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In this paper, a centralised model predictive control (MPC) strategy is applied to control inventories in a four-echelon supply
chain. The single MPC controller used in this strategy optimises globally and finds an optimal ordering policy for each node.
The controller relies on a linear discrete-time state-space model to predict system outputs and the prediction can be approached
by either of the two multi-step predictors depending on the measurability of the controller states. The objective function has
a quadratic form and thus the resulting optimisation problem can be solved via standard quadratic programming. Simulation
results show that a centralised MPC strategy is preferred because it can track customer demand and, in the meantime, maintain
a proper inventory position level with reduced bullwhip effect.

Keywords: model predictive control; supply chain; bullwhip effect; multi-step predictor

1. Introduction
Supply chain management (SCM), or supply chain optimi-
sation, is a set of approaches utilised to efficiently integrate
suppliers, manufacturers, distributors, and retailers, so that
products are distributed at the right quantities, to the right
locations, and at the right time, in order to minimise
system-wide costs while satisfying service-level require-
ments (Aghezzaf, Sitompul, & Van Den Broecke, 2011).
The last decades have witnessed a transition of the produc-
tion of industrial goods from the local or national level to
facilities with global outreach that serve international mar-
kets. This development has put substantial stress on the
supply chain of today’s enterprises. Viewed as a complex
system, there are many aspects to study in supply chain
management. One of these focuses on the improvement
of inventory management policies, the goal of which is
to maintain the inventory level at each echelon by order-
ing products from the upstream suppliers in order to satisfy
the customers’ demands. The downstream flow rates of the
products within the supply chain network depend on the cus-
tomer demands, the upstream flow of information (orders),
and the policies that every echelon uses to place orders and
to replenish its inventories. The type of inventory policy has
a significant effect on the variability of order quantities and
inventory levels at various echelons of a supply chain. An
important phenomenon in SCM first observed by Forrester
(1961) suggests that the order variability increases along the
upstream direction in the supply chain. Subsequently this

∗Corresponding author. Email: dongfei.fu@ugent.be

observation is coined by Lee, Padmanabhan, and Whang
(1997a, 1997b) as the bullwhip effect. It is a well-known
phenomenon in supply chains’ operations. In a serial supply
chain that consists of a factory, a distributor, a whole-
saler, and a retailer, it can be observed that the retailer’s
orders to wholesaler display larger variability than the end-
consumer’s demand, the wholesaler’s orders to its supplier
show even more oscillation, and the factory’s production
plan is the most volatile. The common symptoms of such
variations could be excessive or insufficient inventory hold-
ing, bad demand forecast, poor customer service level, and
uncertain production planning (Lee et al., 1997a). The bull-
whip effect has been recognised as one of the main obstacles
to improve supply chain performances and thus tackling
this problem has received increasing attention in the SCM
literature.

The approach this paper advocates is to develop decision
policies of SCM based on a control-oriented formulation in
order to achieve bullwhip mitigation and optimal supply
chain operations. Recent works utilising model predictive
control (MPC) have been found to provide an attractive
solution for SCM. MPC was first applied to inventory man-
agement by Kapsiotis and Tzafestas (1992) for a single
manufacturing site problem. This development has sub-
sequently led to an increasing number of reports on the
application of MPC to SCM in the last decade. Perea-Lopez,
Ydstie, and Grossmann (2003) employed an MPC scheme
as an optimisation tool to manage a multi-echelon

© 2014 The Author(s). Published by Taylor & Francis.
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multi-product supply chain with deterministic demand, so
the need for an inventory control mechanism was reduced.
They showed that the centralised structure exhibited supe-
rior performances to the two decentralised approaches via
simulation on a complex supply chain. Lin, Jang, and
Wong (2005) presented a minimum variance control sys-
tem with two separate setpoints for the inventory level
and the Work-in-Process (WIP) level. Their MPC con-
trol strategy outperformed the classical order-up-to (OUT)
policy, proportional and integral control, and automatic
pipeline variable inventory and order based production con-
trol system (APVIOBPCS) model control in maintaining
inventory at desired levels while mitigating the bullwhip
effect. Wang and Rivera (2008) examined the application
of MPC to inventory control problems arising in semi-
conductor manufacturing. Maestre, Munoz de la Pena, and
Camacho (2011) proposed a distributed MPC algorithm for
a two-node supply chain. Each node minimised its local
objective function over its own decision space as well as
the decision space of the other node. The MPC algorithm
takes a cooperative decision based on the multiple opti-
mal objective function values (one for each node). Their
method is not extendable to a supply chain with more than
two nodes. Alessandri, Gaggero, and Tonelli (2011) com-
bined min–max optimisation and MPC to solve inventory
control problems for a multi-echelon, multi-product distri-
bution centre. There are other MPC schemes developed for
the specific supply chain network under study, which were
different in the prediction models, optimisation algorithms,
and implementation strategies they used. Mestan, Turkay,
and Arkun (2006) used a hybrid system approach to model a
multi-echelon supply chain, and they implemented a decen-
tralised and non-cooperative MPC strategy to optimise a
cost function that is related to the economic performance
measures. Li and Marlin (2009) applied a robust MPC
framework to a serial supply chain using an economic cost
function. The latest development in the application of MPC
to SCM is the distributed implementation. Subramanian,
Rawlings, Maravelias, Flores-Cerrillo, and Megan (2013)
proposed cooperative MPC scheme with closed-loop sta-
bility and used the method in a two-node supply chain as an
example. A distributed MPC is presented by Ferramosca,
Limona, Alvarado, and Camacho (2013) to track the chang-
ing non-zero setpoints and this strategy is applicable to
any finite number of subsystems. The reader is referred to
several proper review papers (Sarimveis, Patrinos, Taran-
tilis, & Kiranoudis, 2008; Subramanian et al., 2013) on the
application of control engineering techniques to the SCM
problems.

