Spin-embeddings, two-intersection sets and two-weight codes

Ilaria Cardinali and Bart De Bruyn^{*}

Abstract

Let Δ be one of the dual polar spaces DQ(8,q), $DQ^{-}(7,q)$, and let $e: \Delta \to \Sigma$ denote the spin-embedding of Δ . We show that $e(\Delta)$ is a two-intersection set of the projective space Σ . Moreover, if $\Delta \cong DQ^{-}(7,q)$, then $e(\Delta)$ is a $(q^3 + 1)$ -tight set of a nonsingular hyperbolic quadric $Q^{+}(7,q^2)$ of $\Sigma \cong PG(7,q^2)$. This $(q^3 + 1)$ -tight set gives rise to more examples of $(q^3 + 1)$ -tight sets of hyperbolic quadrics by a procedure called field-reduction. All the above examples of two-intersection sets and $(q^3 + 1)$ -tight sets give rise to two-weight codes and strongly regular graphs.

Keywords: spin-embedding, dual polar space, two-intersection set, two-weight code, strongly regular graph, tight set **MSC2000:** 94B05, 05E30, 51A50, 51E20

1 Introduction

1.1 Two-intersection sets, two-weight codes and strongly regular graphs

A simple undirected graph G without loops is called a *strongly regular graph* with parameters (v, K, λ, μ) if G is a connected graph of diameter 2 having precisely v vertices, K vertices adjacent to any given vertex, λ vertices adjacent to any two given adjacent vertices and μ vertices adjacent to any two given nonadjacent vertices.

Let q be a prime power and $k, n \in \mathbb{N}$ with $n \geq k$. An $[n, k]_q$ -code is a k-dimensional subspace \mathcal{C} of the n-dimensional vector space \mathbb{F}_q^n . The elements of \mathcal{C} are called *codewords*. We will denote the elements of \mathbb{F}_q^n by row vectors. The *weight* of an element of \mathbb{F}_q^n is the number of nonzero coordinates. \mathcal{C} is called a *two-weight code* if there exist $w_1, w_2 \in \{1, \ldots, n\}$

^{*}Postdoctoral Fellow of the Research Foundation - Flanders (Belgium)

such that every nonzero codeword of C has weight either w_1 or w_2 . In this case, the numbers w_1 and w_2 are called the *weights* of the two-weight code.

A two-weight $[n, k]_q$ -code C is generated by k row vectors. We can use these k row vectors to build a $(k \times n)$ -matrix. The column vectors of this matrix define a set of n not necessarily distinct points in PG(k - 1, q). If all these n points are distinct, then the two-weight code is called *projective*. Two distinct generating sets of k row vectors of a projective two-weight $[n, k]_q$ -code C will give rise to two sets of n points in PG(k - 1, q) which are projectively equivalent. It makes therefore sense to denote any of these sets by X_C .

A set X of points of PG(k - 1, q) is called a *two-intersection set* with *intersection numbers* h_1 and h_2 if every hyperplane of PG(k-1, q) intersects X in either h_1 or h_2 points. We can embed PG(k - 1, q) as a hyperplane in PG(k, q) and define the following graph G_X . The vertices of G_X are the points of $PG(k, q) \setminus PG(k - 1, q)$ and two distinct vertices x_1 and x_2 are adjacent whenever the line x_1x_2 of PG(k, q) contains a point of X.

Delsarte ([9], [10], [11], [12]) was the first to investigate the relationships between projective two weight codes, two-intersection sets of projective spaces and strongly regular graphs, see Calderbank and Kantor [3] for a nice survey. We collect the basic relationships in the following proposition. For a proof of this proposition, we refer to Calderbank and Kantor [3, Theorem 3.2].

Proposition 1.1 Let X be a proper set of n points of PG(k-1,q) generating PG(k-1,q). Then the following are equivalent:

(1) X is a two-intersection set;

(2) X is projectively equivalent to a set $X_{\mathcal{C}}$ where \mathcal{C} is some projective two weight $[n, k]_{a}$ -code;

(3) G_X is a strongly regular graph.

