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We present a configuration interaction method in which the Hamiltonian of an N-
electron system is projected on Slater determinants selected according to the seniority-
number criterion along with the traditional excitation-based procedure. This proposed
method is especially useful to describe systems which exhibit dynamic (weak) correla-
tion at determined geometric arrangements (where the excitation-based procedure is
more suitable) but show static (strong) correlation at other arrangements (where the
seniority-number technique is preferred). The hybrid method amends the shortcom-
ings of both individual determinant selection procedures, yielding correct shapes of
potential energy curves with results closer to those provided by the full configuration

interaction method.
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I. INTRODUCTION

It is well known that the full configuration interaction (FCI) method provides the
exact solutions of the Schrodinger equation for an N-electron system in a given Hilbert
space. Unfortunately, its factorial growth with respect to the number of electrons and
the number of basis set orbitals demands a prohibitive computational cost. One of the
most popular approaches used to reduce this computational cost is to limit the number
of Slater determinants in the configuration space; this idea constitutes the foundation
of the configuration interaction (CI) methods. This technique requires to select, ac-
cording to a determined criterion, the Slater determinants in which the N-electron
Hamiltonian is projected. Most often, this selection is performed in terms of the num-
ber of spin-orbitals excited with respect to a given reference determinant. However,
more recently an alternative CI procedure has been proposed; in this case the selection
of the Slater determinants is accomplished according to the seniority number of the de-
terminants used to project the Hamiltonian'~® (the seniority number has been defined
as the number of singly occupied orbitals in a determinant).®” On the other hand, the
electronic correlation energy is usually decomposed into two components which have
been denominated as dynamic (weak) and static (strong) correlations.>~'? The correla-
tion is essentially dynamic when a single-determinant reference is a good zeroth-order
wave function. The static (nondynamic) correlation is important in systems with strong
multireference character and necessarily requires the use of wave functions composed of
multiple Slater determinants, even for suitable zeroth-order descriptions. Systems with
near-degenerate ground states, molecules with stretched bonds, radicals, complexes of
transition metals and so forth are examples which fit this correlation model, which has
also been found in bond-breaking processes and in the description of superconductivity
and other properties of materials.

The performance of both excitation- and seniority-number-based selection crite-
ria in CI expansions to describe N-electron systems has been tackled in Ref. 1 which
reports studies of atoms and molecular species in which either dynamic or static cor-

relation is dominant. The conclusions reported in that reference indicate that the



excitation-based configuration selection procedure is more efficient than the seniority-
based approach when the system presents essentially dynamic correlation. However, in
those situations where the static correlation is important, the seniority-number-based
selection procedure leads to better results. In the description of dissociation processes
or bond breaking, one often finds molecular systems that show mainly dynamic corre-
lation at arrangements near the equilibrium distances but present static correlation at
stretched arrangements. A global study of such systems raises the problem of choos-
ing one of these two above mentioned CI expansion construction criteria. The aim of
this work is to propose a method that combines both CI expansion types, providing
a framework that accounts efficiently for both types of correlation. In our procedure,
the N-electron Hamiltonian is projected on a set of Slater determinants which possess
a determined seniority number plus the additional Slater determinants needed to com-
plete a given excitation level with respect to a reference. The method turns out to be
suitable to describe any system and is especially useful for wave functions which un-
dergo dramatic changes in the dominances of the Slater determinants as a consequence
of the stretching of the internuclear distances within molecular systems.

This work has been organized as follows. In Sec. II we review the main theoretical
aspects involved in the proposed methodology, indicating the formulation of the N-
electron seniority number operator by means of the spin-free second-order replacement
operators and the features of the CI expansions. Section III reports the computational
details as well as the criteria followed to select the molecular orbital basis to perform
this treatment. In Sec. IV we show results obtained from the proposed hybrid method;
in this work the treatment involves all Slater determinants whose seniority number is
zero, augmented with those of the single and double excitation configuration interaction
(CISD) method not yet included. These results have been compared with those arising
from the seniority-number approach (at zeroth seniority-number level), with those of
the CISD or single, double and triple excitation configuration interaction (CISDT)
methods and with those of the FCI procedure. This Section also reports the number

of Slater determinants required in each method, in order to assess the computational



expense. Finally, in Sec. V we summarize the main conclusions of this work.

II. THEORETICAL REVIEW

The N-electron seniority number operator ) can be formulated by means of the

spin-free replacement operators as?

