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Abstract—The Finite-Difference Time-Domain (FDTD) method
in cylindrical coordinates is used to describe electromagnetic
wave propagation in a cold magnetized plasma. This enables us to
study curvature effects in toroidal plasma. We derive the discrete
dispersion relation of this FDTD scheme and compare it with the
exact solution. The accuracy analysis of the proposed method is
presented. We also provide a stability proof for nonmagnetized
uniform plasma, in which case the stability condition is the
vacuum Courant condition. For magnetized cold plasma we
investigate the stability condition numerically using the von
Neumann method. We present some numerical examples which
reproduce the dispersion relation, wave field structure and steady
state condition for typical plasma modes.

Index Terms—FDTD method, magnetized plasma, discretized
dispersion relation, numerical stability, boundary conditions.

I. INTRODUCTION

THE finite-difference time-domain method is widely used
to obtain solutions of Maxwell’s equations for a broad

range of electromagnetic problems [1, 2]. Especially, in the
last two decades, the problems posed by modeling plasma
waves have attracted a great deal of attention. A lot of research
efforts have been spent over many years in order to improve
the FDTD-methods to model wave propagation in different
types of media and in particular in magnetized plasma such
as the recursive convolution (RC) method [3 - 7] , the direct-
integration (DI) method [8], the Z- transform method [9],
the transmission line matrix method [10] and the split-step
FDTD method [11]. An overview of the FDTD methods
to model an isotropic cold plasma can be found in [12 -
13]. For more recent efforts on modeling the magnetized
plasma the reader is referred to the work of Smithe [14], and
enhancements along the lines of Smithe in [15], and [16]. Such
methods generally fall in one of three categories: fully explicit
ones [17], fully implicit ones [16], and hybrid ones [14],
[15]. Fully explicit methods are straightforward and easy to
implement but may suffer from restrictive stability conditions.
Fully implicit methods are provably unconditionally stable but
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require computationally intensive matrix calculations. In this
light, hybrid methods seem an attractive option : they are stable
at the relatively nonrestrictive vacuum Courant limit (though
to our knowledge no general-case proof of this is known), and
require only the solution of very small sets of equations every
time step. These are the methods that we will use in this paper.

Both in flux tubes of the solar corona as in fusion devices,
the geometry is basically toroidal. In this paper, wave propaga-
tion is studied adopting a toroidally symmetrical configuration.

In order to compare computational results with theoretical
predictions (focusing on wave dynamics rather than wave
interference), it is often convenient to suppress refections
of the waves at the edge of the simulation region. For this
purpose, an accurate and computationally efficient damping
condition is needed [18- 20]. We will construct a simple but
effective absorbing layer in this paper.

Of special interest is the case of fusion plasma when the
antennas can launch different electromagnetic modes into
the nonuniform plasma where they can tunnel through the
evanescent layers or convert to the other modes. The plasma
density increases from a very low magnitude near the antenna
and the chamber conductive wall to very high on the magnetic
axis. Usually the problems of the wave propagation through
such structures are solved in the frequency domain. This
approach eliminates the possibility to accurately describe the
mode interactions and conversion. This is one of the reasons
why the FDTD method has its merits for the study of problems
in fusion plasma.

Generally speaking, the FDTD hot plasma description re-
quires the solution of the kinetic equations instead of the
current equations for plasma species. Constructing the current
equations from the plasma conductivity tensor is also always
problematic since the conductivity tensor is known only in the
frequency domain [21]- [22].

Therefore we use the cold plasma approximation, which
provides a fully local time-domain description for the plasma
currents. Curvature effects are included by using the appropari-
ate expression for the curl operator in cylindrical coordinates.
After having grasped the cold plasma wave dynamics and
having tested the suitability of the FDTD method, kinetic
corrections can be incorporated to upgrade the adopted model.
A similar approach to what will be presented in this paper is
followed in [15]. Unlike [15] we will take curvature effects
into account, and we use the Yee cell of [14], which differs
from the one of [15].
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After a short introduction and problem formulation in Sec-
tion II, the description of the discretization scheme is provided
in Section II-A. The associated discretized dispersion relation
is derived explicitely in Section III, and special-case stability
proofs are given. Section IV provides the accuracy analysis
of the applied FDTD technique. Its stability for magentized
plasma is discussed in Section V. A short description of the
two implemented boundary conditions is presented in Section
VI. Finally, in Section VII, some numerical examples are
presented.