There exist specific relationships between the parameters h_1 and h_2 of the two-intersection set, the parameters w_1 and w_2 of the associated two-weight code and the parameters v, K, λ and μ of the corresponding distanceregular graph. These are as follows (up to transposition of w_1 and w_2), see e.g. Calderbank and Kantor [3, Corollary 3.7]:

$$w_1 = n - h_1, \ w_2 = n - h_2,$$

$$v = q^k, \ K = n(q - 1), \ \mu = w_1 w_2 q^{2-k},$$

$$\lambda = K^2 + 3K - q(w_1 + w_2) - Kq(w_1 + w_2) + q^2 w_1 w_2$$

1.2 i-tight sets of polar spaces and two-intersection sets

Let P be a finite polar space of rank $r \ge 2$ with $q + 1 \ge 3$ points on each line. Then by Tits [20], P is one of the following polar spaces:

(1) a generalized quadrangle GQ(q, t) of order $(q, t), t \ge 1$;

(2) the polar space W(2r-1,q) of the subspaces of PG(2r-1,q) which are totally isotropic with respect to a given symplectic polarity of PG(2r-1,q);

(3) the polar space Q(2r, q) of the subspaces of PG(2r, q) which lie on a given nonsingular parabolic quadric of PG(2r, q);

(4) the polar space $Q^+(2r-1,q)$ of the subspaces of PG(2r-1,q) which lie on a given nonsingular hyperbolic quadric of PG(2r-1,q);

(5) the polar space $Q^{-}(2r+1,q)$ of the subspaces of PG(2r+1,q) which lie on a given nonsingular elliptic quadric of PG(2r+1,q);

(6) the polar space H(2r-1,q) (q square) of the subspaces of PG(2r-1,q) which lie on a given nonsingular Hermitian variety of PG(2r-1,q);

(7) the polar space H(2r,q) (q square) of the subspaces of PG(2r,q) which lie on a given nonsingular Hermitian variety of PG(2r,q).

If X is a set of points of P, then by Drudge [13] the number of ordered pairs of distinct collinear points of X is bounded above by

$$(q^{r-1} - 1) \cdot |X| \cdot \left(\frac{|X|}{q^r - 1} + 1\right). \tag{1}$$

If equality holds, then X is called *i*-tight, where $i := \frac{|X| \cdot (q-1)}{q^r - 1}$. In case of equality, $i \in \mathbb{N}$. Moreover, every point x of X is collinear with precisely $(i+q-1)\frac{q^{r-1}-1}{q-1}$ points of $X \setminus \{x\}$ and every point y outside X is collinear with precisely $i\frac{q^{r-1}-1}{q-1}$ points of X. We call a set of points of P tight if it is *i*-tight for some $i \in \mathbb{N}$. Tight sets were introduced by Payne [15] for generalized quadrangles and by Drudge [13] for arbitrary polar spaces. We refer to these references for proofs of the above-mentioned facts. We take the following proposition from Bamberg et al. [1, Theorem 12].

Proposition 1.2 ([1]) Let P be one of the polar spaces W(2r - 1, q), $Q^+(2r - 1, q)$, H(2r - 1, q) and let X be a nonempty tight set of P. Then X is a two-intersection set of the ambient projective space of P.

1.3 Dual polar spaces and embeddings

Let $\Delta = (\mathcal{P}, \mathcal{L}, I)$, $I \subseteq \mathcal{P} \times \mathcal{L}$, be a point-line geometry. The distance between two points of Δ will be measured in the collinearity graph of Δ .

If x is a point of Δ and $i \in \mathbb{N}$, then $\Delta_i(x)$ denotes the set of points at distance *i* from x. A hyperplane of Δ is a proper subset of \mathcal{P} intersecting each line in either a singleton or the whole line.

A full (projective) embedding of Δ is an injective mapping e from \mathcal{P} to the point-set of a projective space Σ satisfying: (E1) the image $e(\Delta) := e(\mathcal{P})$ of e spans Σ ; (E2) for every line L of Δ , e(L) is a line of Σ . If $e : \Delta \to \Sigma$ is a full embedding of Δ , then for every hyperplane α of Σ , $e^{-1}(e(\mathcal{P}) \cap \alpha)$ is a hyperplane of Δ . We say that the hyperplane $e^{-1}(e(\mathcal{P}) \cap \alpha)$ arises from the embedding e.

