
Network latency hiding in thin client systems
through server-centric speculative display updating

Bert Vankeirsbilcka, Pieter Simoensa,b, Filip De Turcka, Piet Demeestera, Bart Dhoedta

aGhent University - Department of Information Technology (INTEC), iMinds
Gaston Crommenlaan 8 bus 201, 9050 Gent, Belgium

bGhent University College - Department INWE, Valentyn Vaerwyckweg 1, 9000 Gent, Belgium

Abstract

The widespread availability of cloud computing services has revitalized interest in the thin client computing paradigm,
in which application logic is executing on a remote server, typically hosted in a cloud computing infrastructure. The
user interacts with a local viewer, that forwards the user events over the network to the server and accepts the returned
graphical updates. An important challenge for this approach consists of the fact that at least one network round-trip
time is required to present the application output that results from the user’s actions. In this paper a novel speculative
display update mechanism is proposed to hide the network latency from the user by speculatively updating the screen
without awaiting the server response. The mechanism relies on online server side profiling of the graphical output
caused by user events, based on which a finite-state model is constructed capturing the graphical behaviour of the
application. Experiments with a text editor show that, once the application model is learned, speculative responses are
displayed within 40 ms for over 80% of the user events, with an accuracy exceeding 70%.

Keywords: Thin Client, Speculative, Remote Display, Latency, Bandwidth Reduction, Caching

1. Introduction

The advent of cloud computing has introduced
new possibilities to employ the thin client comput-
ing paradigm. This paradigm consists of a client-side
viewer forwarding user events to the application logic
executed on a remote server. Screen updates calculated
at the server are forwarded to the client in response to
the received user events. The client function is inher-
ently limited to I/O functions, drastically reducing the
requirements for computational resources. The advan-
tages of thin client solutions are well known and include
total cost of ownership reductions, simplified mainte-
nance, data security and privacy, ubiquitous data and
service access and more efficient use of resources [1, 2].

The generic architecture of traditional thin client sys-
tems is presented in Fig. 1. This traditional thin client
approach implies that at least one network round trip
time (RTT) is required to present the application output
that results from the user’s actions. More specifically,
the user input must be transmitted over the network to

Email address: Bert.Vankeirsbilck@intec.UGent.be
(Bert Vankeirsbilck)

be delivered to the application that is executed on the
server, before the graphical output can be sent back
for presentation by the viewer. Wide Area Networks
(WAN) and mobile networks typically exhibit relatively
large latencies, making the RTT the major factor influ-
encing the quality experienced by the user. In [3] and
[4], the authors quantify the users’ limits for accept-
ing bad responsiveness depending on the task they aim
to fullfill. For office automation (word processing, text
and figure editing, etc.), RTT values below 150 ms are
shown to be acceptable, while for more interactive ap-
plications, such as gaming, 80 ms RTT is found as an
upper limit for usability. In [5] it is shown that roughly
half of the total round trip time is caused by packetiza-
tion and propagating data over the network.

In this paper a novel speculative display mechanism
is proposed to mitigate the adverse effects of network
communication delay on the user experience. A Finite-
State Machine (FSM) is constructed, capturing the re-
lation between sequences of user events and resulting
graphical updates. This FSM is provided to the client,
such that these graphical updates can be forecasted by
the client when a certain sequence of user events oc-
curs. The validity of the speculatively displayed updates

Preprint submitted to Journal of Network and Computer Applications June 9, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55888441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1: Traditional thin client system architecture. The server executes
the application, the viewer acts as a service-hatch, passing intercepted
user actions to the server and displaying the received graphical up-
dates.

is checked by the server, possibly resulting in corrective
graphical updates and an update of the FSM.

We leverage on prior work [6], where we explored
the potential of using a static image cache in thin client
computing, and assessed the repetition of screen up-
dates. Although a side-effect exists of being able to de-
liver the smaller graphical updates faster over the net-
work due to higher compression achieved by difference
encoding to the client cache, the main target was to de-
crease the bandwidth consumed by the thin client pro-
tocol. In contrast, the current paper focuses on latency
mitigation, through a mechanism that involves caching
and could hence additionally result in a decreased band-
width usage.

The contributions of this paper are (i) a server-
controlled display state profiling mechanism that miti-
gates network round trip times and decreases bandwidth
usage, (ii) a theoretical basis for evaluating the applica-
bility of the proposed mechanism and thin client pro-
tocols in general, for varying network conditions and
setup configurations and iii the provisioning of experi-
mental results obtained through a prototype implemen-
tation.

The paper is structured as follows: Section 2 provides
an overview of related research. In Section 3, a listing of
the concepts used to throughout the paper is provided.
A model for the latencies involved in remote application
execution is constructed in Section 4. The speculation
algorithms are detailed in Section 5. The required mod-
ifications to traditional thin client architectures are ex-

plained in Section 6. Experimental validation results are
presented in Section 7. Finally, conclusions and future
work are described in Section 8.

2. Related work

Speculative thin client operation has been proposed
in [7], restricting modification to the thin client viewer
only to maintain compatibility with existing server im-
plementations and thin client protocols. They have
shown predictability of screen updates for both Virtual
Network Computing (VNC) [8] and Remote Display
Protocol (RDP) [9] and apply a Markov chain at viewer
side to relate series of user and screen events to fol-
lowing screen events. However, the viewer-based ap-
proach is expected to be resource demanding due to the
need for multiple image comparisons per user event. In
contrast, we aim to quantify the gains obtained by re-
laxing the constraint of compliance to the original thin
client protocols. This relieves the viewer from the im-
age comparisons and fits naturally into the thin client
paradigm where the server takes care of the heavy com-
puting tasks. Additionally, bandwidth reduction is real-
ized since the server can refer to graphical data already
present at the viewer or can send graphical data in dif-
ferential mode to increase compression.

