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Spin-embeddings, two-intersection sets and
two-weight codes

[aria Cardinali and Bart De Bruyn*

Abstract

Let A be one of the dual polar spaces DQ(8,q), DQ™(7,q), and
let e : A — X denote the spin-embedding of A. We show that
e(A) is a two-intersection set of the projective space . Moreover,
if A= DQ™(7,q), then e(A) is a (¢° + 1)-tight set of a nonsingular
hyperbolic quadric QT (7,¢?) of ¥ = PG(7,¢*). This (¢ 4 1)-tight
set gives rise to more examples of (¢° + 1)-tight sets of hyperbolic
quadrics by a procedure called field-reduction. All the above ex-
amples of two-intersection sets and (¢% + 1)-tight sets give rise to
two-weight codes and strongly regular graphs.
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1 Introduction

1.1 Two-intersection sets, two-weight codes and strongly
regular graphs

A simple undirected graph G without loops is called a strongly regular graph
with parameters (v, K, A\, u) if G is a connected graph of diameter 2 having
precisely v vertices, K vertices adjacent to any given vertex, A vertices
adjacent to any two given adjacent vertices and p vertices adjacent to any
two given nonadjacent vertices.

Let ¢ be a prime power and k,n € N with n > k. An [n, k|s-code
is a k-dimensional subspace C of the n-dimensional vector space Fy. The
elements of C are called codewords. We will denote the elements of F by
row vectors. The weight of an element of Fy is the number of nonzero
coordinates. C is called a two-weight code if there exist wyi,wy € {1,...,n}
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such that every nonzero codeword of C has weight either wy or wy. In this
case, the numbers w; and ws are called the weights of the two-weight code.

A two-weight [n, k],-code C is generated by k row vectors. We can use
these k row vectors to build a (k x n)-matrix. The column vectors of this
matrix define a set of n not necessarily distinct points in PG(k — 1,q). If
all these n points are distinct, then the two-weight code is called projective.
Two distinct generating sets of k row vectors of a projective two-weight
[n, k]4-code C will give rise to two sets of n points in PG(k — 1,¢) which
are projectively equivalent. It makes therefore sense to denote any of these
sets by Xe.

A set X of points of PG(k — 1,q) is called a two-intersection set with
intersection numbers hy and hs if every hyperplane of PG(k—1, ¢) intersects
X in either hy or hy points. We can embed PG(k — 1,¢q) as a hyperplane
in PG(k, ¢) and define the following graph G x. The vertices of Gx are the
points of PG(k,q) \ PG(k — 1,¢q) and two distinct vertices x; and xg are
adjacent whenever the line x;z4 of PG(k, ¢) contains a point of X.

Delsarte ([9], [10], [11], [12]) was the first to investigate the relationships
between projective two weight codes, two-intersection sets of projective
spaces and strongly regular graphs, see Calderbank and Kantor [3] for a
nice survey. We collect the basic relationships in the following proposition.
For a proof of this proposition, we refer to Calderbank and Kantor [3,
Theorem 3.2].

Proposition 1.1 Let X be a proper set of n points of PG(k —1,q) gener-
ating PG(k — 1, q). Then the following are equivalent:

(1) X is a two-intersection set;

(2) X is projectively equivalent to a set X¢ where C is some projective
two weight [n, k|,-code;

(3) Gx is a strongly regular graph.

There exist specific relationships between the parameters h; and hy of the
two-intersection set, the parameters w; and ws of the associated two-weight
code and the parameters v, K, A and p of the corresponding distance-
regular graph. These are as follows (up to transposition of w; and ws), see
e.g. Calderbank and Kantor [3, Corollary 3.7]:

wy =n—hi, wa =n— hy,

v = qk7 K = n(q - 1)’ H= w1w2q2ik7

A= K2 + 3K — q(w1 + ’UJQ) — Kq(w1 + U)Q) + q2w1w2.