As can be seen from the literature (Braun, Rivera,
Flores, Carlyle, & Kempf, 2003; Ferramosca et al., 2013; Li
& Marlin, 2009; Wang & Rivera, 2008), there are several
advantages of applying MPC to SCM. The MPC controller
accomplishes the operational objectives such as tracking
inventory targets and meeting customer demands. More-
over, MPC can minimise or maximise an objective function

that represents a suitable measure for supply chain perfor-
mance. MPC can be tuned to achieve stability and robust-
ness in the presence of disturbance and stochastic demand
as well as constraints on production, inventory levels, and
shipping capacity (Wang & Rivera, 2008). Our previous
work focused on a fully decentralised MPC strategy (Fu,
Dutta, Ionescu, & De Keyser, 2012) to update ordering deci-
sions for bullwhip reduction. Modern enterprises tend to
expand their scales and interactions, thus it is not rare for
them to own a whole supply chain. The primary motiva-
tions for developing such a centralised implementation of
MPC are to highlight the role of the global coordinator of a
supply chain and reduce the bullwhip effect. One often sug-
gested scheme for reducing bullwhip effect is to centralise
demand information, i.e. to make customer demand infor-
mation available to every node of the supply chain. The
purpose of this paper is to demonstrate the applicability of
a fully centralised MPC to the problem of dynamic man-
agement of a benchmark supply chain network despite its
feasibility for the supply chains where all nodes belong to
one enterprise. With this implementation, ordering policy
for each node of the supply chain is optimised by a global
controller and the bullwhip is mitigated to a greater degree
compared to our previous decentralised MPC ordering pol-
icy. Another benefit for this implementation is that it has
flexibility to put different emphasises on reducing bullwhip
for different echelons by assigning proper weights to control
move suppression term of objective function.

The remainder of this paper is structured as follows. In
Section 2, the four-node supply chain network is described
and the discrete-time controller model for the overall sup-
ply chain system is developed. Using the centralised model,
the two approaches to predictions on future system outputs
are presented and a centralised MPC formulation is derived
in Section 3. Simulation results in Section 4 show that an
appropriate tuning of the parameters can be chosen to pro-
duce the required performances. Finally, some concluding
remarks are given in Section 5.

2. Problem formulation
2.1. Supply chain system
In this section, one type of product and one node at each
echelon are considered, but the method can address the case
of multiple products and multiple nodes. Consider a serial
supply chain model similar to the one used in Hoberg,
Thonemann, and Bradley (2007) and Sundar and
Lakshminarayanan (2008). This supply chain network
(depicted in Figure 1) consists of all the nodes involved
in fulfilling a customer demand and there are four logis-
tic echelons, a factory, a distributor, a wholesaler, and a
retailer. Orders for products propagate upstream from right
to left, and goods are shipped downstream in the oppo-
site direction. In the general multi-product, multi-echelon
supply chain, the operational decisions are made for each
product individually and independently of other products.
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Figure 1. A four-node production–distribution supply chain system.

Consequently, emulating the supply chain model for one
product at a time would still be valid but the methodology
can be easily extended to larger networks at the expense of
extra computational effort.

2.2. Notations and assumptions
• The decisions of ordering and shipment are made

within equally spaced time periods, e.g. hours, days,
or weeks. The duration and unit of base time period
depend on the dynamic characteristics of the supply
chain system.

• The set of supply chain node is denoted by N :=
{Re, Wh, Di, Fa}. Each of the logistic echelons of the
supply chain is denoted by i (i = 1, 2, . . . , M ). In
this notation, (i + 1) represents an immediate sup-
plier and (i − 1) an immediate customer of the ith
node. Thereby, for this specific supply chain, i = 1
represents the Retailer (Re) and i = 4 represents the
Factory (Fa).

