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Abstract
We consider time reversal transformations to obtain twofold orthogonal
splittings of any tensor on a Lorentzian space of arbitrary dimension n. Applied
to the Weyl tensor of a spacetime, this leads to a definition of its electric and
magnetic parts relative to an observer (defined by a unit timelike vector field
u), in any dimension. We study the cases where one of these parts vanishes in
detail, i.e., purely electric (PE) or magnetic (PM) spacetimes. We generalize
several results from four to higher dimensions and discuss new features of
higher dimensions. For instance, we prove that the only permitted Weyl types
are G, Ii and D, and discuss the possible relation of u with the Weyl aligned
null directions (WANDs); we provide invariant conditions that characterize
PE/PM spacetimes, such as Bel–Debever-like criteria, or constraints on scalar
invariants, and connect the PE/PM parts to the kinematic quantities of u; we
present conditions under which direct product spacetimes (and certain warps)
are PE/PM, which enables us to construct explicit examples. In particular, it
is also shown that all static spacetimes are necessarily PE, while stationary
spacetimes (such as spinning black holes) are in general neither PE nor PM.
Whereas ample classes of PE spacetimes exist, PM solutions are elusive;
specifically, we prove that PM Einstein spacetimes of type D do not exist, in any
dimension. Finally, we derive corresponding results for the electric/magnetic
parts of the Riemann tensor, which is useful when considering spacetimes with
matter fields, and moreover leads to first examples of PM spacetimes in higher
dimensions. We also note in passing that PE/PM Weyl (or Riemann) tensors
provide examples of minimal tensors, and we make the connection hereof with
the recently proved alignment theorem (Hervik 2011 Class. Quantum Grav.
28 215009). This in turn sheds new light on the classification of the Weyl
tensors based on null alignment, providing a further invariant characterization
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that distinguishes the (minimal) types G/I/D from the (non-minimal) types
II/III/N.

PACS numbers: 04.50.−h, 04.20.−q
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1. Introduction

Decompositions of tensors relative to an observer (identified here with its normalized timelike
4-velocity u) are of great import in contemporary theoretical physics. One of the most
well-known insights, coming along with Einstein’s Special Relativity already, is that the
separate electric and magnetic (henceforth also abbreviated to EM) fields in Maxwell’s
electromagnetism are in fact the electric and magnetic parts, relative to an observer u, of
one unified object, the Maxwell tensor Fab. Conversely, given a Maxwell tensor and any
observer u, one may split the tensor into its electric and magnetic parts relative to u. Although
the precise value of the EM components clearly depends on the observer’s frame of reference,
the property of a field of being (or not), e.g., purely electric (PE) or purely magnetic (PM)
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is in fact intrinsic and can be easily determined using the two Lorentz invariants FabFab and
FabF∗ab (see [2]). Furthermore, when one considers the electromagnetic field generated by
an isolated, bounded source, the associated conserved charges can be computed, via Gauss’
law, as specific surface integrals at infinity, to which only the leading (Coulomb) terms of the
corresponding electric and magnetic parts will contribute.

As the twofold EM splitting can be performed pointwise at any event and for any u, the
procedure applies in General Relativity as well. Given that the latter explains the gravitational
interaction through the curved spacetime structure, one may ask whether gravitational
quantities exist playing a role analogous to the EM fields in classical electromagnetism,
and whether a PE or PM gravitational field can be given an intrinsic meaning and an invariant
characterization. Matte [3] showed that the answer to the first question is affirmative, by
introducing the electric and magnetic parts, relative to an observer u, of the Riemann tensor
of a vacuum metric. For general energy-momentum content (Ricci tensor) this generalizes to
the EM parts of the Weyl tensor. In terms of these parts, the decomposed trace-free second
Bianchi identities indeed take a form analogous to Maxwell’s equations (see, e.g., [4]). A
positive answer to the second question was supplied by the work of McIntosh et al [5], who
deduced an invariant criterion for deciding whether a given Weyl tensor has PE or PM character
(see remark 3.8 below). In addition, building on the analogy with the electromagnetic field,
the EM decomposition of the Weyl tensor has proven to be a very useful and, by now, standard
tool in the initial-value formulation of the gravitational field, as well as in the definition of
conserved charges and asymptotic symmetries (see, e.g., [6–8] and references therein)5. It has
also played an important role in the study of cosmological models [4, 9].

With the emergence of higher-dimensional physical theories such as string theory, the
interest in general n-dimensional spacetimes with Lorentzian signature has grown rapidly.
In this paper we propose a general viewpoint to the splitting of tensors, deduced from the
theory of Cartan involutions of a semi-simple Lie group. In the case of the Lorentz group,
these involutions are simply reflections of unit timelike vectors (n-velocities), u �→ −u. As
we will see this leads to a twofold splitting of any tensor (see [10, 11] and remark 3.2(b) for a
comparison with Senovilla’s approach). When applied to the Weyl tensor, the splitting provides
a natural definition of its electric and magnetic parts relative to u. We show that this definition
is sound, by proving that several four-dimensional results concerning PE or PM Weyl tensors
or spacetimes generalize to higher dimensions. In addition to Senovilla’s papers mentioned
above, a similar splitting of the Weyl tensor in higher dimensions has also been considered
in the study of asymptotic properties at spatial infinity and of conserved charges, see, e.g.,
[12, 13]. Our work does not overlap with the results of such references.

Recently, one of us proved the alignment theorem, stating that (direct sums of) tensors
which are not characterized by their invariants are precisely the ones of aligned type II or
more special, but not D [1]. In this paper we stress another equivalent fact, in the realm of the
splitting relative to u: such tensors are precisely the ones which do not have a minimal tensor
relative to u, in their orbit under the (active) Lorentz group action on tensors (see below). As
we will see, if a tensor equals one of its parts in the splitting w.r.t. u, it is itself minimal w.r.t.
u (but not vice versa, in general). In particular, a Weyl tensor which is PE/PM w.r.t. a unit
timelike vector u is minimal w.r.t. the same u, but more stringent conditions than those based
on the alignment theorem will be deduced.

The structure of the paper is as follows. Preliminary basic results and definitions necessary
for our work, such as theorems about tensors characterized by their invariants, the twofold
splitting of a tensor relative to an arbitrary unit timelike vector u, and null alignment theory,

5 It should be noted that, in this context, the EM splitting is sometimes meant w.r.t. a spacelike vector field [7, 8].
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are relegated to appendix A, since mostly known—however, this can be the starting section
for a reader not familiar with such concepts. In section 2 we present an algebraic criterion
for a tensor to be minimal w.r.t. u, provide sufficient conditions and examples, and make the
connection with the alignment theorem of [1]. The twofold splitting is applied to the Weyl
tensor in section 3, and to the Ricci and Riemann tensors in section 4. In both parts we derive
several useful results and examples of spacetimes for which the tensors in question are PE or
PM. We end with conclusions and a discussion. In appendix B we present an alternative, more
explicit proof of the general proposition 2.7 for the special case of Ricci- and Maxwell-like
rank 2 tensors (namely: they are minimal if and only if they are not of alignment type II (but
not D) or more special). In appendix C we summarize standard definitions of the kinematic
quantities of a unit timelike congruence, and write parts of the Riemann and Weyl tensors in
terms of these.

Notation. The symbol FM denotes the set of smooth scalar functions of an n-dimensional
spacetime M. We will write A⊥ for the orthogonal complement of a set A, and denote a
tensor either in index-free notation (T ) or abstract index notation, with lowercase, possibly
numbered Latin letters a, a1, a2, b, c, d, . . . (T α1···αr

β1···βs ), or clumping the abstract indices
(T a

b), whatever is more convenient in the context. In the index-free notation a metric tensor
in use will be denoted by g; likewise tangent vectors and 1-forms will be bolded, and v ∼ w
means that v is proportional to w. The Riemann, Ricci and Weyl tensors of a spacetime will
be denoted by Rabcd , Rab ≡ Rc

acb and Cabcd , respectively, while R ≡ Ra
a symbolizes the Ricci

scalar.
A component of a tensor T in an unspecified frame {mα=1,...,n} of tangent space, with dual

frame {mα=1,...,n}, is denoted by T α1···αr
β1···βs (or T α

β). An orthonormal frame (henceforth,
ONF) is of the form {u, mi=2,...,n}, where we will use the frame label ‘u’ for the timelike
vector u (instead of 1) and i, j, k, . . . = 2, . . . , n for the spacelike frame vectors. When
u is a specific timelike vector we will call any ONF {u, mi=2,...,n} a u-ONF. In general
(T sp)a···b ≡ ha

c · · · hb
dTc···d denotes the purely spatial part of a tensor T w.r.t. u (see (A.9) for

the definition of the projector ha
c); if T = T sp the tensor is called purely spatial (relative to

u), and in any u-ONF only components Ti j... can be non-zero for such.
When also one of the spacelike vectors of a u-ONF is selected or preferred, say m2, we

shall indicate the remaining labels with î, ĵ, k̂, . . . = 3, . . . , n instead. The null vectors

� = u+m2√
2

, n = −u+m2√
2

, (1)

are normalized by lana = 1 and generate the respective null directions of the timelike plane
spanned by u and m2. The null frame {m0 = �, m1 = n, mî=3,...,n} will then be called adapted
to the u-ONF {u, mi=2,...,n}; notice that we use the frame labels ‘0’ for la and ‘1’ for na (the
dual frame consisting of m0

a = na, m1
a = la and mî

a = (mî)a, î = 3, ..., n).

2. Minimal tensors

2.1. Definition and algebraic criterion

Given the full Lorentz group G = O(1, n − 1), the definition of a Cartan involution θ and
of the associated Euclidean product (cf (A.22)) and norm are recalled in section A.2 in the
appendix. Now, w.r.t. the Euclidean product associated to the Cartan involution θ , the standard
definition of a minimal vector of a tensor space V is the following.

Definition 2.1. A vector (tensor) T ∈ V is called minimal if ||g(T )|| � ||T ||, for all g ∈ G.
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Since the norm ||.|| is K-invariant such a minimal tensor is not necessarily unique; i.e., if
T is minimal, so is k(T ) for k ∈ K. Moreover, for a tensor T the property of being minimal
obviously depends on the norm ||.|| and thus on the choice of θ (i.e., of u).

An algebraic criterion for when a tensor is minimal was given in [14]. Let us specify it to
our situation, culminating to proposition 2.2 below.

Recall that for a Lie group, G, we can identify the tangent space of the identity element,
T1G as its Lie algebra, g; i.e., T1G ∼= g. Furthermore, there is an analytic map, exp : g �→ G,
along with a local inverse exp−1 : U �→ g, where U ⊂ G is some neighborhood of the identity
1 ∈ G. This map, along with its inverse, enables us to write any element g ∈ U as g= exp(X ),
for some X ∈ g. Moreover, given any X ∈ g we can generate a one-parameter subgroup of G
by gτ = exp(τX ).

In our situation G = O(1, n − 1), and we denote the Lie algebra by o(1, n − 1). Then
the action of an element X ∈ o(1, n − 1) on V is defined via the one-parameter subgroup
gτ = exp(τX ); explicitly:

X (T ) ≡ lim
τ→0

1

τ
[gτ (T )− T ]. (2)

If (X α
β ) is the representation matrix of X acting on tangent space w.r.t. a basis {mα=1,...,n} we

get by (A.3):

X (T )
α1···αr

β1···βs
= −

r∑
k=1

X αk
α′k T

α1···α′k ···αr
β1···βs +

s∑
l=1

X β ′l
βl T

α1···αr
β1···β ′l ···βs . (3)

Furthermore, we may split o(1, n− 1) into eigenspaces of θ :

o(1, n− 1) = B⊕ K, (4)

where the +1 eigenspace K is the Lie algebra of the maximal compact subgroup K, while
the −1 eigenspace B is the vector space consisting of the generators of the boosts in planes
through u. Moreover, since the elements X ∈ o(1, n − 1) are antisymmetric w.r.t. the inner
product g it follows from remark A.10 that X+ ∈ K and X− ∈ B are the antisymmetric,
respectively, symmetric part of X w.r.t. the inner product 〈−,−〉 (cf (12) and (13) regarding
the boost generators). Hence, 〈X (T ), T 〉 = 0 for all X ∈ K. For X ∈ B this is not necessarily
zero, but

Proposition 2.2. A covariant tensor T ≡ Ta1···am is minimal iff

〈X (T ), T 〉 = 0, ∀X ∈ B. (5)

In a u-ONF {mα} = {m1 = u, mi=2,...,n} this is equivalent with
m∑

k=1

n∑
α1=1

· · ·
n∑

αm−1=1

Tα1···αk−1iαk ···αm−1 Tα1···αk−1uαk ···αm−1 = 0, ∀i = 2, . . . , n. (6)

Proof. The criterion (5) was proved in [14] (theorem 4.3) in a more general context. The
component form (6) follows straightforwardly from (A.23), (3) and the fact that B is spanned
by the boost generators Xi in the (u, mi)-planes, X ab

i ≡ 2u[amb]
i . �

To write (6) in a covariant way one replaces T···i··· by hb
aT···b··· and T···u··· by ucT···c··· for the

free indices i and u, but one has to be careful with the αls since raising u gives a minus sign.

Example 2.3. For covectors va the criterion (6) becomes simply

vivu = 0, ∀i = 2, . . . , n ⇔ hb
avb(u

cvc) = 0. (7)
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Hence, v is minimal w.r.t. u iff, relative to u, it is either purely temporal (i.e., proportional to
u) or purely spatial (i.e., orthogonal to u).

For symmetric (Ricci-like) rank 2 tensors Rab = R(ab) we get

0 = 1

2

n∑
α=1

(RiαRuα + RαiRαu) =
n∑

α=1

RiαRuα = Ri jRu
j + RiuRuu = RiaRa

u + 2RuuRiu. (8)

Likewise, for antisymmetric (Maxwell-like) rank 2 tensors Fab = F[ab] (6) reduces to

0 = Fi jFu
j = −FiaFa

u or u[aFb]cFc
dud = 0, (9)

i.e., u is an eigenvector of Fa
bFb

c.
Finally, for rank 4 tensors Cabcd satisfying the first two parts of the Riemann-like

symmetries (A.33) we get

0 =
n∑

α=1

n∑
β=1

n∑
γ=1

CiαβγCuαβγ = Ci jklCu
jkl + 2Ci jkuCu

jk
u = CiabcCu

abc + 4CiabuCu
ab

u. (10)

The above examples already show an interesting analogy in the four cases. Obviously, a
covector is minimal iff it is not null (which could be dubbed ‘type N’ in the sense of alignment
theory). Rewriting the conditions (8)–(10) in a null frame, one also immediately sees that: if
Rab is minimal it cannot be of any of the types II (not D), III and N (i.e., only the types G, I and
D can be minimal); if Fab is minimal it can be neither type II (not D) nor N (i.e., only the types
G and D can be minimal); if Cabcd is minimal it cannot be of any of the types II (not D), III and
N (i.e., only the types G, I and D can be minimal). One can show that the converse is also true
(i.e., the admitted types are also sufficient conditions to ensure minimality) and that, in fact, a
more general such result holds for any tensor, as we shall show below in proposition 2.7 (see
also appendix B in the case of Rab and Fab).

2.2. Sufficient conditions and examples

Using θ , any tensor T can be split as (see section A.2 in the appendix for more details)

T = T+ + T−, T± = 1
2 [T ± θ (T )], (11)

which will be used in the following.
Consider a u-ONF Fu = {u, mi=2,...,n}. In such a frame any element X ∈ B acting on

TpM is represented by a symmetric matrix of the form:

[X ]Fu = (X α
β ) =

⎡
⎢⎢⎢⎣

0 z2 · · · zn

z2 0 · · · 0
...

...
...

zn 0 · · · 0

⎤
⎥⎥⎥⎦. (12)

In the null frame F ′ = {�, n, mî=3,...,n} adapted to Fu (see (1)) X is represented by the
symmetric matrix (in 1+ 1+ (n− 2) block-form):

[X ]F ′ = 1√
2

⎡
⎣λ 0 zt

î
0 −λ −zt

î
zî −zî 0

⎤
⎦, λ =

√
2 z2. (13)

In what follows boost-weight (b.w.) decompositions will refer to the adapted null frame
F ′, and given a tensor T the collection of its components of b.w. b will be denoted as (T )b

(see section A.3 in the appendix, also for the nomenclature regarding (null alignment) types
of tensors in the subsequent text).

6
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Let us split X ∈ B using a vector space basis {XB,Xî} of B, where XB is the generator
of the boost (A.24). Hence, equation (13) becomes X = λXB + zîXî. We note that the b.w.
decomposition of T is the eigenvalue decomposition with respect to XB:

XB(T ) =
∑

b

b(T )b. (14)

This may serve as a definition of the b.w. b components of T : (T )b is the eigenvector of XB

with eigenvalue b.
The action of Xî on an arbitrary tensor T is a bit more complicated, but can be derived

from (3) and (13), with λ = 0 and zk̂ = 0, k̂ �= î. Also, using (13) we note that Xî raises and
lowers the b.w. by 1; i.e.,

Xî((T )b) =
(
Xî((T )b)

)
b−1 +

(
Xî((T )b)

)
b+1 . (15)

Since 〈−,−〉 is bilinear we have

〈X (T ), T 〉 = λ 〈XB(T ), T 〉 + zî

〈
Xî(T ), T

〉
. (16)

Thus, to check minimality we can consider XB and Xî also separately. Based on these
observations we have

Proposition 2.4. Any of the following conditions is sufficient for a tensor T ∈ V to be minimal:

(1) T is a θ -eigenvector, i.e., T = T+ or T = T−;
(2) T has the b.w. decomposition T = (T )0 (and thus is of type D).

Proof. (i) was proven in [14]: essentially, for any T , we have 〈X (T ), T 〉 = 2 〈X (T+), T−〉,
X ∈ B (using X (T±) ∈ V∓). Thus, if T− = 0 or T+ = 0 the criterion (5) is fulfilled.

(ii) If T = (T )0 then (14) implies XB(T ) = 0, while (15) and 〈X,Y 〉 =∑b 〈(X )b, (Y )b〉
give

〈
Xî(T ), T

〉 = 0. Thus 〈X (T ), T 〉 = 0 from (16) and again (5) is fulfilled. �

Remark 2.5. The two conditions of proposition 2.4 are only sufficient conditions and they
are, in general, independent. An exception to this statement is the special case V = TpM,
for which T = T± is also necessary to be minimal, see (7), and T = (T )0 is equivalent to
T = T+ (i.e., T is a spacelike vector). However, if T represents a Maxwell-like tensor (bivector,
Tab = Fab = F[ab]) we have F = (F )0 ⇔ Fuî = 0 = F2î, but Fu2 and Fî ĵ can be non-zero, so
that F+ �= F �= F−, in general (in order for this example to be meaningful, here we assume we
are in four or higher dimensions). Similarly, it is easy to see that F = F− implies F = (F )0

(the direction of m2 being defined by Fui), whereas F = F+ can be of type G if n is odd (see
remark B.2 in appendix B for a complete discussion). Moreover, as we shall discuss below
(proposition 2.7), all Weyl tensors of type G, I or D contain a minimal Weyl tensor in their
orbit, with no need to satisfy either (1) or (2) above.

Example 2.6. As an example of a more generic minimal tensor, choose a tensor T =
(T )−2 + (T )0 + (T )+2 where both (T )−2 and (T )+2 are non-zero6. First, consider (13)
using XB; then we get XB(T ) =∑b b(T )b = −2(T )−2 + 2(T )+2. Consequently,

〈XB(T ), T 〉 = −2 〈(T )−2, (T )−2〉 + 2 〈(T )+2, (T )+2〉,
which is in general not zero. However, by a boost of the frame,

〈XB(T ), T 〉 = −2 e−4λ 〈(T )−2, (T )−2〉 + 2 e4λ 〈(T )+2, (T )+2〉;
6 In fact, with no essential change in the following argument we could more generally also consider a tensor of the
form T = (T )−k + (T )0 + (T )+k , where k > 1.

