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Abstract. We study natural lifting operations from a bundle τ : E → R to the

bundle π : J1τ∗ → E which is the dual of the first-jet bundle J1τ . The main purpose

is to define a complete lift of a type (1, 1) tensor field on E and to understand all

features of its construction. Various other lifting operations of tensorial objects on

E are needed for that purpose. We prove that the complete lift of a type (1, 1)

tensor with vanishing Nijenhuis torsion gives rise to a Poisson-Nijenhuis structure

on J1τ∗, and discuss in detail how the construction of associated Darboux-Nijenhuis

coordinates can be carried out.

1 Introduction

Consider a bundle τ : E → R with dimE = n+1. Local coordinates on E will be denoted
by (t, qi). The construction of the first jet manifold J1τ of τ is well known (see e.g. [27]). It
is an affine bundle over E with induced coordinates (t, q, q̇) say, and can be considered as
an affine sub-bundle of TE, locally determined by coordinates of the form (t, q, ṫ = 1, q̇).
J1τ is the space to be for the analysis of intrinsic or geometric aspects of time-dependent
Lagrangian systems. The motivation for the present paper is more like setting the stage
for future applications on the Hamiltonian side. So, we consider the cotangent bundle
T ∗E, with natural coordinates (t, qi, p0, pi), which is said to be the extended dual (J1τ)†

of J1τ . The main space of interest, however, is the dual of J1τ , denoted by J1τ ∗, which
is the quotient space T ∗E/〈dt〉 and is sometimes called the vertical c otangent bundle.
There are natural projections ρ : T ∗E → J1τ ∗ and π : J1τ ∗ → E. Each point m ∈ J1τ ∗

is an equivalence class of covectors 〈α〉mod dt at π(m); saying that m has coordinates
(t, qi, pi) means that a representative of the class is given by α(t,q) = pidq

i. Elements of
J1τ ∗ have a well-defined action on vertical tangent vectors to E:

for v = vi
∂

∂qi

∣∣∣∣
(t,q)

∈ T(t,q)E, we have 〈v, 〈α〉〉 = vipi.
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J1τ ∗ is the natural bundle for the description of time-dependent Hamiltonian systems: a
Hamiltonian is a section h of the line bundle ρ : T ∗E → J1τ ∗. Locally, h defines a function
H on J1τ ∗, determined by h : (t, q, p) 7→ (t, q, p0 = −H(t, q, p), p) say (where the minus
sign is of course a matter of convention). A Hamiltonian system then is a vector field Xh

on J1τ ∗, satisfying iXh
h∗ωE = 0, 〈Xh, dt〉 = 1, where ωE is the canonical symplectic form

on T ∗E, so that locally h∗ωE = dpi ∧ dqi − dH ∧ dt.

An important point to note here is that in many papers on time-dependent mechanical
systems, E is identified with a trivial bundle R × M , which subsequently implies that
J1τ ∼= R × TM and J1τ ∗ ∼= R × T ∗M . The list of citations we could insert here is
endless, but to name just a few, in different contexts, see [1], [4], [7], [10]. Often, the
trivial bundle R × M is chosen as model for the configuration space from the outset.
A more sophisticated argument, however, is that a bundle such as τ : E → R can be
identified with R×M by choosing a trivialization. So this is fine, as long as one keeps in
mind that the essence of applications in time-dependent mechanics is to allow for time-
dependent coordinate transformations, which are transformations which do not preserve
the product bundle structure R × M . Our goal specifically in this paper is to study
natural lifting operations from ten sor fiel ds on E to corresponding tensor fields on
J1τ ∗. Therefore, we want to avoid making such identifications because this would hold
the danger of introducing lifting operations which are natural only under transformations
which preserve the corresponding product structure (examples of such operations can
be found e.g. in [28]). In this respect, our approach more closely relates to the work
of Sardanashvily and co-workers on time-dependent mechanics, see [25] and [14]. Other
similar settings can be found e.g. in [23].

Starting from objects on E, corresponding lifted objects on TE, T ∗E or J1τ are rather
well known. This is less the case for lifting operations to J1τ ∗, with the exception of [14]
already cited. Our main objective is to come to an intrinsic definition of the complete lift
of a type (1, 1) tensor field from E to J1τ ∗ and to study its properties. To the best of our
knowledge, this has not been analysed before and earlier work of one of us [6] about lifting
to a cotangent bundle will serve as a source of inspiration. For some other interesting
background information about general aspects of natural operations, see [16]. Another
standard reference for lifting operations is [29].