In the context of human-computer interaction, FSMs
have been used to describe applications [10]. In this
field of study, FSMs are created manually by applica-
tion developers to understand the operation of an ap-
plication and to optimize the user interaction. Model-
based Graphical User Interface (GUI) testing method-
ologies derive FSM models from the application source
code too [11, 12], as part of automated regression tests
for evaluating the correct operation of the user interface
code. Automating the creation of FSM models from ap-
plications, without access to the source code is inves-
tigated in [13]. By interfacing to the graphics libraries
used by the application, the GUI is decomposed into
widgets. The executable widgets, i.e., widgets which
allow user input, are filtered to supply input to. This
way, executable widgets are traversed to reverse engi-
neer the model of the application GUI. The speculative
display mechanism proposed in our paper also relies on
FSMs based on GUI widgets. We also assume no a pri-
ori knowledge of the application GUI structure, and are
constrained to reverse engineering this model through
monitoring user events and graphical responses. As op-
posed to GUI testing settings, our mechanism operates
in a live environment where users interact with the ap-
plication, we must resort to learning the FSM gradually
as the user provides input. Some, but not all, thin client

2



implementations are able to intercept widget informa-
tion. In our proposed speculative display mechanism,
we support the creation of the application model with-
out specifically relying on the widget library used by the
application.

In [14], the authors aim to predict when graphical re-
sponses to user input will arrive at the client and put
the network card into sleep mode to reduce the energy
consumption of the mobile device. The authors even
predict how much time is spent between the receipt of
the graphical response and the next user action, to go to
sleep mode between these events as well. The authors
derive a FSM from the application using the source code
of the application or the GUI toolkit the application is
based on, and focus on obtaining statistics concerning
the times spent in the states of the FSM. In our work,
we have a similar concept of deriving a FSM, albeit
without relying on source code or GUI toolkit, but use
the generated FSM for the purpose of latency hiding.
The use of a similar FSM for both speculative display
operation as decision strategy to put the network card
into sleep mode enables the proposed mechanism to co-
operate with the cited work easily to build an energy-
efficient reactive remote display system.

In [15], a server-based adaptive display pre-fetching
mechanism is proposed that speculatively executes pos-
sible user events on the server and sends the related
graphics to the viewer. On receipt of the user input,
the matching graphical update is presented to the user.
This way, using spare server computational resources,
bandwidth and client memory, round trip times are ef-
fectively avoided. However, the approach requires the
knowledge of multiple subsequent user actions to be ap-
plied to the application, and is expected to imply the
need of reverting these actions or having parallelly exe-
cuted instances of the application to guarantee the gen-
uine application state that corresponds with the state of
the client.

Our contribution focuses on reducing application
level latency by learning the correlation with graphical
updates result from user events. Once learned, these
graphical updates are presented speculatively to the user
upon receipt of the user event. To this end, we construct
a FSM at the server, that consists of nodes represent-
ing graphical application states (e.g., all menu items are
collapsed, a given application menu is expanded, etc.).
User input triggers transitions between states, using the
related graphical updates. The server-centric approach
results in low complexity algorithms on the client de-
vice, which is beneficial for the energy consumption.
Furthermore, the transferability of the session to other
devices is ensured, as the FSM is constructed at the

server which can be synchronized with a viewer upon
resuming a previous session.

3. Basic concepts

This section presents the main concepts referred to
throughout the paper as they are key to speculative re-
mote display mechanisms. These are illustrated in Fig. 2
for the case of opening and closing a ‘File’ menu in a
text editor.

3.1. Frame buffer update

When the display must be updated, the server pack-
ages and sends these graphical changes to the viewer.
These changes are called frame buffer updates (in anal-
ogy to the terminology used in VNC’s Remote Frame
Buffer (RFB) protocol).

3.2. Finite-State Machine

The proposed speculative display mechanism is
based on a FSM, in which a state represents a specific
layout of visible widgets a user interacts with. When a
user interacts with these widgets, frame buffer updates
bring the system to another state with a different visual
layout. These frame buffer updates form the state transi-
tion between the two states as shown in the figure. Note
that it is possible to have multiple transitions between
states, e.g., in the case a user closes a dialog box using
a dedicated close button or the ‘X’ button of the win-
dow decoration. Different widgets are activated, and
correspondingly the graphical candy of the button press
will result in slightly different frame buffer updates, but
eventually, the initial state and the final state are identi-
cal.

3.3. Hotspot

The client needs to be able to link a user action to
a state transition. However, there exists a many-to-one
relation between user input and state transitions. For
example, the user can open a menu of a graphical in-
terface in different ways: it can be accessed by a key-
board shortcut, or any mouseclick within the region of
the menu widget result in the same graphical changes
on screen. In our approach, we define a hotspot as
the set containing all possible user actions that result
in the same state transition. Examples of the definition
of hotspots are presented in Fig. 2. Mouse events are in-
cluded in hotspots as areas into which the pointer loca-
tion fits. If widget information is available, as assumed
in the RDP and ICA protocols, the widgets extents could

3



(a) Example graphical output. (b) Corresponding FSM nodes and transi-
tions.