• Any arbitrary node in Figure 1 is characterised by
the following three variables. The inventory level
I i(k) is the number of products at any discrete-time
instant k in stock of node i. Due to the lead time
delay Li for shipment, inventory position IPi(k) is
defined to better monitor the variations of inventory
level and includes inventory plus products in trans-
portation from its supplier. The ordering information
is communicated instantaneously, but an order placed
at time k can only be processed at time k + 1 due
to the sequence of events performed during supply
chain operations. Therefore, standing order Oi∗ for
each node is defined as the amount of order to be pro-
cessed at time k + 1. The available variables in the
supply chain context will be reclassified in an MPC
control sense. All the variables and their meanings in
the supply chain setting are listed in Table 1.

• The sequence of events performed in the ith echelon
is as follows. (1) At each discrete time k , the ith eche-
lon receives a product; (2) the demand Oi−1(k) from
the downstream node i−1 is observed and satisfied
immediately, i.e. Y i−1(k) = Oi−1(k) (if not back-
logged because of insufficient inventory); (3) the new
inventory level I i(k) is measured; and (4) the ith ech-
elon places an order Oi+1(k)to the upstream node
i + 1.

• A time delay Li is assumed for all shipment actions
together with consideration of the nominal ordering

Table 1. Variable mapping for the MPC controller.

Process variable Supply chain information

Output yi
1 Inventory position IPi

Output yi
2 Standing order Oi∗

Inputs ui
1 Amount of orders placed by node i to

upstream node i + 1, Oi+1

Inputs ui
2 Amount of products delivered to

downstream node i − 1 by node i, Y i−1

Disturbance di
1 Demand of downstream node i − 1, Oi−1

Disturbance di
2 Delivery from upstream node i + 1, Y i+1

Setpoint wi Inventory position target

delay such that products dispatched from node i + 1
at time k will be available to node i at time k + Li + 1.

• The manufacturing process is modelled by a pure
delay unit with the discrete transfer function being
equal to z−L, where L is the lead time.

• The end-customer demand dRe
1 (k) follows an autore-

gressive moving average (ARMA) time series model
of the form in the following equation:

�(z−1)dRe
1 (k) = �(z−1)e(k), (1)

where z−1 represents both of the backward shift
operator and complex variable in z-transform. When
applied to the time-dependent signal s(k), it becomes
the backward shift operator, i.e. Z{s(k − t)} =
z−tZ{s(k)} = z−ts(z). The time series e(k) is a white
noise with zero mean and unity variance. Polynomials
of �(z−1) and �(z−1) have proper orders depending
on a certain demand pattern.

2.3. Dynamical model
To illustrate micro-dynamics of the supply chain network,
consider any echelon i ∈ N , whose relationship with neigh-
bouring echelons is shown in Figure 1. Its inventory position
IPi(k) and in-hand inventory I i(k) satisfy a conservation
law according to orders placed and received. Node i orders
goods in the amount of Oi+1(k) from node i + 1 at discrete
times k = 1, 2, . . . and receives the items after a constant
lead time Li. Note that, in this work the lead times are consid-
ered to be fixed over review periods and they can be obtained
from the managers of the supply chain or estimated from
gathered data. The conservation equations for the node’s
inventory position IPi(k), in-stock inventory I i(k), and the
standing order Oi∗ are

IPi(k) = IPi(k − 1) + Y i+1(k) − Y i−1(k), (2)
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Figure 2. Centralised control scheme for supply chain operation.

I i(k) = I i(k − 1) + Y i+1(k − Li) − Y i−1(k), (3)

Oi
∗(k) = Oi

∗(k − 1) + Oi−1(k) − Y i−1(k). (4)

Equations (2)–(4) define the system dynamics for the
supply chain when complemented with the local ordering
policies, i.e. the strategies for determining Oi+1(k) from
available information at time k . The complete information
set for the entire network includes the inventory records
IPi(k) and I i(k) for all i ∈ N up to period k , and orders
Oi+1 up to period k − 1:

E(k) : =
[⋃

i∈N
{IPi(k), . . . , IPi(0); I i(k), . . . , I i(0)}

]

∪
[⋃

i∈N
{Oi+1(k − 1), . . . , Oi+1(1)}

]
.