With every polar space P of rank $r \geq 2$, there is associated a dual polar space Δ of rank r, see Shult and Yanushka [19] or Cameron [4]. Δ is the point-line geometry whose points and lines are the maximal and next-to-maximal singular subspaces of P, with reverse containment as incidence relation. For every singular subspace α of P, we denote by F_{α} the set of all maximal singular subspaces of P containing α . The points and lines contained in F_{α} define a dual polar space of rank $n - 1 - \dim(\alpha)$. The set F_{α} is called a quad, respectively a max, of Δ if dim $(\alpha) = n - 3$, respectively dim $(\alpha) = 0$. The points and lines contained in a quad define a generalized quadrangle. The set of points of Δ at non-maximal distance from a given point x of Δ is a hyperplane of Δ , called the singular hyperplane of Δ with deepest point x. A hyperplane H of Δ is called locally singular if for every quad Q of Δ , $Q \cap H$ is either Q or a singular hyperplane of the generalized quadrangle associated with Q.

Let $Q^+(2n+1,q), n \geq 2$, denote a nonsingular hyperbolic quadric in PG(2n + 1, q). The set of generators (= maximal singular subspaces) of $Q^+(2n+1,q)$ can be divided into two families \mathcal{M}^+ and \mathcal{M}^- such that two generators of the same family intersect in a subspace of even co-dimension. For every $\epsilon \in \{+, -\}$, let \mathcal{S}^{ϵ} denote the point-line geometry whose pointset is equal to \mathcal{M}^{ϵ} and whose line-set coincides with the set of all (n-2)dimensional subspaces of $Q^+(2n+1,q)$ (natural incidence). The isomorphic geometries S^+ and S^- are called the *half-spin geometries* for $Q^+(2n+1,q)$. The half-spin geometry $\mathcal{S}^{\epsilon}, \epsilon \in \{+, -\}$, admits a nice full embedding into $PG(2^n-1,q)$ which is called the *spin-embedding* of \mathcal{S}^{ϵ} . We refer to Chevalley [6] or Buekenhout and Cameron [2] for a description of this embedding. For n = 3, this embedding has the following nice description. Let θ be a triality of $Q^+(7,q)$ mapping \mathcal{M}^+ to the point-set of $Q^+(7,q)$, the point-set of $Q^+(7,q)$ to \mathcal{M}^- and \mathcal{M}^- to \mathcal{M}^+ . Then θ realizes the spin-embedding of \mathcal{S}^+ into PG(7, q). From this argument it is also clear that the half-spin geometries for $Q^+(7,q)$ are isomorphic to the point-line system of $Q^+(7,q)$.

Now, consider the embedding $Q(2n,q) \subseteq Q^+(2n+1,q)$. Every generator M of Q(2n,q) is contained in a unique element $\phi(M)$ of \mathcal{M}^+ . If e denotes the spin-embedding of \mathcal{S}^+ , then $e \circ \phi$ defines a full embedding of the dual polar space DQ(2n,q) associated with Q(2n,q) into the projective space

 $PG(2^n - 1, q)$. This embedding is called the *spin-embedding of* DQ(2n, q). The spin-embedding of DQ(4, q) is isomorphic to the natural embedding of $DQ(4, q) \cong W(3, q)$ into PG(3, q).

Now, suppose q is a square and consider the inclusion $Q^-(2n+1,\sqrt{q}) \subseteq Q^+(2n+1,q)$ defined by a quadratic form of Witt-index n over $\mathbb{F}_{\sqrt{q}}$ which becomes a quadratic form of Witt-index n+1 when regarded over the quadratic extension \mathbb{F}_q of $\mathbb{F}_{\sqrt{q}}$. For every generator α of $Q^-(2n+1,\sqrt{q})$, let $\phi'(\alpha)$ denote the unique element of \mathcal{M}^+ containing α . If e again denotes the spin-embedding of \mathcal{S}^+ , then $e \circ \phi'$ defines a full embedding of the dual polar space $DQ^-(2n+1,\sqrt{q})$ associated with $Q^-(2n+1,\sqrt{q})$ into the projective space $\mathrm{PG}(2^n-1,q)$. This embedding is called the *spinembedding of* $DQ^-(2n+1,\sqrt{q})$. The construction of this embedding is due to Cooperstein and Shult [7].