1.2 i-tight sets of polar spaces and two-intersection
sets

Let P be a finite polar space of rank r > 2 with ¢ + 1 > 3 points on each
line. Then by Tits [20], P is one of the following polar spaces:

(1) a generalized quadrangle GQ(q,t) of order (g¢,t), t > 1;

(2) the polar space W (2r —1, q) of the subspaces of PG(2r — 1, ¢) which
are totally isotropic with respect to a given symplectic polarity of PG(2r —
L, q);

(3) the polar space Q(2r, q) of the subspaces of PG(2r, ¢) which lie on
a given nonsingular parabolic quadric of PG(2r, q);

(4) the polar space Q*(2r—1, q) of the subspaces of PG(2r —1, ¢) which
lie on a given nonsingular hyperbolic quadric of PG(2r — 1, q);

(5) the polar space @~ (2r+1, q) of the subspaces of PG(2r+1, ¢) which
lie on a given nonsingular elliptic quadric of PG(2r + 1, q);

(6) the polar space H(2r — 1, q) (g square) of the subspaces of PG(2r —
1, q) which lie on a given nonsingular Hermitian variety of PG(2r — 1, q);

(7) the polar space H(2r,q) (g square) of the subspaces of PG(2r,q)
which lie on a given nonsingular Hermitian variety of PG(2r, q).

If X is a set of points of P, then by Drudge [13] the number of ordered
pairs of distinct collinear points of X is bounded above by

@t - x (B ). 1)

If equality holds, then X is called i-tight, where ¢ := IX;T(%U. In case of

equality, ¢« € N. Moreover, every point x of X is collinear with precisely
r—1
(t+q—1)2 q_l_l points of X \ {z} and every point y outside X is collinear

qr;l—1 points of X. We call a set of points of P tight if

it is i-tight for some ¢ € N. Tight sets were introduced by Payne [15] for
generalized quadrangles and by Drudge [13] for arbitrary polar spaces. We
refer to these references for proofs of the above-mentioned facts. We take
the following proposition from Bamberg et al. [1, Theorem 12].

with precisely @

Proposition 1.2 ([1]) Let P be one of the polar spaces W (2r — 1,q),
QT (2r—1,q), H2r —1,q) and let X be a nonempty tight set of P. Then
X is a two-intersection set of the ambient projective space of P.

1.3 Dual polar spaces and embeddings

Let A = (P,L£,I), I C P x L, be a point-line geometry. The distance
between two points of A will be measured in the collinearity graph of A.



If  is a point of A and i € N, then A;(x) denotes the set of points at
distance i from x. A hyperplane of A is a proper subset of P intersecting
each line in either a singleton or the whole line.

A full (projective) embedding of A is an injective mapping e from P to
the point-set of a projective space ¥ satisfying: (E1) the image e(A) :=
e(P) of e spans X; (E2) for every line L of A, e(L) isalineof 3. Ife: A — %
is a full embedding of A, then for every hyperplane o of 3, e (e(P)Na) is
a hyperplane of A. We say that the hyperplane e~*(e(P) N«) arises from
the embedding e.

With every polar space P of rank r > 2, there is associated a dual polar
space A of rank r, see Shult and Yanushka [19] or Cameron [4]. A is the
point-line geometry whose points and lines are the maximal and next-to-
maximal singular subspaces of P, with reverse containment as incidence
relation. For every singular subspace « of P, we denote by F,, the set of
all maximal singular subspaces of P containing a. The points and lines
contained in F,, define a dual polar space of rank n — 1 — dim(«). The set
F, is called a quad, respectively a maz, of A if dim(«) = n— 3, respectively
dim(a)) = 0. The points and lines contained in a quad define a generalized
quadrangle. The set of points of A at non-maximal distance from a given
point x of A is a hyperplane of A, called the singular hyperplane of A with
deepest point x. A hyperplane H of A is called locally singular if for every
quad Q of A, QN H is either @) or a singular hyperplane of the generalized
quadrangle associated with Q.