II. BASIC EQUATIONS AND DISCRETIZATION SCHEME

The cold plasma governing equations are cast in terms of
Maxwell’s equations coupled with current equations derived
from the Lorentz equation of motion. The resulting whole
governing equation set in time-domain is given by:

∂B
∂t

= −∇× E, (1)

ε0
∂E
∂t

= −
∑
s

Js +∇×H, (2)

(
∂

∂t
+ νs)Js = ε0ω

2
psE−ΩΩΩs × Js. (3)

Here, the subscript s denotes the charged particle species in
the plasma (e, i for electrons and ions respectively). E is
the electric field vector (V/m), B = µ0H is the magnetic
flux density vector (Wb/m2), H is the magnetic field vector
(A/m), Js is the current density vector of a particular specie
(A/m2). The vacuum permeability µ0 (H/m) and vacuum
permittivity ε0 (F/m) are independent of the frequency. The
plasma frequency ωps (rad/sec) is defined as

ωps =

√
nsq2

s

msε0
(4)

where ns (1/m3), is the density, qs (C), is the charge and ms

(kg), is the mass of a given specie. Further, by construction
the cyclotron frequency is

Ωs =
qsB0

ms
, (5)

where B0 is the background magnetic field. Eq. (3) contains
a collision frequency term whose role in the numerical sim-
ulations of experimental scenarios is fundamental. This term
describes the power dissipation of the plasma currents due to
the collision processes between the plasma particles. If it is
small enough the wave damping is negligible, the wave power
slightly decreases along the direction of the propagation and
the wave field structure almost does not change.

A. Discretization Scheme

1) Time Discretization: We now introduce a finite- differ-
ence discretization of (1 - 3) and, following Yee’s notation [1],
we denote a mesh point as (i, j, k) = (i∆, j∆, k∆), where
∆ = ∆r,∆ϕ,∆z is the space increment in the cylindrical
coordinate system, and any function of space and time as
Fn(i, j, k) = F (i∆, j∆, k∆, n∆t), where ∆t is the time

increment. By positioning the field components of E,H, J on
the mesh the way that will be described below we evaluate
the E-field and the current density J-field at integer time steps
while the H-field is defined at half-integer time steps [14]. By
central averaging the J terms of Eq. (2) and Eq. (3) and the
E term of Eq. (3), the resulting approximations of Eq. (1 - 3)
are

µ0

[
Hn+1/2 − Hn−1/2

∆t

]
= −∇× En, (6)

ε0

[
En+1 − En

∆t

]
+

[
Jn+1
s + Jns

2

]
= ∇× Hn+1/2, (7)

[
Jn+1
s − Jns

∆t

]
+ νs

[
Jn+1
s + Jns

2

]
= ε0ω

2
ps

[
En+1 + En

2

]
−
[
Ωs ×

Jn+1
s + Jns

2

]
.

(8)

2) Space Discretization: The modified Yee-cell describing
the spatial positioning of the E-, H-, and Js-field-components
is shown in Fig. 1.

Fig. 1. Yee cell for spatial positioning of the field components.

The components Hr, Hϕ, Hz of the magnetic field H are
localized at the center of the edges of the Yee- cell, as is typical
in FDTD. The method proposed here initially locates the Jr,
Jϕ, and Jz components at the same positions as the Er, Eϕ,
and Ez components, i.e. together at the center of the Yee-cell
as in [14]. This simplifies the calculation of the cross product
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in Eq.(3) while adding extra complexity to the calculation of
the curl in Eq.(1): spatial averaging is required to calculate the
central-difference derivatives. For example, to update the H-
field components, four neighbouring field values of E should
be averaged in order to find the field value at the centers of
the faces of the Yee-cell. Thus, in order to interpolate the curl
(∇ × E), the twelve field values (four neighbouring values
for each of the component) surrounding the desired position
are then used to evaluate the corresponding derivative at that
point. Unlike Eq. (6) (which is initially explicit), the set (7-8)
is implicit. In order to obtain explicit expressions, the term
Jn+1 is defined from (8) and substituted in (7), which yields
all of the field components of E at time step (n + 1) on the
left side of (9) and all other values calculated at previous time
steps on the right- hand side of (9). As such, equation (9)
becomes suitable for the FDTD implementation.

En+1 = ME,EEn −MB,E

∑
s

1

2
(M2,s + 1) Jn

+ MB,E (∇× H)n+1/2 .