A fully centralised MPC strategy as shown in Figure 2
is proposed to be applied to the supply chain described
above (in squared box). If all the facilities are owned
by the same enterprise, the information is shared across
the network, every node can determine its order quanti-
ties based on any subset of E(k). Therefore, a centralised
control scheme is appropriate and feasible. All available
information is fed to the controller and the ordering deci-
sions {uRe

1 (k), . . . , uFa
1 (k)} are determined by the global

coordinator.
Assume that the upstream suppliers always have ample

goods in stock (Chen, Drezner, Ryan, & Simchi-Levi,
2000; Lee, So, & Tang, 2000; Ouyang & Daganzo, 2006;
Ouyang & Li, 2010) to meet their customers’ demands,
then this approximation leads to the following two relations:
Y i−1(k) = z−1Oi−1(k) and Y i+1(k) = z−1Oi+1(k). Apply-
ing the two relations and taking the z-transform on both
sides of the model (2) and using the process control variables
result in

yi
1(k) = z−1

1 − z−1 (ui
1(k) − di

1(k)). (5)

This discrete-time model for node i captures the basic
dynamic features of material and information flow within
the supply chain system. This relation frees n of 2n manip-
ulated variables for the overall supply chain network with n
nodes. Relations (2)–(5) will be used as the basic dynamical

models in the design of the MPC control strategy. Combine
the transfer function of each node into a whole system to
derive the transfer function matrix:

⎡
⎢⎢⎢⎢⎢⎢⎣

yRe
1 (k)

yWh
1 (k)

...

yFa
1 (k)

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−z−1

1 − z−1

z−1

1 − z−1 0

...
−z−1

1 − z−1

z−1

1 − z−1

...
...

...

0 0 0

· · · 0

· · · 0

...
...

−z−1

1 − z−1

z−1

1 − z−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u0
1(k)

uRe
1 (k)

...

uFa
1 (k)

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

where u0
1(k) = dRe

1 (k) is the end-customer demand. This
model can be reorganised to give the overall model of supply
chain in a state-space form (6) and (7) and will be used as
the nominal controller model. The whole supply chain is
modelled as a four-input/four-output system with the end-
customer demand as a measured disturbance.

3. Centralised MPC strategy
MPC is a family of control strategies based on the explicit
online use of a system model to calculate predictions of
the future process output and to optimise future control
actions over a period of time. MPC has gained wide accep-
tance in industries as the basis for advanced multivariable
control schemes (Camacho & Bordons, 1999). In MPC, a
system model is used to predict the future system outputs.
The future control efforts are calculated by optimising a
control-relevant objective function subject to some con-
straints on the inputs and outputs. The first control move
is implemented and the calculations are repeated at the next
sampling time using the new measurements and updated
states. This is referred to as a rolling or receding horizon
control strategy. There are several key elements charac-
terising MPC formulation, which are summarised in the
following section.
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3.1. Controller model
The purpose of this section is to present the derivation of a
fully centralised MPC strategy to further reduce order vari-
ability. In Figure 2, the supply chain network is controlled
based on a centralised architecture, where the whole sup-
ply chain is treated as a single system and implemented
by a monolithic MPC controller. The controller model pro-
vides a prediction of future supply chain network outputs
as a function of manipulated variables and estimated distur-
bances. The controller model is part of the control system,
and its states may be partially or fully known. In the present
work, the controller model has the form of a general linear
discrete-time state-space:

x(k + 1) = Ax(k) + Bμ(k), (6)

y(k) = Cx(k) + Dμ(k). (7)

The input vector definition is μ(k) = [uT(k), dT(k), wT

(k), vT(k)]T, where the inputs u, d, w,and v represent
manipulated variables, load disturbances, and two unmea-
sured disturbances, respectively. The matrices B and D in
the controller model are partitioned by B = [Bu, Bd , Bw, 0]
and D = [0, Dd , 0, Dv]. The dynamical models of all nodes
could be reorganised to give the overall model of supply
chain in a state-space form (6) and (7) and will be used as
the nominal controller model. The manipulated input vec-
tor u physically corresponds to the orders placed by supply
chain nodes, while measured disturbance d represents the
forecasted customer demand. The output vector y consists
of an inventory position at every node.

3.2. The multi-step predictors
The methods for predicting future outputs are approached
by two ways depending on whether the system states can
be directly observed. If the state variables of the controller
model are measurable as in the case of our model, the multi-
step predictor is developed from the state-space model
according to Equation (8). The derivation of the predic-
tor is given in Section 3.2.1. Otherwise, the predictor has
to be obtained by state estimation when the states are not
fully measurable. The result is given in Section 3.2.2.