In the next section, we discuss various lifts of vector fields and 1-forms to J1τ ∗ and
list some immediate properties. Ways of lifting type (1, 1) tensors from E to J1τ ∗ are
introduced in Section 3. Further properties relating the constructions of the two preceding
sections are derived in Section 4. They are indispensable for proving in Section 5 that the
canonical Poisson structure on J1τ ∗, together with the complete lift of a type (1, 1) tensor
R on E with vanishing Nijenhuis torsion, determine a Poisson-Nijenhuis structure on
J1τ ∗. The construction of Darboux-Nijenhuis coordinates for this structure is explained
in detail in Section 6. In the final section, we say a few words about the applications to
time-dependent Hamiltonian systems we have in mind for future publications.
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2 Lifting vector fields and 1-forms

Consider XV (E), the C∞(E)-module of vertical vector fields on E. For each X ∈ XV (E)
we can define a fibre linear function on J1τ ∗ as follows.

Definition 1. If X ∈ XV (E), we denote by FX ∈ C∞(J1τ ∗) the function which at each
point m ∈ J1τ ∗ takes the value FX(m) = 〈Xπ(m), m〉.

If m has coordinates (t, q, p) and X = X i(t, q)∂/∂qi, the coordinate expression of FX is
given by FX(t, q, p) = piX

i(t, q).

A first set of interesting vector fields on J1τ ∗ is obtained by vertically lifting 1-forms on
E.

Definition 2. For α ∈ X ∗(E), αv ∈ X (J1τ ∗) is determined by

αv(π∗f) = 0, ∀f ∈ C∞(E)

αv(FX) = π∗〈X,α〉 ∀X ∈ XV (E).

αv is called the vertical lift of α.

In coordinates, if α = α0(t, q)dt+ αi(t, q)dq
i, we have

αv = αi

∂

∂pi
. (1)

It is worth observing that in fact the assignment α 7→ αv is a map from X ∗(E)/〈dt〉 into
X (J1τ ∗).

J1τ ∗ does not carry a canonical 1-form, but there is a canonical equivalence class of 1-
forms modulo the module generated by dt, which we shall denote by 〈θ〉. As an element
of X ∗(J1τ ∗)/〈dt〉, it is meant to have a well-defined action, at each point m ∈ J1τ ∗, on
vectors which are vertical with respect to the projection τ ◦ π : J1τ ∗ → R.

Definition 3. The equivalence class 〈θ〉 ∈ X ∗(J1τ ∗)/〈dt〉 is defined as follows: ∀m ∈ J1τ ∗

and vm ∈ Tm(J
1τ ∗), vertical with respect to τ ◦ π, we have

〈vm, 〈θ〉m〉 = 〈Tπ(vm), m〉.

In coordinates, 〈θ〉 = pidq
imod dt. It follows that

Θ = pidq
i ∧ dt (2)

is a canonically defined 2-form on J1τ ∗. It can be characterized alternatively by the
following property, which mimics a well known characterization of the canonical 1-form on
a cotangent bundle. A section of the bundle π : J1τ ∗ → E is an element 〈α〉 ∈ X ∗(E)/〈dt〉
and for each representative α of the class we have that α∗Θ = α ∧ dt.

We now have the tools to define the complete lift of two classes of vector fields on E, one
is the module of vertical vector fields XV (E) already introduced; the other is the set of
vector fields with the property 〈X, dt〉 = 1 which we shall denote by Xt(E). Elements of
Xt(E) can be regarded as sections of J1τ → E, if J1τ is seen as the submanifold of TE
described before.
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Definition 4. For all X ∈ XV (E) ∪ Xt(E), the complete lift X̃ ∈ X (J1τ ∗) is defined by

the following two requirements: (i) X̃ is π-related to X; (ii) LX̃Θ = 0.

It is an easy computation to check that in coordinates,

X̃ = X i ∂

∂qi
− pj

∂Xj

∂qi
∂

∂pi
, for X = X i(t, q)

∂

∂qi
∈ XV (E) (3)

X̃ =
∂

∂t
+X i ∂

∂qi
− pj

∂Xj

∂qi
∂

∂pi
, for X =

∂

∂t
+X i(t, q)

∂

∂qi
∈ Xt(E). (4)

Both types of complete lifts are introduced in [14] in a different way, mainly based on coor-
dinate calculations. In any event, it is an instructive exercise to verify by direct coordinate
calculations that all lifting constructions so far introduced are indeed well defined, i.e. be-
have properly under a time-dependent coordinate transformation t = t, Qi = Qi(t, q) on
E and the induced transformation (t, q, p) 7→ (t, Q, P ) on J1τ ∗, where

Pj = pi
∂qi

∂Qj
(t, Q(t, q)).

Some immediate properties of X̃, which are easy to verify in coordinates, are

for X ∈ XV (E), i
X̃
Θ = FXdt,

for X ∈ Xt(E), iX̃Θ ∧ dt = −Θ.