Let QT (2n + 1,q), n > 2, denote a nonsingular hyperbolic quadric in
PG(2n + 1,q). The set of generators (= maximal singular subspaces) of
Q7 (2n+1,q) can be divided into two families M+ and M~ such that two
generators of the same family intersect in a subspace of even co-dimension.
For every € € {4+, —}, let §¢ denote the point-line geometry whose point-
set is equal to M*© and whose line-set coincides with the set of all (n — 2)-
dimensional subspaces of Q1 (2n+1, q) (natural incidence). The isomorphic
geometries ST and S~ are called the half-spin geometries for QT (2n+1, q).
The half-spin geometry S¢, € € {4, —}, admits a nice full embedding into
PG(2™—1, q) which is called the spin-embedding of S¢. We refer to Chevalley
[6] or Buekenhout and Cameron [2] for a description of this embedding.
For n = 3, this embedding has the following nice description. Let 6 be a
triality of Q7 (7, ¢) mapping M™ to the point-set of Q7 (7, q), the point-set
of QT (7,q) to M~ and M~ to M™. Then 0 realizes the spin-embedding
of 8T into PG(7,q). From this argument it is also clear that the half-spin
geometries for Q7 (7, q) are isomorphic to the point-line system of QT (7, q).

Now, consider the embedding Q(2n,q) € Q*(2n+1, q). Every generator
M of Q(2n, q) is contained in a unique element ¢(M) of M™T. If e denotes
the spin-embedding of ST, then e o ¢ defines a full embedding of the dual
polar space DQ(2n,q) associated with Q(2n,q) into the projective space



PG(2™ — 1, ¢). This embedding is called the spin-embedding of DQ(2n, q).
The spin-embedding of DQ(4,q) is isomorphic to the natural embedding
of DQ(4,q) =W (3,q) into PG(3,q).

Now, suppose ¢ is a square and consider the inclusion Q™ (2n+1,,/q) C
Q7 (2n+1,q) defined by a quadratic form of Witt-index n over F @ Which
becomes a quadratic form of Witt-index n + 1 when regarded over the
quadratic extension F, of F 5. For every generator a of Q@ (2n + 1,,/7),
let ¢ () denote the unique element of M™ containing «.. If e again denotes
the spin-embedding of ST, then e o ¢’ defines a full embedding of the
dual polar space DQ™(2n + 1,,/q) associated with Q~(2n + 1,,/q) into
the projective space PG(2"™ — 1,q). This embedding is called the spin-
embedding of DQ~(2n+1,,/q). The construction of this embedding is due
to Cooperstein and Shult [7].

1.4 The Main Theorem
We will prove the following:

Main Theorem. (1) Ife: A — X is the spin-embedding of the dual polar
space A = DQ(8,q), then e(A) is a two-intersection set of ¥ = PG(15,q).

(2) If e : A — X is the spin-embedding of the dual polar space A =
DQ(7,q), then e(A) is a two-intersection set of ¥ =2 PG(7,¢*). Moreover,
e(A) is a (¢ + 1)-tight set of a nonsingular hyperbolic quadric QT (7,q¢?%)
of X.

The parameters of the two-intersection sets e(A) and their corresponding
two-weight codes and strongly regular graphs are listed in the following
table.

[ A ] DQ(8,q) [ DQ~(7,q) |
e@A) [ @+ D)@+ D@+ D+ [ (@+ D@+ 1) (" +1)
5] PG(15,q) PG(7,4°)
w1 qu 9
wa "+ 47 " +4°
) qu q16
K (* =1 +1) (- +1)
A ®+q° —q° -2 ®+q° —q°—2
b @ +1) (¢ +1)

We cannot rule out that the two-intersection set e(A) (A = DQ(8,q) or
A = DQ(7,q)) is nonisomorphic to any of the many two-intersection sets
described in the literature. However, even if the two-intersection set e(A)
would not be new, we still would have a nice alternative description of this
special set of points.



Another problem which remains open is whether the two-intersection
sets of PG(15, g) related to the spin-embedding of DQ(8, ¢) can be obtained
from the two-intersection sets of PG(7, ¢?) arising from the spin-embedding
of DQ~(7,q) by applying a change of the underlying field as described in
Section 6 of Calderbank and Kantor [3].