1.4 The Main Theorem

We will prove the following:

Main Theorem. (1) If $e : \Delta \to \Sigma$ is the spin-embedding of the dual polar space $\Delta = DQ(8,q)$, then $e(\Delta)$ is a two-intersection set of $\Sigma \cong PG(15,q)$. (2) If $e : \Delta \to \Sigma$ is the spin-embedding of the dual polar space $\Delta = DQ^{-}(7,q)$, then $e(\Delta)$ is a two-intersection set of $\Sigma \cong PG(7,q^2)$. Moreover, $e(\Delta)$ is a $(q^3 + 1)$ -tight set of a nonsingular hyperbolic quadric $Q^{+}(7,q^2)$ of Σ .

The parameters of the two-intersection sets $e(\Delta)$ and their corresponding two-weight codes and strongly regular graphs are listed in the following table.

Δ	DQ(8,q)	$DQ^{-}(7,q)$
$e(\Delta)$	$(q+1)(q^2+1)(q^3+1)(q^4+1)$	$(q^2+1)(q^3+1)(q^4+1)$
Σ	$\mathrm{PG}(15,q)$	$PG(7,q^2)$
w_1	q^{10}	q^9
w_2	$q^{10} + q^7$	$q^{9} + q^{6}$
v	q^{16}	q^{16}
K	$(q^8 - 1)(q^3 + 1)$	$(q^8 - 1)(q^3 + 1)$
λ	$q^8 + q^6 - q^3 - 2$	$q^8 + q^6 - q^3 - 2$
μ	$q^3(q^3+1)$	$q^3(q^3+1)$

We cannot rule out that the two-intersection set $e(\Delta)$ ($\Delta = DQ(8,q)$ or $\Delta = DQ^{-}(7,q)$) is nonisomorphic to any of the many two-intersection sets described in the literature. However, even if the two-intersection set $e(\Delta)$ would not be new, we still would have a nice alternative description of this special set of points.

Another problem which remains open is whether the two-intersection sets of PG(15, q) related to the spin-embedding of DQ(8, q) can be obtained from the two-intersection sets of $PG(7, q^2)$ arising from the spin-embedding of $DQ^-(7, q)$ by applying a change of the underlying field as described in Section 6 of Calderbank and Kantor [3].

The $(q^3 + 1)$ -tight sets of $Q^+(7, q^2)$ arising from the spin-embedding of $DQ^-(7, q)$ have not been described before in the literature. A construction for these tight sets can be given which does not refer any more to any particular embedding. As before, consider an inclusion $Q^-(7, q) \subseteq Q^+(7, q^2)$, let \mathcal{M}^+ and \mathcal{M}^- denote the two families of generators of $Q^+(7, q^2)$ and let θ be a triality of $Q^+(7, q^2)$ which maps \mathcal{M}^+ to the point-set of $Q^+(7, q^2)$, the point-set of $Q^+(7, q^2)$ to \mathcal{M}^- and \mathcal{M}^- to \mathcal{M}^+ . If U denotes the set of generators of $\mathcal{Q}^-(7, q)$ and V denotes the set of generators of \mathcal{M}^+ containing an element of U, then $\theta(V)$ is a $(q^3 + 1)$ -tight set of points of $Q^+(7, q^2)$.

Using a procedure referred to as field reduction in [14], one can construct *i*-tight sets of $Q^+(2er-1,q)$ from *i*-tight sets of $Q^+(2r-1,q^e)$ by constructing a copy of $Q^+(2r-1,q^e)$ inside $Q^+(2er-1,q)$. So, a (q^3+1) tight set of $Q^+(7,q^2)$ will give rise to a (q^3+1) -tight set of $Q^+(15,q)$ and even to more (q^3+1) -tight sets of hyperbolic quadrics if q is not prime. By Propositions 1.1 and 1.2, also these (q^3+1) -tight sets will give rise to two-intersection sets, two-weight codes and strongly regular graphs.

Remark. Suppose $e : \Delta \to \Sigma$ is a full projective embedding of a point-line geometry $\Delta = (\mathcal{P}, \mathcal{L}, I)$ and $h_1, h_2 \in \mathbb{N} \setminus \{0\}$ such that

(*) $|H| \in \{h_1, h_2\}$ for any hyperplane H of Δ arising from the embedding e.