K
63 (B - ) )
i=1
in which £! = 3 al,a. and Bl = Y o100 @k, aloyajos a0y are the spin-free first-
and second-order replacement operators respectively.'3~15 In this formalism al, and a0
denote the standard creation and annihilation fermion operators corresponding to a
spin-orbital 7, where o = «, f means the spin coordinate and 7 represents an orbital
of an orthonormal basis set composed of K functions. According to Eq. (1), the
expectation value of the operator Q) for an N-electron Slater determinant < Q > =
is the difference between the total number of electrons N (i.e. S8, < E! >) and
the number of electrons corresponding to doubly occupied orbitals in the determinant
(XK, < E >). In other words, Q is a positive integer meaning the number of
unpaired electrons in the determinant.

The N-electron Slater determinants constructed with K basis functions and a
determined spin quantum number S, can be classified according to the values 2 =
0,2,4... (for N even) or Q@ =1,3,5... (for N odd), satisfying the constraint condition
Q > 2|S,|. In both cases, the maximum value of the Q quantity is Qupax = N (if
K > N)or Qu.x =2K — N (if K < N). The projection of the Hamiltonian operator
corresponding to an N-electron system on one or more sets of determinants (each set
including all determinants with a given (2 value) yields an N-electron CI Hamiltonian
matrix. The diagonalization of this matrix provides the eigenvalues and eigenvectors
which are the energies and wave functions of the seniority-number-based CI method
at levels 2 = 0,2,4...0or Q = 1,3,5.... In the limit, when all possible values of (2
are taken into account (2 = 2|S,|,2(]S,|+1), ..., Qmax) the seniority-number-based CI



energies and wave functions coincide with those arisen from the FCI method, which
utilizes all possible determinants with a particular S, value, constructed with the K
functions, to perform the Hamiltonian projection. This CI(2) procedure constitutes an
alternative to the traditional one, in which the classification of the Slater determinants
to project the Hamiltonian is implemented according to the excitation levels with
respect to a reference determinant.'®=1 Both CI approaches lead to different energies,
although they converge to the FCI result when a high number of determinants is used in
the numerical determinations. Furthermore, a basis-set transformation yields changes
in the results arising from both CI methods* what makes it necessary to properly select
the type of molecular orbitals leading to more efficient wave function expansions.!*2%:21
The concept of seniority number has also been extended to N-electron spin-

adapted wave functions ¥ (NN, S) with a given spin quantum number S and any S..? In

this case, the expectation value of the seniority number is

< Q >y = < (N, S)|QU(N,S) > = Z 'Di— 2 Z 2 pi )

i

in which 'D} = < W(N, S)|F{|W(N,S) > and 2D}l = L < W(N,S)|EE¥(N,S) >
are elements of the spin-free first- and second- order reduced density matrices respec-
tively, corresponding to the wave function W(N, S). In this formulation the S, quantum
number has been omitted, since these matrix elements are independent of the spin pro-
jection. The expectation value < QO >y(n,s) 18 no longer an integer like in a determinant
case but a quantity depending on the nature of the ¢ orbitals. In Refs. 2 and 4 we have
proposed to perform transformations of the molecular basis set so that the expectation
value of the seniority number operator for a FCI state, < O >y(n,s), gets a minimum
value. The computational procedure we have used, based on the method reported by
Subotnik et al.,?? allows one to obtain more compact FCI wave functions and CI wave
functions attaining larger correlation energies. The orbitals resulting from that mini-

mization have been denominated M,,;, in contrast to the natural orbitals (NO) and the

Hartree-Fock canonical molecular orbitals (CMO). The functions that constitute the



basis sets M, are not, in general, symmetry-adapted orbitals although the molecular
symmetry can be restored. Other applications of the expectation value < O >W(N,S)
arise from its relationship with the effectively unpaired electron number corresponding
to the state U(N, S).232

As has been mentioned in the Introduction, the excitation-based and the
seniority-number-based CI expansions present advantages and deficiencies respectively
to describe systems requiring a simple determinant as zeroth-order wave functions,
but both of them show the opposite behavior when multideterminantal wave functions
are needed at this level of approximation.! There are ambiguous situations in which a
system is suitably described by expansions with a very strong dominance of a Slater
determinant at a determined geometrical arrangement but requires several Slater de-
terminants at other arrangements. Consequently, it seems reasonable to study the
performance of the Hamiltonian projection on the union of the sets of determinants
from the seniority-number-based and excitation-based CI methods (at given 2 and
excitation levels). This configuration space is wider than that constituted by each
CI method individually and necessarily provides better results at any geometrical ar-
rangement. CI expansions of hybrid character based on excitations and other features
of the determinants (energies) have also been recently proposed.?” In the next sections
we describe results drawn out at several geometrical arrangements of systems which

present marked changes in the dominances of the Slater determinants.