7
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therefore, there exists a boost of the frame such that 〈XB(T ), T 〉 = 0 in which case
〈(T )−2, (T )−2〉 = 〈(T )+2, (T )+2〉.

Consider next (13) using Xî: Xî(T ) has only odd b.w., so (Xî(T ))b = 0 for b even. Thus,
since T has only even b.w. components:

〈Xî(T ), T 〉 = 0.

Thus we reach the conclusion that for any T = (T )−2 + (T )0 + (T )+2 there exists a boost
generated by XB such that it is minimal. For this minimal vector, we have the condition
〈(T )−2, (T )−2〉 = 〈(T )+2, (T )+2〉.

We still notice that it is important in this example that both (T )−2 and (T )+2 are non-zero
(alternatively, both zero for which T = (T )0 and it falls under the spell of proposition 2.4).
Indeed, if one of these parts were zero while the other is not, there would not be any minimal
T . This is connected to the fact that tensors which are of type II or more special, but not D nor
O, do not have a minimal vector in their orbit (see proposition 2.7).

Furthermore, we should emphasize that the minimal example T = (T )−2+ (T )0+ (T )+2

does not need to fulfil condition (1) nor (2) in proposition 2.4 showing, again, that these
conditions are only sufficient.

2.3. Minimal tensors and null alignment type

In this subsection we revisit the ‘alignment theorem’ for tensors over a Lorentzian space of
any dimension proved in [1], giving a more streamlined proof and adding the connection with
minimal tensors. Version A is the contrapositive of version B. The statements (1) assume a
chosen unit timelike vector u and associated Euclidean product, and the abbreviations (Act)
and (Pass) refer to the active and passive viewpoints.

Proposition 2.7. For a tensor T the following are equivalent:

(Version A)

(1a) (Act) There exists a minimal tensor v in the orbit O(T ); (Pass) there exists a possibly
different vector u′ such that the representation T̃ of T in a u′-ONF is minimal in
O(T̃ ).

(2a) T is of type O, D, or any other type which is not type II or more special.
(3a) T is characterized by its invariants.

(Version B)

(1b) (Act) There exists no minimal tensor v in the orbit O(T ); (Pass) no ONF-
representation T̃ of T is minimal.

(2b) T is of type II or more special, but not D nor O.
(3b) T is not characterized by its invariants.

Proof.

(1a)⇔ (3a): let M ⊂ V denote the set of minimal vectors. In [14] it was proved that

M ∩O(T̃ ) �= ∅ ⇔ O(T̃ ) ∈ C (17)

and the equivalence follows from corollary A.4.

8
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(2b)⇐ (3b): from [14] we have that, if O(T ) is not closed, then there exists a vector v0 in
the closure O(T ) and X ∈ B such that eτX (T ) → v0, as τ → +∞. By considering the
b.w. decomposition with respect to the boost B(τ ) = eτX , we get [1]

eτX (T ) =
∑

b

eτb(T )b.

Since v0 is finite we need b � 0, or b � 0. By the isomorphism b � −b, we can assume
b � 0. Moreover, type D is ruled out by proposition 2.4, and the result follows.
(2b)⇒ (3b): if the tensor T is of type II or more special, but not type D nor O, then there
exists a b.w. decomposition

T =
∑
b�0

(T )b. (18)

By the action of the boost (τ →+∞):

eτX (T ) =
∑
b�0

eτb(T )b → (T )0.

If v0 ≡ (T )0 is in O(T ), then there exists a frame such that T = (T )0, hence type D or O
which is a contradiction. Thus v0 is not in O(T ), which is consequently not closed, and
corollary A.4 concludes the proof. �
Explicitly, in the case of the Weyl tensor condition (2a) covers type G, strict type I

(including subtypes such as Ii), type D and O, while condition (2b) covers strict type II (not
D), III (including subtypes such as IIIi) and N.

The general result remains valid for a collection (or direct sum) of tensors instead of a
single one. Here a collection (Ti) is called ‘of (aligned) type II or more special’ if all Ti are of
the form (18) in the same null frame. For example, if the Weyl and Ricci tensors of a metric at
a spacetime point are both type N w.r.t. the same null vector, then the corresponding Riemann
tensor will be of type N as well, as follows from proposition A.13. If, however, they are both
type N but w.r.t. different null vectors, then they are not aligned and there is a minimal vector:
if R = (R)−2 and C = (C)+2, then we formally write the Riemann tensor as T = [R,C] and
we have T = (T )−2 + (T )+2 such that we are back in the example considered in section 2.2,
T being minimal in a frame such that 〈R, R〉 = 〈C,C〉.

In appendix B we give more explicit proofs of proposition 2.7 in the case of vectors and
Ricci- or Maxwell-like rank 2 tensors.

3. The Weyl tensor: purely electric (PE) or magnetic (PM) spacetimes

In the context of General Relativity and its higher-dimensional extensions, the Weyl tensor is a
natural object to consider, e.g., in the classification of exact solutions (in particular, of Einstein
spacetimes Rab = Rgab/n), in the study of gravitational radiation, of asymptotic properties
of spacetimes, etc. Throughout this section, we consider spacetimes of dimension n � 4, and
apply the general orthogonal splitting of tensors relative to an observer with timelike vector
field u, outlined in section A.2 in the appendix, to the Weyl tensor Cabcd at a spacetime point.
This enables us to define PE and PM Weyl tensors and spacetimes, to work out several useful
results such as Bel–Debever criteria, the structure of the associated Weyl bivector operator
and null alignment properties, and to provide illustrative examples. We will see that several
well-known results in four dimensions generalize to arbitrary dimensions. In the next section
we shall apply a similar analysis to the Ricci and Riemann tensors, which is relevant in the
study of spacetimes which contain matter fields.

9
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3.1. Electric and magnetic parts

As before, we consider a fixed unit timelike vector u and the corresponding Cartan
involution θ .

Definition 3.1. The tensor (C+)abcd ((C−)abcd) is called the electric (magnetic) part of the Weyl
tensor w.r.t. u.

Recall the definition (equation (A.9)) of the orthogonal projector

hab ≡ gab + uaub.

Define the tensor

Eab ≡ Caeb f u
eu f = ha

chb
dCcedf h

e f , (19)

where (A.34) implies the last equality. Obviously, this is a trace-free symmetric rank 2 tensor
which is moreover purely spatial relative to u: Eab = (Esp)ab. Using (A.9), (A.13) and the
symmetries (A.33) one obtains

(C+)ab
cd = haehb f hc

ghd
hCe f gh + 4u[au[cC

b]e
d] f ueu f = (Csp)ab

cd + 4u[au[cEb]
d], (20)

(C−)ab
cd = 2haehb fCe f k[cud]u

k + 2uku[aCb]ke f hcehdf . (21)

In any ONF {u, mi=2,...,n} the non-identically vanishing electric (magnetic) part accounts
for the components of the Weyl tensor with an even (odd) number of indices u (cf section A.2.1
in the appendix). The first, purely spatial term of the Weyl electric part (20) covers the Ci jkl

components, of which there are N0(n) = (n2 − 2n+ 4)(n+ 1)(n− 3)/12 independent ones;
the last term covers the N2(n) = (n + 1)(n − 2)/2 independent Cuiu j components; however,
the latter are fully determined by the former since

Cuiu j = Cik j
k, (22)

which is the component form of the trace-free property (A.34) also expressed in (19); thus
there are N0(n) − N2(n) = n(n2 − 1)(n − 4)/12 extra independent PE components Ci jkl in
addition to the Cuiu j ones. The Weyl magnetic part (21) has N1(n) = (n2 − 1)(n − 3)/3
independent components Cui jk. Together these add up to the (n − 3)n(n + 1)(n + 2)/12
independent components of the Weyl tensor in n dimensions (see also [11]).

Remark 3.2(a). The already known four-dimensional case n = 4 has somewhat special
properties, which we now briefly review. One has N0(4) = N2(4) = 5, such that the relations
(22) can be inverted to give

Ci jkl = 2(δi[kCl]u ju − δ j[kCl]uiu) (n = 4). (23)

Using (19) this reads (Csp)ab
cd = 4h[a

[cEb]
d] in covariant form. Thus (19) and (20) imply that the

tensors (C+)abcd and Eab, both having five independent frame components, are in biunivocal
relation:

Eab = (C+)acbducud ↔ (C+)ab
cd = 4

(
h[a

[c + u[au[c
)
Eb]

d] (n = 4). (24)

We have N1(4) = 5 as well. Define

Hab ≡ 1
2εace fC

e f
bducud (n = 4), (25)

where εabcd is the volume element. Just as Eab, Hab is a purely spatial, symmetric and trace-free
rank 2 tensor which thus has five independent components. Then, by virtue of the identity

10
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εabe f ueεcdf gug = 2ha
[chb

d] (21) can be rewritten, and (C−)abcd and Hab are in biunivocal
relation:

Hab ≡ 1
2εace f (C−)e f

bducud ↔ (C−)ab
cd = 2εabe f ueu[cHd] f + 2εcde f u

eu[aHb] f (n = 4).

(26)

Adding the expressions in (24) and (26) for C+ and C−, one obtains the well-known formula
for the Weyl tensor in four-dimensional General Relativity in terms of Eab and Hab [9], which
are usually referred to as the electric and magnetic parts of the Weyl tensor. Since they are
respectively equivalent with C+ and C− this justifies the above definition of Weyl electric and
magnetic parts, for general n.

Remark 3.2(b). In [10] and [11] Senovilla proposed a construction for generalizing the electro-
magnetic decomposition relative to a unit timelike vector u, applicable to any tensor T and
based on the consideration of maximal antisymmetric index slots. If the number of such slots
is r then one constructs 2r different tensors from T , by taking for each slot a contraction with
either ua (yielding an electric ‘E’-contribution for that slot) or uaε

aa1···an−1 (yielding a magnetic
‘H’-contribution). However, by the antisymmetry of the slots this is equivalent to contraction
(over b, d, . . . , f ) with uaubhc

d · · · he
f and ha

bhc
d · · · he

f , respectively. Then, our T+ (T−) part
collects the 2r−1 tensors constructed in this way with an even (odd) number of E-parts. For
instance, when Ta[bc] �= T[abc] in (A.14)–(A.15) then r = 2, and the first and second term in
the second of (A.14) represent the associated HH and EE tensors associated to Ta[bc] �= T[abc]

(r = 2), respectively, while the second of (A.15) contains respective equivalents of the HE
and EH tensors. For the Weyl tensor we also have r = 2; our magnetic part C− corresponds
to Senovilla’s EH and HE tensors, which are equivalent due to the symmetry Cabcd = Ccdab;
our electric part C+ covers the EE and HH tensors, where the former can be seen as a part of
the latter due to (22). Notice that one has a reversed situation for a Maxwell field Fab since
r = 1, i.e., F+ (F−) covers the ONF components Fi j (Fui) and is the magnetic (electric) part.
As another example, for symmetric rank 2 tensors T like the energy–momentum tensor one
has r = 2, and the electric part, T+, then assembles the stress–pressure two-tensor (Ti j) and
scalar energy density (Tuu) as measured by u, while the magnetic part T− represents the heat
flux vector. Equivalently for these situations, the ‘electric (magnetic) part’ collects the 2r−1

tensors with an even (odd) number of H-parts. This leads us to the following definition for
general tensors, where we thus refer to the definition of H/E-parts in [10, 11] and the above
explanation.

Definition 3.3. Let T be any tensor with r maximal antisymmetric index slots. The electric
(magnetic) part of T relative to a unit timelike vector u is the collection of the 2r−1 tensors
with an even (odd) number of H-parts; this part equals T+ (T−) when r is even, and T− (T+)
when r is odd.

3.2. PE/PM condition at a point

Definition 3.4. At a point p, the Weyl tensor C is called purely electric (magnetic) (henceforth,
PE (PM)) w.r.t. u if C = C+ ↔ C− = 0 (C = C− ↔ C+ = 0). If such a u exists the Weyl
tensor is called PE (PM); it is called properly PE (PM) w.r.t. u if C = C+ �= 0 (C = C− �= 0).
A spacetime, or an open region thereof, is called (properly) PE (PM) if the Weyl tensor is
(properly) PE (PM), everywhere.

In any ONF {u, mi=2,...,n} a non-zero Weyl tensor is PE w.r.t. u iff Cui jk = 0,
∀ i, j, k = 2, . . . , n; in view of (22), it is PM w.r.t. u iff Ci jkl = 0, ∀ i, j, k, l = 2, . . . , n.

11
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In analogy with the Bel–Debever criteria for null alignment [9, 15], and using the properties
(A.33) and (A.34), one may rewrite this in the following covariant way.

Proposition 3.5. (Weyl PE/PM Bel–Debever criteria) Let u be a unit timelike vector,

gabuaub = −1. (27)

Then a Weyl tensor Cabcd is

• PE w.r.t. u iff

uagabCbc[deu f ] = 0; (28)

• PM w.r.t. u iff

u[aCbc][deu f ] = 0. (29)

These Bel–Debever criteria are covariant tensor equations, only involving the metric
inverse gab, the Weyl tensor Cabcd and the 1-form ua. The big advantage of this format of the
PE/PM conditions is that one may take any basis {mα=1,...,n} of TpM, with dual basis {mα=1,...,n}
of T ∗p M, and consider the components gαβ , Cαβγ δ and uα . E.g., when the metric is given in
coordinates over a neighborhood of p, one may take the corresponding holonomic frames of
coordinate vector fields and differentials. One then considers (27) and (28) ((27) and (29)) as
a system of quadratic equations in the n unknowns uα; if a solution to this system exists then
the Weyl tensor is PE (PM) relative to the corresponding u. However, since n � 4 the number
1+N1(n) = (n−2)(n2−n−3)/3 [1+N0(n) = n(n−1)2(n−2)/12] of independent equations
in this system exceeds n, with degree of overdeterminacy d1(n) = (n − 1)(n2 − 2n − 6)/3
[d0(n) = n(n3 − 4n2 + 5n− 14)/12]. For n = 4 we already have d0(4) = d1(4) = 2, and we
note that d0(n)− d1(n) = (n+ 1)(n− 2)(n− 3)(n− 4)/12 in general, which increases with
n. Hence, for a generic metric and Weyl tensor no solution u to the PE or PM conditions can
be found, not even at a point p, and for n > 4 the situation is worse for PM (the number of
equations then being quartic in n while cubic in the PE case). However, several special metrics
do admit solution(s) u, as discussed in the following. In particular, in the next paragraph we
will meet easily computable necessary conditions for the above PE and PM equations to have
solutions u. In section 3.4 we will discuss the alignment types for PE/PM Weyl tensors and
discuss the uniqueness of solutions u. In section 3.5 we will see that ample classes of PE
spacetimes exist, whereas PM spacetimes are most elusive (section 3.6).

Remark 3.6. In the case where only the contraction (19) vanishes (Cuiu j = 0), we will say that
the Weyl tensor is ‘PM’ (note that the quotes are part of the name); this is only equivalent to
PM for n = 4, but gives a weaker condition for n > 4 dimensions (since Ci jkl need not vanish).

3.3. PE/PM Weyl bivector operators

Consider the real N-dimensional vector space∧2TpM of contravariant bivectors (antisymmetric
tensors Fab = F [ab]) at p, where N = n(n − 1)/2. In view of the first three symmetries in
(A.33) the map

C: Fab �→ 1
2Cab

cdFcd = 1
2 FcdCcd

ab (30)

is a linear operator (=endomorphism) of ∧2TpM, referred to as the Weyl bivector operator
[16], which is symmetric (self-adjoint) w.r.t. the restriction g to ∧2TpM of the inner product g
on T 2

0 , cf (A.16):

g(C(F), G) = g(F, C(G)), F, G ∈ ∧2TpM.

12
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Consider a unit timelike vector u. Through the tensor structure of bivector space, the
corresponding θ acts on it by Fab �→ θa

c θb
d Fcd . We can then repeat the constructions of

section A.2 of the appendix replacing TpM by ∧2TpM and g by g.7 In particular, the Weyl
bivector operator C is viewed as a type (1,1) tensor over ∧2TpM and can be decomposed
into its electric and magnetic parts C±, which are also symmetric w.r.t. g. Here, C± are the
endomorphisms of ∧2TpM obtained by replacing Cabcd by (C±)abcd in (30). Hence, by remark
A.10, C+ and C− are the symmetric and antisymmetric parts of C w.r.t. 〈−,−〉, respectively.
Hence, whereas it is cumbersome to say something general about the eigenvector-eigenvalue
structure of Weyl operators (in particular in the type I/G case), for PE (C = C+) or PM
(C = C−) Weyl operators, we have the following.

Proposition 3.7. A PE or PM Weyl operator is diagonalizable, i.e., a basis of eigenvectors
for ∧2TpM exists. A PE (PM) Weyl operator has only real (purely imaginary) eigenvalues.
Moreover, a PM Weyl operator has at least s = (n−1)(n−4)

2 zero eigenvalues (s being the
signature of g).

Proof. The first and second statements follow immediately from the fact that C+ (C−) are
symmetric (antisymmetric) linear operators w.r.t. a Euclidean inner product on ∧2TpM. To
make this more explicit and to prove the third statement, consider the ONF

B = {[ui] ≡ u ∧mi, [ jk] ≡ m j ∧mk} (31)

of ∧2TpM induced by the ONF {u, mi=2,...,n} of TpM. Using a (p + q)-block form, where
p = n− 1 and q = (n−1)(n−2)

2 (p � q for n � 4), the matrix representations of θ and C± w.r.t.
B are

[θ ]B = [g]B =
[−1p 0

0 1q

]
, [C+]B =

[
S 0
0 T

]
, [C−]B =

[
0 U
−Ut 0

]
. (32)

Here S and T are trace-free symmetric square matrices with components S[ui]
[u j] = −Cuiu j =

−Ei j and T [i j]
[kl] = Ci jkl , while U is a p× q matrix with components U [ui]

[ jk] = −Cui jk. In
the PE case, the eigenvalues are the eigenvalues of S and T , which are clearly real. In the PM
case, we note that the matrix U can be decomposed (using the singular value decomposition)
as U = g1Dg2, where g1 and g2 are SO(p) and SO(q) matrices, respectively, and D is a
diagonal p× q matrix D = diag(λ1, λ2, . . . , λp). Consequently, a PM Weyl bivector operator
has eigenvalues {0, . . . , 0,±iλ1, . . . ,±iλp}, where the number of zero-eigenvalues is at least
N − 2p = q− p = s = (n−1)(n−4)

2 . This proves the proposition. �

Remark 3.8. In four dimensions, the original Petrov type classification is equivalent with the
Jordan–Segre classification of the Weyl bivector operator (see e.g. [9]), where the latter is
diagonalizable iff the Petrov type is I, D or O. Referring to the above we have p = q = 3, the
eigenvalues for S and T are the same (cf section 3.1) and the conditions of the theorem are
also sufficient, i.e., if a Weyl operator is diagonalizable and has only real (purely imaginary)
eigenvalues then it is PE (PM) w.r.t. a certain u (see [9, 17] and references therein). This can
be expressed in terms of polynomial invariants of the self-dual Weyl operator Cs acting on
the three-dimensional complex space of self-dual bivectors: defining the quadratic and cubic
invariants I ≡ tr(C2

s ) and J ≡ tr(C3
s ) and the adimensional invariant M ≡ I3/J2 − 6, the Weyl

operator is properly PE (PM) iff it is diagonalizable, M ∈ R
+ ∪ {∞} and I ∈ R

+
0 (R−0 ).