The main motivation for introducing the vector fields αv and both types of X̃ , is that
together they provide a local basis of vector fields on J1τ ∗. As such, they are perfectly
suited to define other tensorial objects on J1τ ∗ in a coordinate free way, as we will see
in the subsequent sections. It will then be interesting to have expressions for the Lie
brackets of such vector fields. For all α, β ∈ X ∗(E) and X ∈ XV (E) ∪ Xt(E), we have

[αv, βv] = 0, (5)

[X̃, αv] = (LXα)
v, (6)

[X̃, Ỹ ] = [̃X, Y ]. (7)

3 Lifting type (1, 1) tensor fields

In what follows, R will always denote a type (1, 1) tensor field on E with the property
R(dt) = 0. We make no notational distinction between the action of a (1, 1) tensor on
vector fields and its adjoint action on 1-forms; for example, for X ∈ X (E) and α ∈ X ∗(E),
we have 〈R(X), α〉 = 〈X,R(α)〉. In coordinates, the tensor fields under consideration have
the form

R = Ri
j(t, q)

∂

∂qi
⊗ dqj +Ri

0(t, q)
∂

∂qi
⊗ dt. (8)
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Definition 5. The vertical lift Rv is a vector field on J1τ ∗, determined by

Rv(π∗f) = 0, ∀f ∈ C∞(E)

Rv(FX) = FR(X) ∀X ∈ XV (E).

In coordinates,

Rv = piR
i
j

∂

∂pj
. (9)

Definition 6. The horizontal lift Rh is a 1-form on J1τ ∗, which pointwise is defined by
Rh

m = Rπ(m)(m) for all m ∈ J1τ ∗.

Recall that m is not a covector at π(m), but an equivalence class of covectors mod dt.
But the action of Rπ(m) on such a class is well defined because of the property R(dt) = 0.
Rh is a semi-basic 1-form on J1τ ∗, which in coordinates reads

Rh = piR
i
jdq

j + piR
i
0dt. (10)

Having added a new type of vertical vector field to the picture, it is appropriate that
we complement the Lie bracket properties listed at the end of the previous section. For
α ∈ X ∗(E) and X ∈ XV (E) ∪ Xt(E), we have

[αv, Rv] = R(α)v, (11)

[Rv
1, R

v
2] = (R1R2 −R2R1)

v, (12)

[X̃, Rv] = (LXR)v. (13)

Note in passing that if R(dt) = 0, then for all X ∈ XV (E) ∪ Xt(E), also (LXR)(dt) = 0.

To define the complete lift of a (1, 1) tensor to the cotangent bundle, one normally makes
use of the canonical symplectic form. We don’t have a symplectic structure on J1τ ∗.
Therefore, we look at relations which were established as properties in the cotangent case
(see [6]) as a source of inspiration to come to an alternative definition here. The following
lemma will be useful for that purpose.

Lemma 1. If f is an arbitrary function on E, we have

(fα)v = f αv, α ∈ X ∗(E)

(fR)v = f Rv, R (1, 1)-tensor on E

f̃X = f X̃ − FX (df)v, X ∈ XV (E)

LfXR = f LXR−X ⊗ R(df) +R(X)⊗ df.

Proof. Follows from a straightforward computation, for example in coordinates. For
completeness: the factor f on the right-hand side of the first three relations should actually
be π∗(f), but we try to avoid an overload of notations here and in what follows.
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Theorem 1. Given a type (1, 1) tensor field R on E with the property R(dt) = 0, there

is a unique type (1, 1) tensor R̃ on J1τ ∗, which has the properties

R̃(αv) = R(α)v, ∀α ∈ X ∗(E) (14)

R̃(X̃) = R̃(X) + (LXR)v, ∀X ∈ XV (E) ∪ Xt(E). (15)

R̃ is called the complete lift of R to J1τ ∗.

Proof. Note first that for both types of vector fields in (15), we have thatR(X) is vertical,

so that R̃(X) makes sense. As indicated before, the set of vector fields considered in the
above relations constitutes a local basis for the vector fields on J1τ ∗. To be specific,
we need n independent α ∈ X ∗(E), n independent X ∈ XV (E) and one X ∈ Xt(E) to

generate such a basis. Imposing linearity over the module C∞(J1τ ∗) then further fixes R̃
for all vector fields in X (J1τ ∗). But for this approach to be consistent, we need to verify
that our construction does not depend on a specific selection of 1-forms α and vector
fields X on E. Since every other selection of independent α and X will originate from a
linear combination over C∞(E) of the ones first thought of, the issue is to check that the
defining relations behave properly under f -linear changes of α ∈ X ∗(E) and X ∈ XV (E),
with f ∈ C∞(E). Using the results of the preceding lemma, we have that

R̃((fα)v) = R̃(fαv) = f R̃(αv) = f (R(α))v = (R(fα))v.