Then $e(\mathcal{P})$ is a two-intersection set of Σ . Many point-line geometries (e.g., generalized quadrangles, polar spaces, the dual polar space DQ(6,q)) have a projective embedding e for which (*) holds. However, for almost all these examples the corresponding two-intersection sets are well-known. We have therefore restricted our discussion to the dual polar spaces DQ(8,q) and $DQ^{-}(7,q)$ since for these geometries we have found no description of the corresponding two-intersection sets in the literature.

2 A two-intersection set arising from the spinembedding of DQ(8,q)

Let $e : \Delta \to \Sigma$ denote the spin-embedding of $\Delta = DQ(8, q)$ into $\Sigma = PG(15, q)$. By De Bruyn [8] (see also Shult and Thas [18] for q odd), the hyperplanes of DQ(8, q) which arise from e are precisely the locally singular

hyperplanes of DQ(8,q). By Cardinali, De Bruyn and Pasini [5], there are three types of locally singular hyperplanes in DQ(8,q): the singular hyperplanes, the extensions of the hexagonal hyperplanes and the so-called $Q^+(7,q)$ -hyperplanes.

(1) If H is the singular hyperplane of DQ(8,q) with deepest point x, then $|H| = |\Delta_0(x)| + |\Delta_1(x)| + |\Delta_2(x)| + |\Delta_3(x)| = 1 + q(q^3 + q^2 + q + 1) + (q^2 + 1)(q^2 + q + 1)q^3 + (q^3 + q^2 + q + 1)q^6 = (q^5 + q^3 + 1)(q^4 + q^3 + q^2 + q + 1).$

(2) Suppose H is the extension of a hexagonal hyperplane. Then there exists a max $M \cong DQ(6,q)$ in DQ(8,q) and a hexagonal hyperplane A in M such that $H = M \cup (\Delta_1(A) \setminus M)$. [A hyperplane of DQ(6,q) is called *hexagonal* (Shult [17]) if the points and lines contained in it define a split-Cayley hexagon H(q).] Since every point of $\Delta \setminus M$ is collinear with a unique point of M, $|H| = |M| + |A| \cdot q^4 = (q+1)(q^2+1)(q^3+1) + (q^3+1)(q^2+q+1)q^4 = (q^3+1)(q^6+q^5+q^4+q^3+q^2+q+1)$.

(3) Suppose now that H is a $Q^+(7,q)$ -hyperplane of DQ(8,q), i.e. a hyperplane which can be constructed in the way as described now. Let Q(8,q) be the nonsingular parabolic quadric of PG(8,q) associated with the dual polar space DQ(8,q). Intersecting Q(8,q) with a suitable hyperplane of PG(8,q) we obtain a $Q^+(7,q) \subset Q(8,q)$. Let \mathcal{M}^+ and \mathcal{M}^- denote the two families of generators of $Q^+(7,q)$ and let S^+ denote the half-spin geometry for $Q^+(7,q)$ defined on the set \mathcal{M}^+ . S^+ is isomorphic to the point-line system of $Q^+(7,q)$ and hence has a hyperplane A which carries the structure of a Q(6,q). Let B denote the set of all generators π of Q(8,q) not contained in $Q^+(7,q)$ such that the unique element of \mathcal{M}^+ through $\pi \cap Q^+(7,q)$ belongs to A. Then $H := A \cup \mathcal{M}^- \cup B$ is a locally singular hyperplane of DQ(8,q). Any such hyperplane is called a $Q^+(7,q)$ hyperplane of DQ(8,q). These hyperplanes were introduced in Cardinali, De Bruyn and Pasini [5].