(9)

Using (9), the set of equations is completed with:

Jn+1 =
ε0ω2

ps

2
M1,s(ME,E + 1)En

−
ε0ω2

ps

2
M1,sMB,E

∑
s

1

2
(M2,s + 1) Jn

+
ε0ω2

ps

2
M1,sMB,E (∇× H)n+1/2 + M2,sJ

n,

(10)

where

M1,s =

 1
∆t

+ νs
2

−Ωz
2

Ωϕ

2
Ωz
2

1
∆t

+ νs
2

−Ωr
2

−Ωϕ

2
Ωr
2

1
∆t

+ νs
2


−1

, (11)

M2,s = M1,s

 1
∆t
− νs

2
Ωz
2

−Ωϕ

2

−Ωz
2

1
∆t
− νs

2
Ωr
2

Ωϕ

2
−Ωr

2
1

∆t
− νs

2

 , (12)

ME,E =

(
ε0

∆t
I +
∑
s

M1,s

ε0ω2
ps

2

)−1(
ε0

∆t
I +
∑
s

M1,s

ε0ω2
ps

2

)
,

(13)

MB,E =

(
ε0

∆t
I +
∑
s

M1,s

ε0ω2
ps

2

)−1

. (14)

where I is a unit matrix.

III. DERIVATION OF THE FULL DISCRETE DISPERSION
RELATION

The fully discretized dispersion relation derived in this
Section relates the numerical wavevector components, the
wave frequency, the time- and space-steps. Here, the basic
procedure used for the dispersion analysis involves substitution
of the expansion of the wave fields and plasma currents as a
Fourier series in space and time into the discretized set of
Maxwell’s equations (6)-(8) using the cylindrical coordinate
system. Initiating this procedure, we assume the following

solution, for example, for the electric field components in a
form:

E|nr,ϕϕϕ,z =

=
1

2

[
e(j(kr

∆r
2 r+n∆ϕ

2 ϕϕϕ+kz
∆z
2 z−ω∆t

2 τ))

+ e(−j(kr ∆r
2 r+n∆ϕ

2 ϕϕϕ+kz
∆z
2 z−ω∆t

2 τ))
]
.

(15)

where kr, n, kz are the r, ϕ, z components of the numerical
wavevector and ω is the wave angular frequency, r is a radial
coordinate. The solutions for the magnetic field components
and currents have a similar form as (15). Substituting the wave
expression of (15) into the finite-difference set of equations
of (6)-(8) yields after simplification the following set of
equations:

1

r∆ϕ
cot

(
kz

∆z

2

)
tan

(
n

∆ϕ

2

)
Ez −

1

∆z
Eϕ =

1

∆t

sin
(
ω∆t

2

)
cos
(
n∆ϕ

2

)
sin
(
kz

∆z
2

)Hr, (16)

1

∆z
cot

(
kr

∆r

2

)
tan

(
kz

∆z

2

)
Er −

1

∆r
Ez =

1

∆t

sin
(
ω∆t

2

)
sin
(
kr

∆r
2

)
cos
(
kz

∆z
2

)Hϕ, (17)

[
2

∆r
sin

(
kr

∆r

2

)
−
j

r
cos

(
kr

∆r

2

)]
cot

(
n

∆ϕ

2

)
Eϕ−

2

r∆ϕ
cos

(
kr

∆r

2

)
Er =

2

∆t

sin
(
ω∆t

2

)
sin
(
n∆ϕ

2

)Hz , (18)

2

r∆ϕ
sin

(
n

∆ϕ

2

)
Hz −

2

∆z
sin

(
kz

∆z

2

)
Hϕ =

−
2

∆t

sin
(
ω∆t

2

)
cos
(
kr

∆r
2

)Er − j cos
(
ω∆t

2

)
cos
(
kr

∆r
2

)Jr, (19)

2

∆z
sin

(
kz

∆z

2

)
Hr −

2

∆r
sin

(
kr

∆r

2

)
Hz =

−
2

∆t

sin
(
ω∆t

2

)
cos
(
n∆ϕ

2

)Eϕ − j cos
(
ω∆t

2

)
cos
(
n∆ϕ

2

)Jϕ, (20)

[
2

∆r
sin

(
kr

∆r

2

)
−
j

r
cos

(
kr

∆r

2

)]
Hϕ−

2

r∆ϕ
sin

(
n

∆ϕ

2

)
Hr =

−
2

∆t

sin
(
ω∆t

2

)
cos
(
kz

∆ϕ
2

)Ez − j cos
(
ω∆t

2

)
cos
(
kz

∆z
2

)Jz ,
(21)

−
2j

∆t
Jr tan

(
ω

∆t

2

)
+ ϑsJr = ω2

psEr + (JϕΩz − JzΩϕ) , (22)

−
2j

∆t
Jϕ tan

(
ω

∆t

2

)
+ ϑsJϕ = ω2

psEϕ + (JzΩr − JrΩz) , (23)
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−
2j

∆t
Jz tan

(
ω

∆t

2

)
+ ϑsJz = ω2

psEz + (JrΩϕ − JϕΩr) . (24)

The set of equations (16)-(24) still depends on r and
no solution exists which holds for all r. However, if r is
sufficiently large, the r-dependent terms become negligible. Let
us illustrate under which condition the cylindrical dispersion
relation approximates the dispersion realtion in the Cartesian
coordinate system. Assuming the solutions of the wave fields
and currents in a form