The (¢ + 1)-tight sets of QT (7,¢?) arising from the spin-embedding of
DQ™(7,q) have not been described before in the literature. A construction
for these tight sets can be given which does not refer any more to any par-
ticular embedding. As before, consider an inclusion Q~(7,q) € Q™ (7, ¢?),
let M* and M~ denote the two families of generators of Q*(7, ¢?) and let 6
be a triality of @7 (7, ¢?) which maps M™ to the point-set of QT (7,¢?), the
point-set of Q7 (7,¢?) to M~ and M~ to M™T. If U denotes the set of gen-
erators of Q7 (7,¢) and V denotes the set of generators of M™ containing
an element of U, then §(V) is a (¢ + 1)-tight set of points of Q7 (7, ¢?).

Using a procedure referred to as field reduction in [14], one can con-
struct 4-tight sets of QT (2er — 1,q) from i-tight sets of Q1 (2r — 1,4°) by
constructing a copy of QT (2r — 1, ¢°) inside QT (2er —1,4). So, a (¢> + 1)-
tight set of Q1 (7,¢?) will give rise to a (¢ + 1)-tight set of QT (15, ¢) and
even to more (¢® + 1)-tight sets of hyperbolic quadrics if ¢ is not prime.
By Propositions 1.1 and 1.2, also these (¢® + 1)-tight sets will give rise to
two-intersection sets, two-weight codes and strongly regular graphs.

Remark. Suppose e : A — X is a full projective embedding of a point-line
geometry A = (P, L,1) and hy, he € N\ {0} such that

() |H| € {h1, ha} for any hyperplane H of A arising from the embedding
e.

Then e(P) is a two-intersection set of . Many point-line geometries (e.g.,
generalized quadrangles, polar spaces, the dual polar space DQ(6, ¢)) have
a projective embedding e for which (x) holds. However, for almost all these
examples the corresponding two-intersection sets are well-known. We have
therefore restricted our discussion to the dual polar spaces DQ(8,q) and
DQ™(7,q) since for these geometries we have found no description of the
corresponding two-intersection sets in the literature.

2 A two-intersection set arising from the spin-
embedding of DQ(8,q)

Let e : A — X denote the spin-embedding of A = DQ(8,q) into ¥ =
PG(15,¢). By De Bruyn [8] (see also Shult and Thas [18] for ¢ odd), the
hyperplanes of DQ(8, ¢) which arise from e are precisely the locally singular



hyperplanes of DQ(8,¢q). By Cardinali, De Bruyn and Pasini [5], there
are three types of locally singular hyperplanes in DQ(8,¢): the singular
hyperplanes, the extensions of the hexagonal hyperplanes and the so-called
Q™ (7, q)-hyperplanes.

(1) If H is the singular hyperplane of DQ(8,q) with deepest point z,
then [H| = |Ag(z)| + A1 ()| +]A2(2)] +|Az(2)| = 1 +4(¢° +¢* +q+1) +
(@+1)(@*+a+ 1)@ +(*+¢* +q+1)¢° = (¢ +¢* +1)(¢" +¢* + > +¢+1).

(2) Suppose H is the extension of a hexagonal hyperplane. Then there
exists a max M = DQ(6,q) in DQ(8,q) and a hexagonal hyperplane A
in M such that H = M U (A1(A4) \ M). [A hyperplane of DQ(6,q) is
called hexagonal (Shult [17]) if the points and lines contained in it define a
split-Cayley hexagon H(q).] Since every point of A\ M is collinear with a
unique point of M, |H| = M|+ |A|-¢* = (¢ + 1)(®> + 1)(¢* + 1) + (¢* +
D@ +a+ 1) = (@ +1)(° +° +¢* + ¢+ +qa+1).

