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In this paper, we present a framework to deal with uncertainty quantification in case where the ranges
of variability of the random parameters are ill-known. Namely the physical properties of the corro-
sion product (magnetite) which frequently clogs the tube support plate of steam generator, which
is inaccessible in nuclear power plants. The methodology is based on Polynomial Chaos (PC) for
the direct approach and on Bayesian inference for the inverse approach. The direct Non-Intrusive
Spectral Projection (NISP) method is first employed by considering prior probability densities and
therefore constructing a PC surrogate model of the large-scale NDT finite element model. To face the
prohibitive computational cost underlying the high dimensional random space, an adaptive sparse
grid technique is applied on NISP resulting in drastic time reduction. The PC surrogate model, with
reduced dimensionality, is used as a forward model in the Bayesian procedure. The posterior prob-
ability densities are then identified by inferring from few noisy experimental data. We demonstrate
effectiveness of the approach by identifying the most influential parameter in the clogging detection
as well as a variability range reduction.
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1. Introduction

Quantifying the impact of uncertainties of input data on solutions of forward and inverse
electromagnetic numerical models has received large interest during the last decade, e.g.
in the biomedical EEG problem [4, 5], in population biology and biofilm growth [3, 10]
and in particular in eddy current inspection. The latter is a technique used for, among
others, the detection of cracks in tubes and magnetite clogging of the Tube Support
Plate (TSP) in steam generators at nuclear power plants [2, 11]. The detection of clog-
ging is investigated with a Non Destructive Testing (NDT) eddy current procedure with
an axial bobbin probe. The Finite Element model used to reproduce the technique as-
sumes that material properties of magnetite and of the TSP are known exactly. However,
to this date, it is not possible to get a pure sample of the clogged magnetite. Moreover,
the material properties of the TSP may change due to aging. Experimental measure-
ments show an important variability on permeability and conductivity of the magnetite.
This paper deals with the determination of the probability density distribution of the

∗Corresponding author. Email: rob.destaelen@ugent.be

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55888725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Ghent University Repository

permeability and conductivity of the magnetite and the TSP. We show how a surro-
gate model computed by employing a Polynomial Chaos (PC) expansion can be used to
infer a posterior probability density distribution of the random input parameters from
experimental measurement using the Bayesian inference method.

Furthermore, we are interested in the identification of the most influential random
variables. The PC expansion is used to propagate prior uncertainty distributions through
the finite element forward model; it yields a polynomial expression of the forward solution
over the support of the prior distribution. By the use of Sobol indices we are able to
quantify the contribution of each parameter to the total variance of the solution.

To construct a probability distribution of the model parameters we start with uniform
priors and use Bayesian inference to obtain posterior densities based on probe measure-
ments. This results in a variance reduction and updated information about the model
parameters.

2. Numerical model

Let D be a spatial domain divided into M1 conducting disjoint subdomains and M2 non-
conducting disjoint subdomains. The permeability µ(x, θ) and conductivity σ(x, θ) of D
are assumed to be random fields, where x denotes the spatial variable and θ the outcome
belonging to the random event space Θ. The magnetic field H, the induction field B and
the electric field E generated in D by a deterministic source term Js are then random
fields defined on D × Θ. They verify the harmonic Maxwell’s equations in quasi-static
regime, where we denote ω the frequency and j the imaginary unit. We assume that some
boundary conditions on B and E are given on the domain D, see [7]. The differential
operators, curl and divergence, operate only on the spatial dimension x. As B(x, θ) is
divergence free, it derives from a magnetic vector stochastic potential A(x, θ) such that
B(x, θ) = ∇×A(x, θ). Also, Faraday’s law implies that E(x, θ) = −jωA(x, θ)−∇ϕ(x, θ),
where ϕ(x, θ) is the electric scalar stochastic potential.