1

2

[
e(j(kx

∆x
2 x+ky

∆y
2 yyy+kz

∆z
2 z−ω∆t

2 τ))+

+ e(−j(kx ∆x
2 x+ky

∆y
2 yyy+kz

∆z
2 z−ω∆t

2 τ))
] (25)

and applying the same set of procedures mentioned above,
it can be seen that the discretized dispersion matrix in the
cylindrical coordinate system repeats the matrix in the Carte-
sian coordinate system under the following condition (see first
terms in the equations (18) and (21))

2

∆r
sin(kr

∆r

2
) >>

cos(kr
∆r
2 )

r
, (26)

which means that if the wavelength is significantly shorter than
the distance from the point of consideration to the cylindrical
axis, i.e kr >> 1/r (where r is a distance from the point of
consideration to the cylindrical axis), the cylindrical dispersion
relation approximates the cartesian one.

Only under (26) setting the determinant of (16-24) to
zero we obtain the expression for the full discrete dispersion
relation (27), valid for phenomena which occur far away from
the central axis of the cylindrical coordinate system. The
expression for the 3D discrete dispersion relation is:[

a2
1a

2
2b

2
3ε1 + a2

1a
2
3b

2
2ε3 + a2

2a
2
3b

2
1ε1
]
k̃2−[

a2
1(b22 + b23)ε1ε3 + a2

2(b21 + b23)(ε21 − ε22)+

a2
3(b21 + b22)ε1ε3

]
b24 + ε3(ε21 − ε22)b44 = 0.

(27)

where

ε1 = 1−
∑
s

ω2
psω̃

ω∗(ω̃2 − Ω2
s)
,

ε2 = −
∑
s

ω2
psΩs

ω∗(ω̃2 − Ω2
s)
,

ε3 = 1−
∑
s

ω2
ps

ω∗ω̃
,

with

ω∗ =
2

∆t
tan(ω

∆t

2
),

ω̃ = ω∗ + iνs,

and k̃2 ≡ b21 + b22 + b23 is the square of the discretized wave
vector.

To simplify the equation the following notations are used:

a1 ≡ cos(kr
∆r

2
), b1 ≡

2

∆r
sin(kr

∆r

2
),

a2 ≡ cos(n
∆ϕ

2
), b2 ≡

2

r∆ϕ
sin(n

∆ϕ

2
),

a3 ≡ cos(kz
∆z

2
), b3 ≡

2

∆z
sin(kz

∆z

2
),

a4 ≡ cos(ω
∆t

2
), b4 ≡

2

c∆t
sin(ω

∆t

2
),

(28)

Below the behavior of the dispersion relation for a number
of specific scenarios will be studied.

A. Vacuum case

For vacuum, when the plasma density is zero, the discrete
dispersion relation (27) is:

[
a2

1a
2
2b

2
3 + a2

1a
2
3b

2
2 + a2

2a
2
3b

2
1

]
k̃2

−
[
a2

1(b22 + b23) + a2
2(b21 + b23) + a2

3(b21 + b22)
]
b24 + b44 = 0.

(29)
Ensuring that the problem is well- resolved (∆r, ∆ϕ,

∆z << λ) and using the Taylor series expansion of the sine
and cosine for a small parameter, a1, a2, a3 are 1 to first order,
and we obtain the vacuum dispersion relation:

k2
r + (

kϕ
r

)2 + k2
z ≡ k2 =

ω2

c2
. (30)

Demanding that real k always map to real ω leads to the
Courant condition:

c∆t <
1√

( 1
∆r

)2 + ( 1
r∆ϕ

)2 + ( 1
∆z

)2
. (31)

Eq. (30) is a well- known dispersion relation for electromag-
netic waves in vacuum, when the frequency is proportional to
the wavenumber [28, 29].

B. Nonmagnetized plasma

In the absence of a background magnetic field, the term ε1
in equation (27) becomes equal to the term ε3, and the term
ε2 is zero. The full discrete dispersion relation (27) reduces
to:

[
a2

1a
2
2b

2
3 + a2

1a
2
3b

2
2 + a2

2a
2
3b

2
1

]
ε3k̃

2

−
[
a2

1(b22 + b23) + a2
2(b21 + b23) + a2

3(b21 + b22)
]
ε23b

2
4

+ε33b
4
4 = 0.