Also, on the one hand

R̃(f̃X) = R̃
(
fX̃ − FX(df)

v
)
= fR̃(X̃)− FXR̃((df)v)

= f
(
R̃(X) + (LXR)v

)
− FX(R(df))v.

This can be seen to match the sum of the following two expressions:

R̃(fX) = f̃R(X) = f R̃(X)− FR(X)(df)
v,

and
(LfXR)v = f(LXR)v − FX(R(df))v + FR(X)(df)

v,

where we have used also the general property (Y ⊗ β)v = FY βv.

In coordinates, the complete lift of the tensor R in (8) reads,

R̃ = Ri
j

(
∂

∂qi
⊗ dqj +

∂

∂pj
⊗ dpi

)
+Ri

0

∂

∂qi
⊗ dt

+ pi

(
∂Ri

j

∂qk
−

∂Ri
k

∂qj

)
∂

∂pj
⊗ dqk + pi

(
∂Ri

k

∂t
−

∂Ri
0

∂qk

)
∂

∂pk
⊗ dt. (16)

At this point, it is of some interest to compare R̃ with the complete lift of R to the
cotangent bundle T ∗E, let us call it R̃T ∗ , which in coordinates (t, qi, p0, pi) on T ∗E is
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given by

R̃T ∗ = Ri
j

(
∂

∂qi
⊗ dqj +

∂

∂pj
⊗ dpi

)
+Ri

0

(
∂

∂qi
⊗ dt +

∂

∂p0
⊗ dpi

)

+ pi

(
∂Ri

j

∂qk
−

∂Ri
k

∂qj

)
∂

∂pj
⊗ dqk + pi

(
∂Ri

k

∂t
−

∂Ri
0

∂qk

)
∂

∂pk
⊗ dt

+ pi

(
∂Ri

0

∂qk
−

∂Ri
k

∂t

)
∂

∂p0
⊗ dqk.

Considering the projection ρ : T ∗E → J1τ ∗, the concept of ρ-related vector fields is well
known.

Definition 7. Type (1, 1) tensor fields U on T ∗E and V on J1τ ∗ are said to be ρ-related,
if for all ρ-related pairs of vector fields (Y, Z), we have that U(Y ) is ρ-related to V (Z).

The following alternative characterization is easy to prove.

Proposition 1. U and V are ρ-related if for all σ ∈ X ∗(J1τ ∗) we have that U(ρ∗σ) =
ρ∗(V (σ)).

Proposition 2. R̃T ∗ on T ∗E and R̃ on J1τ ∗ are ρ-related.

This is easy to see from the coordinate expressions by appealing to the result of the
preceding proposition.

It is important for the next sections that we also pin down the adjoint action of R̃ by using
a natural local basis of 1-forms on J1τ ∗. Such a natural basis is being provided by pull
backs of 1-forms on E, complemented by 1-forms of the type dFX , with FX as introduced
in Definition 1. Again, a straightforward coordinate calculation is sufficient to verify that
the adjoint action of R̃ is determined by the following coordinate free relations, in which
also the horizontal lift of (1, 1) tensors exhibits its relevance.

Proposition 3. The action on 1-forms of the complete lift R̃ on J1τ ∗ is fully determined
by the relations

R̃(π∗α) = π∗R(α), ∀α ∈ X ∗(E) (17)

R̃(dFX) = dFR(X) − (LXR)h, ∀X ∈ XV (E). (18)

4 Further properties of R̃

The main goal for this section is to compute the Nijenhuis torsion of the complete lift R̃.
For that we will need some auxiliary properties, for example information about the Lie
derivatives of R̃ with respect to vector fields of type αv or X̃. In turn, this is prompting
for one further lifting operation, from a 2-form on E to a type (1, 1) tensor field on J1τ ∗.

7



Definition 8. For ω ∈
∧2(E) we define a type (1, 1) tensor ωv on J1τ ∗, called the vertical

lift of ω, by the relations

ωv(αv) = 0, ∀α ∈ X ∗(E) (19)

ωv(X̃) = (iXω)
v, ∀X ∈ XV (E) ∪ Xt(E). (20)

The defining relations are obviously linear here with respect to multiplication of α or X
with a function on E, so that this is well-defined. In coordinates, if

ω = 1
2
ωij(t, q)dq

i ∧ dqj + ω0i(t, q)dt ∧ dqi, (21)

then

ωv = ωij

∂

∂pj
⊗ dqi + ω0j

∂

∂pj
⊗ dt. (22)

Proposition 4. The basic Lie derivatives of the complete lift R̃ have the following ex-
pressions

LX̃R̃ = L̃XR, ∀X ∈ XV (E) ∪ Xt(E) (23)