Here M = 0 corresponds to Petrov type D; the Petrov type I cases were symbolized

7 Notice that the inner product g has now the signature (n−1)(n−2)
2 − (n−1) = (n−1)(n−4)

2 , cf (31). However, the map
θ transforms {u ∧mi, m j ∧mk} into {−u ∧mi, m j ∧mk} and the corresponding inner product 〈−,−〉 on ∧2TpM is
again Euclidean.
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I(M+) and I(M∞) in the extended Petrov-classification by Arianrhod and McIntosh, where
M = ∞⇔ J = 0 corresponds to Petrov type I with a zero eigenvalue [5, 18].

In dimension n > 4, it is no longer sufficient that the eigenvalues are real (purely
imaginary) in order for the Weyl operator to be PE (PM),.even if it is diagonalizable (while
it is still necessary, cf proposition 3.7). Counterexamples to the sufficiency for n = 5 are
provided in [19] in the type D case (cf also proposition 3.10 below). However, necessary
conditions can be deduced from the fact that, by virtue of proposition 3.7, the characteristic
equations

N∑
k=0

akxN−k = 0 (a0 = 1) (33)

of the operator C acting on the full bivector space ∧2TpM are of the form
p∏

i=1

(x− λi)

q∏
j=1

(x− μ j) = 0 or xq−p
p∏

i=1

(x2 + λ2
i ) = 0, (34)

in the PE or PM case, respectively, where the λi and μ j are real. Define

Ak ≡ tr(Ck). (35)

• In the PM case, for instance, one has a2l+1 = 0 ⇔ A2l+1 = 0 (2l + 1 � N), and a2l = 0
for all l > p (2l � N), where ( cf e.g. [20] or [21])

a2l = (−1)l

2l l!
det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A2 2 0 · · · 0

A4 A2 4
. . .

...

A6 A4 A2
. . . 0

...
. . .

. . .
. . . 2(l − 1)

A2l · · · A6 A4 A2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

In addition A4l+2 < 0 < A4l for properly PM.
• In the properly PE case: A2l > 0.

In particular, a nilpotent Weyl operator is thus neither PE nor PM. Further necessary
conditions on the Ak can be derived along the line of [21].

3.4. Null alignment properties

In four dimensions, a properly PE or PM Weyl tensor is of Petrov type D or I [5, 22,
23]. This follows immediately from the Weyl–Petrov classification in terms of the operator
Qa

b = Ea
b + iHa

b on tangent space (defined w.r.t. any u), which has the same Segre type
and eigenvalues as the Weyl bivector operator C [9]. Indeed, if a non-zero Weyl tensor is PE
(or PM) w.r.t. u, i.e., if the parts Hab (or Eab) defined w.r.t. this u vanish, then in any u-ONF
{u, mi=2,...,n} the non-zero part [Qi

j] of the representation matrix is a real symmetric matrix
(or a complex unit times such a matrix). Thus Qa

b, whence C is diagonalizable and the Petrov
type is I or D (cf remark 3.8).

Another classification of the Weyl tensor is the one based on its Debever–Penrose principal
null directions (PNDs) which, in four dimensions, coincides with the bivector approach. In
higher dimensions, however, both approaches are highly non-equivalent (see [19] for a detailed
verification of this in five dimensions). The PNDs approach was worked out in [24] for the
Weyl tensor, leading to the concept of Weyl aligned null directions (WANDs) replacing the
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PNDs and being part of the (null) alignment theory for general tensors [25], succinctly revised
in section A.3 in the appendix.

In this section we deduce the possible null alignment types for PE/PM Weyl tensors
in general n � 4 dimensions, and the uniqueness and relative position to possible (multiple)
WANDs of the vectors u realizing the PE/PM property. We do this in a direct way, i.e., without
relying on properties of the corresponding Weyl bivector operator.

3.4.1. Admitted alignment types. It immediately follows from propositions 2.4 and 2.7 that
a properly PE or PM Weyl tensor is minimal and thus of one of the null alignment types D, I
or G, in any dimension n > 4. However, one can be more specific by giving a different proof.

To this end, the following general observation is essential. Given a unit timelike vector u,
a u-adapted null frame is a null frame {m0 = �, m1 = n, mî=3,...,n} for which we have

u = �− n√
2

. (36)

In any such frame, the involution (A.8) is represented by

θ : �↔ n, mî �→ mî, ∀î = 3, . . . , n, (37)

and the (passive) action hereof on a tensor S simply interchanges the frame labels 0 and 1.
This implies that in the case S = S+ ⇔ θ (S) = S (S = S− ⇔ θ (S) = −S) the components of
S in any such frame should be all invariant (change sign). Notice that if a null vector � is given,
satisfying the normalization condition laua = −1/

√
2 (but it can be otherwise arbitrarily

chosen), then (36) should be read as the definition n = �−√2u = θ (�) of the time-reflected
�, being a null vector lying along the second null direction of the timelike plane u ∧ �.

Conversely, if the components of a tensor S in a certain null frame {�, n, mî=3,...,n} are
invariant (change sign) under a 0 ↔ 1 interchange, then S = S+ (S = S−) in the orthogonal
splitting w.r.t. the unit timelike vector (36).

Applied to the Weyl tensor we obtain the following.

Proposition 3.9. If a Weyl tensor is PE/PM w.r.t. u then the following component relations
hold in any u-adapted null frame {m0 = �, m1 = n, mî=3,...,n}:

PE: C0î0 ĵ = C1î1 ĵ, C0î ĵk̂ = C1î ĵk̂, C01î ĵ = 0, (38)

PM: C0î0 ĵ = −C1î1 ĵ, C0î ĵk̂ = −C1î ĵk̂, Cî ĵk̂l̂ = 0. (39)

Conversely, if a null frame {m0 = �, m1 = n, mî=3,...,n} exists for which (38), respectively,
(39) are satisfied then the Weyl tensor is PE, respectively, PM w.r.t. u = (�− n)/

√
2.

Proof. Due to the properties (A.33) and (A.34), the identities [24]

C010î = C0k̂î
k̂, C0101 = − 1

2Cî ĵ
î ĵ, 2C0(î ĵ)1 = Cîk̂ ĵ

k̂, 2C0[î ĵ]1 = −C01î ĵ, C101î = C1k̂î
k̂

(40)

hold in any null frame {m0 = �, m1 = n, mî=3,...,n}, and the components of a certain b.w. are
fully determined by the following ones:

b.w. 2: C0î0 ĵ, b.w. 1: C0î ĵk̂, b.w. 0: C01î ĵ, Cî ĵk̂l̂, b.w. −1: C1î ĵk̂, b.w. −2: C1î1 ĵ.

(41)

The thesis follows from the general considerations above and by observing that under 0 ↔ 1
the components Cî ĵk̂l̂ are invariant while C01î ĵ change sign. �

As a simple consequence we have
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Proposition 3.10. A Weyl tensor which is properly PE or PM w.r.t. a certain u is of alignment
type D, Ii or G. In the type Ii and D cases, the vector u ‘pairs up’ the space of WANDs, in
the sense that the second null direction of the timelike plane spanned by u and any WAND is
also a WAND with the same multiplicity. Furthermore, a type D Weyl tensor is PE iff it is type
D(d), and PM iff it is type D(abc).

Proof. From (38) and (39) it follows that if in a u-adapted null frame all b.w. +2 components
are zero, then also all b.w. −2 components, and similarly for b.w. +1/−1 components; if the
b.w. 0 components additionally vanished then the Weyl tensor would be zero (type O). Hence,
WANDs of a properly PE/PM Weyl tensor (if there exist any) must go in pairs: if � spans a
WAND then so does n and with the same multiplicity, which is either 1 (type Ii) or 2 (type D).
This proves the first two statements. The last one follows from these considerations and the
definition of type D(d) and D(abc) (see section A.3 in the appendix). �

Remark 3.11. Proposition 3.9 can be considered as an extension of the observation in n = 4
dimensions that the Weyl tensor is PE/PM iff in a certain Newman–Penrose null tetrad the
relations


0 = c
4, 
1 = −c
3, 
2 = c
2 (42)

hold, where c = +1 in the PE and c = −1 in the PM case (see, e.g., [26]). For a Petrov type I
Weyl tensor one can always take a Weyl canonical transversal (
0 = 
4 �= 0, 
1 = 
3 = 0)
or longitudinal (
0 = 
4 = 0, 
1 = 
3 �= 0) frame and add these to the PE/PM conditions
(42). Regarding type D, the last part of proposition 3.10 is an extension of the four-dimensional
theorem 4 of [5], stating that a Petrov type D Weyl tensor is PE (PM) iff in a canonical null
frame (
0 = 
1 = 
3 = 
4 = 0) the scalar 
2 �= 0 is real (purely imaginary). Such
simplifying choices have been proved crucial for deducing classification or uniqueness results
for four-dimensional PE or PM spacetimes (see, e.g., [27]).

Remark 3.12. Spacetimes of type N (such as vacuum type N pp-waves) are usually understood
as describing transverse gravitational waves. The interpretation of type N fields as ‘radiative’ is
supported, also in higher dimensions, by the peeling behavior of asymptotically flat spacetimes
[28] (in spite of significant differences with respect to the four dimensional case, see [28]
and references therein). From proposition 3.9 it thus also follows that a spacetime containing
gravitational waves necessarily contains both an electric and a magnetic field component. This
resembles a well-known similar property of electromagnetic waves, and in four dimensions
was discussed, e.g., in [3, 29]. Conversely, we shall show below (section 3.5.1) that static
fields (and thus, in particular, the Coulomb-like field of the Schwarzschild solution) are PE.

3.4.2. Uniqueness of u. The following facts are well known in n = 4 dimensions (see, e.g.
[17, 30]):

• if a PE/PM Weyl tensor is of Petrov type D, it is PE/PM precisely w.r.t. any u lying in the
plane L2 spanned by the two double WANDs (then also called PNDs [9, 24]);

• if a PE/PM Weyl tensor is of Petrov type I, then it is PE/PM precisely w.r.t. the timelike
Weyl principal vector, which is unique up to sign;

• a Weyl tensor can never be properly PE and PM at the same time, even w.r.t. different
timelike directions.

We shall see (proposition 3.13) that these properties suitably generalize to any dimension,
thus giving further support to the soundness of our PE/PM definitions. Recall that for n > 4, a
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type D Weyl tensor may have more than two double WANDs (see, e.g., [31–34] for examples).
In [35] it is shown that for general n, the set of multiple WANDs of a type D Weyl tensor is
homeomorphic to a sphere Sk, the dimension k being at most n− 4. This is the sphere of null
directions of a (proper) Lorentzian subspaceLk+2 (the latter being defined as the space spanned
by all multiple WANDs) of the full space Ln (generated by the full sphere of null directions
Sn−2. However, regarding types Ii and G, no analogue of the concept of Weyl principal vector
is presently known.

Hence, it is natural to ask whether a PE or PM Weyl tensor of type Ii or G may admit a
non-unique u when n > 4. However, we shall show that the answer is negative.

In order to prove our results we will be considering two timelike directions spanned by u
and u′, where uau′a < 0, u′ �= u. These vectors define two observers in relative motion in the
timelike plane u∧u′. Suppose that � and �′ are two parallel null vectors spanning the first null
direction of this plane, while the parallel null vectors n and n′ span the second one, such that

u = �− n√
2

, u′ = �′ − n′√
2

. (43)

Then u′ = bλ(u) for a certain positive Lorentz boost (A.24), λ �= 0, which transforms a
u-adapted null frame F = {m0 = �, m1 = n, mî=3,...,n} into the u′-adapted null frame

F ′ = bλ(F ) = {m0′ = �′ = eλ�, m1′ = n′ = e−λn, mî=3,...,n}. (44)

Proposition 3.13. A Weyl tensor C at a point of a n-dimensional spacetime cannot be properly
PE and PM at the same time, even w.r.t. two different timelike directions. If C is properly PE
(PM), then it is PE (PM) precisely w.r.t. any u belonging to the space Lk+2 spanned by all
multiple WANDs in the type D case, and w.r.t. a unique u (up to sign) in the type Ii and G
cases.

Proof. If a Weyl tensor is PE and PM at the same time (w.r.t. two possibly different timelike
directions) then the corresponding Weyl operator must be diagonalizable and have zero
eigenvalues by proposition 3.7; thus the Weyl tensor is zero, which proves the first statement.
Suppose now that C is PE/PM w.r.t. to different timelike directions, spanned by u and u′,
where we take uau′a < 0. Define u- and u′-adapted null frames F and F ′ as above. By the
PE/PM assumptions we have

C0î0 ĵ = ±C1î1 ĵ, C0î ĵk̂ = ±C1î ĵk̂, C0′ î0′ ĵ = ±C1′ î1′ ĵ, C0′ î ĵk̂ = ±C1′ î ĵk̂. (45)

However, by (44) and the definition of b.w. we also have

C0′ î0′ ĵ = e2λC0î0 ĵ, C1′ î1′ ĵ = e−2λC1î1 ĵ, C0′ î ĵk̂ = eλC0î ĵk̂, C1′ î ĵk̂ = e−λC1î ĵk̂, (46)

By comparison of (45) and (46) and the fact that eλ �= 1 we immediately obtain

C0î0 ĵ = 0 = C1î1 ĵ, C0î ĵk̂ = 0 = C1î ĵk̂, (47)

i.e., the type D condition is fulfilled relative to � and n, which thus span double WANDs. This
already proves uniqueness of the u-direction in the type Ii and G cases.

Next, suppose that C is of type D and PE/PM w.r.t. u. By the second sentence in
proposition 3.10, such a u necessarily lies in a plane of double WANDs and thus in
Lk+2. Conversely, consider any other timelike direction in Lk+2, spanned by a vector u′

(uau′a < 0, u′ �= u). Then, by definition of the vector space Lk+2, the null directions of the
timelike plane u∧u′ are double WANDs. Hence, defining again u- and u′-adapted null frames
F and F ′ as above, the only non-zero Weyl components in the F-frame are comprised in the
b.w. 0 components which are invariant or change sign under (A.8), namely Cî ĵk̂l̂ (PE case) or
C01î ĵ (PM case). Since the boost bλ leaves these components invariant (by definition of b.w.),
the same holds in the F ′-frame, and thus the Weyl tensor is also PE/PM also w.r.t. u′. �
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Remark 3.14. The proof of this proposition can be readily generalized to arbitrary tensors S.
We notice that if S is of type D (cf section 2.3) then the set of null directions along which the
boost order of S is zero is again homeomorphic to a sphere Sk generating a Lorentzian space
Lk+2 [36]. We obtain that any tensor S �= 0 cannot be S+ and S− at the same time, even w.r.t.
two different timelike directions. If S = S± w.r.t. a certain u, then either S is not of type II or
more special, in which case S = S± is realized by a unique timelike direction, or S is of type
D, in which case S = S± is realized by any u ∈ Lk+2.

Remark 3.15. More specifically for a type D Weyl tensor C, it also follows from the results
of [35] that if C has more than two double WANDs (i.e., we have k � 1 for the dimension of
Sk), then C = C+ w.r.t. any u lying in Lk+2, i.e., C is PE (type D(d)). Let us emphasize once
more that in this case the PE property is realized precisely by any u ∈ Lk+2 (i.e., by any u
lying in any plane spanned by multiple WANDs, and by no other timelike vectors); hence,
since k � n − 3 for any n [35], a Weyl tensor can never be PE w.r.t. all timelike directions
in Ln. By contraposition, we have that a type D spacetime that is not PE admits exactly two
multiple WANDs. This is true, in particular, for a type D PM Weyl tensor, which is thus PM
w.r.t. all timelike directions in the 2-plane �∧ n, and only w.r.t. those (i.e., k = 0 for PM Weyl
in proposition 3.13).

Remark 3.16. For PE or PM type Ii Weyl tensors, the second statement of proposition 3.10
becomes particularly meaningful when combined with the u-uniqueness result: any single
WAND is associated to exactly one other single WAND under the uniquely defined time-
reflection θ , the relation being symmetric and where (36) should be read as

√
2u = �−θ (�) =

θ (θ (�)) − θ (�). This is exemplified clearly, e.g., by the four single WANDs of static black
rings [37] (which are PE, see below). In n = 4 dimensions a Petrov type I spacetime has
always four PNDs, and it was known that these span a three-dimensional vector space in the
PE and PM cases [22, 38, 5]; this is now a simple consequence of the ‘pairing’ property
(second statement of proposition 3.10).

3.5. PE spacetimes

Large classes of PE spacetimes exist. It is not our purpose to deduce classifications of, for
instance, PE Einstein spacetimes here; even in four dimensions this is a very difficult task
which is still far from completion. Instead, we mention generic conditions which imply that
the spacetimes in question are PE w.r.t. some u. These generic conditions hold in arbitrary
dimensions and often generalize known ones in four dimensions. Hence, this again supports
the soundness of the Weyl PE definition, cf section 3.4.2. Evidently, all examples remain PE,
with the same Weyl alignment type, when subjected to a conformal transformation (this will
be important in section 4).

3.5.1. Spacetimes with a shear-free normal u, static metrics and warps with a one-dimensional
timelike factor. Given a unit timelike vector field u, we refer to (C.1)–(C.5) of appendix C
for the usual definitions of the kinematic quantities of u. In particular, a vector field u and the
timelike congruence of curves it generates, are called shear-free if σab = 0, and normal (or
non-rotating or twist-free or hypersurface-orthogonal) if ωab = 0. We have

Proposition 3.17. All spacetimes admitting a shear-free, normal unit timelike vector field u
are PE w.r.t. u. These are precisely the spacetimes which admit a line element of the form

ds2 = −V 2(t, xγ ) dt2 + P2(t, xγ )ξαβ (xγ ) dxα dxβ. (48)
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In these coordinates we have u = ∂t/V , and the remaining kinematic quantities are given by

�̃ = 1

V
∂t ln P, u̇α = ∂α lnV. (49)

Proof. Equation (C.12) gives the magnetic part of the Weyl tensor in terms of the kinematic
quantities. As an immediate consequence, the existence of u for which σab = ωab = 0
implies that the magnetic part vanishes and the spacetime is PE w.r.t. u. Since u is
hypersurface-orthogonal one has ua = −V (t, xγ ) dat and the line element can be written
as ds2 = −V (t, xγ )2 dt2 + hαβ (t, xγ ) dxα dxβ , for certain coordinates {t, xγ }. Then the shear-
free property of ua translates to �̃hαβ = uα;β = 1

2V ∂thαβ (the labels referring to coordinate
components here), whence hαβ = P(t, xγ )2ξαβ (xγ ) (and vice versa; this is a direct extension
of the observations in [39] from four to arbitrary dimensions). The expressions (49) follow by
direct computation. �

Remark 3.18. One may ask the converse question: does every PE spacetime necessarily admit
one or more shear-free normal timelike congruences? In conformally flat (type O) spacetimes
the answer is yes: there are as many of them as in Minkowski spacetime, since the conditions
σab = 0, ωab = 0 are conformally invariant (see, e.g., [9]). In four dimensions, partial
answers are known for the other admitted Petrov types (D and I). In the Petrov type D case, it
was shown in [40] that in PE Einstein spacetimes and aligned Einstein–Maxwell solutions there
is a one-degree freedom of shear-free normal timelike congruences. Well-known examples of
PE type D Einstein spacetimes are the Schwarzschild and C metric solutions (see [40] for a
complete survey). For instance, in the interior (non-static) region u(r) ≡ 2m/r− 1 > 0 of the
Schwarzschild solution ds2 = −dr2/u(r)+ u(r) dt2 + r2(dθ2 + sin(θ )2 dφ2), two particular
families of shear-free normal vector fields u are given by

u =
√

Er∂r + (2m)1/3

(
1√

u(r)q(r)
−
√

Er

u(r)

)
∂t, q(r) = Er2

u(r)
− 1±

√(
Er2

u(r)
− 1

)2

− 1,

(50)

where, for a given r, the constant E > 0 is large enough such that Er2 > u(r); shear-free normal
congruences also exist in the exterior regions, where they generalize the static observers. In
passing, we note that all Petrov type D perfect fluids with shear-free normal fluid velocity,
comprising the type D PE Einstein spacetimes as a limiting subcase, were classified by Barnes
[41] (see also [40] for a clarification and a correction). However, the answer to the question
is negative in general. For instance, Gödel’s rotating perfect fluid universe and the Szekeres
non-rotating dust models (see [9] and references therein), both of type D, are PE but do not
admit a shear-free normal u (since the conditions of proposition B.1 in [40] are not fulfilled).
In the Petrov type I case the same is true for, e.g., the generic Kasner vacuum spacetimes and
the rotating ‘silent’ dust models of [42]; here the field u realizing the PE condition is unique
(proposition 3.13) and one verifies that it is not shear-free normal, while proposition 3.17
ensures that there cannot be any other shear-free normal timelike congruences.