3.2.1. Multi-step predictor based on measured states
At each time instant k , controller models (6) and (7) are used
to predict future output y(k + j|k), where j = 1, . . . , N2 and
N2 is the prediction horizon. When the system states can be
fully observed, the MPC controller models (6) and (7) take
the following linear discrete-time state-space form (Lee &
Yu, 1994):

x(k) = Ax(k − 1) + Buu(k − 1) + Bdd(k − 1)

+ Bww(k − 1), (8)

y(k) = Cx(k) + Ddd(k) + Dvv(k). (9)

Since MPC needs prediction for future behaviour of out-
put, not of all the states, it is convenient to lump the effect
of manipulated variables, Du = 0, and express it directly
through the system state instead of at output. One of the
primary goals for using centralised MPC implementation is
to reduce the bullwhip effect by alleviating the demand fluc-
tuation along the upstream direction in the supply chain. The
demand propagates within the chain in the form of orders
placed at each echelon. The bullwhip reduction can be antic-
ipated if the change on orders (manipulated variables u in
differenced form �u) is penalised in the objective function
(15). The following optimal multi-step prediction equation
is preferred by iterating the difference form of models (8)
and (9):

Y(k) = S�x�x(k) + Iyy(k|k) + SD�D(k) + S�U�U(k),
(10)

where Y(k) = [yT(k + 1|k) · · · yT(k + N2|k)]T is the out-
put predictions vector over the prediction horizon N2 based
on measurement at time k; �U(k) = [�uT(k|k)�uT(k +
1|k) · · · �uT(k + Nu − 1|k)]T represents the vector of
future control moves (control increments) over the con-
trol horizon Nu and we also allow the flexibility of
suppressing the last N2 − Nu input moves a priori
(i.e.�u(k + Nu|k) = · · · �u(k + N2 − 1|k) = 0). The vec-
tor of �D(k) = [�dT(k|k) · · · �dT(k + Nu − 1|k)]T cor-
responds to the forecast of demand in a differenced form
over the control horizon Nu. It explains how forecast of
customer demand (measured disturbance) influences the
predicted inventory position (output). In the SCM context,
taking use of forecasted demand in the control algorithm
is a significant contributor to improved performances.
They relate to output through the following dynamic
matrices:

S�x =
⎡
⎢⎣(CA)T (CA2 + CA)T · · ·

⎛
⎝ N2∑

j=1

CAj

⎞
⎠T ⎤

⎥⎦
T

,

I y = [I I · · · I ]T ,

SD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CBd 0 · · · 0

...
...

...
...

Nu∑
j=1

CAj−1Bd

Nu−1∑
j=1

CAj−1Bd · · · CBd

...
...

...
...

N2∑
j=1

CAj−1Bd

N2−1∑
j=1

CAj−1Bd · · ·
N2−Nu+1∑

j=1

CAj−1Bd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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S�U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CBu 0 · · · 0

...
...

...
...

Nu∑
j=1

CAj−1Bu

Nu−1∑
j=1

CAj−1Bu · · · CBu

...
...

...
...

N2∑
j=1

CAj−1Bu

N2−1∑
j=1

CAj−1Bu · · ·
N2−Nu+1∑

j=1

CAj−1Bu

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here � operator represents the change of the variable
from its previous sampling time, i.e. � ∗ (k) := ∗(k) −
∗(k − 1). The state variable x(k) is directly measurable in
this case so that �x(k) is available at time period k . Obvi-
ously Equation (10) contains two parts, one representing the
contribution of the initial state�x(k) and output y(k)known
at time k , and the second part is determined by the optimis-
ing future control efforts �U(k) and predicted disturbances
�D(k).

3.2.2. Multi-step predictor based on state estimation
It is often highly unrealistic to assume that all states of the
system and disturbances are measurable. When the mea-
surement of the state vector is unavailable, an estimator
must be used. The predictions of future unmeasured distur-
bances are assumed to be zero and the nominal models (8)
and (9) are used to estimate the future states of the system:

x̂(k + 1|k) = Ax̂(k|k − 1) + Buu(k) + Bdd(k) + Kê(k|k),
(11)

ŷ(k|k − 1) = Cx̂(k|k − 1) + Ddd(k), (12)

where x̂(k + 1|k) is the estimate of the states at future
time period k + 1 based on the information available at
time period k , ŷ(k|k − 1) is the estimate of the system
outputs at time period k based on information at k − 1,
and ê(k|k) is the innovation term of the estimator error
ê(k|k) = y(k) − ŷ(k|k − 1)(y(k) is the system outputs) to
account for unmeasured disturbances. K is a constant gain
matrix and Lee and Yu (1994) recommended that it is set
equal to Kalman filter gain.