(3) Suppose now that H is a Q*(7,q)-hyperplane of DQ(8,q), i.e. a
hyperplane which can be constructed in the way as described now. Let
Q(8, q) be the nonsingular parabolic quadric of PG(8, ¢) associated with the
dual polar space DQ(8,q). Intersecting Q(8,¢) with a suitable hyperplane
of PG(8,q) we obtain a Q1 (7,q) C Q(8,q). Let M™ and M~ denote
the two families of generators of Q7 (7,¢) and let ST denote the half-spin
geometry for QT (7,q) defined on the set MT. ST is isomorphic to the
point-line system of Q7 (7,¢) and hence has a hyperplane A which carries
the structure of a Q(6,¢). Let B denote the set of all generators 7 of
Q(8,q) not contained in Q7 (7,q) such that the unique element of M™
through 7 N Q% (7,q) belongs to A. Then H := AU M~ U B is a locally
singular hyperplane of DQ(8,q). Any such hyperplane is called a Q* (7, q)-
hyperplane of DQ(8,q). These hyperplanes were introduced in Cardinali,
De Bruyn and Pasini [5].

Every max M of DQ(8,q) corresponds with a point xs of Q(8,q). If
zap € QT (7,q), then by [5], M N H is a singular hyperplane of M and hence
contains precisely ¢° +q¢*+2¢>+¢>+q+1 points. If zpr € Q(8,¢9)\Q*(7,49),
then by [5], M N H is a hexagonal hyperplane of M and hence contains
precisely (¢* + 1)(¢® + ¢ + 1) points. Since every point of A is contained
in precisely ¢* 4+ ¢® + g + 1 maxes, the number of points of H is equal to

(@ +d®+a+ 1)*1(\62*(7, Ol (@ +a* +2¢* +¢* +q+1) + (1Q(8, )] -
QT(T, 9 (¢ +1)(¢® +q+ 1)) =@+ )+ +a' + @+ +a+1).
By (1), (2) and (3) above, it follows that every hyperplane of ¥ intersects

e(A) in either (¢*+¢° +¢° +¢+1)(¢° +¢° +1) or (¢ +1)(¢°+¢° +q" +¢° +
¢®> + ¢+ 1) points. So, e(A) is indeed a two-intersection set of PG(15, q).



The parameters of this two-intersection set are listed in the table given in
Section 1.4.

3 A two-intersection set arising from the spin-
embedding of DQ~(7,q)

Let e : A — X denote the spin-embedding of A = DQ~(7,q) into ¥ =
PG(7,¢%). De Bruyn [8] classified all hyperplanes of A which arise from
e. There are three types: the singular hyperplanes, the extensions of the
classical ovoids in the quads and the so-called hexagonal hyperplanes.

(1) Suppose H is the singular hyperplane of A with deepest point x.
Then [H| = |Ao(z)|+|A1(z)|+|A2(z)| = 1+¢*(1+q+¢*) +¢°(¢* +q+1) =
" +E+E+ P+ P+

(2) Suppose H is the extension of a classical ovoid O in a quad @ =
DQ~(5,q) 2 H(3,¢%), i.e. H=QU (T'1(0)\ Q). [An ovoid of H(3,¢?) is
called classical if it is obtained by intersecting H(3,q?) with a nontangent
plane.] Then |H| = [Q + [O] - ¢* = (¢* + 1)(¢® + 1) + (¢* + 1)¢* =
e+ A+ P+ P+ L

(3) Suppose H is a hexagonal hyperplane of DQ~(7,q). Then H is
obtained in the way as described now. Let Q@ (7, ¢q) denote the nonsingular
elliptic quadric of PG(7,q) associated with DQ~(7,¢) and let Q(6,q) be
a nonsingular parabolic quadric obtained by intersecting Q~(7,q) with a
nontangent hyperplane.

Let G denote a set of generators of Q(6,¢) defining a hexagonal hyper-
plane of the dual polar space DQ(6,q) associated with Q(6,¢) and let £
denote the set of lines L of Q(6,q) with the property that every generator
of Q(6,q) through L belongs to G. Then by Pralle [16], the set H of gen-
erators of Q™ (7,¢q) containing at least one element of £ is a hyperplane of
DQ~(7,q). We call any hyperplane which can be obtained in this way a
hezagonal hyperplane of DQ~(7,q). The number |L£| is the number of lines
of DQ(6, q) contained in a hexagonal hyperplane and is equal to %. Each
element of £ is contained in ¢ + 1 generators of Q~(7,q) which are con-
tained in Q(6,q) and ¢* — q generators of Q™ (7, ¢) which are not contained
in Q(6,¢). Hence, |H| = |G|+ (¢* —q)IL] =q¢" + ¢’ +¢' +¢* + ¢* + 1.