LαvR̃ =
(
− R dα+ d(Rα)

)v
, ∀α ∈ X ∗(E). (24)

Proof. The proof is a simple matter of evaluating both sides of the above claims on a
basis of vector fields on J1τ ∗. We leave the first one as an exercise for the reader and
show how it works for (24). We have

LαvR̃(βv) = Lαv

(
R̃(βv)

)
− R̃([αv, βv]) = 0,

while

LαvR̃(X̃) = Lαv

(
R̃(X̃)

)
− R̃([αv, X̃ ])

= Lαv

(
R̃X + (LXR)v

)
+ R̃

(
(LXα)

v
)

= −(LRXα)
v +

(
LXR(α)

)v
+
(
R(LXα)

)v

=
(
− LRXα+ LX(Rα)

)v
(25)

=
(
− iRXdα + iXd(Rα)

)v

=
(
− iX(R dα) + iXd(Rα)

)v
,

from which the equality (24) now readily follows. In making this computation, we have
made use of properties such as (5), (6) and (11) and of course the defining relations of
Theorem 1.

Note in passing that for a 2-form ω, R ω is not the same as iRω; by R ω we mean the
2-form defined by R ω(X, Y ) = ω(RX, Y ).

Now recall that the Nijenhuis torsion of a tensor such as R is the type (1, 2) tensor NR

defined by

NR(X, Y ) = [RX,RY ] +R2([X, Y ])− R([RX, Y ])− R([X,RY ]), (26)
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with X, Y ∈ X (E). We also put (iXNR)(Y ) = NR(X, Y ) and recall then the property
that for the action on vector fields

iXNR = LRXR −R ◦ LXR. (27)

For the computation of the Nijenhuis torsion of R̃ we will need the following result.

Proposition 5. The action of R̃2 on vector fields on J1τ ∗ is determined by

R̃2(αv) = (R2(α))
v
, α ∈ X ∗(E)

R̃2(X̃) = R̃2(X) + (LXR
2)

v
+ (iXNR)

v, X ∈ XV (E) ∪ Xt(E).

Proof. Follows easily from the defining relations in Theorem 1.

Proposition 6. The Nijenhuis torsion of the complete lift R̃ on J1τ ∗ is determined by
the following relations, where α, β ∈ X ∗(E) and X, Y ∈ XV (E) ∪ Xt(E),

NR̃(α
v, βv) = 0,

N
R̃
(X̃, αv) = ((iXNR)(α))

v,

NR̃(X̃, Ỹ ) = ˜NR(X, Y ) + (i[X,Y ]NR)
v +

(
LY (iXNR)− LX(iYNR)

)v
.

Proof. The proof is a matter of making use of the defining relations in Theorem 1
again, together with the results about R̃2 of the preceding proposition and a number of
the bracket relations established before. But formally, all these relations are identical to
the ones we know from the cotangent bundle situation. Specifically, what are defining
relations here, namely (14,15), were properties of the complete lift to a cotangent bundle
in [6] (cf. Theorem 1 in that paper). Hence, we can simply refer to the proof of the

Nijenhuis properties in [6]. Since that proof was given in great detail for NR̃(X̃, Ỹ ), we

limit ourselves here to giving a sketch of the calculation for N
R̃
(X̃, αv). Starting from the

definition of NR̃ and a first implementation of known properties, mainly from Theorem 1,
we have

NR̃(X̃, αv) = [R̃X, (Rα)v] + [(LXR)v, (Rα)v] + R̃2((LXα)
v)

− R̃([R̃X, αv])− R̃([(LXR)v, αv])− R̃([X̃, (Rα)v]).

A subsequent use of known bracket relations reduces the right-hand side to the vertical
lift of the following aggregation of terms:

LRX(Rα)− LXR(Rα) +R2(LXα)−R(LRXα) +R(LXR(α))−R(LX(Rα)).

It is now a simple matter to simplify this expression further to

LRXR(α)−LXR(Rα) = (iXNR)(α),

where one has to keep in mind that the order of composition of (1, 1) tensors changes,
when passing from the action on vector fields to the adjoint action on 1-forms.
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Theorem 2. NR̃ = 0 if and only if NR = 0.

Proof. From the results of the preceding proposition, it is clear that NR = 0 implies
NR̃ = 0. Conversely, NR̃ = 0 implies in particular that ((iXNR)(α))

v = 0 for all 1-forms α
on E andX ∈ XV (E)∪Xt(E), which is equivalent to saying that the 1-form (iXNR)(α) = 0
mod dt. In turn, this can be expressed as 〈Y, (iXNR)(α)〉 = 0 for all vertical Y . Looking
at NR again as vector-valued two-form, the conclusion is that

NR(X, Y ) = 0, ∀Y ∈ XV (E), X ∈ XV (E) ∪ Xt(E).