The measurements of the system outputs y(k) and the
measured disturbances d(k) have been obtained at the start
of time period k , and the state estimate x̂(k|k − 1) and esti-
mator error ê(k|k) can be calculated from Equations (11)
and (12). The future control actions are optimised to be
u(k + j|k), where j = 0, . . . , Nu − 1. The future values of
load disturbances {d(k + j|k), j = 0, . . . , Nu − 1} are struc-
tured wisely as forecasted demand by using forecasting
methods and the disturbance vector is denoted by D(k) =
[d(k|k), . . . , d(k + Nu − 1|k)]T. For simplicity, ê(k|k) are

assumed to be

ê(k + j|k) = ê(k|k), j = 1, . . . , N2. (13)

The multi-step prediction equation is developed by
recursively using Equations (11) and (12) and considering
the assumption (13):

Y(k) = SUU(k) + Sxx̂(k|k − 1) + SDD(k) + Seê(k|k),
(14)

where Y(k) is the output prediction of the supply chain
system based on the measurements until time period
k , Y(k) = [yT(k + 1|k) · · · yT(k + N2|k)]T, and U(k) is a
vector of optimising future control variables, U(k) =
[uT(k|k) · · · uT(k + Nu − 1|k)]T, and the last three terms in
Equation (14) are known at the start of time period k . The
pulse response matrix Su and the other matrices Sd , Sx, and
Se are given as follows:

SU =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CBu 0 · · · 0
...

...
...

...
CANu−1Bu · · · · · · CBu

...
...

...
...

CAN2−1Bu CAN2−2Bu · · ·
N2−Nu+1∑

j=1

CAj−1Bu

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

SD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CBd Bd · · · 0
...

...
...

...
CANu−1Bd · · · CBd Bd

...
...

...
...

CAN2−1Bd CAN2−2Bd · · ·
N2−Nu+1∑

j=1

CAj−1Bd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Sx = [(CA)T (CA2)T L (CAN2)T]T,

Se =
⎡
⎣(CK)T (C(A + I )K)T · · ·

(
C

(
N2∑

k=1

Ak−1

)
K

)T
⎤
⎦T

.

The differenced form of the predictor based on state
estimation is obtained by defining �U(k) as �U(k) =
R�U(k) − δ(k) with

R� =

⎡
⎢⎢⎢⎣

I 0 0 · · · 0
−I I 0 · · · 0
...

...
...

...
...

0 0 · · · −I I

⎤
⎥⎥⎥⎦ ,

δ(k) = [
uT(k − 1) 0 · · · 0

]
.

Both approaches to the multi-step predictor are pre-
sented in these two sections. The two multi-step predictors
can be chosen depending on the measurability of the state
of the controller model.
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3.3. Objective function
The predicted process outputs Y(k) depend on not only
the past inputs and outputs but also the future control sce-
nario U(k). The task of the MPC controller is to calculate
the control vector U(k) by minimising a specified objective
function of any form in general. In the application of the
MPC framework to SCM, the controller considers at each
time period k the previous information on inventory posi-
tions, actual customer demands, orders for all the nodes of
the supply chain network as well as the future information
on inventory position setpoints, and forecasted demands in
order to calculate a sequence of future order decisions on
the basis of the following objective function:

J (k) =
N2∑

j=1

‖Q(j)[y(k + j|k) − r(k + j|k)]‖2

︸ ︷︷ ︸
keep inventory position at setpoint

+
Nu∑
j=1

‖P(j)[�u(k + j − 1|k)]‖2

︸ ︷︷ ︸
penalty on changes of order

, (15)

where r(k + j|k) is the inventory position reference vector
for time k + j projected at time k , Q(j) and P(j) are penalty
weights on control error and control move size, respectively,
which enable the controller to satisfy inventory position
setpoint tracking and adjust order variability. The small
variation of demand at retailer end will be amplified along
the upstream direction and this phenomenon is known as the
bullwhip effect. The second term in Equation (15) penalises
excess changes of ordering decisions, which is expected
to reduce the bullwhip effect. In addition, suppression of
excess movement of the orders is desired for the echelon of
factory because this action leads to a smoothed order pat-
tern and thus results in reduced variability on factory starts.
The objective function can be described in a vector form:

min
�U(k)

J (k) = ‖Q[Y(k) − R(k)]‖2 + ‖P�U(k)‖2 , (16)

where the reference vector is R(k) = [rT(k + 1|k), · · · ,
rT(k + N2|k)]T and the penalty matrices Q = diag[Q(1),
· · · , Q(N2)] and P = diag[P(1), · · · , P(Nu)] are
used to penalise the deviation of inventory positions
from their targets and the control move size, respectively.
Because the demands change in every time period, the
setpoints for inventory positions need to be adapted and
updated to an economic level in every time period so that
customer’s demands can be satisfied and inventory holding
cost should be reduced. A first-order reference trajectory
(De Keyser, 2003) is chosen and the setpoints are updated
according to the decision rules proposed in Dejonckheere,
Disney, Lambrecht, and Towill (2003). In addition to this
control-oriented objective function, an economic cost func-
tion (Li & Marlin, 2009; Mestan et al., 2006) could be
optimised in centralised or decentralised implementation.