Using the stochastic magnetic constitutive relation B(x, θ) = µ(x, θ)H(x, θ) and sub-
stituting yields the stochastic magneto-harmonic problem

∇×
(
∇×A(x, θ)

µ(x, θ)

)
+ σ(x, θ)

(
jωA(x, θ) +∇ϕ(x, θ)

)
= Js(x). (1)

To numerically solve the problem, the spatial and stochastic spaces are approximated by
finite dimensional spaces. Whitney finite elements are used to discretize the spatial di-
mension. In the considered NDT model, the spatial dimension is discretized by 1,419,948
Whitney elements leading to 1,789,946 spatial unknowns. The stochastic dimension is
approximated by a Legendre PC. The latter method will be described in the section 3.1.
The skin effect due to the presence of eddy current in the TSP is taken into account by
considering the Surface Impedance Boundary Condition (SIBC) method. It is a special
2D finite element method which avoids the meshing of the whole TSP. The considered
clogging of a quatrefoil TSP configuration is the so-called “case 5” in [11] and corresponds
to a full blockage of a foil with 5mm magnetite deposit, see Fig. 1.

The deterministic simulation procedure consists in computing the Sax ratio. Such an
indicator measures, because of magnetite presence, the alteration of the imaginary part
of the differential flux between the two probes. For further details on the deterministic
simulation procedure, we refer to [11].
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Figure 1. Geometry of the problem (in mm).

3. Uncertainty quantification and Bayesian inference

Because of the nature of the deposit and the aging of the TSP, deterministic simulations
turn out to be imprecise. Therefore, stochastic studies are engaged at Électricité de
France (EdF) in order to quantify the influence of the variability in material properties
on the measured probe flux. Two kinds of direct approaches may be used to take into
account uncertainties of the input data: sampling or statistical techniques (Monte Carlo
Simulation, Latin Hypercube Sampling, etc.) and probabilistic methods. The sampling
methods are simple, but unfortunately have a low rate of convergence. The second
are Polynomial Chaos (PC) methods, where the randomness is expressed in the Wiener-
Askey PC expansion [13, 14] and non-intrusive methods are used to derive the probability
density function of the stochastic dependence. As the probability density and range of
variation of magnetite’s relative permeability and conductivity are unknown, we will
use the most uninformative density, i.e. making them uniform distributed variables. We
consider the relative permeability (in henry per meter) and conductivity (in siemens
per meter) of the magnetite and the TSP as independent. Relative permeability of the
magnetite is taken uniform on the interval [1.3, 2.7] and it’s conductivity uniform on
the interval [45, 75]. For the TSP, the relative permeability is considered uniform on
[60, 100] and the conductivity uniform on [17e5, 18e5]. By introducing measurements
(more information) we will refine the densities of the considered parameters accordingly.

3.1 Polynomial chaos expansion

The PC expansion was first introduced by Wiener [13] to represent stochastic processes.
It was applied in mechanics by Ghanem and Spanos [6] to solve stochastic differential
equations on a probability space (Ω,F ,P) where F is the σ-algebra of the event space
Ω and P is the probability measure. The solution of a stochastic model, having as input
parameters the vector ξ(θ) = (ξ1(θ), . . . , ξn(θ)) of n independent random variables, can
be written as mapping Φ : Ωm → R. Thus the model output Φ is a random variable
and one writes Φ(θ) = Φ(ξ(θ)) = Φ(ξ1(θ), . . . , ξm(θ)). The PC expansion refers to the
representation of the random variable Φ(θ) belonging to the Hilbert space L2(Ω,F ,P)
as a linear combination of multivariate polynomials Ψi(ξ(θ)), [14]:

Φ(θ) =
∑

α∈Nm

ΦαΨα(ξ(θ)) (2)
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where α is a m-uplet containing the order of the univariate polynomials used to construct
the multivariate polynomial. The polynomials {Ψi} are orthogonal with respect to the

joint probability measure fξ =
∏

1≤i≤m
fξi . That is to say

E[Ψi(θ)Ψj(θ)] =

∫
Ω

Ψi(θ)Ψj(θ) d P(θ) =

∫
Rm

Ψi(ξ)Ψj(ξ)fξ d ξ = δij (3)

where E[·] denotes expectation and δij the Kronecker symbol. To accomplish this polyno-
mial representation, Wiener used Hermite polynomials in terms of Gaussian random vari-
ables (homogeneous chaos) to represent Gaussian processes. In order to deal with more
diverse stochastic fields, the Wiener homogeneous chaos is generalized to the Wiener-
Askey polynomial chaos (gPC), [14]. The multivariate polynomials of the gPC are con-
structed by tensoring univariate polynomials ψi which are orthogonal with respect to
the probability measure of ξi. The Askey scheme [14] gives the correspondence between
these univariate polynomials and the probability measure. In practice (2) is truncated to
polynomials of order up to p. If we denote Sdp the space of the m-uplets α which satisfy

|α| =
∑

i αi ≤ p, the total number of polynomials in the gPC is equal to
(
m+p
p

)
− 1.

