

affordable cost. The basis sets utilized for each system have been indicated in the

tables and figures in the next section. We have carried out the corresponding basis set

transformations so that finally the N -electron CI matrices have been expressed in the

Mmin orbitals in which the expectation values < Ω̂ >Ψ(N,S) attain the minimum values

for the FCI procedure.4 Experimental equilibrium bond lengths and angles and sym-

metrically stretched configurations have been used to describe potential energy curves

in the molecular systems. The one- and two-electron integrals required to construct

the N -electron CI matrices have been obtained from a modified version of the PSI 3.3

package.26 We have also used that code to calculate the Hartree-Fock CMOs utilized as

initial basis in the iterative procedure which determines the Mmin basis sets. In subse-

quent steps we have elaborated our own codes to perform the basis set transformations

and to construct the N -electron CI(Ω = 0), CISD, CI
(Ω=0)
SD and CISDT matrices; this

last task has been implemented using the algorithms in the programmes developed for

Refs. 27 and 28.

IV. RESULTS AND DISCUSSION

Table I gathers energy values of selected atomic systems arising from the CI(Ω =

0), CISD, CI
(Ω=0)
SD , CISDT and FCI methods, as well as their computational cost. This

cost has been reflected by means of the number of Slater determinants in the Hamilto-

nian projections. This table also shows the Gaussian basis sets used in these numerical

determinations although all values reported in this table have been obtained from the

corresponding Mmin orthonormal orbital basis. The Be atom has been chosen as pro-

totype of system having a marked static correlation;1 in fact the CI(Ω = 0) result is
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close to the CISD one with lower computational cost (only 91 Slater determinants).

The hybrid CI
(Ω=0)
SD method, proposed in this work, leads to a better result being very

close to that provided by the CISDT procedure with a markedly lower computational

cost (823 Slater determinants vs 3925 ones). The correlation energy in the Ne atom

has been considered to be purely dynamic;1 our results confirm this behavior since the

CI(Ω = 0) result is no longer close to the CISD value as in the Be case. However,

the hybrid CI
(Ω=0)
SD method yields a value quite close to that of the CISDT method at

lower computational cost and in the F− case (a system isoelectronic with the Ne atom)

the CI
(Ω=0)
SD value turns out to be even lower than that obtained from the CISDT

procedure. The systems Mg and Al+ can be classified between those possessing an

intermediate strength of static correlation energy; the hybrid CI
(Ω=0)
SD method also pre-

dicts satisfactory results for these systems. The results found for the Ar atom show

that this system presents a behavior similar to that of the Ne atom; both atoms possess

essentially dynamic correlation, as expected.

In Figs. 1, 2 and 3 we show potential energy curves of the symmetrically stretched

systems BeH2 and H2O as well as that of the N2 molecule. Our aim is to assess the

performance of the CI
(Ω=0)
SD method by comparing its results and computational cost

with those arising from the more known CI(Ω = 0), CISD and FCI procedures. Each

numerical value described in these curves has been obtained using the basis set Mmin

in which the < Ω̂ >Ψ(N,S) quantity gets a minimum value for the corresponding FCI

wave function Ψ(N, S). The accuracy of the potential energy curves obtained from the

CI methods with respect to the FCI one is compared in Table II, where the maximum

absolute errors (MAE) and nonparallelity errors (NPE) are shown for each method.

As can be observed, the CI
(Ω=0)
SD method decreases these quantities in one and two

orders of magnitude for the BeH2 and H2O systems and near one order of magnitude

for the N2 molecule. The computational cost of these numerical determinations has

been reflected in Table III in terms of the number of Slater determinants required in

each method. A survey of the BeH2 curve shapes described in Fig. 1 shows very good

agreement for all studied methods at near-equilibrium distances. However, at longer
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internuclear distances, where static correlation is higher, the CI(Ω = 0) method ex-

hibits a hump, which has also been reported and discussed in other systems,1 although

near the dissociation this curve converges to the FCI one. This hump is no longer

present in the results yielded by the hybrid CI
(Ω=0)
SD method which requires only a little

more computational effort compared to the CISD procedure. As expected, the CI
(Ω=0)
SD

method agrees better with the FCI one in the whole interval of internuclear distances

studied. Fig. 2 describes the potential energy curves of the H2O molecule. As can be

observed, the results from the CI
(Ω=0)
SD method are near coincident with the FCI ones

both for near-equilibrium geometries as well as for distances close to the dissociation

limit, although the computational cost is only slightly higher than the CISD one. In