Thinking for a moment in coordinates, if we take an X in Xt(E), we will still get zero by
adding to the vertical Y a term spanned by ∂/∂t because of the skew-symmetry of NR.
In the end, the fact that NR is known to be tensorial guarantees that NR(X, Y ) = 0 for
all X, Y ∈ X (E).

5 A Poisson-Nijenhuis structure on J1τ ∗

It is known (see e.g. [14]) that J1τ ∗ carries a canonical Poisson structure, namely the
structure inherited from the Poisson structure on T ∗E via the projection ρ : T ∗E → J1τ ∗.
The point is that the Poisson bracket of functions ρ∗F and ρ∗G, with F,G ∈ C∞(J1τ ∗)
is a function of the same type, constant on fibres. According to a general result in [18],
this defines a unique Poisson structure Λ on J1τ ∗. In coordinates, we write

Λ(dF, dG) = {F (t, q, p), G(t, q, p)} =
∂F

∂qi
∂G

∂pi
−

∂F

∂pi

∂G

∂qi
,

i.e. our sign convention is such that

Λ =
∂

∂qi
∧

∂

∂pi
. (28)

The corresponding Poisson map P : X ∗(J1τ ∗) → X (J1τ ∗) is defined by Λ(α, β) =
〈P (α), β〉, and another part of the sign convention we choose for is to put

XF = −P (dF ) =
∂F

∂pi

∂

∂qi
−

∂F

∂qi
∂

∂pi
. (29)

It is of interest to characterize P also by its action on the local basis of 1-forms on J1τ ∗

which we used before. For α ∈ X ∗(E) and X ∈ XV (E), we have

P (π∗α) = αi

∂

∂pi
= αv, (30)

P (dFX) = pj
∂Xj

∂qi
∂

∂pi
−X i ∂

∂qi
= −X̃, (31)

and note for completeness that for the horizontal lift (10) of a (1, 1) tensor,

P (Rh) = piR
i
j

∂

∂pj
= Rv. (32)
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Now let R as before be a (1, 1) tensor on E with the property R(dt) = 0. We wish

to investigate under what circumstances the complete lift R̃ is a candidate to become a
recursion operator for P , or expressed differently, for the couple (P, R̃) to define a Poisson-
Nijenhuis structure on J1τ ∗. For general aspects of Poisson-Nijenhuis structures see e.g.
[22] and [17]. A preliminary condition to be satisfied is that R̃ should commute with the
Poisson map P . Now, using (17), (30) and (14), we get

PR̃(π∗α) = P (π∗R(α)) = (R(α))v = R̃(αv) = R̃P (π∗α).

Likewise, using (18), (31), (32) and (15), we have

PR̃(dFX) = P
(
dFR(X) − (LXR)h

)
= −R̃(X)− (LXR)v = −R̃(X̃) = R̃P (dFX).

This confirms the required commutation property, which is a condition also for the so-
called Magri-Morosi concomitant µR̃,P [22] to be a tensor field of type (1, 2). Its defining

relation then can be formulated as follows: for all σ ∈ X ∗(J1τ ∗) and Z ∈ X (J1τ ∗),

µR̃,P (σ, Z) :=
(
LP (σ)R̃

)
(Z)− P

(
LX(R̃(σ))

)
+ P

(
LR̃(Z)σ

)
(33)

is a vector field on J1τ ∗. The couple (P, R̃) will define a Poisson-Nijenhuis structure if

R̃ has vanishing Nijenhuis torsion and µR̃,P = 0. We know all about vanishing NR̃. To
check whether the Magri-Morosi concomitant vanishes, we further need the following list
of properties of Lie derivatives of the 1-forms we obtained on J1τ ∗ by lifting operations.

Lemma 2. Let α, β ∈ X ∗(E), X ∈ XV (E), Y ∈ XV (E) ∪ Xt(E), while R and Q denote
(1, 1) tensors on E vanishing on dt. Then,

Lβv(π∗α) = 0 LQv(π∗α) = 0 LỸ (π
∗α) = π∗(LY α) (34)

LβvdFX = π∗diXβ LQvdFX = dFQX LỸ dFX = dF[Y,X] (35)

LβvRh = π∗R(β) LQvRh = (Q ◦R)h LỸR
h = (LYR)h. (36)

Proof. The proof is a straightforward calculation which can be done either by evaluating
both sides on the usual basis of vector fields and making use of Lie derivative properties
obtained before, or perhaps more simply by a direct coordinate calculation.

Proposition 7. The Magri-Morosi concomitant µR̃,P vanishes identically.