Special cases of the spacetimes (48) are the following warped (cases (a) and (b) below),
direct product (case (c)) and doubly-warped (case (d)) spacetimes with a one-dimensional
timelike factor (see also [43]; we add the expressions of the corresponding expansion scalar
and acceleration vector between square brackets, a prime denoting an ordinary derivative):

(a) V = V (t), P = P(t) [�̃ = P′(t)/(P(t)V (t)), u̇a = 0];
(b) V = V (xγ ), P = P(xγ ) [�̃ = 0, u̇a = ln(V );a];
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(c) V = V (t), P = P(xγ ) [�̃ = 0, u̇a = 0];
(d) V = V (xγ ) non-constant, P = P(t) non-constant [�̃ = P′(t)/(P(t)V (xγ )), u̇a =

ln(V );a].

Notice that if V = V (t), we may rescale the coordinate t such that V = 1; if P = P(xγ ) we
can put P = 1 by absorption in ξαβ (xγ ). Hence, the direct product case (c) can be considered
as a subcase of both (a) and (b). Case (d) describes doubly-warped spacetimes; see [44] for a
definition and for a discussion of their properties in four dimensions.

It is easy to see (cf appendix A of [34] and references therein) that for Einstein spacetimes
case (a) reduces to Brinkmann’s warp ansatz [45]

ds2 = − f (t)−1 dt2 + f (t) ds̃2, f (t) = λt2 − 2dt − b, (51)

where λ is the cosmological constant (up to a positive numerical factor), b and d are constant
parameters and ds̃2 is any (n − 1)-dimensional Euclidean Einstein space with Ricci scalar
R̃ = −(n− 1)(n− 2)(λb+ d2). This can be used to produce a number of explicit examples
(see [34] for a recent analysis of such warps).

Case (b) precisely covers the static spacetimes (u being parallel to the hypersurface-
orthogonal timelike Killing vector field ∂t ). In fact, the argument in the proof of proposition 3.10
is a simple extension of the one used in [43] to prove that static spacetimes can only be of
the Weyl types O, D(d), Ii or G. Let us note that in n > 4 dimensions explicit static vacuum
solutions of the last three types are known (type O just giving flat space): the Schwarzschild
black hole (type D [24, 43, 46]), the static black ring (type Ii [37]) and the static KK bubble
(type G [31]). In four dimensions, the static type D vacua were invariantly classified by Ehlers
and Kundt [47] and comprise, e.g., the exterior regions of the Schwarzschild and C metrics;
static type I examples are comprised in, e.g., the Harrison metrics (see [9]).

Remark 3.19. In four dimensions, and in the line of remark 3.18, the following spacetimes
are necessarily static (u being parallel to the hypersurface-orthogonal timelike Killing vector
field ∂t):

• Petrov type D Einstein spacetimes with a non-rotating rigid u (i.e., ωab = 0, σab = 0 =
�̃ = 0) [40];

• Petrov type I Einstein spacetimes with a shear-free normal u [22, 39], and type I perfect
fluids with shear-free normal fluid velocity u [41].

Remark 3.20. Stationary spacetimes.Although stationary PE spacetimes do exist, and in four-
dimensions have been constructed in [48–51], this is now not the only possibility (contrary
to the static case discussed above). First, the existence of four-dimensional Petrov type I,
stationary spacetimes with a PM Weyl tensor was shown in [52]. Moreover, stationary, non-
static spacetimes are in general ‘hermaphroditic’, i.e., neither PE nor PM. For instance, in
four dimensions generic (Petrov type D) locally rotationally symmetric (LRS) spacetimes of
class I in the Stewart–Ellis classification [53] have this property (cf [54] for the additional PE
and PM conditions). The same is true for the exterior (Petrov type I or II) vacuum region of
a van Stockum rotating dust cylinder (if the mass per unit length is large enough), and the
(Petrov type D) Kerr metric [55]. We additionally point out here that the higher-dimensional
generalization of the latter, i.e. the black hole solution of Myers and Perry [56], shares a similar
property: the components of the type D Weyl tensor in a canonical null frame are such that
Ci jkl �= 0 �= C01i j (see section 6.4 of [43] and section 5.5 of [57]), such that the spacetime
is neither PE (type D(d)) nor PM (type D(abc)), cf proposition 3.10 (more generally, the
same comment applies to all vacuum Kerr–Schild spacetimes with a twisting Kerr–Schild null
vector, see section 5.5.1 of [57]). Moreover, the (generically type Ii) five-dimensional spinning
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black rings of [58] (reducing to a Myers–Perry black hole under an appropriate limit) are also
hermaphroditic in the non-static regions, as can be shown by making use of the Bel–Debever
criteria of proposition 3.5. These thus provide explicit examples of spacetimes with a minimal
Weyl tensor (cf proposition 2.7) which are, however, neither PE nor PM.

3.5.2. More general direct products and warped spacetimes. We have seen above that
warped metrics with a one-dimensional timelike factor are examples of PE spacetimes and
thus can only be of type G, Ii, D(d) or O (proposition 3.10). This latter result was stated in
proposition 3 of [43]. Here we discuss similar properties in the case of other possible warps
(M, g) for which, by definition:

• M is a direct product manifold M(n) = M(n1 ) × M(n2 ) of factor spaces M(n1 ) and M(n2 ),
where n = n1 + n2, n1 � 2 and M(n1 ) represents the Lorentzian (timelike) factor;

• g is conformal to a direct sum metric,

g= e2θ
(
g(n1) ⊕ g(n2 )

)
, (52)

where g(ni ) is a metric on M(ni ) (i = 1, 2) and θ is a smooth scalar function on either M(n1 )

or M(n2 ) (see, e.g., [59]).

Since we will be interested in PE/PM Weyl tensors of direct products, it is useful first
of all to recall a known result (see, e.g., [43]) that tells us when the Weyl tensor of a product
metric vanishes (and is thus both, trivially, PE and PM): a product space is conformally flat iff
both product spaces are of constant curvature and

n2(n2 − 1)R(n1 ) + n1(n1 − 1)R(n2 ) = 0. (53)

In the following analysis we shall mostly rely on the results of [43]. First, combining
propositions 4 and 5 (and the explanation on top of page 4415 of [43]) with our proposition 3.13
we obtain

Proposition 3.21. Warped spacetimes with a two-dimensional Lorentzian factor (M(n1 ), g(n1 )),
n1 = 2, are at each point either type O, or type D and PE w.r.t. any unit timelike vector
living in M(n1 ), the uplifts of the null directions of the tangent space to (M(n1 ), g(n1 )) being
double WANDs of the complete spacetime (M, g). They include, in particular, all spherically,
hyperbolically or plane symmetric spacetimes.

Here and below, a vector is said to ‘live’ in a factor space if it is spanned by uplifts
of tangent vectors to this space. For warped products in which the Lorentzian factor is at
least three-dimensional the above proposition does not hold, in general. However we can find
necessary and sufficient conditions for the product space to be PE. Let us give results in
the case of direct products (θ = 0 in (52)). This can be then extended to warped products
(in fact, to all conformally related spaces) by introducing a suitable conformal factor, which
does not affect the properties of the Weyl tensor. For direct products there is a biunivocal
relation between vectors v tangent to M(ni ) and their uplifts v∗ living in M(ni ) (v being the
M(ni )-projection of v∗). For brevity, we shall identify these objects and use the same notation
for them; it will be clear from the context to what quantity we are referring. Also, we let
lowercase Latin letters serve as abstract indices for the full space as well as for the factor
spaces. We denote by R(ni )

ab the Ricci tensor of M(ni ), and similarly for other tensors defined in
the factor geometries. In addition, given a unit timelike U tangent to M(n1 ) we define a U-ONF
{U, mA} (with frame labels A, B,C, . . . = 2, . . . , n1) of M(n1 ) and an ONF {mI} (with frame
labels I, J, K, . . . = n1 + 1, . . . , n) of M(n2 ). These in turn enable us to define a composite
U-ONF {U, mi=2,...,n} of M(n). Then, using the results of section 4 of [43] we easily arrive at
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Proposition 3.22. A direct product spacetime M(n) = M(n1 )×M(n2 ) is PE w.r.t. a unit timelike
vector U that lives in M(n1 ) iff U is an eigenvector of R(n1 )

ab and M(n1 ) is PE w.r.t. U, i.e.,

R(n1 )
UA = 0, C(n1 )

UABC = 0. (54)

Then, U is also an eigenvector of the Ricci tensor Rab of M(n) (i.e., RUi = 0).

Proof. By (9) and (10) of [43], the requirements CUIAJ = 0 and CUABC = 0 are equivalent
to (54), while the remaining magnetic Weyl components of M(n) are always identically zero
thanks to equation (8) of [43]. This proves the first part. The second part follows from the
well-known fact that the Ricci tensor of a direct product is a ‘product tensor’ (i.e., it is
decomposable), such that RUA = R(n1 )

UA = 0 and RUI = 0. �

Remark 3.23. The proof makes use of equation (9) of [43], which is only valid for n1 � 3.
However, the proposition remains true for n1 = 1 or n1 = 2, since then the spacetime is
always PE (cf above) and the conditions (54) are identically satisfied indeed. Further notice
that in the case n1 = 3 the Weyl tensor of M(n1 ) is identically zero, such that M(n) is PE w.r.t.
U iff the Ricci tensor of M(n1 ) has U as an eigenvector. In general, we shall be able to rephrase
this proposition once we have introduced the concept of Riemann PE spacetime in the next
section.

One may further wonder whether direct products exist which are PE w.r.t. a vector u
not living in M(n1 ), i.e., being inherently n-dimensional. Since the M(n2 )-projection of u is
spacelike, the M(n1 )-projection is timelike. Thus we have u = cosh γ U+ sinh γ Y, where U is
a unit timelike vector living in M(n1 ), Y a unit spacelike vector living in M(n2 ) and γ �= 0. We
also define the unit spacelike vector y = cosh γ Y+ sinh γ U and use a further adapted u-ONF
{u, mi=2,...,n} = {u, mA, y, mĨ}, where the (n1 − 1) mA live in M(n1 ) and the (n2 − 1) mĨ in
M(n2 ).

Proposition 3.24. A direct product spacetime M(n) = M(n1 )×M(n2 ) is PE w.r.t. a unit timelike
vector u = cosh γ U + sinh γ Y not living in M(n1 ) (γ �= 0, U living in M(n1 ) and Y in M(n2 ))
iff the following relations hold:

C(n1 )
UABC = 0, R(n1 )

UA = 0, (n1 − 1)R(n1 )
UAUB = R(n1 )

UU δAB (55)

C(n2 )

Y ĨJ̃K̃
= 0, R(n2 )

Y Ĩ
= 0, (n2 − 1)R(n2 )

Y ĨY J̃
= R(n2 )

YY δĨJ̃ (56)

(n2 − 1)R(n1 )
UU = (n1 − 1)R(n2 )

YY . (57)

In particular, M(n) is PE w.r.t. U and thus belongs to the class described by proposition 3.22.
Moreover, it is either type O, or type D and PE w.r.t. any u in the plane spanned by U and Y,
i.e., w.r.t. u = cosh γ U+ sinh γ Y for any γ .

Proof. The proof goes by splitting the equations Cui jk = 0 in the adapted frame {u, mi=2,...,n} =
{u, mA, y, mĨ} and employing equations (8)–(11) of [43]. Requiring CuĨAJ̃ = 0 and CuABC = 0
one finds (54) so that, by proposition 3.22, M(n) is PE also w.r.t. to the timelike unit vector field
U living in M(n1 ). Direct products which are PE w.r.t. a vector u not living in M(n1 ) are thus a
subset of those considered in proposition 3.22. Since they are PE w.r.t. two distinct timelike
vector fields, by proposition 3.13 they are necessarily of type D (unless conformally flat) and
thus PE w.r.t. any unit timelike vector in the plane spanned by u and U (cf proposition 3.13).
Dually, CuAĨB = 0 and CuĨJ̃K̃ = 0 are equivalent to the first two relations in (56). Finally,
CuAyB = 0 and CuĨyJ̃ = 0 give CUAUB+CYAY B = 0 and CUĨUJ̃+CY ĨY J̃ = 0, respectively. Tracing
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the first relation over A and B (or the second over Ĩ and J̃) yields (57), and then the respective
relations reduce to the last equations of (55) and (56). Under (55)–(57) the remaining Weyl
magnetic components turn out to be identically zero. This proves the proposition. �

Simple examples are given by spacetimes M(n) = M(n1 ) × M(n2 ) with metric ds2 =
ds2

1 + ds2
2, with

ds2
1=−dt2 + d�2, ds2

2 = dz2 + d�2, d�2 and d�2 Ricci-flat Euclidean spaces. (58)

Here U = ∂t and Y = ∂z, and the full space as well as the factors are Ricci flat with
decomposable Weyl tensor8.

3.5.3. Spacetimes with certain isotropies. A spacetime with a high degree of symmetry
clearly has a special Weyl tensor. In particular, an isotropy of spacetime imposes constraints on
the Weyl tensor in the sense that the isotropy must leave the Weyl tensor invariant; consequently,
a non-trivial isotropy implies that certain components of the Weyl tensor are zero. Recall that
the isotropy group of an n-dimensional spacetime must be isomorphic to a subgroup of the
Lorentz group SO(1, n−1). The largest possible isotropy group is thus of dimension n(n−1)/2,
in which case the spacetime must be of constant curvature, and therefore also conformally
flat (see, e.g., [9]). However, some (weaker) restrictions also arise in the presence of a smaller
isotropy. In the context of PE spacetimes, an interesting result is the following:

Proposition 3.25. A spacetime which admits SO(p1)× · · ·× SO(pi)× · · ·× SO(pk) isotropy,
where pi � 2 and

∑k
i=1 pi = n− 1, is PE.

Proof. Consider the ONF adapted to the isotropy group as follows: the factor SO(pi) acts
on (and leaves invariant) the pi-plane spanned by mai . Let (hi)

a
b be the corresponding

projection operators onto this pi-plane and define the spatial projector ha
b =

∑k
i=1(hi)

a
b.

The action of the isotropy group can thus be put on a block-diagonal form; explicitly, for
G = (Gl, . . . , Gi, . . . , Gk) ∈ SO(p1)× · · · × SO(pi)× · · · × SO(pk), the isotropy acts on a
vector v as:

G(v) =
k∑

i=1

Gihi(v).

Since
∑

pi = n− 1 there will be a timelike vector u so that gab = −uaub + hab.
Consider then the tensor Te f g ≡ uaCabcdhb

ehc
f h

d
g . This is a purely spatial tensor relative to

u, with components Ti jk = Cui jk in any u-ONF, such that it is necessary and sufficient to show
that Te f g = 0. The Weyl tensor is invariant under the spacetime isotropy group, and using the
results regarding invariant tensors under the action of SO(p) groups (see [61]), the only purely
spatial tensors invariant under the group in question are linear combinations of tensor products
of (hi)ab and the totally antisymmetric pi-tensors εi =∧ai

mai . Since the tensor T is a rank 3
tensor, it follows that T must be of the form T = ∑k

i=1 αiε
i, αi ∈ FM . Hence, Te f g = T[e f g].

However, due to the first Bianchi identity (last equation in (A.33)) we have uaCa[bcd] = 0,
whence T[e f g] = 0, which proves the proposition. �

Special instances of the above isotropy are the following.

8 Recall (see [60, 43]) that a direct product space is an Einstein space iff both factors are Einstein spaces
and R/n = R(n1 )/n1 = R(n2 )/n2; it has decomposable Weyl tensor iff both factors are Einstein spaces and
n2(n2 − 1)R(n1 ) + n1(n1 − 1)R(n2 ) = 0. Hence, a direct product is Ricci flat iff both factor spaces are Ricci-flat (in
which case the Weyl tensor is automatically decomposable). This applies to the factors and thus to the full space (58).
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• Spacetimes with an isotropy group SO(n−1). They are conformally flat (see, e.g., theorem
7.1 of [16]), i.e., proposition 3.25 becomes ‘trivial’ if we take one single SO(n− 1) factor.
If the spacetime is not of constant curvature, the SO(n − 1) isotropy and the conformal
flatness imply that the Ricci tensor has Segre type {1, (11 · · · 1)}. Also, the shear, rotation
and acceleration of the preferred vector field u must vanish, while the surfaces of the
foliation orthogonal to u are maximally isotropic and thus have constant curvature [9]. It
follows that the spacetimes with an isotropy group SO(n−1) are given by the line elements

ds2 = −dt2 + a(t)2 d�2
n−1,k(x

1, . . . , xn−1), (59)

where d�2
n−1,k is the metric on an (n− 1)-dimensional ‘unit’ space of constant curvature

with sign k. Notice that they are special instances of the warped metrics (48), case (a). For
n = 4 this gives the Friedmann–Lemaı̂tre Robertson–Walker (FLRW) model, which is in
fact the only possibility to satisfy the isotropy condition of proposition 3.25. However, in all
higher dimensions spacetimes satisfying the assumptions of proposition 3.25 and admitting
non-zero Weyl tensors are possible (as is generically the case in the next examples).

• In even dimensions, a possible isotropy is SO(3) × SO(2)(n−4)/2. This is admitted, for
example, by the metric

ds2 = −dt2 + a(t)2 d�2
3,k(x, y, z)+

(n−4)/2∑
i=1

bi(t)
2 d�2

2,ki

(
y1

i , y2
i

)
(n even), (60)

where the submanifolds {y1
i constant, y2

i constant} clearly have a four-dimensional FLRW
line element.

• Similarly in odd dimensions, take all pi = 2, i.e., the isotropy group SO(2)(n−1)/2. An
example is the line element

ds2 = −dt2 +
(n−1)/2∑

i=1

ai(t)
2 d�2

2,ki

(
v1

i , v
2
i

)
(n odd). (61)

In the case where all the ai(t) coincide, metric (61) is a special subcase of (48) with (a),
thus comprising Einstein spacetimes (51) in particular.

One can easily construct other examples admitting different isotropies compatible with
proposition 3.25. Notice that the above proposition could also be reexpressed in terms of
symmetries of the Weyl tensor alone, since the proof does not rely on the presence of isometries.
Other theorems regarding Weyl tensors with large symmetry groups were deduced in [16] and
serve to produce further examples of PE spacetimes.

We already mentioned that only zero Weyl tensors (and thus conformally flat spacetimes)
can admit SO(n− 1) isotropy (theorem 7.1 of [16])). Next, theorem 7.2 of [16] states that

Proposition 3.26. If the Weyl tensor of a spacetime of dimension n > 4 admits SO(n − 2)

isotropy, then it is of type O or D(bcd), and thus PE.