(32)

Neglecting second order terms of the Taylor series expan-
sion gives a1, a2, a3 equal to 1, b1, b2, b3 becomes kr, n/r,
kz , respectively and b4 turns into ω

c . After simplification (32)
reduces to

ε3

(
k̃2 − ε3

ω2

c2

)2

= 0 (33)
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Finally, the nonmagnetized plasma dispersion relation (32)
takes a form

k̃2 = ε3b
2
4. (34)

If the collisional frequency term is neglected, ω̃ becomes
equal to ω∗ and ε3 takes a form

ε3 = 1−
(∆t

2

)2

cot2
(ω∆t

2

)∑
s

ω2
ps. (35)

Now Eq.(34) can be resolved for sin(ω∆t/2):

k̃2 =

(
2

c∆t

)2

sin2(ω
∆t

2
)− 1

c2
cos2(ω

∆t

2
)
∑
s

ω2
ps. (36)

Here, only the terms of the first order of the Taylor series
expansion are retained, and we obtain the slow wave dispersion
relation [31]:

k2 =
ω2

c2

(
1−

∑
s

ω2
ps

ω2

)
= ε3

ω2

c2
. (37)

Analysis of the Eq. (36) shows that the Courant condition
for a nonmagnetized plasma is completely equivalent to the
vacuum Courant condition (31).

C. Magnetized plasma

1) 3D: Eq. 27 represents the general form of the numerical
dispersion relation in a full three-dimensional case.

2) 2D: Neglecting the terms of second order of the Taylor
series expansion in the grid step, Eq. (27) becomes:

[
(b21 + b23)ε1 + b22ε3

]
k̃2

−
[
(b21 + 2b22 + b23)ε1ε3 + (b21 + b23)(ε21 − ε22)

]
b24

+ε3
[
ε21 − ε22

]
b44 = 0.

(38)

When the problem is uniform along the z- direction (b3 =
0), the magnetized dispersion relation (38) becomes:[

b21ε1 + b22ε3
]
k̃2

−
[
(b21 + 2b22)ε1ε3 + b21(ε21 − ε22)

]
b24

+ε3
[
ε21 − ε22

]
b44 = 0.

(39)

3) 1D: When the problem is uniform along z- and ϕ−
directions b2 = b3 = 0 and the wave is transverse, Eq. (39)
can be further simplified to:

ε1k̃
4 −

[
ε1ε3 + (ε21 − ε22)

]
b24k̃

2

+ε3
[
ε21 − ε22

]
b44 = 0.

(40)

Eq. (40) gives two well-known solutions. One of them is the
slow wave dispersion relation (34) k̃2 = ε3b

2
4 and the second

one is:

k̃2 =
ε21 − ε22
ε1

b24 = αb24. (41)

Keeping the terms of the first order of the Taylor series
expansion, Eq. (41) gives the dispersion relation of the ex-
traordinary wave [31]:

k2 =
ε21 − ε22
ε1

ω2

c2
= α

ω2

c2
. (42)

IV. ACCURACY ANALYSIS

Before employing this numerical algorithm, we need to
determine if it is applicable to the problems at hand. Tackling
any problem numerically (rather than analytically) inevitably
introduces discretisation errors. The study of a numerical
algorithm’s accuracy involves studying, and imposing, bounds
on these errors. An analysis of the discretisation error can
be performed by comparing numerical and exact dispersion
relations, as in [12], [17], [32], [36]. The approach followed
by [12] is based on comparing the numerically calculated
dispersion which expresses how the index of refraction de-
pends on the wave frequency with the analytically predicted
dispersion. Subsequently the numerical errors are calculated
as the deviation of the numerical results of the corresponding
values obtained analytically. However, rather than using the
relative error on the dispersion (as Cummer did) we propose
to use the relative dispersion error defined as :

δ = |Re (Nnum −Nanal) /Re (Nanal) |, (43)

where Nnum and Nanal are the numerically and analytically
obtained indexes of refraction.

In order to evaluate the relative dispersion error we choose
to investigate the dispersion relation of the extraordinary wave
(41). This particular plasma mode is selected because the
range of the propagation of this wave contains ion-cyclotron
frequencies, in the frequency range of which the RF antennas
of the tokamaks operate. The numerical tests were conducted
in the frequency range from 0 to the low hybrid frequency
(ωLH ), because exactly in this range the values of the wave
vector are real and the wave itself propagates through the
simulation region (see Fig.2). The considered time-steps lie

Fig. 2. Analytical dispersion relation of the extraordinary wave. The
dispersion relation of the extraordinary wave is specifically selected for
numerical simulations because the range of the propagation contains the ion-
cyclotron frequencies (on which the RF antennas of the tokamaks work).
The frequency range from 0 to ωLH marked in red is chosen for numerical
simulations because in this range the values of the wave vector are real and
the wave itself propagates through the simulation period.

in an interval from 0 to π/ω. The numerical simulations are
conducted in the collisionless homogeneous media with initial
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plasma parameters ne = nD = 1019 (1/m3) and background
magnetic field B0 equal to 3(T ).