Proof. For an elegant proof, we simply let σ and Z in the defining relation (33) run over
the set of 1-forms and vector fields on J1τ ∗ which we have used all the time to generate
a local basis. For σ = π∗α and Z = βv, with α, β ∈ X ∗(E), one easily checks that all

three terms vanish separately. For σ = π∗α and Z = Ỹ , using (25) and (34b,34c), the
right-hand side of (33) reduces in the first place to

−(LRY α)
v + (LY (Rα))v − P (π∗LY (Rα)) + P (π∗LRY α),
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and this is clearly zero in view of (30). Next, for σ = dFX and Z = βv, using (31) in the
first term, (18) in the second and (14) in the third, we get

−
(
L

X̃
R̃
)
(βv)− P

(
Lβv(dFRX − (LXR)h)

)
+ P

(
L(Rβ)vdFX

)
.

We subsequently use (23) in the first term, (35a) and (36a) in the second and (35a) in
the third again, and when we next evaluate the P -terms everything cancels out again.
Finally, after a first evaluation, we get for µ

R̃,P
(dFX , Ỹ ):

−
(
LX̃R̃

)
(Ỹ )− P

(
LỸ (dFRX − (LXR)h)

)
+ P

(
L

R̃Y
dFX + L(LY R)vdFX

)
.

It is then a matter of using (35c), (36c) and (35b), plus the properties (31) and (32) of
P , to come to an expression where everything cancels out again.

Theorem 3. Let R be a (1, 1) tensor on τ : E → R with the property R(dt) = 0 and

let R̃ be its complete lift to J1τ ∗. Denote by P : X ∗(J1τ ∗) → X (J1τ ∗) the canonical

Poisson map on J1τ ∗. Then, (P, R̃) is a Poisson-Nijenhuis structure on J1τ ∗ if and only
if NR = 0, where NR is the Nijenhuis torsion of R on E.

Proof. We have shown that PR̃ = R̃P and that the Magri-Morosi concomitant µR̃,P

vanishes. The only other requirement for having a Poisson-Nijenhuis structure then is
that NR̃ = 0. But Theorem 2 tells us that this is equivalent to NR = 0.

6 Darboux-Nijenhuis coordinates

It is known that under appropriate conditions, there exist special coordinates which are
simultaneously adapted to the Poisson structure and the recursion operator of a Poisson-
Nijenhuis structure, in the sense that they diagonalize the recursion tensor and provide
canonical (Darboux) coordinates for the Poisson tensor. A few general references in this
respect are [21] and [12]. Yet it is hard to find a detailed explanation on the way such

coordinates will arise. So we will try to give such details here for the case of our (P, R̃)
structure.

The basic assumption is that the tensor R on E is algebraically diagonalizable with distinct
eigenvalues. Observe then that the property R(dt) = 0 immediately says that dt is an
eigenform corresponding to the eigenvalue λ0 = 0. Obviously, R is degenerate, but our
assumption implies that it has rank n. We write (Rα

β ) now for the matrix representation
of R (as linear map on vectors), with Greek indices running from 0 to n, and α in the
role of row index. So, with R as in (8), the first row of the matrix has only zeros, the
Ri

0 constitute the remaining elements of the first column, and the n × n matrix (Ri
j) is

non-singular. Since the Poisson tensor Λ already takes its canonical form (28) in natural
bundle coordinates (t, q, p) on J1τ ∗, what we are after is a coordinate transformation which

does not destroy this canonical form and achieves the diagonalization of R̃ in coordinates.
Hence, i t will h ave to be the induced transformation of a time-dependent coordinate
transformation on E which diagonalizes R. From the fundamental paper of Frölicher
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and Nijenhuis [13], we learn that diagonalizability in coordinates requires vanishing of
the so-called Haantjes tensor. But a direct application of this theory in our case, where
the manifold E has coordinates xα = (t, qi) say, will merely guarantee the existence of
new coordinates yβ = yβ(xα) which do the job. This is a supplementary reason for
going through the procedure in some detail here, because we need a transformation which
preserves the fibred structure of E, i.e. the yβ should be of the form (t, Qi(t, q)).

Let X(α) be a local basis for X (E) consisting of eigenvectors of R (the extra brackets used
for the index are meant to indicate that there are no summations over repeated indices
in what follows). Then,

NR(X(α), X(β)) = (R− λ(α))(R− λ(β))([X(α), X(β)])

+ (λ(α) − λ(β))
(
X(α)(λ(β))X(β) +X(β)(λ(α))X(α)

)
.

Following [13], we next look at the Haantjes tensor, defined by

HR(X, Y ) := R2NR(X, Y ) +NR(RX,RY )−RNR(RX, Y )− RNR(X,RY ),

and easily obtain that

HR(X(α), X(β)) = (R − λ(α))(R − λ(β))NR(X(α), X(β))

= (R − λ(α))
2(R− λ(β))

2([X(α), X(β)]).