Every max M of DQ(8,q) corresponds with a point x_M of Q(8,q). If $x_M \in Q^+(7,q)$, then by [5], $M \cap H$ is a singular hyperplane of M and hence contains precisely $q^5 + q^4 + 2q^3 + q^2 + q + 1$ points. If $x_M \in Q(8,q) \setminus Q^+(7,q)$, then by [5], $M \cap H$ is a hexagonal hyperplane of M and hence contains precisely $(q^3 + 1)(q^2 + q + 1)$ points. Since every point of Δ is contained in precisely $q^3 + q^2 + q + 1$ maxes, the number of points of H is equal to $(q^3 + q^2 + q + 1)^{-1} \left(|Q^+(7,q)| \cdot (q^5 + q^4 + 2q^3 + q^2 + q + 1) + (|Q(8,q)| - |Q^+(7,q)|) \cdot (q^3 + 1)(q^2 + q + 1) \right) = (q^3 + 1)(q^6 + q^5 + q^4 + q^3 + q^2 + q + 1).$

By (1), (2) and (3) above, it follows that every hyperplane of Σ intersects $e(\Delta)$ in either $(q^4 + q^3 + q^2 + q + 1)(q^5 + q^3 + 1)$ or $(q^3 + 1)(q^6 + q^5 + q^4 + q^3 + q^2 + q + 1)$ points. So, $e(\Delta)$ is indeed a two-intersection set of PG(15, q).

The parameters of this two-intersection set are listed in the table given in Section 1.4.

3 A two-intersection set arising from the spinembedding of $DQ^{-}(7,q)$

Let $e : \Delta \to \Sigma$ denote the spin-embedding of $\Delta = DQ^{-}(7, q)$ into $\Sigma = PG(7, q^2)$. De Bruyn [8] classified all hyperplanes of Δ which arise from e. There are three types: the singular hyperplanes, the extensions of the classical ovoids in the quads and the so-called hexagonal hyperplanes.

(1) Suppose *H* is the singular hyperplane of Δ with deepest point *x*. Then $|H| = |\Delta_0(x)| + |\Delta_1(x)| + |\Delta_2(x)| = 1 + q^2(1+q+q^2) + q^5(q^2+q+1) = q^7 + q^6 + q^5 + q^4 + q^3 + q^2 + 1$.

(2) Suppose H is the extension of a classical ovoid O in a quad $Q \cong DQ^{-}(5,q) \cong H(3,q^2)$, i.e. $H = Q \cup (\Gamma_1(O) \setminus Q)$. [An ovoid of $H(3,q^2)$ is called *classical* if it is obtained by intersecting $H(3,q^2)$ with a nontangent plane.] Then $|H| = |Q| + |O| \cdot q^4 = (q^2 + 1)(q^3 + 1) + (q^3 + 1)q^4 = q^7 + q^5 + q^4 + q^3 + q^2 + 1$.

(3) Suppose H is a hexagonal hyperplane of $DQ^-(7,q)$. Then H is obtained in the way as described now. Let $Q^-(7,q)$ denote the nonsingular elliptic quadric of PG(7,q) associated with $DQ^-(7,q)$ and let Q(6,q) be a nonsingular parabolic quadric obtained by intersecting $Q^-(7,q)$ with a nontangent hyperplane.

Let \mathcal{G} denote a set of generators of Q(6,q) defining a hexagonal hyperplane of the dual polar space DQ(6,q) associated with Q(6,q) and let \mathcal{L} denote the set of lines L of Q(6,q) with the property that every generator of Q(6,q) through L belongs to \mathcal{G} . Then by Pralle [16], the set H of generators of $Q^-(7,q)$ containing at least one element of \mathcal{L} is a hyperplane of $DQ^-(7,q)$. We call any hyperplane which can be obtained in this way a *hexagonal hyperplane* of $DQ^-(7,q)$. The number $|\mathcal{L}|$ is the number of lines of DQ(6,q) contained in a hexagonal hyperplane and is equal to $\frac{q^6-1}{q-1}$. Each element of \mathcal{L} is contained in q+1 generators of $Q^-(7,q)$ which are contained in Q(6,q) and $q^2 - q$ generators of $Q^-(7,q)$ which are not contained in Q(6,q). Hence, $|H| = |\mathcal{G}| + (q^2 - q)|\mathcal{L}| = q^7 + q^5 + q^4 + q^3 + q^2 + 1$.

By (1), (2) and (3) above, it follows that every hyperplane of Σ intersects $e(\Delta)$ in either $q^7 + q^6 + q^5 + q^4 + q^3 + q^2 + 1$ or $q^7 + q^5 + q^4 + q^3 + q^2 + 1$ points. So, $e(\Delta)$ is indeed a two-intersection set of PG(7, q^2). The parameters of this two-intersection set are listed in the table given in Section 1.4.