Fig. 2: An example to illustrate the main concepts used throughout this paper. A user event causes frame buffer updates to be generated that form
a transition to another state.

form the basis for creating hotspots. When only graph-
ical primitives are supported, such as lines, rectangles
and images, the coordinates of the containing primitive
can be used as the defining region for the hotspot. When
none of these higher level graphics can be intercepted,
the system could record pointer event locations and use
bounding boxes to construct hotspots. For key events,
there is no coupling between the hotspot and graphi-
cal regions, as the hotspot then resolves to the key sig-
nature itself. A corresponding hotspot is defined as a
hotspot that corresponds to user input, if in the case of
mouse events the mouse location is inside the area de-
fined by the hotspot. In the case of key strokes, a one-to-
one mapping exists to the already registered keystrokes.
When the viewer or server performs lookup of hotspots,
this comprehension of correspondence is evaluated. A
matching hotspot is defined as a corresponding hotspot
with the additional requirement that the graphical up-
dates closely resemble the actual application output.

4. Response time models

The sequence diagram presented in Fig. 3 indicates
the latencies involved in our speculative remote display
system. The responsiveness is measured as the time
elapsed between the registration of a user action and the
presentation of the results on screen. The software stack
on the user’s machine (consisting of operating system,
virtualization layers, middleware, etc.) introduces an
overhead delay between the actual user action and the
registration of that action in the viewer application. For
the sake of completeness, we have included these delays
in our model, although these are hard to measure and
typically negligible in comparison to network delays.
Once the action is registered in the thin client viewer,
the speculator predicts the display update and presents

this on screen. Meanwhile, the thin client viewer en-
codes the user input for transfer over the network to
the server. At the server, the user input is delivered
both to the application that generates the actual screen
output, and to the speculator that mimics the delivered
prediction of the viewer, possibly searches for match-
ing hotspots in other states and creates hotspots if nec-
essary. The output of the speculator and the applica-
tion are compared to decide how the client screen needs
to be updated, as well as which changes are to be ap-
plied to the caching system (e.g., state merging, adding
cache frames, adding hotspots) as detailed in Section 5.
The graphics and other instructions for the viewer are
encoded for transmission over the network. Then, at
the viewer side, cache-specific processing will occur, to
resynchronise the client with the server. After this step,
the correctness of the speculated screen update is veri-
fied, to be corrected in case of a misprediction.

The metrics of interest are the latency measured be-
tween the user providing the input and both the first re-
sponse as well as the final correct response presented on
screen.

4.1. Traditional thin client protocol response model

Traditional thin client protocols have a response
model as defined in Equation (1).

δtraditionalTCproto = δuser−viewer + δnetwork + δapp

+ δTCprotoserver + δTCprotoviewer + δviewer−user (1)

with:

4



Fig. 3: Sequence diagram with latency terminology for the proposed speculative display system.

δuser−viewer = the delay between the user providing
input and the system registering the
event

δnetwork = the time spent for transmission of a
user event and the responses over the
network

= δupstream + δdownstream

δapp = the time needed for the application to
generate the graphical responses

δTCprotoserver = the delay at the server for the thin
client protocol to deliver user events
to the application and to encode
graphical updates for transmission
over the network

δTCprotoviewer = the delay at the viewer for the thin
client protocol to forward user events
over the network and to decode
graphical updates for presentation on
the user’s screen

δviewer−user = the delay between the viewer software
instructing the operating system to
draw the frame buffer update and
actual screen rendering

In this equation, δnetwork can be broken down into sub-
components, depending on the particular thin client sys-
tem. More specifically, thin client systems are based on
push or pull protocols. The operation of a pull protocol
such as the RFB protocol used in VNC is presented in
Fig. 4(a). The first frame buffer update in a response
to a user event is sent as soon as it is available at the
server. The viewer requests subsequent frame buffer up-

dates one at a time, on receipt of a frame buffer update.
Therefor, δnetwork in the case of a pull protocol requires
one network RTT for each frame buffer update in the
response to a user event, as presented in Equation (2a).
The benefit of this request-based protocol is the inherent
automatic network load balancing as explained in detail
in [8]. In contrast, a push protocol, such as ICA and
RDP, pushes the frame buffer updates as soon as they
are available, without requests from the viewer. This
flavour of thin client protocol is presented in Fig. 4(b).
The advantage of this mechanism is that frame buffer
updates in response to user events are delivered faster
to the viewer. For these push protocols, one one-way
upstream network delay is incurred to deliver the user
event, and a one-way downstream network delay suf-
fices for each frame buffer update to be delivered to the
viewer, as modeled in Equation (2b).

δnetworkpull = N × (δdownstream + δupstream)

+ δuserEvent +

N∑
i=1

δupdatei (2a)

δnetworkpush = N × δdownstream + δupstream

+ δuserEvent +

N∑
i=1

δupdatei (2b)

with:

5



(a) Pull protocol.

(b) Push protocol.

Fig. 4: Different flavour of thin client protocols exhibit different oper-
ating schemes.

N = the number of frame buffer updates in
the response to the user event

δuserEvent = the transmission delay of the user event
δupdatei = the transmission delay of frame buffer

update i
δdownstream = the downstream network delay
δupstream = the upstream network delay

4.2. First response

The delay until the first response is displayed on the
screen (δ f irstResponse), regardless of its correctness, in-
dicates the optimal responsiveness that can be reached
with the system. Although the correctness of this first
response is not guaranteed, this metric plays an impor-
tant role in the interactivity experienced by the user. The
delay between the user input and the presentation of
the first update depends on the speed of the viewer side
speculator and the availability of a speculative response.
If no matching hotspot is found in the current state, a
network round trip is needed to acquire the first result
coming from the server, as indicated in Equation (3).