On Fig. 3 the contour plot shows the relative dispersion error
(see Eq. (43)), as a function of frequency ω and time-step ∆t.
The contour lines (of this contour plot) demarcate the borders

Fig. 3. A contour plot of the dispersion error as a function of ω and ∆t.
The lines of the contour plot demarcate the borders of the areas with certain
accuracy. The Courant limit (red solid line) shows the border between stable
and unstable simulation areas.

of the areas in the (ω, ∆t) plane where the relative dispersion
error is below a certain numerical value of the dispersion error.
This will give us guidance on how to choose ∆t for a certain
frequency range provided that we require a certain accuracy.
For example, if the values of the frequency and time-step
are chosen within the area demarcated by the contour labeled
”0.01”, it is guaranteed that the dispersion error will not exceed
1 %. The conclusion from the discussion is that in order to get
a sufficient accuracy (i.e. an relative dispersion error of less
than, e.g. 1%) the time-step has to be chosen such that the
point (ω,∆t) lies in an area demarcated by the right contours
illustrated in Fig. 3.

V. STABILITY

One of the standard analytical approaches to examine the
stability of a numerical technique is a method developed
by von Neumann [2]. This method expresses the numerical
error introduced at any discrete time instant as a spatial
Fourier series (over a bounded space). Numerical stability
is guaranteed if the magnitude of every Fourier coefficient
attenuates over one time-step (i.e., if every Fourier coefficient
is multiplied by a number with magnitude smaller than or
equal to 1 at each time-step). Under this condition, assuming,
that each Fourier coefficient is initially bounded, each coeffi-
cient remains bounded at all subsequent time-steps. Since the
system is linear, the total error after N time steps, which is
represented by the sum of the Fourier series associated with the
errors introduced at the N past time-steps, is also bounded at
any time-step. Since the original von Neumann analysis relies
on Fourier series, its applicability is restricted because of the
restriction to cases with periodic boundary conditions. How-
ever, these original von Neumann approach can be extended to
much wider circumstances (with much broader applicability).
This extended version of the von Neumann approach suits our
needs, as we are concerned with the stability of the applied
method independent of boundary conditions.

Even though the analytical application of the von Neumann
method is rather complicated in case of magnetized plasma, it
is possible to apply this technique for the numerical analysis.

The 1D problem with the wave propagating in the r-
direction with non-zero components Er, Ez, Hϕ, Jr, Jz in
magnetized plasma is considered. The difference equations can
be written in the general form:

F t+1︸ ︷︷ ︸
future

= M F t︸︷︷︸
past

, (44)

where F represents a column vector containing all discretized
electric, magnetic and current field components and with M
is the amplification matrix. The numerical scheme is stable
if the eigenvalues of M lie on the unit circle in the complex
plane. Only when there are losses either due to the nature of
the material or due to radiation escaping from the simulation
region, some of the eigenvalues may fall inside the unit circle
[9].

In Fig. 4 the eigenvalues of the amplification matrix of the
applied FDTD method for magnetized plasma are presented.

In this particular case the simulation parameters are: ne− =
3 · 1019 (1/m3), nD = 0.98ne− (1/m3), nH = 0.02ne−
(1/m3). The background magnetic field is uniform and it
is equal to 3 T. The space step ∆r is calculated based
on the analytical dispersion relation [30], [31]. The time-
step ∆t is determined in an agreement with the Courant
stability condition [2]. This numerical analysis shows that the

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5
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Fig. 4. Numerical stability test. The eigenvalues of the amplification matrix
44 are located on a unit circle in the complex plane. The initial simulation
parameters are: ne− = 3 · 1019 (1/m3), nD = 0.98ne− (1/m3), nH =
0.02ne− (1/m3). The background magnetic field is uniform and it is equal
to 3 T.

developed technique is indeed stable at these parameters. In
particular, we find that the time-step has to be suffciently
small, i.e. it must satisfy the vacuum Courant condition. If
it exceeds the Courant limit, instability would occur [16].

VI. BOUNDARY CONDITION

In this Section we give the description of the neces-
sary boundary conditions for the computational domain. The
boundary conditions were developed to describe two important
phenomena. First one has to model the power source that
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launches the wave into the plasma. Another one has to deal
with the wave fields at the plasma edges.

As a power source we use a so-called hard source [28] or
a “point” source, which in our cylindrical case is really an
infinitely thin cylindrical surface along the toroidal direction
carrying a constant amplitude current with sinusoidal time-
dependence at a particular frequency ω. It is switched on
at t = 0 and flows until regime conditions are met. In
more detail, the wave electric field is defined at a surface
ra−Ncells = const which models as it is mentioned above the
Radio Frequency (RF) antenna or a power source condition
(PSC) in the tokamak. Here, Ncells is the number of cells.
Among the waves that are possibly exited by the hard source
we choose to investigate only the wave mode that is used
for plasma heating in the tokamak, i.e. only the mode that
propagates towards the cylindrical axis.