4 A $(q^3 + 1)$ -tight set arising from the spinembedding of $DQ^-(7, q)$

Again, let $e: \Delta \to \Sigma$ denote the spin-embedding of $\Delta = DQ^-(7,q)$ into $\Sigma = PG(7,q^2)$. We show that $e(\Delta)$ is a $(q^3 + 1)$ -tight set of a nonsingular hyperbolic quadric $Q^+(7,q^2)$ of $PG(7,q^2)$. We recall the construction of the spin-embedding of $\Delta = DQ^-(7,q)$. Let $Q^-(7,q)$ be the nonsingular elliptic quadric associated with $DQ^-(7,q)$, and consider the inclusion $Q^-(7,q) \subseteq Q^+(7,q^2)$. Let \mathcal{M}^+ and \mathcal{M}^- denote the two families of generators of $Q^+(7,q^2)$ and let θ be a triality of $Q^+(7,q^2)$ mapping \mathcal{M}^+ to the point-set of $Q^+(7,q^2)$, the point-set of $Q^+(7,q^2)$ to \mathcal{M}^- and \mathcal{M}^- to \mathcal{M}^+ . For every generator \mathcal{M} of $Q^-(7,q)$, let $\phi'(\mathcal{M})$ denote the unique generator of \mathcal{M}^+ containing \mathcal{M} . Then $\theta \circ \phi'$ is the spin-embedding e of $DQ^-(7,q)$. Obviously, $e(\Delta)$ is a set of points of $Q^+(7,q^2)$.

Lemma 4.1 (a) If M_1 and M_2 are two generators of $Q^-(7,q)$ which meet each other, then $e(M_1)$ and $e(M_2)$ are collinear points of $Q^+(7,q^2)$.

(b) If M_1 and M_2 are two disjoint generators of $Q^-(7,q)$, then $e(M_1)$ and $e(M_2)$ are noncollinear points of $Q^+(7,q^2)$.

Proof. (a) Suppose M_1 and M_2 are two generators of $Q^-(7,q)$ which have a point x in common. Then the points $e(M_1)$ and $e(M_2)$ of $Q^+(7,q^2)$ are contained in the generator $\theta(x) \in \mathcal{M}^-$ of $Q^+(7,q^2)$. Hence, $e(M_1)$ and $e(M_2)$ are collinear on $Q^+(7,q^2)$.

(b) Suppose that M_1 and M_2 are two disjoint generators of $Q^-(7,q)$. Let $\overline{M_i}$, $i \in \{1,2\}$, denote the 2-space of $Q^+(7,q^2)$ containing M_i , Then $\overline{M_1}$ and $\overline{M_2}$ are disjoint. Since $\phi'(M_1)$ and $\phi'(M_2)$ belong to the same family of generators of $Q^+(7,q^2)$, they intersect in either the empty set or a line. But since $\overline{M_1} \cap \overline{M_2} = \emptyset$, they must intersect in the empty set. Then $e(M_1) = \theta \circ \phi'(M_1)$ and $e(M_2) = \theta \circ \phi'(M_2)$ are not collinear on $Q^+(7,q^2)$.

Now, let N_1 denote the total number of ordered pairs of distinct points of $e(\Delta)$ which are collinear on $Q^+(7, q^2)$. By Lemma 4.1,

$$N_1 = |\Delta| \cdot \left(|\Delta_1(x)| + |\Delta_2(x)| \right), \tag{2}$$

where $|\Delta| = (q^2 + 1)(q^3 + 1)(q^4 + 1)$ denotes the total number of points of Δ and x denotes an arbitrary point of Δ . So, $N_1 = (q^2 + 1)(q^3 + 1)(q^4 + 1)(q^2(q^2+q+1)+q^5(q^2+q+1)) = (q^2+1)(q^3+1)(q^4+1)q^2(q^3+1)(q^2+q+1)$. Calculating expression (1) of Section 1.2, we find