Since NR = 0, also HR = 0 and this is the necessary and sufficient condition for a
diagonalizable R to be diagonalizable in coordinates. Indeed, we see that in our case
HR = 0 implies that [X(α), X(β)] ∈ sp{X(α), X(β)} for all α, β. If we denote by D(α) the
distribution spanned by X(α), Frobenius theorem implies in such a case that all D(α) are
simultaneously integrable. In other words, there exist new coordinates yα such that in
those coordinates, D(α) = sp{∂/∂yα}. Our extra concern now is that such new coordinates
should be of the form indicated above. To see that this is possible, it suffices to look at
the dual picture of eigenforms. Let D⊥

(α) denote the annihilator of D(α) and put D∗
(α) =

∩β 6=αD
⊥
(β). Then by construction 〈X(β), ρ(α)〉 = 0 ∀β 6= α and ρ(α) ∈ D∗

(α), while

〈R(X(α)), ρ(α)〉 = λ(α)〈X(α), ρ(α)〉 = 〈X(α), R(ρ(α))〉.

Hence, ρ(α) is an eigenform of R corresponding to the eigenvalue λ(α). Therefore, in
the coordinates yα simultaneously adapted to all D(α), ρ(α) is in the module generated
by dyα. So, in the dual picture, the coordinate transformation (t, qi) → yα has the
task of producing eigenforms of the form dyα. But we know that dt is an eigenform
(with eigenvalue zero), hence we can simply take y0 = t, meaning that R will indeed be
diagonalized by a transformation of the form (t, q) → (t, Q(t, q)). In the new variables, the
eigenvectors can be taken to be coordinate fields, so that they commute and the Nijenhuis
tensor expression reduces to

NR(X(α), X(β)) = (λ(α) − λ(β))
(
X(α)(λ(β))X(β) +X(β)(λ(α))X(α)

)
.

It follows that the stronger property NR = 0 now implies that X(α)(λ(β)) = 0 for α 6= β.
The conclusion is that each eigenvalue λ(α) is a function of the corresponding coordinate
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yα only. The final conclusion is that in the new coordinates (t, Q), R will take the form

R =
n∑

i=1

λ(i)(Q
i)

∂

∂Qi
⊗ dQi,

and this implies that

R̃ =
n∑

i=1

λ(i)(Q
i)

(
∂

∂Qi
⊗ dQi +

∂

∂Pi

⊗ dPi

)
.

As said before, the nature of the coordinate transformation involved in this process ensures
that the Poisson tensor Λ will still have the canonical form

Λ =
∂

∂Qi
∧

∂

∂Pi

,

so we have indeed obtained Darboux-Nijenhuis coordinates for the Poisson-Nijenhuis
structure (P, R̃).

7 Concluding remarks

Poisson-Nijenhuis structures play a prominent role in the study and characterization of
integrable Hamiltonian systems, bi-Hamiltonian systems and Hamilton-Jacobi separabil-
ity. Some interesting general references in this respect are [24] and [11]. More specifically,
when it comes to aspects of standard Hamilton-Jacobi separability for autonomous Hamil-
tonian systems, the recursion operator of a Poisson-Nijenhuis structure will generally be
the complete lift to the cotangent bundle T ∗M of a type (1, 1) tensor on M . An inter-
esting subcase of Stäckel separability arises when the (1, 1) tensor on M is a so-called
special conformal Killing tensor with respect to the Riemannian metric determining the
kinetic energy of the system. Such tensors, also called or at least closely related to what
are called Benenti tensors (after Benenti’s pioneering work in [2] and [3]), make their
appearance, for example, in [15] and [5]. They automat ically satisfy the condition of
vanishing Nijenhuis torsion. Special conformal Killing tensors further play a significant
role in related work, such as the study of a certain bi-differential calculus [9], and the
intrinsic characterization and generalization in [8] of what Lundmark called Newtonian
systems of cofactor type (see [19] and [20]). We recently also succeeded in providing a full
geometrical description of so-called driven cofactor systems in [26].

It is our intention to study in forthcoming papers various of the above mentioned aspects
in the context of time-dependent Hamiltonian systems. For these objectives, understand-
ing the notion of complete lift of a (1, 1) tensor from E to J1τ ∗, and having extensive
knowledge of its properties, is a necessary prerequisite which we hope to have achieved
now.
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[2] S. Benenti, Inertia tensors and Stäckel systems in the Euclidean spaces, Rend. del Sem. Mat. Torino
50 (1992) 1–20.

[3] S. Benenti, Intrinsic characterization of the variable separation in the Hamilton-Jacobi equation, J.
Math. Phys. 38 (1997) 6578–6602.
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