By (1), (2) and (3) above, it follows that every hyperplane of ¥ intersects
e(A) in either ¢"+¢%+¢° +¢* +¢*+¢*+1 or ¢" +¢° +¢* +¢*> +¢*+1 points.
So, e(A) is indeed a two-intersection set of PG(7,¢?). The parameters of
this two-intersection set are listed in the table given in Section 1.4.



4 A (¢*+ 1)-tight set arising from the spin-
embedding of DQ(7,q)

Again, let e : A — X denote the spin-embedding of A = DQ~(7,q) into
¥ = PG(7,¢%). We show that e(A) is a (¢ + 1)-tight set of a nonsingu-
lar hyperbolic quadric Q*(7,¢?) of PG(7,¢?). We recall the construction
of the spin-embedding of A = DQ~(7,q). Let Q (7,q) be the nonsingu-
lar elliptic quadric associated with DQ (7, ¢), and consider the inclusion
Q= (7,9) € Q*(7,¢%). Let M+ and M~ denote the two families of gener-
ators of Q% (7,¢?) and let § be a triality of QT (7,¢%) mapping M™ to the
point-set of Q*(7,¢?), the point-set of Q*(7,¢?) to M~ and M~ to M™.
For every generator M of Q@ (7,q), let ¢'(M) denote the unique generator
of M™ containing M. Then 6 o ¢’ is the spin-embedding e of DQ™(7,q).
Obviously, e(A) is a set of points of QT (7,4?).

Lemma 4.1 (a) If M1 and Ms are two generators of Q~(7,q) which meet
each other, then e(My) and e(Ms) are collinear points of Q*(7,¢%).

(b) If My and My are two disjoint generators of Q~(7,q), then e(Mjy)
and e(Ms) are noncollinear points of Q*(7,q?).

Proof. (a) Suppose M; and Ms are two generators of Q~ (7, ¢) which have
a point z in common. Then the points e(M;) and e(Mz) of Q*(7,¢?) are
contained in the generator #(x) € M~ of Q*(7,¢?). Hence, e(M;) and
e(My) are collinear on Q*(7,¢?).

(b) Suppose that M; and M, are two disjoint generators of Q~(7,q).
Let M;, i € {1,2}, denote the 2-space of QT (7,¢?) containing M;, Then
M; and M, are disjoint. Since ¢'(M;) and ¢'(Msz) belong to the same
family of generators of QT (7,¢?), they intersect in either the empty set or
a line. But since M; N My = ), they must intersect in the empty set. Then
e(My) =0o0¢' (M;) and e(Ms) = o ¢'(Ms) are not collinear on Q* (7, ¢?).

Now, let N1 denote the total number of ordered pairs of distinct points of
e(A) which are collinear on Q7 (7, ¢?). By Lemma 4.1,

M= (Al (Jar(@)] + 1As()]), (2)
where |A| = (¢2 +1)(¢® + 1)(¢* + 1) denotes the total number of points of
A and z denotes an arbitrary point of A. So, Ny = (¢® + 1)(¢® + 1)(¢* +
(@ +a+1)+07 (P ++1)) = (@+) (@ +1) (0" +1)g* (@ +1) (@ +g+1).
Calculating expression (1) of Section 1.2, we find

(¢® + 1)(22 t 1)((14 +1) 1)

(@ =1 (@ +1)(g* + ig* +1)- (



=@+ D@+ D¢+ D +q+1).

Since the expressions (1) and (2) are equal, e(A) is a tight set of points of
Q1 (7,4%). The set e(A) is i-tight where

Al-(¢® -1
P YR i) |q8(q_1 ) 1
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