IIT. COMPUTATIONAL DETAILS

The reliability of our methodology has been tested by determining ground-state
electronic energies in closed-shell atomic and molecular systems using the hybrid CI
scheme. We have projected the Hamiltonian of these systems on the union of the
Slater determinant sets required in the CI(Q2 = 0) and CISD procedures, what has

been denoted as CI(S%ZO). The dimensions of this N-electron Hamiltonian matrix is

Z?:o Z;:o (K;%) (%) (K;pg) (Ep) + (ﬁ) — [J(K — %) + 1], in which the first term is
2

the CISD Hamiltonian matrix size, the second term is the dimension of the 2 = 0



Hamiltonian matrix and the last one in the number Slater determinants belonging to
both spaces. The results have been compared with those arising from the individ-
ual CI(Q2 = 0), CISD and CISDT procedures, as well as with those provided by the
FCI method. The excitation level of the determinants used in the CISD, CISDT, etc,
procedures has been evaluated with respect to a single reference determinant. In the
molecular calculations we have used small basis sets in order to get FCI results at an
affordable cost. The basis sets utilized for each system have been indicated in the
tables and figures in the next section. We have carried out the corresponding basis set
transformations so that finally the N-electron CI matrices have been expressed in the
M,uin orbitals in which the expectation values < QO >y (N,s) attain the minimum values
for the FCI procedure.? Experimental equilibrium bond lengths and angles and sym-
metrically stretched configurations have been used to describe potential energy curves
in the molecular systems. The one- and two-electron integrals required to construct
the N-electron CI matrices have been obtained from a modified version of the PSI 3.3
package.?® We have also used that code to calculate the Hartree-Fock CMOs utilized as
initial basis in the iterative procedure which determines the M,,;, basis sets. In subse-
quent steps we have elaborated our own codes to perform the basis set transformations
and to construct the N-electron CI(2 = 0), CISD, CI:(S%:O) and CISDT matrices; this
last task has been implemented using the algorithms in the programmes developed for

Refs. 27 and 28.

IV. RESULTS AND DISCUSSION

Table I gathers energy values of selected atomic systems arising from the CI(Q2 =
0), CISD, CI:(S%:O), CISDT and FCI methods, as well as their computational cost. This
cost has been reflected by means of the number of Slater determinants in the Hamilto-
nian projections. This table also shows the Gaussian basis sets used in these numerical
determinations although all values reported in this table have been obtained from the
corresponding M,,;, orthonormal orbital basis. The Be atom has been chosen as pro-

totype of system having a marked static correlation;! in fact the CI(Q2 = 0) result is



close to the CISD one with lower computational cost (only 91 Slater determinants).
The hybrid CI:(S%ZO) method, proposed in this work, leads to a better result being very
close to that provided by the CISDT procedure with a markedly lower computational
cost (823 Slater determinants vs 3925 ones). The correlation energy in the Ne atom
has been considered to be purely dynamic;! our results confirm this behavior since the
CI(©2 = 0) result is no longer close to the CISD value as in the Be case. However,
the hybrid CI:(S%:O) method yields a value quite close to that of the CISDT method at
lower computational cost and in the F~ case (a system isoelectronic with the Ne atom)
the CI(S%ZO) value turns out to be even lower than that obtained from the CISDT
procedure. The systems Mg and Al* can be classified between those possessing an
intermediate strength of static correlation energy; the hybrid CIé%ZO) method also pre-
dicts satisfactory results for these systems. The results found for the Ar atom show
that this system presents a behavior similar to that of the Ne atom; both atoms possess
essentially dynamic correlation, as expected.