In the presented study the RF antenna is unrestricted in
ϕ− and z-directions to exclude the antenna edge effects on
the wave propagation. The external confined magnetic field
(uniform or nonuniform) is oriented along the ϕ-direction.
The ordinary wave (the electric field is parallel to the external
magnetic field) is launched by the PSC Eϕ = E0sin(ωt).
The extraordinary wave (the electric field is perpendicular to
the external magnetic field) is launched by the PSC Ez =
E0sin(ωt). Plasma media occupies the space of [rb, ra] in r-
direction, where ra − rb is the width of the plasma column.

One of the types of the applied boundary conditions is the
Perfect Electric Conductor (PEC). Thus, the wave reaching
the surface rb = const is reflected completely back to the
antenna. Since at ra = const the PSC plays the role of PEC
for the reflected waves, we expect a process of multireflection
between the surfaces ra = const and rb = const. We would
like to note that the multireflection process might evoke the
unrestrained growth of the electromagnetic field amplitude and
under these circumstances the steady state condition cannot
be reached. However, including of the collision frequency
term ϑs (Eq. (3)) will cause the wave dissipation which
allows the steady state to be reached. The magnitude of the
collision frequency term defines the time needed to reach the
steady state. Note, that there is a restriction on the collision
frequency term value. It has to be large enough to minimize
the wave reflection from the boundary rb back to the antenna.
In Section VII such estimations of the collisional term values
will be given. The general frame of the boundary technique
is illustrated on Fig. 5 together with the direction of the wave
propagation and the location of the antenna.

VII. NUMERICAL EXAMPLES

A. Numerical Validation

Above we have proven that the dispersion relation of the
actual problem and its fully discretized FDTD counterpart will
become identical for sufficiently small time and space steps.
This claim is further substantiated by providing numerical
data from our own cylindrical FDTD code. In Fig. 6-7 the
discretized dispersion relation of the extraordinary (42) and
ordinary (37) waves are compared to the analytical ones.
The numerical results are obtained for the one-dimensional

Fig. 5. Illustration of the simulation structure. Perfect Electric Conductor
used as boundary conditions. The power source is located significantly close
to the right edge of the simulation domain. The damping boundary condition
is set at the distance that would allow to provide the effective damping.

cylindrical case (the model is invariant in ϕ and z direction).
We consider a one-ion (deuterium) homogeneous collisionless
plasma with the following initial parameters: the density is
ne = nDe = 3·1019(1/m3), the uniform background magnetic
field B0 is equal to 3 (T ), the lower hybrid frequency is
ωLH = 3.79 · 109 (rad/sec), the source frequency is equal to
ω = 2.87 · 108 (rad/sec).

Fig. 6. Analytical and the numerical dispersion curves of the extraordinary
wave in a low frequency range for 1D collisionless toroidal plasma. (ne =
nDe = 3·1019(1/m3), B0 = 3(T )). Theoretical data: black dots; numerical
data: green dots.

The presented graphs show that the numerical results are in
very good agreement with the theory.

B. Curvature Effects

The typical geometry of the JET tokamak and its plasma
parameters will be used to carry out some of the numerical
tests. The RF antenna is located at ra = 4 (m). The diameter
of the plasma column is 2 m therefore rb = 2 (m). In order to
simplify the numerical tests we assume that the magnetic field
is uniform and it is equal to 3 (T ). The antenna launches the
Fast Wave (FW) ( [30], [31]) with a source frequency f that is
equal to 45.7 (MHz). The corresponding angular frequency
ω is 2.87 ·108 (rad/sec). The ion- and electron density in the
plasma is 3 · 1019 (m−3).
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Fig. 7. Analytical and the numerical dispersion curves waves in the high
frequency range in the cylindrical geometry. The initial conditions are the
same as on Fig. 6. Theoretical data: black dots; numerical data: green dots
stand for extraordinary wave, red dots- ordinary wave.

Fig. (8) shows the comparison of the field structures in the
Cartesian (red dotted solid line) and the cylindrical (black
dotted solid line) coordinate systems. The figures show the
steady state distribution of the wave fields.

Fig. 8. Curvature effects for the electric field (Ez- component) structures in
the Cartesian (black solid dotted line) and in the cylindrical (red dotted dashed
line) coordinate systems. The shaded light grey area is the absorption area
which is responsible for providing damping of electromagentic waves. The
collision frequency term is equal to ω/2π, where ω is 2.87 ·108 (rad/sec).
The amplitude of the electric field in the Cartesian coordinate system stays
constant during the whole simulation period. The amplitude of the electric
field in the cylindrical coordinate system grows in

√
2 times.