3.2 Adaptive Non-Intrusive Spectral Projection

The non-intrusive PC method aims to obtain a functional representation of a numerical
model response by expanding the random dimension in the Wiener-Askey PC. In other
words, we seek a representation of the form (2). The deterministic coefficients Φα are
computed by calling the deterministic numerical model with a set of input data. The Non-
Intrusive Spectral Projection (NISP) method consists of projecting the stochastic solution
onto the orthogonal gPC polynomial basis {Ψα}. The deterministic projection coefficients
Φα are then given by Φα = E[ΦΨα]/E[Ψ2

α]. The multi-dimensional integrals E[ΦΨα] are
evaluated with a set of deterministic simulations obtained by sampling methods (Monte
Carlo Simulation, Latin Hypercube Sampling), full tensor-product quadrature (Gauss,
Clenshaw-Curtis) or Smolyak sparse grids.

Gaussian quadrature rules are known to be the most effective rules, they are exact for
polynomials of order 2n − 1 when using n points of quadrature. However, these rules
can not be used in an adaptive integration procedure because the grid points of the
Gaussian rules are not nested (grid points of level q do not include grid points of level
q − 1). As mentioned in [1], the nested Gauss-Patterson rules are well suitable in an
adaptive procedure. These schemes do not provide higher convergence than Gaussian
quadrature rules but are more competitive than Clenshaw-Curtis rules. For a given level
0 ≤ l ≤ 7, the Gauss-Patterson scheme has 2l+1− 1 quadrature points and can integrate
polynomials of order 3 · 2l − 1 exactly.

Using a sparse grid with nested one-dimensional quadrature rules in an adaptive proce-
dure leads finally to an isotropic sparse grid in the sense that the different dimensions of
integration are discretized in the same and equal manner. Even though such a procedure
can reduce the deterministic simulation number, the size of the sparse grid may still be
high when the number of random variables is important. Moreover, integrating in the
same way along each stochastic dimension may turn out to be not adapted when the
numerical model is sensitive for only one or a small number of stochastic dimensions.

The anisotropic adaptive procedure is a way to reduce the number of quadrature points
by taking advantage of this difference in sensitivity along the stochastic dimensions. In
this work, an adaptive algorithm based on non-isotropic nested Gauss-Patterson formulas
[1] is used to take into account the model global sensitivity to the input random variables.
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This procedure results in the computation of the mean of the random flux.
Then the smoothness of the random flux is estimated from the sparse grid that was

obtained in the anisotropic adaptive NISP. A polynomial interpolation of the random
flux is constructed by taking advantage of the order of exactness of the obtained sparse
grid. Further details and performances of such method are described in [1].

3.3 Global sensitivity analysis

The PC-based Sobol indices are obtained from the so called Sobol or ANOVA decompo-
sition [12]. The Sobol decomposition of Y reads

Y (ξ) = y0 +
∑

1≤i≤n
Yi(ξi) +

∑
1≤i≤j≤n

Yij(ξi, ξj) + · · ·+ Y1...n(ξ), (4)

and is unique. The terms of the decomposition are orthogonal “term by term” and their
integrals for each argument are zero. Due to the independence of the random variables,
one can show that the variance D of Y (ξ) can be written as

D =
∑

1≤i≤n
Di +

∑
1≤i≤j≤n

Dij + · · ·+D1...n (5)

where Di...j are called partial or conditional variances. They express the contribution of
the random variables ξi, . . . , ξj to the total variability of the model. Due to the orthogo-
nality of the decomposition (4), the total variance D is the sum of the partial variances
of Y . The Sobol indices are defined by Si...j = Di...j/D. If the model Y (ξ) is expressed
in the form (2) then (4) becomes

Y (ξ) = y0 +
∑

1≤i≤n

∑
α∈S1

p

yαΨα(ξi) +
∑

1≤i≤j≤n

∑
α∈S1,2

p

yαΨα(ξi, ξj) + · · ·+
∑

α∈S1...n
p

yαΨα(ξ),

(6)
and the first order Sobol indices are Si...j = 1

D

∑
α∗∈Sn

p
y2
α∗ , where α∗ verifies

∑n
k=1 α

∗
k−∑j

k=i α
∗
k = 0.