In Figs. 1, 2 and 3 we show potential energy curves of the symmetrically stretched
systems BeHy and HoO as well as that of the Ny molecule. Our aim is to assess the
performance of the CIé%ZO) method by comparing its results and computational cost
with those arising from the more known CI(2 = 0), CISD and FCI procedures. Each
numerical value described in these curves has been obtained using the basis set M,
in which the < >y (n,s) quantity gets a minimum value for the corresponding FCI
wave function W(N, S). The accuracy of the potential energy curves obtained from the
CI methods with respect to the FCI one is compared in Table II, where the maximum
absolute errors (MAE) and nonparallelity errors (NPE) are shown for each method.
As can be observed, the CI:(S%:O) method decreases these quantities in one and two
orders of magnitude for the BeH,; and H,O systems and near one order of magnitude
for the Ny molecule. The computational cost of these numerical determinations has
been reflected in Table III in terms of the number of Slater determinants required in

each method. A survey of the BeH, curve shapes described in Fig. 1 shows very good

agreement for all studied methods at near-equilibrium distances. However, at longer



internuclear distances, where static correlation is higher, the CI(©2 = 0) method ex-
hibits a hump, which has also been reported and discussed in other systems,! although
near the dissociation this curve converges to the FCI one. This hump is no longer
present in the results yielded by the hybrid Clé%zo) method which requires only a little
more computational effort compared to the CISD procedure. As expected, the CIé%ZO)
method agrees better with the FCI one in the whole interval of internuclear distances
studied. Fig. 2 describes the potential energy curves of the H,O molecule. As can be
observed, the results from the CI(S%ZO) method are near coincident with the FCI ones
both for near-equilibrium geometries as well as for distances close to the dissociation
limit, although the computational cost is only slightly higher than the CISD one. In
Fig. 3 we show the results corresponding to the Ny molecule in which we appreciate
the crossing between the CI(2 = 0) and CISD curves. The CISD values are closer
to the FCI ones than those of CI(2 = 0) method at the near-equilibrium region (low
static correlation) but this behavior is quite opposite at the dissociation limit region
(high static correlation). Similarly to the BeH; and HyO molecules, the performance
of the Clé%zo) curve in the Ny system is better than those provided by the CI(2 = 0)
and CISD methods individually and its computational cost is only slightly higher than
that required by the CISD procedure.

We have studied the behavior of the results provided by the CI:(S%:O) method
using molecular orbital basis sets other than the M,,;,, ones. In Figs. 4 and 5 we have
represented potential energy curves of the symmetrically stretched HoO molecule using
the NO and CMO basis sets respectively. As can be seen by comparing Figs. 2 and 4,
the CI(©2 = 0) results are closer to the FCI ones in the M,,;, basis set, in agreement
with the conclusions reported in Ref. 4, providing better results than the CISD ones.
However the CI:(S%ZO) curve with the NO basis set (Fig. 4) is just as nearly coincident
with the FCI one as the Clé%zo) curve with the My, basis (Fig. 2). The results arising
from the use of the CMOs, shown in Fig. 5, also indicate the closeness of the Clé%zo)

curve to the FCI one. From a computational point of view, the CMO basis sets are

more easily available than the NO and M,,;, ones, and consequently they could be



preferably used within the CIé%ZO) scheme, avoiding the FCI determinations. Fig. 5
also shows the presence of a small hump in the curves CI(2 = 0), CISD and CIé%ZO)
in the CMO basis set, which does not appear in their counterparts calculated in the
NO and M,,;, basis sets. However, the hump in the CMO curves gets its smallest size
in the CIé%:O) method. In order to elucidate whether the hump is an artefact of using
a minimal basis set, we also performed calculations using the split valence 6-31G basis
set, revealing indeed that the use of a larger basis set leads to the disappearance of
this hump (see Fig. 6). Also note that all main features reported for the STO-3G data
remain for the larger basis set.

Truncated methods, i.e. methods other than FCI one, suffer from an undesirable
dependence on the basis chosen, as is clearly demonstrated above. We therefore also
performed preliminary calculations at CIé%ZO) level, with an energy optimized single
particle basis to examine the magnitude of the further change in energy compared to
the energies obtained using the other molecular orbital bases. We have chosen the Nj
molecule as a prototype system. Although a detailed description of the algorithm used
and more detailed examinations of this effect will be presented in future work, Fig.
7 clearly shows that the energy optimized basis set slightly improves on the energies
calculated using the NO and M,,;, basis sets, and that these energies are better than
those given by the CMO basis set although their respective order may differ along the
bond stretching coordinate. The key conclusion of the paper, is however confirmed in
all cases: as shown in Fig. 8, the union of the CI(Q2 = 0) and CISD determinant sets
lowers significantly the energies provided by those procedures individually without an

important increase in computational cost.