The amplitude of the wave field is constant in a plasma col-
umn in the Cartesian coordinate system. Using the definition
of the energy flux density, i.e. Poynting vector S = [E×B], the
growth of the amplitude in the cylindrical coordinate system
may be estimated. For example, we propose to compare the
magnitude of the time- averaged Poytning flux at two different
positions: at ra = 4 (m) and at rb = 2 (m), which gives us

S1ra = S2rb (45)

that leads to S2 = ra
rb
S1. Since for sinusoidal electromagnetic

plane waves the time-averaged Poytnign flux S is equal to E2
0

(E0 is the amplitude of the electric field), the amplitude of
the electromagnetic wave grows in

√
ra
rb

times, which means

that in our case it grows in
√

2 times and as it can be seen on
a Fig. 8, the numerical results are in a good agreement with
theoretical predictions.

C. Collision Frequency Term Effect

Here, the approximate analysis will be carried out to esti-
mate the effect of the collision frequency term in Eq. (3). In
order to simplify the estimation the analysis will be done in
the Cartesian coordinate system.

The fast wave propagates to the boundary x = rb according
to the law Ey(x) = E0exp(jkxx), where E0 is the wave
amplitude defined by the antenna and kx is x-component of
the FW wave vector which is defined by the FW dispersion
relation [31]. Reaching the boundary x = rb the FW is
partially reflected with coefficient R and partially transmitted
with coefficient T . Hence, the wave field in the range [rb, ra]
is defined as Ey(x) = E0(exp(jkxx) + Rexp(−jkxx)).
The wave field behind the boundary x = rb is defined by
Ey(x) = E0Texp(jk

′

xx), where k
′

x stands for the FW wave
vector in a plasma media with collisions. The well-known
relation between the electric and magnetic fields of the FW is
∂Hz

∂t = −∂Ey

∂x (the problem is uniform along the y direction).
Since the tangential components of the electromagnetic field
have to be continues at the boundary x = rb it provides two
equations:

1 +R = T, (46)

kx(1−R) = k
′

xT. (47)

These equations can be resolved for the transmission R and
reflection T coefficients, respectively:

T =
2

1 + k′x/kx
, (48)

R = T − 1. (49)

Since the time- averaged Poyting flux for plane waves is
proportional to the square of the wave field amplitudes the
coefficient of the power transfer through the boundary is
equal to |T |2 and the coefficient of power reflection from the
boundary is 1−|T |2. In Fig. 9 the power reflection coefficient
is calculated in the Cartesian coordinate system. It is compared
with the penetration depth of the FW behind the boundary
x = rb (it is defined from Im(k

′

x)). The power reflection does
not even reach 7% when the collisional frequency is equal to
the antenna frequency. However, the wave penetration depth in
this case is only 0.0641 (m) which does not allow the wave
to reach the axis. The analysis shows that even νs = 0.1ω
with a power reflection of 0.1% is already enough for efficient
damping of the electromagnetic wave.
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Fig. 9. The dependence of the absolute value of the reflection coefficient
R on the normalized value of the collisional frequency. The power reflection
coefficient (green solid line) is compared to the wave penetration depth in
cm (black solid line). It can be seen that even with the collision frequency
term νs equal to 0.1ω the efficient damping of the electromagnetic wave is
guaranteed.

VIII. CONCLUSIONS

The FDTD method has been applied to describe the elec-
tromagnetic wave propagation through fusion plasmas in the
cylindrical geometry. The hybrid scheme of [14] with both the
explicit part (leapfrog electric/magnetic interaction) and im-
plicit part (electric/current interactions) was implemented due
to better numerical stability than the fully explicit approaches
[17]. A similar approach to our applied numerical scheme
is used in [15]. However, the method in [15] is developed
in the Cartesian coordinate system. Moreover, the electric
field and current components in the Yee cell are positioned
differently which leads to the different way of solving the
obtained set of equations. In this paper, the 3D full discrete
dispersion relation has been obtained and compared with the
analytical solution. The numerical stability criterion has been
investigated analytically for nonmagnetized uniform plasma,
and numerically for magnetized plasma, and it was found to be
identical to the vacuum Courant limit. The developed boundary
conditions allow to reach a steady state of the electromagnetic
field distribution even when the antenna continuously launches
the power to the plasma. The numerical examples are provided
to show that the developed algorithm based on the hybrid
FDTD method performs properly and the dispersive behavior
of the different plasma modes are predicted correctly.
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