3.4. Optimisation problem formulation
The control of supply chain is now formulated as an opti-
misation problem in which the control moves U(k) are
computed on the basis of the objective function (16) subject
to the linear inequality constraints. Some practical require-
ments in SCM operations may be appropriately posed as
constraints on the system variables. Three types of con-
straints are considered in most of studies depending on
practical conditions of the supply chain operations.

(1) Output variable constraints. The controller min-
imises the deviation of the inventory position of
each node from their setpoints. But the inventory
positions can only stay within high and low limits
due to capacity constraints:

Ymin(k) ≤ Y(k) ≤ Ymax(k). (17)

To avoid infeasible solution to the optimisation
problem, the constraints on system outputs are
applied as soft constraints in Equation (16), which
is in practice a commonly used technique to address
this problem.

(2) Manipulated variable rate constraints. There are
some hard low and high bounds for changes (or
moves) on orders of each node. If proper constraints
on changes of orders are applied, demand variation
reduction can be expected within the supply chain
and thus result in less fluctuation in factory thrash:

|�U(k)| ≤ �Umax(k). (18)

(3) Manipulated variable constraints. In addition to
the constraints on change of order, there are some
high limits on the ordering quantities on account of
transportation capacity limitation:

0 ≤ U(k) ≤ Umax(k). (19)

The MPC control law requires not too much computa-
tion effort in the absence of constraints. In the presence of
constraints (17)–(19), the MPC formulation based on the
objective function (16) and prediction equation (10) or (14)
is then solved by standard quadratic programming algo-
rithms (Fletcher, 1981) subject to appropriate inequality
constraints:

min
1
2
�U(k)TH�U(k) − �U(k)TG, (20)

where the gradient vector G and the Hessian matrix H of
the objective function are to be constructed according to
different prediction equations, respectively. In centralised
implementation, a single controller is used by a global
coordinator to make ordering decisions for each node. The
centralised MPC controller, based on overall models (6) and
(7) of the supply chain network, calculates all the control
moves �U(k) via the optimisation problem (Equation (20))
and sends the first element of U(k) as ordering decisions at
current time k to each echelon.
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Figure 3. Actual and forecasted customer demand.

Table 2. Simulation data and initial state of supply
chain operation.

Supply PTD IIL (units iWIP (units
chain node (weeks) of product) of product)

Retailer 2 10 5
Wholesaler 2 10 5
Distributor 2 10 5
Factory 2 10 5

4. Illustrative example
4.1. Initialisation of the supply chain model
The supply chain is considered over 100 weeks (i.e. the
base time is 1 week and the simulation is reviewed over
100 weeks). The market demands modelled in Equation (1)
are generated according to the following equation:

dRe
1 (0) = e(0) + μ,

dRe
1 (t) = ϕ(dRe

1 (t − 1) − μ) + e(t) − θe(t − 1) + μ,
(21)

where μ = 8 is the mean for the ARMA demand pattern,
and the autoregressive coefficient and the moving average
coefficient are assumed to be ϕ = 0.8 and θ = 0.6, respec-
tively. The forecasted demands are approached by ten-week
moving average of actual demands and both of them are
shown in Figure 3. The system models are initialised by
setting parameters as in Table 2. It reports the supplier’s
production/transportation delay (PTD), initial inventory
level (IIL), and initial Work in Process (iWIP) at each node.
Handling efficiently the constraints for manipulated and/or
controlled variables is indeed one of the important abili-
ties of MPC. However, the constraints are not considered
in conventional OUT and fractional ordering policies, and
the performances of a centralised MPC strategy need to be
compared with them under the same conditions in simula-
tion. Therefore, no constraints on the inventory positions

Figure 4. Control effort and output (IP) of the first 50 weeks
when weights on move size P(j) = 0.

and orders are posed in the numerical simulation so that
the supply chain can be operated under free conditions. The
SCM problem can still benefit from the application of MPC
in other aspects, e.g. keeping desired inventory, tracking
customers’ demand, and reducing bullwhip effect.

4.2. Tuning the centralised supply chain controller
One of the advantages for the MPC strategy is its flexibility
to tune the controller parameters to meet the required perfor-
mances. In this simulation example, the prediction horizon
is N2 = 15 and the control horizon is Nu = 10, both of which
exceed the collective sum of the one-week nominal order-
ing delay and two-week transportation time at each node
over four serial nodes in the supply chain. The long hori-
zons are demanded by the centralised decision-making in
order to execute necessary feed-forward anticipations. The
output weight matrix Q is set in a way that it is 1 for each
controlled variable, while the move suppression matrix P
is tuned to compare effects of different weights on bullwhip
effect reduction.