δ f irstResponse = δuser−viewer

+ Pprediction × δspeculatorviewer

+ (1 − Pprediction) × [δnetwork

+ max(δapp, δspeculatorserver )
+ δ′TCprotoserver

+ δ′TCprotoviewer
]

+ δviewer−user (3)

with:

Pprediction = the probability the user
interaction can be mapped to
hotspot in the cache

δspeculatorviewer = the time required for the viewer
speculator to acquire the
speculative frame buffer updates

δnetworkuserInput = the network delay for
transmitting the user input from
the viewer to the server

δspeculatorserver = the time required for the server
speculator to acquire the
speculative frame buffer updates

δ′TCprotoserver
= the delay at server caused by the

thin client protocol adapted to
support speculative updating

δnetworkgraphicalU pdate = the network delay for
transmitting the frame buffer
update from the server to the
viewer

δ′TCprotoviewer
= the delay at the viewer caused by

the thin client protocol adapted
to support speculative updating

Here, the adaptations to the traditional thin client pro-
tocol denoted δ′TCprotoserver

and δ′TCprotoviewer
are expressed

with respect to the original thin client protocol (modeled
in Equation (1)) as follows:

δ′TCprotoviewer
= δTCprotoviewer + δcachingviewer (4a)

δ′TCprotoserver
= δTCprotoserver + δcachingserver (4b)

with:

δcachingviewer = the additional delay at the viewer, for
synchronization of states and cache on
request of the server

δcachingserver = the additional delay at the server,
caused by the algorithms involved to
support speculative display updates,
e.g., comparison of cached updates and
actual application output or verification
of correctness of the current state

6



4.3. Final correct response

The delay to display the final, correct graphical up-
date, depends on the probability of correctly predicting
the application output as described in Equation (5).

δcorrectResponse = δuser−viewer

+ Pcorrect|prediction × δspeculatorviewer

+ (1 − Pcorrect|prediction) × [δnetwork

+ max(δapp, δspeculatorserver )
+ δ′TCprotoserver

+ δ′TCprotoviewer
]

+ δviewer−user (5)

with:

Pcorrect|prediction = the probability of correct
prediction in case a prediction
is effectively made

1 − Pcorrect|prediction = the probability of making no
prediction, or an incorrect
prediction in case a prediction
is made

Equation (5) is a generalization of the first response
equation (Equation (3)). The first response delay model
can be derived from this final correct response equation
by omitting the correctness constraint (Pcorrect|prediction =

Pprediction) and for δnetwork, to take only the first frame
buffer update into account (N = 1).

Two extreme cases can be discerned, giving lower
and upper bounds for the delay to present the final up-
date, i.e.,

1. Pcorrect|prediction ' 1

δcorrectResponse = δspeculatorviewer (6)

2. Pcorrect|prediction ' 0

δcorrectResponse = δnetwork

+ max(δapp, δspeculatorserver )
+ δ′TCprotoserver

+ δ′TCprotoviewer
(7)

4.4. Relation with the traditional thin client protocol

To study the performance of the speculative display
system in comparison to the traditional thin client sys-
tems, the model for the traditional thin client protocol
(Equation (1)) was substituted into the more generic fi-
nal update equation (Equation (5)). The resulting model
is presented in Equation (8).

δspeculativeTCproto =

Pcorrect|prediction × (δuser−viewer + δspeculatorviewer

+ δviewer−user)
+ (1 − Pcorrect|prediction) × [δtraditionalTCproto

+ min(δspeculatorserver − δapp, 0)
+ δcachingserver + δcachingviewer ] (8)

This model identifies the components that incur ad-
ditional latency for the speculative display system. As-
suming that the viewer speculator responds faster than
the network, the main components that could incur over-
head latency are the server speculator and the caching
provisions at the server and the viewer.

5. Speculative display algorithm

The logic for the speculative display system has been
designed in an asymmetric way, such that the server
controls the cache contents at the viewer side. Con-
sidering the use of battery-powered and resource-poor
devices as a thin client viewer, the main advantage of
this approach is that the viewer remains computation-
ally simple.

5.1. Algorithmic functions common to viewer and
server

The viewer and the server share functionality, to up-
date the synchronized caches, to load frame buffer up-
dates from the cache and to look up corresponding
hotspots, as presented in Listing 1. Merging one state
(denoted oldState) with another (denoted newState) in-
volves three consecutive steps. First the target of incom-
ing edges of oldState are changed to newState (lines 1
to 3). Next, the source of outgoing edges of oldState are
altered to newState (lines 4 to 6). This way, oldState is
separated from the FSM, and can be deleted (line 7).

Loading updates in a given state upon receipt of a user
event occurs by searching for corresponding hotspots in
this state (line 8). If a corresponding hotspot is found,
the frame buffer updates registered with this hotspot are
returned. Otherwise, none can be returned.

Lines 11 to 16 present how in a given state, corre-
sponding hotspots are searched for given user input.
As explained earlier, key signatures uniquely define a
hotspot in a given state (lines 11 to 13). For mouse
events, the location of the event must be enclosed in the
hotspot’s area to correspond (lines 14 to 16).