3.4 Bayesian Inference (inverse method)

For inverse problems Bayesian inference (BI) offers a rigorous foundation for inference
from uncertain forward models and noisy data. It is a natural procedure for incorporating
prior information, and a quantitative assessment of uncertainty in the results. Contrary to
other methods, the output of Bayesian inference is not solely a value, but a probability
distribution that captures all available information about the parameters. From this
distribution, one may compute marginal distributions, estimate moments or make other
predictions. We first introduce Bayes’ theory and well known results.

Suppose θ is a parameter of interest, τ a real function and T an estimator of τ(θ).
A loss function is any real-valued function L(t; θ) such that it is non negative for all
t and zero when t = τ(θ). The risk function RT associated to a loss function L is its
expectation RT (θ) = E[L(T ; θ)]. If one has prior knowledge about the parameter location,
one might want to use an estimator that has a small risk for values of θ that are most
likely to occur in a given experiment. This is modeled by treating θ as a random variable

5



Ghent University Repository

whose distribution fθ captures the prior knowledge. The Bayesian risk of an estimator T
relative to a risk function RT and prior fθ is AT = E[RT (θ)] =

∫ +∞
−∞ RT (t)fθ(t) d t. If an

estimator has the smallest Bayesian risk, then it is referred to as a Bayesian estimator.
As can be found in [9], the Bayesian estimator T of τ(θ) under the squared error loss

function L(T ; θ) = [T − τ(θ)]2 is given by the mean of τ with respect to the posterior
density based on the sample observations x = (x1, . . . , xn) from X;

fθ|X(t|x) =
1

ν(t)
fX|θ(x|t)fθ(t), fX|θ(x|t) =

n∏
i=1

fX|θ(xi|t)

with fX|θ the probability distribution function of X given θ, called the likelihood and
ν(t) a normalizing factor.

We emphasize the fact that a Bayesian estimator depends on the choice of loss func-
tion. Under the squared error loss function it corresponds to the mean of the posterior
distribution, it is sometimes called the minimum mean square error (MMSE) estimator
[8]. This is the estimator we will use in what follows.

The inverse model consists of retrieving the input parameters, the properties of TSP
and magnetite, given a probe flux measurement. The stochastic flux prediction Y is in
fact undergoing some error – probe noise and model error , so Y = Ŷ + ε, where ε is a
random variable with density φε. A typical assumption is ε being a zero mean normal
variable, so ε ∼ N(0, σ2

ε ). In this case the likelihood becomes

φY |ξ(y|ξ) = φε

(
y − Ŷ (ξ)

)
.

We have a posterior probability density φξ|Y for the model parameters (up to a nor-
malizing factor) defined by the product of the likelihood φY |ξ with the prior density φξ.
The latter embodies all prior knowledge on these parameters. In our case the prior is
uninformative so equal to a constant. Under the squared error loss function, the Bayesian
estimator of the input parameters is found as the mean of the posterior density. To fix

state variable ξ
prior

φξ

model

Y = Ŷ (ξ) + ε
error

likelihood

φε(Y ? − Y )
data Y ?

posterior

φξ|Y (·|Y ?)
marginal

Figure 2. Different components in the Bayesian procedure with error calibration.

the model inference error σε, we use a sample of 25 SAX ratios. Since, based on the
Sobol indices (see next section), the permeability of the magnetite is the most influential
parameter, we fix the other parameters to their mean and pick the σε which enables us
to retrieve the prior (uniform distribution) of µm

r . A general procedure of the Bayesian
inference is reported in Fig. 2 together with the calibration of the error.