Remark 3.27. The statement of the proposition is no longer valid for n = 4, the
counterexamples being then precisely all non-PE Petrov type D spacetimes (any four-
dimensional type D Weyl tensor has boost isotropy in the plane spanned by the PNDs, and
spin isotropy in the plane orthogonal to it [9]). For instance, Petrov type D Einstein spacetimes
(such as the Kerr solution), or their aligned Einstein–Maxwell ‘electrovac’ generalizations [9]
are generically not PE (see also remarks 3.18 and 3.20). We also observe that a metric whose
associated Weyl tensor is of Petrov type D (which thus admits the above mentioned isotropies)
is itself, nevertheless, generically anisotropic. However, even if the spacetime itself (and not
only the Weyl tensor) is SO(2)-isotropic (i.e., LRS [9]) then it is still not necessarily PE:
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the LRS class I and III metrics are generically not PE (nor PM; see [54] for the PE and PM
conditions).

Yet, the LRS class II metrics, i.e., those admitting spherical, hyperbolical or planar
symmetry (in addition to the SO(2) metric isotropy), are all PE, just as their higher-dimensional
generalizations

ds2 = F(t, x)2(−dt2 + dx2)+ G(t, x)2 d�2
n−2,k (n � 4). (62)

For n > 4 these are examples of the above proposition where (both the Weyl tensor and)
the metric itself admits SO(n − 2) isotropy, and are special instances of proposition 3.21
(they include, in particular, the Schwarzschild(–Tangherlini) metric, and its generalizations to
include a cosmological constant and/or electric charge).

For arbitrary n an SO(n − 3) isotropic Weyl tensor does not require the spacetime to be
PE (nor PM), in general: take, for instance, the five-dimensional Myers–Perry spacetime (and,
more generally, see theorem 7.4 of [16]).

Finally, we note that the 2k + 1-dimensional spacetimes with U (k)-symmetry (k > 1)
given in theorem 7.5 of [16] are also PE and ‘PM’, in the terminology of remark 3.6.

3.5.4. Higher-dimensional ‘Bianchi type I’ spacetimes. We can generalize the well-known
Bianchi type I spacetimes to n-dimensions by a spacetime allowing for (n − 1)-dimensional
spacelike hypersurfaces, �t , possessing a transitive isometry group equal to the Abelian R

n−1.
Such spacetimes will also be PE:

Proposition 3.28. An n-dimensional spacetime possessing an Abelian R
n−1 group of isometries

acting transitively on spacelike hypersurfaces is PE.

Proof. Let us present two different proofs of this. First, consider the family of spatial
hypersurfaces, �t , defined as the orbits of the Abelian R

n−1. We choose u to be the Gaussian
normal to �t . Consequently, u is vorticity-free, u[a;b] = 0 and geodesic, ubua;b = 0. Using
equation (C.12) in appendix we see that the magnetic components of Weyl reduce to:

Cdg
bcudhb

ehc
f = 2haghb

ehc
f σa[b;c] + 2

n− 2
hg

[ehb
f ]σ

a
b;a.

Choosing a u-ONF consisting of left-invariant spatial vectors, mî in �t in the standard way
[62–65], the commutators satisfy [mî, m ĵ] = 0 due to the fact that R

(n−1) is Abelian. In
addition, [u, mî] is tangent to the hypersurfaces due to the fact that this is an ONF. This further
implies that the following connection coefficients are zero: ua�

a
bcuc = � î

ĵk̂
= 0. An explicit

computation now gives that haghb
ehc

f σa[b;c] = 0 and σ a
b;a = 0; consequently, this spacetime

is PE.
A second proof of proposition 3.28 can also be given using symmetries. The Abelian R

n−1

implies also that we can, in a suitable frame, write the metric as:

ds2 = −dt2 +
(n−1)∑
i=1

ai(t)(dxi)2, (63)

where dt is the dual 1-form to the Gaussian normal vector u above. Here, it is obvious that
the discrete map φ : (t, xi) �→ (t,−xi) is an isotropy for a point with xi = 0. Since this
space is spatially homogeneous, this φ extends to an isotropy at any point in space. Consider
the point p at the origin of �t . Then it is straightforward to see that φ gives rise to the map
φ∗ = −θ on T ∗p M, where θ is the Cartan involution. Since this is an isotropy at any point, this
must extend to an isotropy of the Weyl tensor C as well as all other curvature tensors. Since
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φ∗ = −θ , on T ∗p M this implies that for a curvature tensor, T , of rank N, we have the condition
(−1)Nθ (T ) = T . Hence, for the Weyl tensor, which is of rank 4, θ (C) = C, and consequently,
C = C+ and thus PE. �

Examples of such spacetimes have been considered in arbitrary dimensions, for example,
in [66] (here, the full group of discrete symmetries was considered).

3.5.5. Type D spacetimes with more than two multiple WANDs. Higher-dimensional type
D spacetimes with more than two multiple WANDs are PE (see remark 3.15). For instance,
in [33] it was proved that all type D Einstein spacetimes which admit a non-geodesic field of
multiple WANDs over a region necessarily possess more than two multiple WANDs at each
point of that region, and all five-dimensional such spacetimes were explicitly listed. See also
[31, 34] for more explicit examples.

3.6. PM spacetimes

Contrary to PE spacetimes, properly PM spacetimes are most elusive. For instance, in four
dimensions the only known Petrov type D PM spacetimes are LRS and were obtained in [54].
For n = 4 we refer to [67, 68] for recent deductions of Petrov type I(M∞) and I(M+) PM
spacetimes (cf remark 3.8), and to [17] for a complete overview of the PM literature prior to
these investigations. Here we underline the elusiveness of PM spacetimes in any dimension, by
proving propositions 3.29 and 3.31; this also supports the soundness of the Weyl PM definition.
However, the work of [67] will enable us to construct examples of higher-dimensional (non-
vacuum) PM spacetimes in section 4.3.2.

3.6.1. Restrictions on Einstein spacetimes. In a frame approach to four- or higher-
dimensional General Relativity, the requirement of a spacetime to obey certain geometric
conditions puts constraints on the closed Einstein–Ricci–Bianchi system of equations. This
may give rise to severe integrability conditions, leading to non-existence or uniqueness results.
Regarding the PM condition in four dimensions it was shown, e.g., in [27] that PM, Petrov
type D, aligned perfect fluids, i.e., for which the Weyl tensor is PM w.r.t. the fluid velocity, are
necessarily LRS and thus also comprised in the work of [54]. As another example, aligned PM
irrotational dust spacetimes have been shown not to exist, irrespective of the Petrov type [69].
In the same line severe integrability conditions arise for PM Einstein spacetimes (including the
Ricci-flat case), and up to now no such solution has been found, in any dimensions. For n = 4
it was therefore conjectured in [5] that no congruence of observers in an Einstein spacetime
exist which measures the Weyl tensor to be PM. Up to present a general proof has not been
found, but the validity of the conjecture was shown under a variety of additional assumptions
(see again [17] for an overview), among which the Weyl type D assumption [5, 70]. This last
result can be generalized to arbitrary dimension.

Proposition 3.29. In any dimension, Einstein spacetimes with a type D, PM Weyl tensor do
not exist.

Proof. Assume that a PM type D Einstein spacetime exists. Take a null frame {�, n, mî=3,...,n}
for which � and n span the (unique) double WANDs. We work with the generalization of
the Geroch–Held–Penrose formalism introduced in [71]. In the notation of [71], the PM type
D Einstein space conditions translate into the vanishing of all curvature tensor components,
except for �A

î ĵ
= �[î ĵ] �= 0 and possibly φk̂k̂ = φ = � (no summation over k̂, � being the
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cosmological constant up to normalization). We denote � for the matrix [�A
î ĵ

], and S ≡ [ρ
(î ĵ)]

and A ≡ [ρ[î ĵ]] for the symmetric, resp. antisymmetric part of the matrix ρ = [ρî ĵ]. Since
� �= 0 both double WANDs are geodetic by proposition 6 of [43], such that we can take the
simplified Ricci (NP) and Bianchi equations displayed in appendix A of [71]; below we shall
refer to these equations by (A.x [71]) in order to avoid confusion with equations of appendix A
of the present paper.

By considering the symmetric part of (A.10 [71]), and the symmetric and antisymmetric
parts of the jk-contraction of (A.8 [71]) we immediately get

�S = S�, �A = −A�, (64)

�
(
S+ 2A− 1

2ρ1n−2
) = 0, ρ ≡ ρ î

î = Sî
î. (65)

Let 2p � 2 be the rank of the antisymmetric matrix �. Then, by rotation of the mî we can put �
in normal 2× 2 block form

[ x 0
0 0

]
, where x is an antisymmetric, two-block diagonal, invertible

2p× 2p matrix. Write S and A in the same kind of block form: S = [ s1 s2

st
2 s3

]
, A = [ a1 a2

−at
2 a3

]
,

where yt is the transpose of y, and s1 and s3 are symmetric whereas a1 and a3 are antisymmetric.
Performing the matrix multiplication in (65) in 2× 2 block form and using the invertibility of
x one gets

s1 + 2a1 − ρ

2
12p = 0, s2 + 2a2 = 0 ⇒ s2 = a2 = 0, a1 = 0, s1 = 1

2
ρ12p,

(66)

by taking symmetric and antisymmetric parts. Next, taking î = 1, ĵ = 2 and k̂, l̂ > 2p in
(A.11 [71]) produces a3 = 0, whence A = 0. Now (A.12 [71]), with ĵ = 1, k̂ = 2 gives
Sîl̂ = 0, ∀î and ∀l̂ > 2, implying that either S = 0, or p = 1 and s3 = 0 (notice that the latter is
compatible with the last equation in (66) and ρ = Sî

î = (s1)
î
î). We conclude that ρ = [ ρ

2 12 0
0 0

]
.

Priming the above reasoning leads to ρ′ = [ ρ′
2 12 0

0 0

]
, such that

ρρ′ = ρ′ρ. (67)

Put Ti ≡ τî − τ ′
î
. Adding (A.13 [71]) to its prime dual gives

�î[ ĵTk̂] − Tî� ĵk̂ = 0. (68)

Tracing over î and k̂ leads to T î�î ĵ = 0; contracting now (68) with T î implies Tî = 0, i.e.,
τî = τ ′

î
. Finally, subtracting (A.6 [71]) from (A.5 [71]), using (67) and taking the antisymmetric

part yields the desired contradiction � = 0. �

3.6.2. PM direct products. Similarly as in the PE case above, we now deduce necessary and
sufficient conditions for a product spacetime M(n) = M(n1 )×M(n2 ) to be (properly) PM. Again,
the results can be translated immediately to, e.g., warped spacetimes. We use the notation and
conventions of section 3.5.2.

Firstly, recall that for n1 � 2 a direct product is PE, and thus cannot be properly PM
by the first sentence of proposition 3.13. Secondly, suppose that M(n) is properly PM w.r.t.
u = cosh γ U+sinh γ Y, where U and Y live in the respective factor spaces. Consider the vector
y = cosh γ Y+ sinh γ U and the composite u-ONF {u, mA, y, mĨ}. By requiring CyĨAJ̃ = 0 and

CyABC = 0 and using equations (8)–(10) of [43] one finds sinh(γ )R(n1)
UA = sinh(γ )C(n1 )

UABC = 0. If
sinh γ �= 0 it would follow from proposition 3.22 that M(n) is PE w.r.t. U, again in contradiction
with proposition 3.13. Thus u = U (i.e., γ = 0). Thirdly, we state the following lemma, which
is proved by simple substitution in equations (9)–(11) of [43]; here and henceforth a composite
U-ONF {U, mi=2,...,n} = {U, mA, mI} is used.

27



Class. Quantum Grav. 30 (2013) 165014 S Hervik et al

Lemma 3.30. Let M(n) = M(n1 ) ×M(n2 ) be a direct product spacetime with n1 � 3 and U a
unit timelike vector living in M(n1 ). If

• the Ricci tensor of M(n1 ) is of the form

R(n1 )

ab = R(n1 )

n1
g(n1 )

ab +U(aqb), Uaqa = 0

(
i.e., R(n1 )

AB = R(n1)

n1
δAB, R(n1 )

UU = −R(n1 )

n1

)
;

(69)

• M(n2 ) is an Einstein space:

R(n2 )

ab = R(n2 )

n2
g(n2 )

ab

(
R(n2 )

IJ = R(n2 )

n2
δIJ

)
; (70)

• the Ricci scalars of the factors are related by (53),
then the only possibly non-zero Weyl components of M(n) are

CUIAJ = − 1

n− 2
R(n1 )

UA δIJ, CUABC = C(n1 )
UABC −

2n2

(n− 2)(n1 − 2)
g(n1 )

A[B R(n1 )
C]U , (71)

CUAUB = C(n1 )
UAUB, CABCD = C(n1 )

ABCD, CIJKL = C(n2 )
IJKL. (72)

Notice that under the conditions of the lemma R(n1 ) is constant, as actually follows from
the decomposability of the Ricci scalar [60] and equation (53) per se. We can now prove:

Proposition 3.31. A direct product spacetime M(n) = M(n1 )×M(n2 ) is PM w.r.t. a unit timelike
vector U that lives in M(n1 ) iff the following conditions hold:

(a) M(n1 ) is PM w.r.t. U and has Ricci tensor of the form (69);
(b) M(n2 ) is of constant curvature;
(c) the Ricci scalars of the factors are related by (53), i.e., n2(n2 − 1)R(n1 ) +

n1(n1 − 1)R(n2 ) = 0.

In this case the Weyl (magnetic) components are given by (71). Moreover, if M(n1 ) ×M(n2 ) is
properly PM w.r.t. u then n1 � 3 and u necessarily lives in M(n1 ).

Proof. Above we already proved the last sentence. Conditions (a)–(c) are precisely those of the
lemma, augmented by the vanishing of the right-hand sides in (72); hence (a)–(c) is sufficient
for the spacetime to be PM. Conversely, suppose that M(n) is PM w.r.t. U, i.e., Ci jkl = 0.
Expressing CIJ

IJ = 0 and using equation (11) of [43] one immediately finds (53). Next,
CAIBJ = 0 and equation (9) of [43] yield for A �= B, I �= J and A = B, I = J that R(n1 )

AB = 0,
R(n2 )

IJ = 0 and (n− 1)(R(n1 )
AA + R(n2 )

II ) = R(n1 ) +R(n2 ), respectively. Summing the last relation
over I and separately over A, and using (53), one arrives at (69) and (70). This proves (c)
and the Ricci part of (a) and (b). Using the lemma, M(n1 ) must be PM and M(n2 ) conformally
flat since the left-hand sides in (72) vanish, and the remaining Weyl magnetic components
are (71). �

Notice that the PM condition for a direct product (or conformally related) spacetime is
much more stringent than the PE condition, cf propositions 3.22 and 3.24. In addition, from
footnote 8 and (53) it follows that a product space M(n) = M(n1 ) × M(n2 ) is a properly PM
Einstein space iff it is the direct product of a properly PM Ricci-flat spacetime M(n1 ) and a
flat M(n2 ).
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4. The Ricci and Riemann tensors: Riemann purely electric (RPE) or magnetic (RPM)
spacetimes

Similarly as done above for the Weyl tensor, one can naturally define the electric and magnetic
parts of the Ricci and Riemann tensors, and deduce properties of spacetimes which possess
a PE or PM (Ricci or) Riemann tensor. This is studied in the present section. The results
obtained here apply to any dimension n � 3 (the Ricci tensor being trivially proportional to
the metric for n = 2; also recall that the Weyl tensor vanishes for n � 3).

4.1. Definitions and PE/PM conditions

In accordance with definition 3.3 we define:

Definition 4.1. The electric part of the Ricci (Riemann) tensor w.r.t. u is the tensor (R+)ab

((R+)abcd ). The Ricci tensor is called PE (w.r.t. u) if Rab = (R+)ab. The Riemann tensor
or a spacetime is called Riemann purely electric or RPE (w.r.t. u) if Rabcd = (R+)abcd. The
definitions of a PM Ricci tensor and a Riemann purely magnetic (RPM) Riemann tensor or
spacetime are analogous, replacing + by −.

Based on (A.35) we have, in any u-ONF, the following component relations between the
different parts:

(C+)i jkl = (R+)i jkl − 2

n− 2
(δi[k(R+)l] j − δ j[k(R+)l]i)+ 2R

(n− 1)(n− 2)
δi[kδl] j, (73)

(C+)uiu j = (R+)uiu j + 1

n− 2

{
(R+)i j −

[
(R+)uu + R

n− 1

]
δi j

}
, (74)

(C−)ui jk = (R−)ui jk − 2

n− 2
δi[k(R−) j]u. (75)

It is easy to see (cf also [11]) that the independent electric Riemann components consist
of n(n− 1)/2 components (R+)uiu j and n(n− 1)2(n− 2)/12 components (R̃+)i jkl , while the
magnetic ones of n(n − 1)(n − 2)/3 components (R−)u jik (recall the index symmetries and
the cyclicity).

From (73)–(75) (or (A.19) and (A.35)) it follows that

Proposition 4.2. The Riemann tensor is RPE (RPM) w.r.t. u iff both the corresponding Weyl
and Ricci tensors are PE (PM) w.r.t. u, or vanish.

In four dimensions, the RPE part of this proposition was proven in [22]. For the RPM
part, the focus has usually been on the weaker condition mentioned in remark 4.7 below, for
which the theorem does not hold in this form.

Just as for the Weyl tensor (proposition 3.5) one can easily derive PE/PM Bel–Debever
criteria for the Ricci and Riemann tensors. Regarding the latter, one can either make a separate
analysis (the only difference with the Weyl tensor being that (A.34) does not hold) or use
propositions 3.5 and 4.2.

Proposition 4.3. (Ricci and Riemann PE/PM Bel–Debever criteria) Let u be a unit timelike
vector. Then a Ricci tensor Rab �= 0 is

• PE w.r.t. u iff Rui = 0 in a u-ONF, i.e.,

u[aRb]cuc = 0; (76)
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• PM w.r.t. u iff Ruu = Ri j = 0 in a u-ONF, i.e.,

Rabuaub = u[aRb][cud] = 0. (77)

A Riemann tensor Rabcd �= 0 is

• RPE w.r.t. u iff Rui jk = 0 ⇔ Cui jk = Rui = 0 in a u-ONF, i.e.,

uagabRbc[deu f ] = 0 ⇔ uagabCbc[deu f ] = u[aRb]cuc = 0; (78)

• RPM w.r.t. u iff Ri jkl = Ruiu j = 0 ⇔ Ci jkl = Ruu = Ri j = 0 in a u-ONF, i.e.,

u[aRbc][deu f ] = Rabcdubud = 0 ⇔ u[aCbc][deu f ] = Rabuaub = u[aRb][cud] = 0. (79)

The PE/PM criteria for the Ricci tensor can be stated alternatively in terms of conditions
on the Ricci operator on tangent space:

R: va �→ Ra
bv

b, (80)

for which the R+ and R− parts w.r.t. a unit timelike u have the following 1 + (n − 1) block
form representations in any u-ONF Fu = {u, mi=2,...,n}:

[R+]Fu =
[ −Ruu 0

0 Rsp

]
, [R−]Fu =

[
0 αqt

−αq 0

]
. (81)

Here α ∈ FM , Rsp is a real symmetric matrix with components (Rsp)i
j = Ri j and q a unit

column vector (qtq = 1). Write q ≡ qimi ↔ qa ≡ qimi
a. From definition 4.1, (81) and the

classification of Ricci-like tensors into types A1, A2, A3 and B (see appendix A), we readily
obtain

Proposition 4.4. A Ricci tensor Rab �= 0 is

• PE w.r.t. u iff R has u as an eigenvector, R(u) = −Ruuu. In this case all eigenvalues of R
are real.