7



Listing 1 Functionality common to viewer and server
Function: mergeStates(oldState, newState)

1: for all inEdges ∈ oldState.incomingEdges do
2: inEdge.target = newState
3: end for
4: for all outEdges ∈ oldState.outgoingEdges do
5: outEdge.source = newState
6: end for
7: remove(oldState)

Function: loadUpdates(state s, event e)
8: if hasCorrespondingHotspot(s, e) then
9: return correspHotspot.updates

10: end if

Function: hasCorrespondingHotspot(state s, event e)
11: if e.type == keyStroke then
12: return s.hotspots.find(e.keySignature)
13: end if
14: if e.type == mouseEvent then
15: return s.hotspots.find(e.location ∈ hotspot.area)
16: end if

5.2. Viewer algorithm

The algorithmic functions specific to the viewer, de-
tailed in Listing 2, are straightforward. On receipt of
a mouse event or a key stroke, the frame buffer updates
that correlate to the corresponding hotspot in the current
state are drawn on the screen. Accordingly, the viewer
transitions to the next state (lines 1 to 3). If no corre-
sponding hotspot is found in the current state, the re-
sponse from the server is awaited and a new state is cre-
ated (that has no hotspots) to avoid corrupt state transi-
tions on subsequent user events (lines 4 to 6). Upon re-
ceiving a graphical response from the server, the viewer
checks whether a valid cache update identifier is pro-
vided. If so, the graphical response represents a dif-
ference with respect to the cached update it needs to
be added to (lines 7 and 8), otherwise, the update is
intended to be presented on screen as is (lines 9 and
10). Other functionalities on the viewer, not included
in Listing 2, are cache and FSM manipulations, that are
merely applying these actions to elements indexed by
the server.

5.3. Server algorithm

The algorithmic functions of the server are presented
in Listing 3. As the application has no method to no-
tify that a user event was completely processed (i.e., all
graphical responses to the user event are generated), it

Listing 2 Viewer algorithmic functions
Function: onUserEvent(event e)

1: if hasCorrespondingHotspot(currentState, e) then
2: show(correspHotspot.updates)
3: currentState = correspHotspot.nextState
4: else
5: currentState = createNewState()
6: end if

Function: onGraphicalUpdate(Update u, cachedUp-
dateId c)

7: if c ≥ 0 then
8: show(cache.getUpdate(c) + u)
9: else

10: show(u)
11: end if

is assumed that one user event marks the end of pro-
cessing the previous user event (line 1 and lines 14 to
22 detailed later in this section). Lines 2 to 6 show that
the frame buffer updates from corresponding hotspots,
that can occur in any state in the FSM, are loaded for
comparison with the application’s graphical output once
generated.

When graphical output of the application is available,
the server evaluates the similarity with the frame buffer
updates loaded earlier to decide whether the viewer has
similar updates in cache. To this end, the function is-
Similar() used in line 8 compares one set of frame buffer
updates with another set of frame buffer updates. In our
prototype, we implemented this function as to finding at
least 2 ‘closely similar’ updates in the sets, provided that
the cardinality of the sets is at least 2. We defined the
threshold for ‘close similarity’ to 90% of equal, over-
lapping pixels. If using this function, a closely similar
update is found in the cache, the difference can be sent
to save bandwidth, as described in lines 7 to 12. In the
other case, the complete frame buffer update needs to be
sent (line 13).

Lines 14 to 22 describe how a the completion of
a state transition is handled. The transition is evalu-
ated against the frame buffer updates from the corre-
sponding hotspots loaded earlier (line 14). If close re-
semblance is found with the frame buffer updates of a
hotspot other than the one the viewer had worked with,
the server decides that the current state must be equiv-
alent with the state the matching hotspot origins from
(matchingHotspot.sourceState). As a result, both states
are merged (lines 15 to 17). Merging of states is de-
tailed in Section 5.1. The last step in handling a match-
ing hotspot involves setting the current state to the target

8



Listing 3 Server algorithmic functions
Function: onUserEvent(event e)

1: handleTransitionFinished(currentState, e)
2: for all s ∈ states do
3: if hasCorrespondingHotspot(s, e) then
4: loadUpdates(s, e)
5: end if
6: end for

Function: onApplicationOutput(Update u)
7: for all hotspots ∈ correspHotspots do
8: if isSimilar(u, hotspot.updates) then
9: sendUpdate(update - u)

10: return
11: end if
12: end for
13: sendUpdate(u)

Function: handleTransitionFinished(State s, Event e)
14: if isSimilar(transition.updates, correspHo-

tspot.updates) then
15: if matchingHotspot != viewerHotspot then
16: mergeStates(s, matchingHotspot.sourceState)
17: end if
18: currentState = matchingHotspot.targetState
19: else
20: currentState = createNewState()
21: createNewHotspot(s, e, currentState)
22: end if

state of the hotspot matchingHotspot.targetState (line
18). In case no matching hotspot is found, a new state
is created to which the current state is set. Furthermore,
a new hotspot is created from the user event, defining
the transition between the previous state and the newly
created current state (lines 19 to 22).

6. Architecture overview

The extension of traditional thin client systems to
support the envisioned speculative display mechanism
is shown in Fig. 5. Besides forwarding user events from
the viewer to the server, they are delivered to the view-
erside cache handler. This component completely han-
dles the onUserEvent() viewer functionality presented
in Section 5.2 that, using the hotspot searcher compo-
nent, looks up whether a corresponding hotspot exists
in the current state. If such a corresponding hotspot ex-
ists, the related frame buffer updates are fetched from
the cache and displayed, even though at that moment,

Fig. 5: Architecture for the proposed speculative remote display sys-
tem. The additional components required for speculative display up-
dating are marked by the blue highlight color.

the viewer has no absolute guarantee that this content is
correct.