The time behaviours of the inventory positions and
orders are shown in Figure 4 when no penalty is applied
to the move sizes of orders. The ordering decisions are
adjusted aggressively at first time periods and inventory
positions keep a small fluctuation after the 40th week. The
results in Figure 4 only show the control efforts and outputs
for the first 50 weeks in order to scrutinise the initial system
response in proper Y -axis scale. The weights on move sizes
are set equal for each controlled variable in the next simu-
lation experiment and the results are given in Figure 5. The
variance magnitude of the orders is amplified from retailer
to factory at first time periods as observed in Figure 5(a)
but from Figure 5(b) it can be observed that the order deci-
sions between weeks 50 and 100 keep a good tracking of
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(a)

(b)

Figure 5. (a). Simulation results of the first 50 weeks with
weights on move size of identity matrix P(j) = I . (b). Simula-
tion results of 50th–100th weeks with weights on move size of
identity matrix P(j) = I .

end-customer demand variation. The oscillation on inven-
tory position is mainly caused by tracking the setpoints. If
the weight on move size of the factory order is increased and
the other weights remain unchanged, then its ordering deci-
sion is smoothed and stabilised as shown in Figure 6. This
smoothed ordering pattern is similar to the one generated

Figure 6. Control effort and output (IP) with move size of
different weights P(j) = [1000; 0100; 0010; 0005].

by fractional ordering policy (Dejonckheere et al.,
2003), and it is favourable because the factory thrash will
not vary violently caused by its manufacturing orders from
very large amount to very low amount or vice versa. But the
downside is that the suppression on move sizes of orders
increases the variability of inventory positions, which can
be seen from weeks 50–100.

Using the definition of bullwhip effect proposed by
Disney and Towill (2003), the comparisons among numer-
ical bullwhip quantities generated by different weights P(j)
on move sizes and that caused by a decentralised MPC strat-
egy ordering policy and conventional ordering policies (Fu
et al., 2012) are presented in Table 3. The ratio of vari-
ance to mean of orders at each node is calculated based on
simulation samples.

Table 3 shows that the ordering policies based on the
MPC configurations outperform the conventional ordering
policies in the sense of bullwhip reduction. These results
demonstrate the flexibility through centralised MPC to put
different emphases on bullwhip suppression for different
nodes. When larger weight is put on changes of factory
orders, it has a smoothed order pattern to reduce variance of
factory thrash. There is a trade-off because if a desired order
rate is used then large deviation of inventory positions from

Table 3. Ratio of variance to mean for ordering data of each node generated by conventional ordering
policies, decentralised MPC ordering policy, and centralised MPC with different weights P(j) on control
move and the bullwhip over the supply chain.

Ordering policies Retailer Wholesaler Distributor Factory Bullwhip over supply chain

P(i)={0; 0; 0; 0} 0.9306 2.1218 5.2003 8.7939 9.4494
P(i)={1; 1; 1; 1} 0.4197 0.8424 1.3603 2.8501 6.7902
P(i)={1; 1; 1; 5} 1.9038 4.0456 4.4986 1.7157 0.9012
Decentralised MPC 0.1416 0.2647 0.4186 0.6020 4.2500
Fractional ordering 0.2059 0.5277 1.0061 1.3644 6.6258
Order-up-to policy 0.3803 0.6859 1.6506 3.2333 8.4905
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Figure 7. Absolute difference between the transferred product
and the demand as inverse of the customer satisfaction level and
inventory holding profiles for four different control configurations.

their targets is found. The profile of the customer satisfac-
tion level is determined by comparing the absolute values
of the difference between the product transferred out of the
retailer echelon and the end-customer demands, which is
shown in the lower part of Figure 7. The smaller the abso-
lute values, the higher is the satisfaction level. The result
shows that the well-tuned centralised MPC strategy has bet-
ter customer satisfaction level than the other strategies and
inventory holding profile is desired because it is made as
close to zero as possible while being kept to a good customer
satisfaction level.

5. Summary
MPC has long been a successful technique in process con-
trol applications. In this paper, a method for determining
ordering policy is derived using the centralised MPC control
scheme. The dynamic models are presented that consider
the flows of product and information within the supply
chain. Two approaches to predictions on system outputs
are formulated and these two multi-step predictors rely on
a linear discrete-time state-space model. The centralised
MPC optimisation problem can be transformed to standard
quadratic programming with the proposed formulation. A
numerical example shows that MPC-based ordering polices
can significantly lower the impact of demand variability in
the supply chain compared to conventional ordering poli-
cies. Tuning parameters play an important role in achieving
desired performances for supply chain operations. It has
been illustrated in the simulation that this control strat-
egy could be tuned for different performance requirements.
Good results are observed because centralised MPC imple-
mentation has full knowledge of system models and infor-
mation flows, which allows it to coordinate the decisions
made by each node of the supply chain.
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