$$(q^{6}-1) \cdot (q^{2}+1)(q^{3}+1)(q^{4}+1) \cdot \left(\frac{(q^{2}+1)(q^{3}+1)(q^{4}+1)}{q^{8}-1}+1\right)$$

$$= q^{2}(q^{2}+1)(q^{3}+1)^{2}(q^{4}+1)(q^{2}+q+1).$$

Since the expressions (1) and (2) are equal, $e(\Delta)$ is a tight set of points of $Q^+(7,q^2)$. The set $e(\Delta)$ is *i*-tight where

$$i = \frac{|\Delta| \cdot (q^2 - 1)}{q^8 - 1} = q^3 + 1.$$

References

- J. Bamberg, S. Kelly, M. Law and T. Penttila. Tight sets and movoids of finite polar spaces. J. Combin. Theory Ser. A 114 (2007), 1293–1314.
- F. Buekenhout and P. J. Cameron. Projective and affine geometry over division rings. Chapter 2 of the "Handbook of Incidence Geometry" (ed. F. Buekenhout), Elsevier, 1995.
- [3] R. Calderbank and W. M. Kantor. The geometry of two weight codes. Bull. London Math. Soc. 18 (1986), 97–122.
- [4] P. J. Cameron. Dual polar spaces. Geom. Dedicata 12 (1982), 75-85.
- [5] I. Cardinali, B. De Bruyn and A. Pasini. Locally singular hyperplanes in thick dual polar spaces of rank 4. J. Combin. Theory Ser. A 113 (2006), 636–646.
- [6] C. C. Chevalley. *The algebraic theory of spinors*. Columbia University Press, New York, 1954.
- [7] B. N. Cooperstein and E. E. Shult. A note on embedding and generating dual polar spaces. Adv. Geom. 1 (2001), 37–48.
- [8] B. De Bruyn. The hyperplanes of $DQ(2n, \mathbb{K})$ and $DQ^{-}(2n + 1, q)$ which arise from their spin-embeddings. J. Combin. Theory Ser. A 114 (2007), 681–691.
- [9] P. Delsarte. Two-weight linear codes and strongly regular graphs. Report R160, MBLE Res. Lab., Brussels, 1971.
- [10] P. Delsarte. Weights of linear codes and strongly regular normed spaces. Discrete Math. 3 (1972), 47–64.
- [11] P. Delsarte. An algebraic approach to the association schemes of coding theory. *Philips Research Reports Supplements* 10, 1973.

- [12] P. Delsarte and J. M. Goethals. Irreducible binary cyclic codes of even dimension. *Combinatorial mathematics and its applications*. Proc. Second Chapel Hill Conference (Univ. of North Carolina, Chapel Hill, N. C., 1970), 100–113.
- [13] K. Drudge. Extremal sets in projective and polar spaces. Ph.D. thesis. The University of Western Ontario, 1998.
- [14] S. Kelly. Constructions of intriguing sets of polar spaces from field reduction and derivation. Des. Codes Cryptogr. 43 (2007), 1–8.
- [15] S. E. Payne. Tight pointsets in finite generalized quadrangles. Congr. Numer. 60 (1987), 243–260.
- [16] H. Pralle. Hyperplanes of dual polar spaces of rank 3 with no subquadrangular quad. Adv. Geom. 2 (2002), 107-122.
- [17] E. E. Shult. Generalized hexagons as geometric hyperplanes of near hexagons. In "Groups, Combinatorics and Geometry" (eds. M. Liebeck and J. Saxl), Cambridge Univ. Press (1992), 229-239.
- [18] E. E. Shult and J. A. Thas. Hyperplanes of dual polar spaces and the spin module. Arch. Math. 59 (1992), 610-623.
- [19] E. E. Shult and A. Yanushka. Near n-gons and line systems. Geom. Dedicata 9 (1980), 1–72.
- [20] J. Tits. Buildings of Spherical Type and Finite BN-pairs. Lecture Notes in Mathematics 386. Springer, Berlin, 1974.

Addresses:

Ilaria Cardinali Department of Engineering University of Siena Via Roma, 56 I-53100 Siena, Italy cardinali3@unisi.it

Bart De Bruyn Department of Pure Mathematics and Computer Algebra Ghent University Krijgslaan 281 (S22) B-9000 Gent, Belgium bdb@cage.ugent.be