• PM w.r.t. u iff it has the structure

Rab = 2α u(aqb), α �= 0, qaqa = 1, qaua = 0, (82)

In this case R has eigenvalues 0 (multiplicity n − 2) and ±iα �= 0, with corresponding
eigenvectors u± iq. In particular the Ricci scalar vanishes, R = 0 (in agreement with the
general result of proposition A.8.)

Remark 4.5. The resemblance with proposition 3.7 is striking. From appendix A we still
have that a Ricci tensor is PE iff it has a timelike eigenvector, i.e., iff it is of type R1. In
particular, in any dimension all proper Einstein spacetimes (0 �= Rab ∼ gab) have a properly
PE Ricci tensor. In four dimensions this is also true for perfect fluids (Segre type {1, (111)})
and Einstein–Maxwell fields (Segre type {(1, 1)(11)}). However, Ricci tensors of types R3 or
R4 (see appendix A) have only real eigenvalues but are not PE.

A properly PM Ricci tensor is a special instance of type R2. Referring to remark 3.8,
the mentioned eigenvalue properties are equivalent with a characteristic equation for R of the
form (x2 + α2)xn−2 = 0, which is equivalent to

tr(R2k−1) = 0, tr(R2k) = (tr(R2))k

2k−1
, tr(R2) �= 0 (k = 1, . . . , �(n+ 1)/2�).

(83)

Conversely, if a Ricci operator satisfies these conditions, then it is of type R2 with eigenvalues
0 (multiplicity n − 2) and ±iα, α =

√
−tr(R2)/2 �= 0. Let v± ≡ u ± iq be corresponding
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eigenvectors of±iα where, by multiplication with a complex scalar, we can normalize u to be
unit timelike. Taking the real and imaginary parts of R(v±) = ±iαv± we get Rabub = −αqa

and Rabqb = αua. By considering qaRabub and in view of the symmetry of Rab we obtain
qaqa = 1. However, in general u and q are not orthogonal, but if they are then (82) holds. We
conclude that a Ricci tensor is properly PM iff (83) holds and the real and imaginary parts of
an eigenvector with non-zero eigenvalue are orthogonal.

Remark 4.6. Replacing the Weyl by the Riemann tensor in (30) one gets the definition of the
Riemann bivector operator. From (A.35) and the above results for the Ricci operator it is easy
to check that proposition 3.7 still holds when replacing the Weyl by the Riemann tensor (the
proof of the proposition being independent of the trace-free property (A.34)).

Remark 4.7. (a) In the four-dimensional literature, a spacetime has been called ‘RPM’ or
‘RPE’ (the quotes being part of the name) if

Racbducud = 0, 1
2εace f R

e f
bducud = 0, (84)

respectively (see, e.g., [52, 23]). In a u-ONF these become the respective sets of conditions
Ruiu j = 0 and Rui jk = 0. Hence, ‘RPE’ coincides with our RPE notion, whereas this is not
the case for ‘RPM’: there are no restrictions on Ri jkl in the first of (84), i.e., it does not cover
the u[aRbc][deu f ] = 0 part of (79), whence ‘RPM’ is weaker than RPM (in the terminology of
[10, 11], the EE part of the Riemann (Weyl) tensor vanishes, but not necessarily the HH part,
cf remark 3.2(b)). This is analogous to the ‘PM’ notion for the Weyl tensor (remark 3.6).

(b) From (74) one immediately deduces the following generalization of theorem 5 in [23]
from four to arbitrary dimensions, wherein we also define a ‘PM’ Ricci tensor.

Proposition 4.8. Any two of the following three conditions imply the third:

(i) the Riemann tensor is ‘RPM’, i.e., Racbducud = 0 (Ruiu j = 0);
(ii) the Weyl tensor is ‘PM’, i.e., Cacbducud = 0 (Cuiu j = 0);

(iii) the Ricci tensor is ‘PM’, i.e., it has the form

Rab = u(aqb) + R
n− 1

hab, uaqa = 0

(
Ruu = 0, Ri j = R

n− 1
δi j

)
. (85)

Hence, by comparison of (82) with (85) a Ricci tensor is PM iff it is ‘PM’ with vanishing
Ricci scalar. In four dimensions, the spacetimes satisfying (i)–(iii), dubbed ‘Haddow magnetic’
[67], are Weyl PM and ‘RPM’, but not RPM (in general). In [67] a family of such spacetimes
was deduced, the RPM members being given by the metrics (92) below and giving rise to
RPM spacetimes in higher dimensions (section 4.3.2). Examples satisfying (i) but not (ii), and
vice versa, were discussed in [52].

(c) Whereas the conjunction of the RPE and RPM conditions (even w.r.t. different timelike
directions, see propositions 3.13 and 4.2 below) only leads to flat spacetime, the ‘RPE’ and
‘RPM’ conditions can be realized w.r.t. the same u. This occurs iff

Rabcdud = 0 (⇔ Rui jk = 0 = Ruiu j in a u-ONF). (86)

Vacuum spacetimes Rab = 0 satisfying (86) are flat in four dimensions (since Cui jk = 0 ⇔
Hab = 0 and Cuiu j = 0 ⇔ Eab = 0) but can be non-trivial in five or higher dimensions (see [15]
and section 4.3.1 below). Finally notice that the trace of (86) gives Rua = 0 such that proper
Einstein spacetimes (0 �= Rab ∼ gab) are not allowed. (See also point (ii) of section 4.3.1.)
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4.2. Null alignment types

For the Ricci and Riemann tensors we immediately get the following analogue of
proposition 3.9.

Proposition 4.9. A Ricci tensor is PE/PM w.r.t. u = (� − n)/
√

2 iff in some u-adapted null
frame {m0 = �, m1 = n, mî=3,...,n} the following relations hold (in which case they hold in
any such frame):

PE: R00 = R11, R0î = R1î; (87)

PM: R00 = −R11, R0î = −R1î, Rî ĵ = R01 = 0. (88)

A Riemann tensor is RPE (RPM) w.r.t. u = (�− n)/
√

2 iff in some u-adapted null frame the
relations (38) and (87) ((39) and (88)) hold (in which case they hold in any such frame).

From the beginning of section 3.4.1 it follows that the only admitted alignment types of
a PE or PM Ricci tensor, and of a RPE or RPM Riemann tensor, are G, Ii, D or O (in the
terminological convention at the end of section A.3 of the appendix). However, we will see
that this can be further constrained in the (R)PM case. Also, if the type is Ii or G then the
vector u realizing the (R)PE/(R)PM property is unique, whereas it can be any vector in the
Lorentzian space Lk+2 if the type is D. Moreover, the properties of being properly PE and PM
cannot be realized at the same time (cf proposition 3.13 and remark 3.14).

A properly PE Ricci tensor can be of any of the types G, Ii or D. For instance, it is easy
to see that Rab = α(lalb + nanb) (with α �= 0) is of type G, while

Rab = αî

[
(la + na)m

î
b + mî

a(lb + nb)
]+ R01(lanb + nalb) (R01 �= 0, at least one αî �= 0)

(89)

is of type Ii, i.e., the Ricci tensor has two single aligned null directions (ANDs).9 We also have

Proposition 4.10. If a Ricci-like tensor (over a vector space of dimension n) is of type I at a
point, then it is of type Ii and possesses at least a (n− 3)-dimensional surface of single ANDs.

Proof. Recall that under a null rotation about a null vector n with parameter z ≡ (zî) ≡ (zî) ∈
R

n−2, a null frame {m0 = �, m1 = n, mî=3,...,n} transforms to {m′
0 = �′, m1

′ = n, m′
î=3,...,n},

where (|z|2 = zîzî):

�′ = �− zîmî −
|z|2
2

n, n′ = n, m′
î
= mî + zîn. (90)

In the new frame, the b.w. +2 component is given by

R0′0′ = R00 − 2zîRî0 + zîz ĵRî ĵ − |z|2R01 + |z|2zîR1î +
|z|4
4

R11. (91)

If Rab is of type I it possesses a single AND. Let it be spanned by n. Hence, we have R11 = 0
and {R1î} �= {0}. We may rotate the spatial frame vectors such that R13 �= 0 while all other
R1î’s vanish. The null vector �′ spans another single AND iff it satisfies the alignment equation
R0′0′ = 0. By (91) this is a cubic equation in z, where the cubic term is |z|2z3R13̂. For any fixed
value (z0

4, z0
5, . . . , z0

n) ∈ R
n−3 we get a cubic equation in z3, which has thus at least one real

solution z0
3 depending continuously on (z0

4, z0
5, . . . , z0

n). �
9 Checking this is trivial for the type G example. For the type Ii example, consider a generic null rotation (90). In the
new frame one finds R0′0′ = −zîR0′ î′ − (|z|2/2+ 1)zîαî and R0′ î′ = αî(−z2/2+ 1)+ zî(R01 − z ĵα ĵ ). The existence

of a double AND �′ requires R0′0′ = 0 = R0′ î′ , which leads to αîzî = 0 = 2zîR01+αî(2−|z|2). Contracting the latter
equation with zî gives |z|2 = 0, i.e., all zî = 0. This then implies αî = 0, leading to a contradiction. Therefore in this
case there do not exist any doubly ANDs, so that the type is indeed Ii, as claimed.
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Proposition 4.11. Any type D Ricci-like tensor Rab is PE. For a type D PM Weyl tensor Cabcd,
any symmetrized rank 2 contraction of an odd power vanishes: Tr4m+1(C2m+1)(ab) = 0.

Proof. The first statement is trivially seen by taking a null frame {�, n, mî=3,...,n} where

� and n are double aligned null vectors, such that Rab = R01(lanb + nalb) + Rî ĵm
î
amî

b,
with (R01, {Rî ĵ}) �= (0, {0}). The second statement is a consequence of proposition A.8,
corollary A.12 and the first statement. �

From remark 3.14 it thus follows that a properly PM Ricci tensor cannot be of type D.
More specifically we have

Proposition 4.12. A PM Ricci tensor is of alignment type Ii (i.e., types G and D are forbidden)
and has a (n− 3)-dimensional sphere of single ANDs paired up by the unique unit timelike u
realizing the PM condition.

Proof. Putting qa = m2
a in (82) and defining � and n by (1) we have

Rab = α(lalb − nanb), α �= 0,

cf (B.1). In a null frame {m0 = �, m1 = n, mî=3,...,n} the only surviving components are
R11 = −R00 = α �= 0. Under a null rotation (90) the components of positive b.w. in the new
frame are given by

R0′0′ = R00 + |z|
4

4
R11 = α

4
(|z|4 − 4), R0′ î′ = −α

|z|2
2

zî �= 0,

such that Rab has a continuous infinity of single ANDs given by all �′ = �′(z) satisfying the
alignment equation R0′0′ = 0, i.e., |z| = √

2. Thus the set of single ANDs is an (n − 3)-
dimensional sphere. The vector u = (� − n)/

√
2 appearing in (82) is the unique vector

realizing the PM condition and pairs up this sphere of single ANDs. �
In general, the alignment types of a RPE/RPM Riemann tensor are subject to

corollary A.14. In the RPM case, combination hereof with proposition 4.12 immediately
implies:

Corollary 4.13. If, at a point, a spacetime is RPM w.r.t. u and the Ricci tensor is non-zero, then
the RPM Riemann tensor is of alignment type Ii or G (i.e., type D is forbidden). In particular,
u realizing the RPM property is always unique.

More specifically, proposition A.13 holds. For instance, if a Riemann tensor is RPM
w.r.t. u and of type Ii, then u can be written as (36), where bRie(�) = bRie(n) = 1, and
both the corresponding Ricci and Weyl tensors are PM w.r.t. u, where max(bRic(�), bC(�)) =
max(bRic(n), bC(n)) = 1. If a Riemann tensor is RPE w.r.t. u and of type D, and the Ricci
and Weyl tensors are non-zero, then vectors � and n exist for which (36) holds and along
which the boost orders of the Riemann, Ricci and Weyl tensors are all zero. Finally, from
proposition A.13, remark (3.15) and the fact that a type D Ricci tensor is automatically PE, it
follows that if a type D Riemann tensor has more than two double ANDs then it is RPE.

4.3. Direct products and explicit examples

The first part of the following proposition is a restatement of proposition 3.22, while the second
part is an immediate consequence of proposition 3.31.

Proposition 4.14. Let M(n) = M(n1 ) ×M(n2 ) be a direct product spacetime and U a timelike
vector that lives in M(n1 ). Then
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• M(n) is RPE w.r.t. U iff M(n1 ) is RPE w.r.t. U (which is the case iff M(n) is PE w.r.t. U);
• M(n) is RPM w.r.t. U iff M(n1 ) is RPM w.r.t. U and M(n2 ) is flat.

Recall that U ∈ Mn1 is not a restriction in the (R)PE case, and is the only possibility in the
PM or RPM cases. It is thus evident that RPE/RPM spacetimes have a special significance in
the construction of higher-dimensional (R)PE or (R)PM spacetimes, e.g., from those already
known in four dimensions.

Remark 4.15. Regarding proposition 3.24, one may define the electric and magnetic parts of
the Weyl, Ricci and Riemann tensors of the Riemannian space M(n2 ) relative to a spacelike
vector Y, analogously as for timelike vectors. Doing so, the duality in equations (55)–(56) is
manifest. The first two equations in (55) and (56) tell that a direct product M(n) = M(n1 )×M(n2 )

which is (R)PE w.r.t. a unit timelike vector u not living in M(n1 ) must have factors which are
RPE w.r.t. the respective normalized projections of u; the last two equations are relations
between electric tensors and can be covariantly rewritten as

UcUd

(
R(n1 )

acbd −
1

n1 − 1
h(n1 )

ab R(n1 )

cd

)
= 0, Y cY d

(
R(n2 )

acbd −
1

n2 − 1
h(n2 )

ab R(n2 )

cd

)
= 0,

where (h(ni ))a
b are the projectors in M(ni ) orthogonal to U (i = 1) or Y (i = 2).

4.3.1. RPE spacetimes. We mention generic conditions under which spacetimes are RPE,
thereby taking section 3.5 as a thread.

(1) Spacetimes admitting a shear-free normal unit timelike vector field u are RPE w.r.t. u
iff moreover the expansion scalar of u is spatially homogeneous, i.e., ha

b�̃,b = 0. This
follows from (C.6) and (C.7). Referring to (48) this is the additional condition �̃ = �̃(t);
integrating the first equation in (49) this is precisely the case if P = e

∫
V (t,xγ )�̃(t)dt (after

absorbing the function of integration into ξ (xγ )). Then u = ∂t/V is an eigenvector of
the Ricci tensor with eigenvalue −u̇a;a + (n− 1)(

˙̃
�+ �̃2), see (C.10). Special instances

are spacetimes admitting a non-rotating rigid u (σab = �̃ = ωab = 0) and the warped
spacetimes with a one-dimensional timelike factor, i.e., cases (a)–(c) in section 3.5.1. In
particular, all static spacetimes are RPE. In contrast, doubly-warped spacetimes with a
one-dimensional timelike factor (case (d)) are PE but never RPE w.r.t. u.

(2) Spacetimes which satisfy (86) are RPE and ‘RPM’, cf remark 4.7(c). Within the warped
class (a) of 3.5.1, where u̇a = 0 additionally, this is realized iff ˙̃� = −�̃2, see (C.6).
Examples hereof are the direct product spacetimes of the subclass (c), i.e., those spacetimes
admitting a covariantly constant unit timelike vector field u (σab = �̃ = ωab = u̇a = 0),
and the n � 5 warped spacetimes (51) with λ = 0 (vacuum case).

(3) All direct or warped products (52), with a RPE timelike factor and with θ : M(n2 ) → R,
are RPE. This follows from proposition 4.14 and, e.g., equations (25) in [72] or (D.8) in
[73]. For n1 = 1 (giving case (a) of section 3.5.1) and n1 = 2, the RPE condition on the
timelike factor is automatically satisfied since then R(n1 ) ∼ g(n1 ) (see also the top of page
4415 of [43], and cf remark 3.23). As an instance of n1 = 4 RPE spacetimes we may
mention aligned perfect fluids (for which the Weyl tensor is PE w.r.t. the fluid velocity
u) and their Einstein space limits; for instance, all examples mentioned at the end of
remark 3.18 can be lifted by the above direct or warped product construction.

(4) All spacetimes with an isotropy group mentioned in proposition 3.25 are in fact RPE (in
the proof no use was made of the trace-free property (A.34) of the Weyl tensor, just as the
2k + 1-dimensional spacetimes with U (k) isotropy (k > 1)). The spacetimes (62) with
spherical, hyperbolical or planar symmetry are RPE iff the matrix

[ R01 R11

R00 R01

]
is of type R1
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in section B.1 in the appendix, relative to a null frame {m0 = �, m1 = n, mî=3,...,n} where
� and n live in the timelike factor M(n1 ), n1 = 2 (see, e.g., equations (25) in [72]). This
is precisely the case when R00R11 > 0 or R00 = R11 = 0, the latter case implying Ricci
type D.

(5) Higher-dimensional ‘Bianchi type I’ spacetimes, studied in section 3.5.4, are also RPE
spacetimes. Again, this can be shown in two different ways; however, restricting to the
second proof in section 3.5.4 one sees that the discrete symmetry implies for the Ricci
tensor, θ (R) = R = R+; consequently, the spacetime is RPE.

(6) All PE Einstein spacetimes are obviously also RPE (cf remark 4.5).

4.3.2. RPM spacetimes. Evidently, RPM spacetimes are even more elusive than Weyl PM
spacetimes. The only (two-parameter) class of RPM spacetimes known so far was derived in
four dimensions by Lozanovski [67] (cf also remark 4.7(b)), the line element being (up to a
constant rescaling).

ds2
L = exp(−2bz)[−dt2 + dz2]+ exp(2ay)[dx2 + t2x2dy2] (a, b ∈ R). (92)

This spacetime, which contains an ‘imperfect fluid’ [67], is RPM w.r.t. u = exp(bz)∂t , and
of Petrov type I(M+) for all values of a and b, except when ab = 0, in which case the
type is I(M∞), cf remark 3.8. According to proposition 4.14, explicit examples of higher-
dimensional RPM spacetimes can be produced by taking direct products with flat Euclidean
spaces. Additionally, Weyl PM (but not RPM) spacetimes can be generated from such direct
products by simply performing a (non-trivial) conformal transformation (under which the
Weyl tensor is invariant while the Ricci tensor will lose its PM character, in general). For the
sake of definiteness, consider the five-dimensional line element

ds2 = ekz
(
ds2

L + dw2
)
, (93)

with ds2
L given by (92). This is a spacetime PM w.r.t. u = e(2b−k)z/2∂t . It is, additionally, RPM

(w.r.t. the same u) iff it is a direct product, i.e., k = 0 (the necessity of this follows from the
last statement of proposition 4.4 and computation of the Ricci scalar R = −3k2 ez(2b−k), while
the sufficiency follows from the second part of proposition 4.14). In the latter case one has
Rαβγw = 0, so that exp(bz)∂t ± ∂w are null directions aligned with the Riemann tensor when
k = 0 (thus, the Riemann tensor is of type Ii in this case). A fortiori, these are also WANDs (cf
proposition A.13), so that the Weyl tensor cannot be of type G. Moreover, a direct computation
shows that for this metric, the symmetric rank 2 tensor

Tag = T(ag) ≡ CabcdCcd
e fC

e f b
g

does not vanish. Hence, by proposition 4.11 the Weyl tensor cannot be type D. Since the case
k �= 0 is just obtained by a conformal transformation, it follows that all metrics (93) are of
Weyl type Ii, and thus PM uniquely w.r.t. u = e(2b−k)z/2∂t .

To our knowledge, such products are the only examples of higher-dimensional (R)PM
spacetimes found so far.