Fig. 3 we show the results corresponding to the N2 molecule in which we appreciate

the crossing between the CI(Ω = 0) and CISD curves. The CISD values are closer

to the FCI ones than those of CI(Ω = 0) method at the near-equilibrium region (low

static correlation) but this behavior is quite opposite at the dissociation limit region

(high static correlation). Similarly to the BeH2 and H2O molecules, the performance

of the CI
(Ω=0)
SD curve in the N2 system is better than those provided by the CI(Ω = 0)

and CISD methods individually and its computational cost is only slightly higher than

that required by the CISD procedure.

We have studied the behavior of the results provided by the CI
(Ω=0)
SD method

using molecular orbital basis sets other than the Mmin ones. In Figs. 4 and 5 we have

represented potential energy curves of the symmetrically stretched H2O molecule using

the NO and CMO basis sets respectively. As can be seen by comparing Figs. 2 and 4,

the CI(Ω = 0) results are closer to the FCI ones in the Mmin basis set, in agreement

with the conclusions reported in Ref. 4, providing better results than the CISD ones.

However the CI
(Ω=0)
SD curve with the NO basis set (Fig. 4) is just as nearly coincident

with the FCI one as the CI
(Ω=0)
SD curve with the Mmin basis (Fig. 2). The results arising

from the use of the CMOs, shown in Fig. 5, also indicate the closeness of the CI
(Ω=0)
SD

curve to the FCI one. From a computational point of view, the CMO basis sets are

more easily available than the NO and Mmin ones, and consequently they could be
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preferably used within the CI
(Ω=0)
SD scheme, avoiding the FCI determinations. Fig. 5

also shows the presence of a small hump in the curves CI(Ω = 0), CISD and CI
(Ω=0)
SD

in the CMO basis set, which does not appear in their counterparts calculated in the

NO and Mmin basis sets. However, the hump in the CMO curves gets its smallest size

in the CI
(Ω=0)
SD method. In order to elucidate whether the hump is an artefact of using

a minimal basis set, we also performed calculations using the split valence 6-31G basis

set, revealing indeed that the use of a larger basis set leads to the disappearance of

this hump (see Fig. 6). Also note that all main features reported for the STO-3G data

remain for the larger basis set.

Truncated methods, i.e. methods other than FCI one, suffer from an undesirable

dependence on the basis chosen, as is clearly demonstrated above. We therefore also

performed preliminary calculations at CI
(Ω=0)
SD level, with an energy optimized single

particle basis to examine the magnitude of the further change in energy compared to

the energies obtained using the other molecular orbital bases. We have chosen the N2

molecule as a prototype system. Although a detailed description of the algorithm used

and more detailed examinations of this effect will be presented in future work, Fig.

7 clearly shows that the energy optimized basis set slightly improves on the energies

calculated using the NO and Mmin basis sets, and that these energies are better than

those given by the CMO basis set although their respective order may differ along the

bond stretching coordinate. The key conclusion of the paper, is however confirmed in

all cases: as shown in Fig. 8, the union of the CI(Ω = 0) and CISD determinant sets

lowers significantly the energies provided by those procedures individually without an

important increase in computational cost.