At the server, the received user input is delivered
to the application. In parallel, the user input is de-
livered to the serverside counterpart of the cache han-
dler that is triggered to handle the handleTransitionFin-
ished() function described in Section 5.3. The server
searches for corresponding hotspots in all states of the
FSM using the hotspot searcher component. To eval-
uate whether the found hotspots are in fact match-
ing hotspots, the cache handler relies on the graph-
ical update comparator to evaluate the similarity be-
tween the application output and cached frame buffer
updates. The hotspot generator facilitates the creation
of new hotspots, based on the graphical content visi-
ble on screen at a given moment. The cache handler
also handles onApplicationOutput() functionality, that
requires the intervention of the hotspot searcher and
graphical update comparator components to instruct
the graphical update handler to either encode the cur-
rent graphical application output directly or as a differ-
ence with respect to a cache frame buffer update.

The FSM is maintained in both cache handler com-
ponents of the server and the viewer. Cache and FSM
manipulation instructions from the server to the viewer
are accomplished over the cache handler channel.

9



7. Experimental results

7.1. Setup

For the experiments, one single machine hosted both
server and client in order to keep full control over the
network. An AMD AthlonTM 64 X2 Dual Core Proces-
sor 6000+, 1 GHz machine with 2 GB RAM was used.
The localhost network was used, with the Linux traf-
fic control tc impairment tool. Using this tool, network
latencies were configured. However, the bandwidth re-
mained uncapped resulting in negligible transmission
delays, i.e., no additional latency is incurred depending
on the size of frame buffer updates or user events. As a
result, in the definition of δnetwork in Equation (2a) and
Equation (2b), δuserEvent and δupdatei can be neglected.
The Linux XMacro package was used to record and re-
play the user events of the selected actions for the ex-
periment scenarios. We used TigerVNC (version 1.2.0)
[16] as the basis for implementation of our speculative
system. The screen resolution was configured to 1280
× 720.

7.2. Test scenario

The speculative display mechanism has been tested
using the text editor gedit [17], for which sixteen ac-
tions were recorded. These actions consisted of open-
ing the different menus in the application by clicking
on the menu and closing it by clicking the menu again.
This yields seven actions, for the menus ‘File’, ‘Edit’,
‘View’, ‘Search’, ‘Tools’, ‘Documents’ and ‘Help’. For
each of these actions, an alternative action was defined
to open the menu the same way, but closing it by click-
ing in an unrelated area in the application. The final
two actions were obtained by opening the ‘Help’ menu,
selecting the ‘About’ item, and closing the correspond-
ing dialog box either using the ‘Close’ button or closing
with the ‘X’ button in the window decorator. This set
of actions was specifically defined as series of mouse
events that cause a transition from a given state to itself
over other states. For example, the filemenu open-close
action exists of a mouseclick on the ‘File’ menu, lead-
ing to the expansion of the menu as a second state, fol-
lowed by a second mouseclick on the file menu causing
the collapse of the menu returning to the initial state.
This approach allows creating random scenarios by ran-
domly selecting actions from this set, with equal prob-
ability. For our experiments, we have created scenar-
ios by uniformly distributed random drawing of actions
from this set.

Fig. 6: Generated Finite-State Machine for executing 100 actions se-
lected from 16 actions randomly according to a uniform distribution.

7.3. Results

7.3.1. Generated Finite-State Machine
The FSM presented in Fig. 6 was obtained by execut-

ing 100 actions randomly drawn from the set of 16 ac-
tions. In total, 216 user events were registered. The sys-
tem has recognized the 7 different application menus,
for which the expansion and collapse leads to a transi-
tion to state 1. The expansion of the menu leads to a
new state, while the collapse results in a return to the
original state. The alternative collapse methods are not
visible in this FSM, as these actions are contained in
the same hotspot and hence result in one transition. The
figure also shows that the presentation of the ‘About’
dialog box (in state 3) from the ‘Help’ menu (state 2)
is recognized as having expanded the ‘Help’ menu first
as a transition over state 2 is performed. The transition
from state 0 to state 1 represents the start of the gedit
application.

7.3.2. First response
Figure 7 compares the responsiveness of the specu-

lative system to the traditional thin client system, mea-
sured as the time elapsed between the user event and the
first response shown on screen, irrespective of the cor-
rectness in comparison to the real application output.
Figure 7(a) shows the impact when no network latency
is configured. Both systems respond within 150 ms at
all times, but while the traditional system responds in
less than 40 ms for 64.81% of the user events, the spec-
ulative system accomplishes this for 83.79% of the user
events. On average, the traditional system responds in

10



30

40

50

60

70

F
re

q
u

e
n

cy
 (

%
)

0

10

20

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 More

Elapsed time between pointer event and first response (ms)

speculative traditional 

(a) No network latency.

30

40

50

60

70

F
re

q
u

e
n

cy
 (

%
)

0

10

20

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 More

Elapsed time between pointer event and first response (ms)

speculative traditional 

(b) 50 ms network latency.

Fig. 7: Comparison of first responses for the traditional thin client
protocol and for the speculative display mechanism.

30

40

50

60

70

F
re

q
u

e
n

cy
 (

%
)

0

10

20

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 More

Elapsed time between pointer event and first response (ms)

speculative response server response

Fig. 8: No network latency; breakdown of the first responses of the
speculative display mechanism into speculative responses and server
responses.