V. CONCLUDING REMARKS AND PERSPECTIVES

In this work, we have proposed a new procedure which possesses a hybrid char-
acter within the CI technique framework. The method is based on the projection of
an N-electron Hamiltonian on the union of two Slater determinant sets, each of them

constituted according to a different criterion. One of these sets is composed of all Slater



determinants up to a determined seniority number; the other set is composed of a ref-
erence determinant and its excitations up to a determined level. We report numerical
determinations on selected atomic and molecular systems using a simple version of the
hybrid method, the CI(S%ZO) one. Its results and computational cost are compared with
those obtained from its parents CI(Q2 = 0) and CISD methods. Our proposal turns out
to be particularly useful to describe systems which undergo strong changes in the static
correlation energies at stretched geometries with respect to near-equilibrium arrange-
ments, correcting the deficiencies of the CI(©2 = 0) and CISD procedures. Notably, the
sets of the CI(©2 = 0) and the CISD Slater determinants act like ideal complements
to each other, solving many of the issues related to strong static correlation. The NO
and M,,;, basis sets are optimal for the traditional and seniority-type CI procedures re-
spectively from a compactness of wave function perspective, and consequently we have
considered these basis sets in our calculations. Our best results have been obtained
using the M,,;; molecular orbital basis sets, which minimizes the seniority number for
the FCI procedure. However, we also show that other molecular basis sets, as those
of CMOs, improve the CI(©2 = 0) and CISD results with lower computational costs.
One can also find the optimal molecular orbital basis sets for any CI-type method from
an energy perspective. We also report preliminary calculations with a CIé%ZO) energy
optimized molecular orbital basis set pointing out a further energy lowering. Work

along this line is being pursued in our laboratories.
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TABLE II: Maximum absolute errors (MAE) and nonparallelity errors (NPE) (in mE}) of
the CI potential energy curves with respect the FCI one. Results were obtained using the

orthonormal basis set that minimizes the seniority number for the FCI procedure (Mpyy)

CI(Q = 0)

CISD

o) ik

MAE NPE

MAE NPE

MAE NPE

. BeH2
H>O
Ny

68.60 65.73
19.53 12.85
84.79 40.75

35.05 34.61
66.69 66.60
147.1 143.3

8.12 7.84
0.19 0.17
47.71 45.18
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TABLE III: Computational cost reflected in the size of the Slater determinant basis for

molecular systems calculated at different levels of CI methods.

No. determinants

system  basis |CI(Q = 0) CISD CIS,™ FCI

BeHy; STO-3G 35 205 227 1225
H,O STO-3G 21 141 151 441
Ny STO-3G 120 610 708 14400
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FIG. 1: Potential energy curves for the symmetric dissociation of the BeHs molecule using
STO-3G basis set transformed to the basis which minimizes the seniority number for the FCI

procedure (Mpin).
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FIG. 2: Potential energy curves for the symmetric dissociation of the HoO molecule using
STO-3G basis set transformed to the basis which minimizes the seniority number for the FCI

procedure (Mpin).
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FIG. 3: Potential energy curves for the dissociation of the No molecule using STO-3G basis
set transformed to the basis which minimizes the seniority number for the FCI procedure

(Mmin)-
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FIG. 4: Potential energy curves for the symmetric dissociation of the HoO molecule using
STO-3G basis set transformed to the natural orbital (NO) set which diagonalize the FCI

first-order reduced density matrix.
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FIG. 5: Potential energy curves for the symmetric dissociation of the HoO molecule using

STO-3G basis set transformed to the Hartree-Fock canonical molecular orbital (CMO) set.
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FIG. 6: Potential energy curves for the symmetric dissociation of the HoO molecule using

6-31G basis set transformed to the Hartree-Fock canonical molecular orbital (CMO) set.
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FIG. 7: Clé%zo) energy differences with respect to the energy optimized basis set for different

single particle bases as a function of internuclear distance in the Ny molecule.



0.1 T T T T T

0.08 Cl(Q=0) —=—
' CISD — - /

0.06

0.04

Energy difference (hartree)

0.02

FIG. 8: Energy differences for CI(2 = 0) and CISD methods with respect to the CI(S%ZO)
model using energy optimized orbitals for each method as a function of internuclear distance

in the Ny molecule.