5. Conclusion and discussion

We introduced and elaborated a twofold decomposition of any tensor at a point of a spacetime
of arbitrary dimension, relative to a unit timelike vector u. The splitting is based on considering
a (time) reflection of u, which itself is a special instance of a Cartan involution (when applied
to the Lorentz group). We saw that this leads to a generalization, from four to arbitrary
dimensions, of the electric/magnetic decomposition of the Maxwell and Weyl tensors. That
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this generalization is natural has been confirmed by the extension of many four-dimensional
results regarding PE and PM curvature tensors to higher dimensions.

In particular, we derived a close connection between PE/PM properties and the existence
of preferred null directions. Hereby we focused on the curvature tensors, so crucial in (four-
or higher-dimensional) General Relativity as well as in other gravity theories. However, many
of these properties generalize to arbitrary tensors and operators; as such they are applicable
to any physical theory governed by tensor objects defined over a spacetime (manifold with
Lorentzian metric), with the potential of leading to novel interesting viewpoints and results in
such contexts.

Tensors for which one of the two parts in the splitting w.r.t. u vanishes are examples
of tensors which are minimal w.r.t. u, in the sense that the sum of squares of the tensor
components in any u-adapted ONF is not larger than for any other u′. Via a new proof of
the alignment theorem we made an intriguing connection with both the null alignment and
polynomial invariants properties of such tensors: these are precisely the tensors characterized
by their invariants or, still, the tensors which do not possess a unique AND of boost order
� 0. Future inquiries on these facts may be important for shedding new light on the invariant
content of many modern theories (string theory, brane world models, quantum cosmology, etc).
In particular, the classification of spacetimes themselves makes use of the Riemann tensor and
its covariant derivatives via the Cartan–Karlhede algorithm, and thus may highly benefit from
such investigations.

This paper also demonstrates the interesting link between special classes of spacetimes
and invariant theory. This link is explicitly demonstrated by the connection between the Cartan
involution, which is important in the classification of Lie algebras, and a simple time-reflection.
This enabled us to connect these seemingly distinct areas and use the best from both worlds
to prove deep results about the existence/non-existence of certain solutions. It is believed that
this bond will continue to bear fruits in investigations to come.

Acknowledgments

We thank Alan Barnes for reading the manuscript and José M M Senovilla for useful comments
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Appendix A. Orbits of tensors, Cartan involutions, and null alignment theory

A.1. Orbits of tensors; tensors characterized by their invariants

Let us review some results from invariant theory and define the appropriate concepts which we
need. Furthermore, we will consider polynomial invariants of tensors, and so in what follows
‘invariants’ is to be understood as ‘polynomial invariants’.

The idea is to consider a group G acting on a vector space V . In our case we will consider
a real G and a real vector space V . However, it is advantageous to review the complex case
with a complex group GC acting on a complex vector space V C. For a vector X ∈ V C, the orbit
of X under the action of GC is defined as

OC(X ) ≡ {g(X ) ∈ V C | g ∈ GC} ⊂ V C. (A.1)

Then ([74, p 555–6]):
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Proposition A.1. If GC is a linearly reductive group acting on an affine variety V C, then the
ring of invariants is finitely generated. Moreover, the quotient V C/GC parametrizes the closed
orbits of the GC-action on V C and the invariants separate closed orbits.

Here the term closed refers to topologically closed with respect to the standard vector
space topology and henceforth, closed will mean topologically closed. This implies that given
two distinct closed orbits A1 and A2, then there is an invariant with value 1 on A1 and 0 on A2.
This enables us to define the set of closed orbits:

CC ≡ {OC(X ) ⊂ V C |OC(X ) closed.} (A.2)

Based on the above proposition we can thus say that the invariants separate elements of CC

and hence we will say that an element of CC is characterized by its invariants.
In our case we consider the real case where we have the Lorentz group G = O(1, n− 1)

which is a real semi-simple group. For real semi-simple groups acting on a real vector space V
we do not have the same uniqueness result as for the complex case [75], see also remark A.6.
However, by complexification, [G]C = GC we have [O(1, n − 1)]C = O(n, C), and by
complexification of the real vector space V we get V C ∼= V + iV . The complexification thus
lends itself to the above theorem.

Concretely, we study tensors, T , belonging to some tensor space T r
s ≡ (TpM)⊗r ⊗

(T ∗p M)⊗s, where p is a point of an n-dimensional manifold M with Lorentzian metric g.
Let ω ≡ {mα=1,...,n} be a basis of vectors of TpM. Let g ∈ G be a Lorentz transformation,
with representation matrix (Mα

β ) w.r.t. ω, i.e., in the natural action of g on TpM we have
g(mα ) = Mβ

αmβ . Consider now the following action on the components of T w.r.t. ω:

T α1···αr
β1···βs �→ (M−1)α1

γ1
· · · (M−1)αr

γr
T γ1···γr

δ1···δs M
δ1

β1 · · ·Mδs
βs . (A.3)

As is well known, the real numbers on the right-hand side may be interpreted as either

(1) the components of the original tensor T w.r.t. a new basis {g(mα=1,...,n)} of TpM (and the
dual basis of T ∗p M), or

(2) the components w.r.t. the original basis {mα=1,...,n} of a new tensor T ′, which is the result
of g−1 acting as a tensor map on T ∈ T r

s .

In the former case one puts the components of T in a vector v ∈ V = R
m, m = nr+s, and

one speaks about the passive action of O(1, n − 1) on V ; notice that V has an (r, s)-tensor
structure as well here (over R

n instead of TpM). In the latter case one considers T �→ T ′,
referred to as the active action of g−1 ∈ O(1, n−1) on V = T r

s . It is clear that both viewpoints
are essentially equivalent, although one of them may be more natural in a specific context. In
either picture we may consider a collection (or direct sum) of tensors instead of a single one
(which just changes V accordingly).

Based on the above, tensors ‘characterized by invariants’ are defined as follows, in the
passive viewpoint.

Definition A.2. Consider a (real) tensor, T , or a direct sum of tensors, and let T̃ ∈ V be
the corresponding vector of components w.r.t. a certain basis. If the orbit of T̃ under the
complexified Lorentz group GC is an element of CC, i.e., OC(T̃ ) ∈ CC, then we say that T is
characterized by its invariants.

As the invariants parametrize the set CC and since the group action defines an equivalence
relation between elements in the same orbit this definition makes sense.

In analogy with (A.1) and (A.2) let us define the real orbit through X and the set of real
closed orbits:

O(X ) ≡ {g(X ) ∈ V | g ∈ G} ⊂ V, (A.4)
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C ≡ {O(X ) ⊂ V |O(X ) closed}. (A.5)

How do the results of proposition A.1 translate to the real case? A real orbit O(X ) is a real
section of the complex orbit OC(X ). However, there might be more than one such real section
having the same complex orbit. Using the results of [75], these real closed orbits are disjoint,
moreover:

Proposition A.3. O(X ) is closed in V ⇔ OC(X ) is closed in V C.

Combining this with proposition A.1 and definition A.2 we thus have

Corollary A.4. A tensor T is characterized by its invariants iff its orbit is closed in V ,
O(T̃ ) ∈ C.

Remark A.5. The case of a direct sum of curvature tensors, i.e., the Riemann tensor and
its covariant derivatives, is of particular importance for the equivalence problem of metrics
(of arbitrary signature). Let X̃ = R̃ω ≡ [Rαβγ δ, Rαβγ δ;ε, . . . , Rαβγ δ;ε1···εk ] ∈ R

m(k) be the
vector of components w.r.t. a (for instance orthonormal) frame ω = {mα=1,...,n}, at a point
p of a manifold M with metric g, of the curvature tensors up to the kth derivative, where
m(k) = n4(nk+1 − 1)/(n− 1). Then the action of g ∈ O(1, n− 1) on X̃ is

g(X̃ ) = [Mκ
α · · ·Mν

δ Rκ···ν, Mκ
α · · ·Mν

δ Mξ
ε Rκ···ν;ξ , . . . , Mκ

α · · ·Mν
δ Mξ1

ε1 · · ·Mξk
εk Rκ···ν;ξ1···ξk

]
.

Let Ỹ = R̃′ω′ ∈ R
m(k) be the analogous curvature vector for a metric g′ on M, w.r.t. a frame ω′

at p. Then, if X̃ and Ỹ are in the same real orbit, we have Ỹ = g(X̃ ) for certain g ∈ O(1, n−1),
i.e., the respective representation vectors X̃ and Ỹ are separated by a mere rotation of frame,
ω′ = g(ω). If this holds for k = n(n + 1)/2 at every point p of a local neighborhood U of
M, then a result of Cartan (see e.g. [9]) tells that g and g′ are equivalent on U . In this way the
equivalence problem is reduced to a question of classifying the various orbits.

Remark A.6. As pointed out, different closed real orbits O(T ) may have the same invariants
(in line with the comments in [76, 77]). An example of this is given by the pair of metrics,
clearly related by a double Wick rotation [77]:

ds2
1 = − dt2 + 1

x2
(dx2 + dy2 + dz2),

ds2
2 = dτ 2 + 1

x2
(dx2 + dy2 − dζ 2). (A.6)

These metrics are symmetric (Rabcd;e = 0) and conformally flat; hence, the Riemann tensor is
the only non-zero curvature tensor and is equivalent to the Ricci tensor. In both cases, at any
spacetime point, the Ricci operator Ra

b acting on tangent space has a single eigenvalue 0 and
a triple eigenvalue −2 (the spacetimes being homogeneous), such that the respective Ricci
tensors have the same polynomial invariants and belong to the same complex orbit OC(T ).
However, the Segre type of Ra

b is {1, (111)} for the former and {(1, 11)1} for the latter metric;
thus the respective Ricci tensors lie in separate real orbits O(T ).

A.2 Cartan involutions of the Lorentz group

A.2.1 Representation on tensor spaces. Consider the full Lorentz group G = O(1, n − 1).
Let K ∼= O(n− 1) be a maximal compact ‘spin’ subgroup of O(1, n− 1). Then there exists a
unique Cartan involution θ of O(1, n− 1) with the following properties [14]:

(i) θ is invariant under the adjoint action of K:

AdK (θ ) = θ, i.e., kθ = θk, ∀k ∈ K; (A.7)
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(ii) O(1, n− 1) is θ -stable, θ (O(1, n− 1)) = O(1, n− 1);

(iii) θ is the automorphism X �→ −X∗ of the Lie algebra gl(n, R), where ∗ denotes the adjoint
(or transpose, since the coefficients are real).

In general, the maximal subgroups of a semi-simple Lie group G are all conjugate, such
that two Cartan involutions are related by θ2 = Int(g)θ1Int(g−1), where Int(g) is the inner
automorphism by a certain g ∈ G.

In our case, consider the natural representation of G = O(1, n− 1) on the tangent space
TpM at a point p of a Lorentzian manifold (M, g). Then, any maximal compact subgroup K
is in biunivocal relation with the timelike direction which is invariant under the action of K.
If this direction is spanned by the unit timelike vector u, then it is easy to see that the unique
Cartan involution corresponding to K is simply the reflection

θ : u �→ −u, x �→ x, ∀x⊥u, (A.8)

acting as an inner automorphism on G.10 Thus θ can be seen as a Lorentz transformation
itself, with action (A.8) on TpM. In any u-ONF Fu = {m1 = u, mi=2,...,n} we have the matrix
representation:

[θ ]Fu = (θα
β ) = diag(−1, 1, . . . , 1).

Obviously in such a frame θ is simply a time reversal transformation. In abstract index notation
we have

δa
b = ga

b ≡ ha
b − uaub, θa

b = ha
b + uaub, (A.9)

where the first part defines the projector ha
b of TpM orthogonal to u, δa

b being the identity
transformation.

Through the tensor map construction θ acts as a reflection (θ2 = 1) on any tensor space
V = T r

s by (A.3), with Mα
β = (M−1)αβ = θα

β (we adopt the active viewpoint here and,
with a slight abuse of notation, denote any representation of θ with θ ). Denote Nαβ for the
number of indices ‘u’ in the tensor component T α

β w.r.t. Fu. Notice that Nαβ is well-defined:
any other u-ONF is related to F by an O(n − 1)-spin preserving the number of ‘u’-indices.
Then, θ (T )αβ equals +T α

β if Nαβ is even, and −T α
β if Nαβ is odd.

The following properties are immediate from the above definition:

(1) θ commutes with any tracing Trk over k covariant and k contravariant indices of a type
(r, s) tensor T , r, s � k:

θ (Trk(T )) = Trk(θ (T )). (A.10)

(2) For tensors S ∈ T r1
s1

and T ∈ T r2
s2

one has

θ (S⊗ T ) = θ (S)⊗ θ (T ). (A.11)

(3) θ commutes with lowering or raising indices of a tensor (by contraction with gab or gab),
as follows from properties 1 and 2.

10 If we had taken the special Lorentz group G = SO(1, n− 1) instead of the full one, then (A.8) would still give the
Cartan involutions for this case, but these do not have an inner action.
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A.2.2. Orthogonal splitting. Since θ2 = 1, we can split the vector space V into ±1
eigenspaces, V = V+ ⊕V−:

V+ = {T ∈ V | θ (T ) = +T }, V− = {T ∈ V | θ (T ) = −T }. (A.12)

Consequently, for any T ∈ V , we get the split:

T = T+ + T−, T± = 1
2 [T ± θ (T )] ∈ V±. (A.13)

Thus (T+)αβ = T α
β when Nαβ is even and (T+)αβ = 0 when Nαβ is odd, and vice versa for

T− (cf supra). In covariant language, T+ (T−) is constructed from T by adding all possible
contractions with an even (odd) number of −uaub projectors, completed with ha

b projections.

Example A.7. For a rank 3 covariant tensor Tabc = Ta[bc] we get

(T+)abc =
(
hd

ahe
bh f

c + uaudubueh f
c + uaudhe

bucu f + hd
aubueucu f

)
Tde f

= hd
ahe

bh f
c Tde f + 2uau[bh f

c]Tuu f (A.14)

(T−)abc = −
(
hd

ahe
bucu f + hd

aubueh f
c + uaudhe

bh f
c + uaudubueucu f

)
Tde f

= −(2hd
ahe

[buc]Tdeu + uahe
bh f

c Tue f ). (A.15)

Since θ is a Lorentz transformation we have θ (g) = g, whence g= g+. As θ acts trivially
on scalars f we also have f = f+. Other immediate properties of this split are the following

(1) Recall that the metric inner product of S, T ∈ V is defined by

g(S, T ) = ga1b1 · · · garbr g
c1d1···csds Sa1···ar

c1···cs T
b1···br

d1···ds = Sa1···ar
c1···cs Ta1···ar

c1···cs . (A.16)

Since

g(S+, T−) = θ (g(S+, T−)) = θ (g)(θ (S+), θ (T−)) = −g(S+, T−)

it follows that the split (A.13) is g-orthogonal, g(S+, T−) = 0. Hence,

g(S, T ) = g(S+, T+)+ g(S−, T−) (A.17)

=
⎛
⎝ ∑

Nαβ=even

−
∑

Nαβ=odd

⎞
⎠ Sα1α2···

β1β2···T
α1α2···

β1β2···. (A.18)

(2) From (A.13) and properties 1–3 of θ it follows that taking the + and − parts of a tensor
commutes with any tracing Trk,

Trk(T )± = Trk(T±), (A.19)

as well as with lowering and raising indices, and that for S ∈ T r1
s1

and T ∈ T r2
s2

we have

(S⊗ T )+ = S+ ⊗ T+ + S− ⊗ T−, (S⊗ T )− = S+ ⊗ T− + S− ⊗ T+. (A.20)

As a consequence of (A.20) we get

S = S±, T = T± ⇒ S⊗ T = (S⊗ T )+, S = S±, T = T∓ ⇒ S⊗ T = (S⊗ T )−.

(A.21)

In combination with (A.19) and f = f+ for scalars we thus get in particular:

Proposition A.8. If T = T− then also T 2m+1 = (T 2m+1)− and Trk(T 2m+1) = Trk(T 2m+1)− for
any odd power. In particular, if T is a type (r, r) tensor then Tr(2m+1)r(T 2m+1) = 0.
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A.2.3. Euclidean inner product. The Cartan involution θ induces an inner product 〈−,−〉
on V :

〈S, T 〉 ≡ g(θ (S), T ) = g(S, θ (T )) = g(S+, T+)− g(S−, T−). (A.22)

In any u-ONF we get

〈S, T 〉 =
⎛
⎝ ∑

Nαβ=even

+
∑

Nαβ=odd

⎞
⎠ Sα1α2···

β1β2···T
α1α2···

β1β2···

=
∑
αβ

Sα1α2···
β1β2···T

α1α2···
β1β2···. (A.23)

Compare with (A.17) and (A.18). As is clear from (A.23), 〈−,−〉 is Euclidean (〈T, T 〉 �
0, 〈T, T 〉 = 0 ⇔ T = 0). Notice that the norm ||T || = 〈T, T 〉1/2 associated to this inner
product is K-invariant, i.e., for k ∈ K one has ||k(T )|| = ||T ||,11 but it is clearly not invariant
under the full Lorentz group.

Remark A.9. The norm ||T || corresponds to the super-energy density of the tensor T relative to
u (see [10, p 2806], and [78]). Also compare with [2], chapter IX, for the case of Maxwell-like
tensors, and with [29, 79] for the Bel–Robinson tensor.

Remark A.10. For later use, we note that if O is a symmetric (self-adjoint)/
antisymmetric (anti-self-adjoint) linear transformation of V w.r.t. the inner product g, i.e.,
g(O(S), T ) = ±g(S,O(T )), then O+ (resp. O−) is the symmetric/antisymmetric (resp.
antisymmetric/symmetric) part of O w.r.t. the Euclidean inner product 〈−,−〉. This follows
immediately from

〈(O+ +O−)(S), T 〉 = 〈O(S), T 〉 = ±g(S,O(θ (T ))) = ±〈S, θ (O)(T )〉
= ± 〈S, (O+ −O−)(T )〉.

A.3. Null alignment theory

We briefly revise the null alignment theory for tensors over a Lorentzian space developed
in [25] (see [80] for a recent review). Let T ≡ Ta1···ap be a covariant rank p tensor and
F� = {mα=1,...,n} = {m0 = �, m1 = n, mî=3,...,n} a null frame of TpM. Under a positive boost

bλ: � �→ �′ = eλ�, n �→ n′ = e−λn, mî �→ m′
î
= mî (λ ∈ FM )

(A.24)

in the � ∧ n-plane, the tensor components transform according to

Tα1···αp �→ T ′α1···αp
= eλbα1 ···αp Tα1···αp, bα1···αp ≡

p∑
i=1

(δαi0 − δαi1), (A.25)

where δαβ is the Kronecker delta symbol. Thus the integer bα1···αp is the difference between
the numbers of 0- and 1-indices, and is called the b.w. (henceforth abbreviated to b.w.) of
the frame component Tα1···αp or, rather, of the p-tuple (α1, . . . , αp). The maximal b.w. of the
non-vanishing components of T , in its decomposition w.r.t. F�, is an invariant of Lorentz

11 This is an immediate consequence of (A.22), the property (A.7) and the fact that k is a Lorentz transformation.
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transformations preserving the null direction spanned by � [25]; it is called the boost order,
bT (�), of T along �. Let

bmax(T ) ≡ max{�} bT (�) (A.26)

denote the maximal value of bT (�) taken over all null vectors �, based on the antisymmetries
of T . For a generic � one has bT (�) = bmax(T ); if, however, bT (�) < bmax(T ) then � is said
to span an AND of alignment order bmax(T ) − bT (�). An AND of alignment order 1, 2, 3,...
is called single, double, triple, . . . . Defining

bmin(T ) ≡ min{�} bT (�), (A.27)

the integer

pT ≡ bmax(T )− bmin(T ) (A.28)

defines the primary alignment type of T . Let � be a vector of maximal alignment (bT (�) =
bmin(T )), then

sT ≡ bmax(T )− χT , χT ≡ min{n|bT (�)=bmin(T ), nala=1} bT (n) (A.29)

is the secondary alignment type of T , and the couple (pT , sT ) the (full) alignment type.
In agreement with terminology given to the Weyl tensor (see also below), we call a tensor

T of type G if it has no ANDs (pT = 0) and of type I if it only has one or more ANDs (pT � 1).
It is of type II or more special if bmin(T ) � 0 (pT � bmax), i.e., if in a suitable null frame
only components of non-positive b.w. are non-vanishing; as a particular case it is of type D if
bmin(T ) = χT = 0 (pT = sT = bmax), i.e., only components of zero b.w. are non-vanishing in
some null frame {�, n, mî}, which is then called canonical. We define T to be of type III if only
components of negative b.w. are non-zero (i.e., pT � bmax + 1). A further special case occurs
when a null vector � exists such that bT (�) = −bmax; then � spans the unique AND of T which
is thus of type (pT , sT ) = (2bmax, 0), also called type N. According to these definitions type N
is a subcase of type III, which is a subcase of type II, which is, in turn, a subcase of type I. Of
course, for tensors with many indices and few antisymmetries there are a lot of intermediate
cases, which may be given specific names if relevant. The trivial case of T = 0 is dubbed with
type O; then one can formally define bT (�) := −bmax − 1 or bT (�) := −∞.