38.79 ms, while in the speculative system the average
decreases to 18.15 ms. The standard deviation however
increases from 17.48 ms to 21.78 ms, indicating that
more jitter is introduced.

The contrast between the speculative display system
and the traditional thin client system is more apparent in
Fig. 7(b), for a network latency of 50 ms, resulting in a
minimum network RTT of 100 ms. It shows that specu-

15

20

25

30

35

40

45

F
re

q
u

e
n

cy
 (

%
)

0

5

10

15

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 More

Elapsed time between pointer event and last related response (ms)

speculative traditional 

(a) No network latency.

15

20

25

30

35

40

45

F
re

q
u

e
n

cy
 (

%
)

0

5

10

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

M
o

re

Elapsed time between pointer event and last related response (ms)

speculative traditional 

(b) 50 ms network latency.

Fig. 9: Comparison of correct responses for the traditional thin client
protocol and for the speculative display mechanism.

15

20

25

30

35

40

45

F
re

q
u

e
n

cy
 (

%
)

0

5

10

15

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 More

Elapsed time between pointer event and last related response (ms)

speculative response server response

Fig. 10: No network latency; breakdown of the correct responses
of the speculative display mechanism into speculative responses and
server responses.

lative responses are independent of the network latency,
as in this experiment 79.62% of the user events were
responded to in less than 40 ms. With the traditional
system, first responses to user events were delivered in
less than 150 ms in 84.26% of the cases, with the spec-
ulative system this happens in 90.74% of the cases.

Figure 8 presents the breakdown of the experiment
results with no network latency configured. It shows

11



the share of speculative responses and server responses
in the first responses measured for the speculative dis-
play system in Fig. 7. Speculative responses are deliv-
ered in 9.73 ms on average, while responses from the
server arrive after 55.19 ms. In the experiment with 50
ms one-way network latency configured, the server re-
sponses arrive after 154.49 ms on average. Over the 216
user events in the session, we have recorded 176 spec-
ulative display updates, resulting in a prediction proba-
bility Pprediction of 81.48%. However, this includes the
learning stage of the system. When assuming regime
operation in the last half of the experiment session, 115
of the 117 user events (98.29%) resulted in a speculative
update of the viewer’s display.

7.3.3. Correct response
The first response gives an indication of the reactiv-

ity of the system. However, it is equally important to
evaluate the performance of the speculative system in
terms of the speedup acquired in presenting the correct
response on screen.

Figure 9 shows the times elapsed between the user
event and the pristine viewer screen content. Figure 9(a)
shows the impact when no network latency is config-
ured. Where the traditional system can bring the viewer
to a pristine state in less than 40 ms for only 9.76% of
the user events, the speculative display system achieves
this for 51.63% of the user events. The fact that for
the traditional VNC viewer used in the experiments, the
latency exceeds 40 ms in more than 90% of the cases
can be explained by the implemented optimization of
deferred updates at the server, that uses a fixed waiting
time of 40 ms in which graphical updates are joined for
collective transmission to the viewer. Eventhough, this
optimization is also active in the speculative version that
uses the same VNC implementation as a basis for the
prototype. Figure 9(b) presents results from the session
with 50 ms network latency configured. In this exper-
iment, the traditional system displays the pristine state
in less than 150 ms for 26.51% of the user events. For
the speculative system this is obtained for 53.49%. The
traditional system is unable to present the correct screen
state in less than 120 ms, while the speculative system
achieves this in 48.37% of the user events.

In our prototype, VNC is used as the base system for
implementation which relies on a pull protocol. The la-
tency for presenting the complete graphical update is
heavily influenced by the number of frame buffer up-
dates it consists of. As mentioned in Equation (2a) in
Section 4.1, a network RTT is required for each frame
buffer update, which explains the occurence of a large
amount of responses arriving after more than 150 ms

and 250 ms for the respective different network latencies
configured. Also, application developers and graphical
libraries often deliberately incorporate delays between
updating GUI elements to increase the usability of the
application, indicating that some of the responses in the
‘More’ category are less harmful for the user experience
than the figure suggests.

Figure 10 presents the breakdown of the experiment
results with no network latency configured. It shows the
share of speculative responses and server responses in
bringing the viewer to a pristine state, measured for the
speculative display system in Fig. 9. When the screen
state is correctly updated by the viewer speculator, this
is accomplished in 7.35 ms on average. If the server
needs to interfere, the network latency causes on aver-
age 265.54 ms latency between the user event and pre-
senting the complete graphical output on screen. Over
the complete session, 104 of the user events were cor-
rectly handled by the speculator, resulting in a proba-
bility for correct prediction of Pcorrect|prediction 48.37%.
Again, considering the first half of the session as learn-
ing phase, a probability of 70.69% is obtained.

7.3.4. Bandwidth reduction
We configured the system to transfer graphical up-

dates in raw, uncompressed pixel format to avoid distor-
tion of the bandwidth measurements due to the use of
specific compression algorithms. The bandwidth con-
sumed in the session for both the speculative and the
traditional system is presented in Table 1. As the startup
of the session, i.e., loading the desktop background, and
the startup of the application could not be predicted, we
have also shown the values after this initialization. The
table shows that the cache used in the speculative system
allows to reduce the consumed bandwidth in compari-
son to the traditional system. The amount of this reduc-
tion depends on the prediction accuracy, the frequency
of predictable user events in the session, the graphical
update size of the transitions between states to name a
few. In our specific experiment, roughly 50 MB was
saved by using the speculative system.