4. Results and discussion

We considerer 4 independent random variables: the relative permeability of magnetite
is uniform on the interval [1.3, 2.7], the conductivity of magnetite on the interval [45, 75],
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the relative permeability of TSP uniform on [60, 100] and conductivity of TSP on the
interval [17e5, 18e5]. From these prior distributions, we construct the PC response of the
SAX ratio by the adaptive non-intrusive spectral projection described in section 3.2 and
we compute the Sobol indices corresponding to the 4 random variables. In the inverse
method, the experimental datum is taken from [11]. Applying the adaptive NISP, we
obtain the probe random flux Φ as a (finite) third order PC expansion

Φ(ξ) = Φ(ξm
σ , ξ

m
µr
, ξTSP
σ , ξTSP

µr
) =

34∑
k=0

ΦkΨk(ξ), Φk =

∫
[0,1]4

Φ(ξ)Ψk(ξ) d ξ,

in terms of the quadrivariate orthogonal Legendre polynomials Ψk, with uniformly dis-
tributed random variables as arguments. E.g., the magnetite’s relative permeability is
written as

µm
r (ξm

µr
) = 1.3 + 1.4 ξm

µr
with ξm

µr
∼ U[0, 1].

The expansion coefficients Φk were computed with our adaptive sparse scheme. We cal-
culate the Sobol index or sensitivity of the model to the input parameters.

(a) Mean and standard deviation of the imaginary part

of the differential flux.

(b) Number of deterministic simulations for each posi-

tion of the probe.

Figure 3. Statistical moments and computational cost for each position of the probe.

In Fig. 3, we report the total number of deterministic simulations required by the
adaptive NISP for each position of the probe. The lower edge of the support plate corre-
sponds to the position 12 and the upper edge corresponds to the position 48. In Fig. 3(a),
we see that the variability in the imaginary part of the flux is important in the upper part
of the TSP and is negligible in lower part. Consequently, the number of deterministic
simulations is higher (equal to 81) in upper edge and equal to 4 near the lower edge. This
remark can be explained by the fact that uncertainties on the physical parameters of the
TSP are insignificant and the flux is sensitive only on the uncertainties of the physical
parameters of the magnetite. In fact, the variability of the flux is important only between
position 10 and 22 of the probe which corresponds to the location of the magnetite.

The first order Sobol indices are computed using (3.3) and are represented in Fig. 3(c).
We are interested in the sensitivity indices on the positions where the variability is impor-
tant, i.e from position 12 to 22. In this region, the sensitivity of the relative permeability
of the magnetite is up to 98%. Thus, the relative permeability of the magnetite is clearly
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Figure 4. first order Sobol indices for each position of the probe.

the most influential random variable in the model. With the inverse method we will try
to reduce its variability.

In the inversion procedure, the error is considered normally distributed with mean
equal to 0 and a standard deviation σε = 0.98 obtained by the calibration technique
described above. The marginal posterior densities of the four random variables are given
in Fig. 5, again based on a sample of 25 SAX ratio measurements. Note that due to
the PC expansion at hand the Bayesian procedure is cost effective. The density of the
relative permeability of magnetite is clearly updated and reduced in variability.

(a) Relative permeability

of the magnetite

(b) Conductivity of the

magnetite

(c) Relative permeability

of the TSP

(d) Conductivity of the

TSP

Figure 5. Marginal posterior densities of the random variables.

5. Conclusion

We dealt with the uncertainty quantification of the physical properties of magnetite (a
corrosion product) which frequently clogs the tube support plate of a steam generator in
a nuclear power plant. Using Polynomial Chaos (PC) in the direct approach combined
with adaptive sparse grids, the prohibitive computational cost underlying the high di-
mensional random space in the direct Non-Intrusive Spectral Projection (NISP) method
was mediated. This combination of techniques is most suitable for stochastic forward
problems where not all stochastic dimensions are equally ‘important’ and thus can be
discretized differently. This results in a more accurate model at the same computational
cost, or one opts just to reduce computer time.
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Some conditional posterior probability densities are identified by inferring from an
experimental datum. We found agreement – with the Sobol indices and Bayesian inference
– on the fact that the permeability of the magnetite is the most influential random
variable in the model. Moreover the Bayesian technique reduced the variability in the
permeability of the magnetite due to inference from experimental data. Inferring from
more data can maybe further reduce the variability. The described technique enables to
capture the probability density of a parameter that is hardly physically accessible. The
efficiency of the method can possibly be improved by changing the PC expansion basis in
the stochastic space. Furthermore the variance of the random flux can also be computed
by the anisotropic adaptive NISP to improve/increase the polynomial interpolation/order
based on the sparse grid.
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