The following properties are immediate consequences of the above definitions.

Proposition A.11. Let � be a null vector, and S �= 0 and T �= 0 covariant tensors of arbitrary
ranks p and q, respectively.

• For arbitrary α, β ∈ FM we have

bX (�) � max(bS(�), bT (�)), X ≡ αS+ βT. (A.30)

• For the tensor product of S and T ,

bS⊗T (�) = bS(�)+ bT (�). (A.31)

• If Trk is any tracing over k covariant and k contravariant indices (2k � q) then

bTrk(T )(�) � bT (�). (A.32)

• If n is a second null vector not aligned with � (nala �= 0), then bT (�)+ bT (n) � 0.
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By taking � and n maximally aligned (bT (�) = bmin(T ) and bT (n) = χT ), (A.31) and
(A.32) imply:

Corollary A.12. The properties ‘type II or more special’ and ‘type D’ are preserved by taking
powers of or contractions within a tensor.

Specifically, the Weyl tensor Cabcd of an n-dimensional spacetime obeys the Riemann-like
symmetries

C(ab)cd = Cab(cd) = 0, Cabcd = Ccdab, Ca[bcd] = 0 (A.33)

and the trace-free property

Ca
bad = 0. (A.34)

In terms of the Riemann and Ricci tensors and the Ricci scalar it is given by

Cabcd = Rabcd − 2

n− 2
(ga[cRd]b − gb[cRd]a)+ 2R

(n− 1)(n− 2)
ga[cgd]b. (A.35)

For the Riemann, Weyl and Ricci tensors we have bmax = 2. Let bRic(�) and bRie(�) symbolize
the boost orders along � of the Ricci and Riemann tensor, respectively. Further consequences
of proposition A.11 are:

Proposition A.13. For any null vector �:

bRie(�) = max(bC(�), bRic(�) � bC(�), bRic(�). (A.36)

Corollary A.14. The alignment types (pR, sR) and (pC, sC) of the Ricci and Weyl tensors at
a spacetime point are at least as high as that of the Riemann tensor, i.e., max(pR, pC) � pR

and max(sR, sC) � sR. In particular, if a Riemann tensor is of type D then the Ricci and Weyl
tensors are of type D or O (but not both type O).

For a non-zero Weyl tensor in particular, an AND is called a WAND. If pC = 0, 1, 2, 3, 4
the primary type has been respectively symbolized by G, I, II, III, N [24, 25]; type O symbolizes
a zero Weyl tensor. If sC = 1, 2 this is denoted by i, ii in subscript to the primary symbol.
In this paper we will explicitly use or meet types G, Ii, IIii ≡ D, O and N. In the type D
case, the subtypes D(abc) and D(d) as described in [24, 15] will be relevant, where the former
is the conjunction of types D(a), D(b) and D(c). Here a type D Weyl tensor is said to be of
type D(abc) (D(d)) if in some Weyl canonical null frame {m0 = �, m1 = n, mî=3,...,n} the
components Cî ĵk̂l̂ (C01î ĵ) all vanish (in which case they in fact vanish in any such frame)12.

Appendix B. Minimal Ricci- and Maxwell-like tensors

In example 2.3 we saw that, given any unit timelike vector u, a minimal vector v is either
proportional (v ∼ u) or orthogonal (v⊥u) to u and, in particular, cannot be null (or ‘type N’).
Conversely, a given vector v is minimal w.r.t. the unit vector parallel to it if v is timelike (or
‘type G’), and w.r.t. any u⊥v when v is spacelike (or ‘type D’). This provides an explicit proof
for proposition 2.7 in the case of vectors. Likewise, we give here more explicit proofs in the
case of Ricci- and Maxwell-like rank 2 tensors.

12 It is easy to show that the Lorentz transformations which convert a Weyl canonical null frame into another one
subjects the separate component sets [Cî ĵk̂l̂ ] and [C01î ĵ] to an invertible transformation. Hence the vanishing of such
a set is a well-defined property. The same holds regarding the separate subtypes D(a), D(b) and D(c).
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B.1. Ricci-like tensors

Let (Vn, g) be a vector space of arbitrary dimension n, equipped with a (non-degenerate)
metric g of arbitrary signature s. Petrov [81] deduced canonical forms for Ricci-like tensors
Rab = R(ab) over (Vn, g), connected to the Jordan canonical forms of Ra

b ≡ gacRcb. For
Lorentzian signature s = n − 2 there are four distinct possibilities (see also [82, 83]), where
the Segre types (but not possible eigenvalue degeneracies) are indicated between brackets:

Type R1 ({1, 1 · · · 1}):Rab = ρuuaub +
n∑

i=2

ρim
i
ami

b;

Type R2 ({zz̄1 · · · 1}): Rab = 2αu(am2
b) + β(uaub − m2

am2
b)+

n∑
î=3

ρim
î
amî

b, α �= 0;

Type R3 ({21 · · · 1}): Rab = 2αl(anb) ± lalb +
n∑

î=3

ρim
î
amî

b;

Type R4 ({31 · · · 1}): Rab = α(2l(anb) + m3
am3

b)+ 2l(am3
b) +

n∑
î=4

ρim
î
amî

b,

where, as usual, � and n are null, u is unit timelike and the mi (mî) are unit spacelike. For our
purposes it is enough to mention that:

(1) Types R3 and R4 have, while types R1 and R2 do not have, a unique null eigendirection
(spanned by la). But for a symmetric tensor, null eigendirections are precisely ANDs of
boost order � 0 (since the equation l[aRb]clc = 0 expresses both conditions at the same
time). Hence, types R3 and R4 precisely cover the alignment types ‘II or more special, but
not D nor O’. Type R1 comprises the alignment types O and D (without loss of generality
for ρ2 = −ρu, see also the proof of proposition 4.11), while types I and G are distributed
over types R1 and R2, where type I implies type Ii and at least a (n − 3)-dimensional
surface of single ANDs (see proposition 4.10). As an example, the Ricci tensor given in
equation (89) is of type R1 and of alignment type Ii.

(2) Type R1 is the only type having one or more timelike eigendirections (one of them spanned
by ua). Type R2 has two complex eigenvectors u± im2 corresponding to the eigenvalues
−β ± iα. In the adapted canonical null frame Fc = {m0 = �, m1 = n, mî}, where � and
n are defined by (1), the R2 canonical form becomes

Rab = α(lalb − nanb)− 2βl(anb) +
n∑

î=3

ρim
î
amî

b, α �= 0. (B.1)

In view of point 1 we need to show that equation (8) admits a solution precisely for types
R1 and R2. In a u-ONF {u, m2, mî}, where the vector m2 has been isolated, (8) splits into

R2u(Ruu + R22)+ Ru ĵR2
ĵ = 0, RuuRuî + Ru2R2î + Ru ĵRî

ĵ = 0. (B.2)

• In type R1 there is at least one eigenvector u, which satisfies Riu = 0, ∀i, and thus (8).
• For type R2 we take the u-ONF {u, m2, mî} from the canonical form. Then Ruu = −R22 =

α and Ru2 = Ruî = R2î = 0, such that equation (B.2) is satisfied and Rab is minimal
w.r.t. u.

• In any null frame {m0 = �, m1 = n, mî=3,...,n} adapted to {u, m2, mî=3,...,n}, the first
equation of (B.2) becomes

R2
00 +

n∑
î=3

R2
0î
= R2

11 +
n∑

î=3

R2
1î
.
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We see that if Rab is minimal w.r.t. a certain u and has an AND of boost order � 0 spanned
by � (i.e., R00 = R0î = 0, ∀î), then the vector n defined by (36) necessarily spans an AND
of boost order � 0 as well. By point 1 this excludes types R3 and R4, for which there is
only one double AND (spanned by � in their canonical forms).

This shows that Ricci-like tensors of types R1 and R2 (alignment types G, I, D and O) are
minimal w.r.t. a certain unit timelike vector u, whereas those of types R3 and R4 (alignment
types II (not D), III or N) are not.

We observe also that type R1 is precisely the case of a PE Ricci tensor, while type R2
contains the purely magnetic case where we can take β = 0 = ρi, cf proposition 4.4 and
remark 4.5.

B.2. Maxwell-like tensors

Maxwell-like tensors Fab = F[ab] have bmax = 1 and can be of alignment types G, D, O, II
and N (we assume hereafter n > 2 since any non-zero bivector is trivially of type D in two
dimensions). Type G (no AND) can only occur when n is odd [84, 85] (see also remark B.2
below). Type O is the trivial case Fab = 0. Types II and N allow for precisely one AND (of
boost order 0 and−1, respectively); in four [9, 82] and higher [86] dimensions the Fab of type
N are null Maxwell-like tensors in the sense that all polynomial invariants vanish. For type D
there are two or more ANDs.

Let Fab �= 0 and consider the symmetric tensor (F2)ab ≡ FacFc
b. In view of the minimal

criterion (9) for Fab, we need to show that (F2)a
b has a timelike eigenvector iff Fab has no

unique AND (i.e., it is not of type II or N). This will follow immediately from:

Proposition B.1. The symmetric tensor (F2)ab is of type R1 or R3. � is an AND of Fab �= 0 iff
it is an AND for (F2)ab of boost order � 0.

Proof. Take an arbitrary null frame F = {mα} = {m0 = �, m1 = n, mî}. Then

(F2)1α = F1aFa
α = F10F1α + F1 ĵF

ĵ
α, (F2)0β = F0aFa

β = F01F0β + F0 ĵF
ĵ
β. (B.3)

When applied to α = 1, β = 0 and β = î this gives

(F2)11 = −
n∑

ĵ=3

F2
1 ĵ

� 0, (F2)00 = −
n∑

ĵ=3

F2
0 ĵ

� 0, (F2)0î = F01F0î + F0 ĵF
ĵ
î. (B.4)

It follows from the last two equations that F0î = 0, ∀î ⇔ (F2)00 = (F2)0î = 0, ∀î, which
proves the second statement. As for the first statement, suppose now that Rab = (F2)ab were
of type R2 and take the null canonical form (B.1) associated to the canonical null frame Fc.
We would have (F2)11 = −(F2)00 = α �= 0, whence (F2)00(F2)11 < 0, in contradiction with
the first two equations of (B.4). Finally, suppose that Rab = (F2)ab were of type R4. In the
canonical null frame associated to the canonical form we have, in particular, (F2)13 = 1 and
(F2)11 = 0. From the latter equation and the first equation in (B.4) we get F1î = 0, ∀î, but the
first equation of (B.3), with α = 3, then leads to the contradiction (F2)13 = 0. �

From this proposition and points 1 and 2 in section B.1 we conclude: if (F2)ab is of type
R1 it possesses a timelike eigenvector and not a unique AND of boost order � 0, i.e., Fab

does not have a unique AND; if (F2)ab is of type R3 it possesses no timelike eigenvector but
does have a unique AND of boost order � 0, i.e., Fab has a unique AND. It follows that Fab is
minimal w.r.t. a certain u iff it does not possess a unique AND, which is the case iff (F2)ab is
of type R1.
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Remark B.2. In fact, these results can be shown more directly by considering the classification
of Maxwell-like tensors Fab into three different types and their corresponding canonical forms.
We also indicate the Segre type; degeneracy of the eigenvalue 0 is indicated by round brackets,
but additional degeneracies may occur in the zz̄ parts.

Type F1 ({(1, 1 · · · 1)zz̄ · · · zz̄}): Fab =
r∑

k=1

2 fkv
2k−1
[a v2k

b] , fk �= 0;

Type F2 ({11(1 · · · 1)zz̄ · · · zz̄}): Fab =
r∑

k=1

2 fkv
2k−1
[a v2k

b] + 2σ l[anb], fk �= 0 �= σ ;

Type F3 ({(31 · · · 1)zz̄ · · · zz̄}): Fab =
r∑

k=1

2 fkv
2k−1
[a v2k

b] + 2l[av
2r+1
b] , fk �= 0.

Here r � � n−i
2 � for type Fi. The vectors �, n and vl are part of a null frame (� and n

being real null and the vl unit spacelike). A scalar fk corresponds to a complex conjugate
pair of eigenvalues ±i fk, with complex null eigenvectors v2k−1 ± iv2k and the corresponding
elementary divisors being linear. Analogously as for the Ricci-like (symmetric) case, this
classification can be easily derived based on the antisymmetry of Fab and the fact that for
Lorentzian signature orthogonal null vectors are parallel; see also [85]. The possible numbers
of independent (real) null eigendirections (ANDs) were discussed in [84], pp 5313; notice that
a null vector vb is an eigenvector of Fa

b iff it is an AND (joint condition v[aFb]cv
c = 0); hence,

in particular, all null vectors of the kernel span ANDs.

• Type F1 tensors Fab are precisely the purely magnetic ones (F = F+ w.r.t. a certain u). The
null alignment type is G if and only if n is odd and r = (n − 1)/2; in this case the (one-
dimensional) kernel is spanned by a unique unit timelike vector u w.r.t. which F = F+.
In all other cases the alignment type is D (or O, corresponding to r = 0), the ANDs and
the u spanning precisely the null and timelike directions of the kernel (in accordance with
remark 3.14). In any case u belongs to the kernel of (F2)a

b (which is type R1) and thus
Fab is minimal w.r.t. u. Notice that type G cannot occur in cases F2 and F3 below, so that
all type G tensors Fab are necessarily PM.

• Type F2 tensors are all of alignment type D. There are precisely two (real) ANDs, spanned
by � and n and corresponding to the real eigenvalues +σ and −σ , respectively. We have
F = F− iff r = 0 (this is automatically true when n = 3). If n � 4 and when there is
at least one pair of imaginary eigenvalues ±i fk this gives (the only) examples of minimal
Maxwell-like tensors for which F+ �= F �= F−. In any case the � ∧ n plane is a timelike
eigenplane of (F2)a

b (which is type R1) such that Fab is minimal w.r.t. any unit timelike u
in this plane.

• For type F3 tensors Fab, � spans the unique AND (corresponding to a cubic elementary
divisor x3). Thus Fab is of type F3 iff it is of alignment type II or (when r = 0) N. The
Ricci-like tensor (F2)ab is of type R3 (with, in particular, α = 0 in the corresponding
canonical form); thus it has no timelike eigenvectors and cannot be minimal w.r.t. a unit
timelike u.

Appendix C. Timelike unit vector fields: expansion, rotation, shear, and Raychaudhuri
equation

We consider a timelike unit vector field u, uaua = −1, and follow the notation of chapter
6 of [9]. The purpose here is to write parts of the Riemann and Weyl tensors in terms of
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the kinematic quantities of u, as defined in (C.1)–(C.5) below (see [4] for a comprehensive
overview of results in four dimensions). We first define the projector

hab = gab + uaub, (C.1)

such that habub = 0. This enables us to define the rotation, expansion and shear tensors as

ωab = hc
ahd

bu[c;d], �ab = hc
ahd

bu(c;d), σab = �ab − �̃hab, (C.2)

where �̃ is a normalized (volume) expansion scalar defined by

(n− 1)�̃ = � ≡ hab�ab = ua
;a, (C.3)

and the acceleration vector

u̇a = ua;bub. (C.4)

The tensors (C.2) and (C.4) are all spatial, i.e., ωabua = �abua = σabua = u̇aua = 0. One can
write the covariant derivative of u in the standard way, namely

ua;b = −u̇aub + ωab + σab + �̃hab. (C.5)

Using this, the Ricci identity 2ua;[bc] = Rd
abcud becomes

1
2 Rd

abcud = − u̇a;[cub] + (−u̇a + �̃ua)(−u̇[buc] + ωbc)+ ωa[b;c] + σa[b;c] + ha[bhc]
d�̃,d

+ �̃(ωa[c + σa[c)ub] + (
˙̃
�+ �̃2)ha[cub], (C.6)

By contraction this gives

Rd
bud = −u̇a

;aub + u̇a(ωab − σab)+ ωa
b;a + σ a

b;a − (n− 2)hb
c�̃,c + (n− 1)(

˙̃
�+ �̃2)ub,

(C.7)

where a dot denotes a derivative along u.
We now multiply (C.6) by ub. The symmetric part of the resulting equation can be written

as

Rd
abcudub = u̇au̇c − ωabω

b
c − σabσ

b
c − 2�̃σac − (

˙̃
�+ �̃2)hac + h d

a h e
c (u̇(d;e) − σ̇de), (C.8)

where we used the identities h d
a h e

c u̇(d;e) = hb
(cu̇a);b + u̇bu(c(ωa)b − σa)b) − �̃u̇(auc) and

h d
a h e

c σ̇de = σ̇ac + 2ubu(cσ̇a)b, while the antisymmetric part reads

h d
a h e

c ω̇de = 2σ b
[aωc]b − 2�̃ωac + h d

a h e
c u̇[d;e], (C.9)

in which the identities h d
a h e

c u̇[d;e] = hb
[cu̇a];b − u̇b(ωb[c + σb[c)ua] + �̃u̇[auc] and h d

a h e
c ω̇de =

ω̇ac + 2u̇bωb[auc] have been employed.
Further, the trace of (C.8) gives the Raychaudhuri equation

Rd
budub = u̇d

;d + ωabω
ab − σabσ

ab − (n− 1)(
˙̃
�+ �̃2). (C.10)

Substituting in (C.8) the standard definition of the Weyl tensor and using (C.10) and the
identities h d

a h e
c Rde = Rac + 2u(aRc)u + uaucRuu and hdeRde = R + Ruu, we can write the

(electric) components Cd
abcudub of the Weyl tensor as

Cd
abcudub = u̇au̇c − ωabω

b
c − σabσ

b
c − 2�̃σac + h d

a h e
c

(
u̇(d;e) − σ̇de + Rde

n− 2

)

− hac
1

n− 1

(
u̇d
;d + ωdeω

de − σdeσ
de + hdeRde

n− 2

)
. (C.11)
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The magnetic components can be expressed in terms of

Cdg
bcudhb

ehc
f = 2haghb

ehc
f (−u̇aωbc + ωa[b;c] + σa[b;c])

+ 2

n− 2
hg

[e
[(

ωa
f ] − σ a

f ]
)
u̇a + hb

f ]
(
ωa

b;a + σ a
b;a
)]

. (C.12)

The above equations reduce to formulae (6.26)–(6.30) in [9] when n = 4.13 Remember,
however, that the electric part of the Weyl tensor consists also of Ci jkl , which is not described
by (C.11) for n � 5. Note that in the special case of a geodesic u one has u̇ = 0 and the above
equations get a simpler form, cf, e.g., [88].
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