V. CONCLUDING REMARKS AND PERSPECTIVES

In this work, we have proposed a new procedure which possesses a hybrid char-

acter within the CI technique framework. The method is based on the projection of

an N -electron Hamiltonian on the union of two Slater determinant sets, each of them

constituted according to a different criterion. One of these sets is composed of all Slater
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determinants up to a determined seniority number; the other set is composed of a ref-

erence determinant and its excitations up to a determined level. We report numerical

determinations on selected atomic and molecular systems using a simple version of the

hybrid method, the CI
(Ω=0)
SD one. Its results and computational cost are compared with

those obtained from its parents CI(Ω = 0) and CISD methods. Our proposal turns out

to be particularly useful to describe systems which undergo strong changes in the static

correlation energies at stretched geometries with respect to near-equilibrium arrange-

ments, correcting the deficiencies of the CI(Ω = 0) and CISD procedures. Notably, the

sets of the CI(Ω = 0) and the CISD Slater determinants act like ideal complements

to each other, solving many of the issues related to strong static correlation. The NO

and Mmin basis sets are optimal for the traditional and seniority-type CI procedures re-

spectively from a compactness of wave function perspective, and consequently we have

considered these basis sets in our calculations. Our best results have been obtained

using the Mmin molecular orbital basis sets, which minimizes the seniority number for

the FCI procedure. However, we also show that other molecular basis sets, as those

of CMOs, improve the CI(Ω = 0) and CISD results with lower computational costs.

One can also find the optimal molecular orbital basis sets for any CI-type method from

an energy perspective. We also report preliminary calculations with a CI
(Ω=0)
SD energy

optimized molecular orbital basis set pointing out a further energy lowering. Work

along this line is being pursued in our laboratories.
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TABLE II: Maximum absolute errors (MAE) and nonparallelity errors (NPE) (in mEh) of

the CI potential energy curves with respect the FCI one. Results were obtained using the

orthonormal basis set that minimizes the seniority number for the FCI procedure (Mmin)

.

CI(Ω = 0) CISD CI
(Ω=0)
SD

MAE NPE MAE NPE MAE NPE

BeH2 68.60 65.73 35.05 34.61 8.12 7.84

H2O 19.53 12.85 66.69 66.60 0.19 0.17

N2 84.79 40.75 147.1 143.3 47.71 45.18
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TABLE III: Computational cost reflected in the size of the Slater determinant basis for

molecular systems calculated at different levels of CI methods.

No. determinants

system basis CI(Ω = 0) CISD CI
(Ω=0)
SD FCI

BeH2 STO-3G 35 205 227 1225

H2O STO-3G 21 141 151 441

N2 STO-3G 120 610 708 14400
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FIG. 1: Potential energy curves for the symmetric dissociation of the BeH2 molecule using

STO-3G basis set transformed to the basis which minimizes the seniority number for the FCI

procedure (Mmin).
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FIG. 2: Potential energy curves for the symmetric dissociation of the H2O molecule using

STO-3G basis set transformed to the basis which minimizes the seniority number for the FCI

procedure (Mmin).
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FIG. 3: Potential energy curves for the dissociation of the N2 molecule using STO-3G basis

set transformed to the basis which minimizes the seniority number for the FCI procedure

(Mmin).
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FIG. 4: Potential energy curves for the symmetric dissociation of the H2O molecule using

STO-3G basis set transformed to the natural orbital (NO) set which diagonalize the FCI

first-order reduced density matrix.
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FIG. 5: Potential energy curves for the symmetric dissociation of the H2O molecule using

STO-3G basis set transformed to the Hartree-Fock canonical molecular orbital (CMO) set.
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FIG. 6: Potential energy curves for the symmetric dissociation of the H2O molecule using

6-31G basis set transformed to the Hartree-Fock canonical molecular orbital (CMO) set.
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SD energy differences with respect to the energy optimized basis set for different

single particle bases as a function of internuclear distance in the N2 molecule.



25

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.8  1  1.2  1.4  1.6  1.8  2

E
ne

rg
y 

di
ffe

re
nc

e 
(h

ar
tr

ee
)

RNN (Ang)

CI(=0)

CISD
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SD
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