7.3.5. Algorithm overhead
The computational overhead was measured by peri-

odically logging the CPU usage during the execution
of the test scenarios. The values were acquired using
the Linux ps command line tool. Figure 11 shows that
the computational overhead is limited. In its regime
condition, i.e., after a peak load when the application
is started in the session and the viewer connection is
completed, the computational overhead of the specula-
tive display algorithm amounts to 2% for the server, as

12



Table 1: Bandwidth consumed in the experiment session (uncompressed raw pixel format, averaged over 10 iterations)
network latency complete session without initialization

speculative 0 ms 26252 kB 19443 kB
50 ms 27661 kB 20858 kB

traditional 0 ms 76482 kB 69654 kB
50 ms 75852 kB 69047 kB

10

15

20

25

30

S
e

rv
e

r 
C

P
U

 l
o

a
d

 (
%

)

0

5

10

0 50 100 150 200 250 300 350

Active session time (s)

speculative traditional

(a) Server.

6

8

10

12

14

V
ie

w
e

r 
C

P
U

 l
o

a
d

 (
%

)

0

2

4

0 50 100 150 200 250 300

V
ie

w
e

r 
C

P
U

 l
o

a
d

 (
%

)

Active session time (s)

speculative traditional

(b) Viewer.

Fig. 11: CPU load comparison of the speculative mechanism and the
traditional thin client system.

shown in Figure 11(a), and less than 1% for the viewer
as shown in Figure 11(b).

Concerning synchronization messaging the overhead
is also very limited. For the complete session with 217
user events reacted upon, only 2653 bytes were sent
from server to viewer to maintain synchronized FSM
and caches. Compared to the graphical content that
needs to be transfered over the network (about 27 MB in
raw format as indicated in Table 1, this synchronization
overhead is considered negligible.

The speculative system incurs overhead in compari-
son to the traditional, unaltered thin client system. The
most frequently used functionalities were monitored,
from which the results are presented in Fig. 12. The

15

20

25

30

35

40

F
re

q
u

e
n

cy
 (

%
)

0

5

10

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

M
o
r
e

Time spent evaluating the need for synchronization with the viewer (ms)

(a) Time spent evaluating the need for synchronization with the
viewer.

30

40

50

60

70

F
re

q
u

e
n

cy
 (

%
)

0

10

20

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

M
o
r
e

Time needed to acquire speculated display updates (ms)

(b) Time needed to acquire the speculated display updates.

30

40

50

60

70

80

90

F
re

q
u

e
n

cy
 (

%
)

0

10

20

30

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

M
o
r
e

Time spent evaluating whether the viewer has shown correct content (ms)

(c) Time spent evaluating whether the viewer has shown correct
content.

Fig. 12: Additional latency incurred by selected, frequently used func-
tionality of the speculative display algorithms.

13



histogram of the time spent evaluating the need for syn-
chronization with the viewer, shown in Fig. 12(a), ex-
hibits a rather fluctuating behaviour. The average of
these overhead values amounts to 5.38 ms. Figure 12(b)
presents the time needed to acquire speculated display
updates. As this concerns a simple search for a hotspot
in one state, and loading the frame buffer updates, this
task finishes within an order of a couple of milliseconds,
with an average of 1.24 ms. When transfering graph-
ical updates from the server to the viewer, the server
evaluates whether the viewer had correctly updated the
screen speculatively, and if not, whether similar content
is available in the viewer’s cache to apply difference en-
coding. Figure 12(c) shows that the additional latency
incurred by this functionality is limited, with an average
of 1.46 ms.

8. Conclusions and future work

In this paper a mechanism is proposed to augment
remote application rendering in the cloud by specula-
tively displaying application output to the user, in spite
of creating an impression for the user that the underly-
ing network latency does not influence the reactivity of
the system. The experimental results show that the re-
activity of the system is improved. In our experiments,
a first response to a user event, irrespective of the cor-
rectness, is shown on screen within 40 ms for over 80%
of the user events. After the learning phase in which the
FSM was derived and hence less accurate predictions
were made, 70.96% of the user events were correctly
responded to by the speculator. The results also show
that little overhead is induced by the system, both con-
cerning overhead synchronization messaging and server
and viewer CPU load amounting to 2% and less than
1% CPU load respectively. The network load caused
by the synchronization of the caches of the server and
the viewer was shown to be negligible in comparison
to the graphics that need to be transmitted, as in our
experiment, just over 2.6 kB were spent on such mes-
sages. When the viewer is unable to predict the applica-
tion output correctly, the server needs to interfere. The
most complex task for this mechanism was shown to be
the evaluation whether server-viewer synchronization is
needed, requiring to compare the application output to
the frame buffer updates in the cache. The average over-
head latency caused by this component amounts to 5.83
ms.

If in contrast to the assumptions in this paper, limited
storage on the viewer is considered, the choice of items
to store and the ratio between hotspots, states and frame
buffer updates needs to be optimized. To this end, graph

cutting algorithms in combination with usage tracking
of states and hotspots is a promising route for future in-
vestigation. Storing the FSM, cache items and hotspots
belonging to applications over different user sessions
might be an option to take into consideration. Since ap-
plications are expected to look and behave the same for
different users and over different execution times of the
application, it could be interesting to store these glob-
ally, and to be loaded at the start of a session. How-
ever, private data should be removed, which could be
accomplished by retaining only exact matches between
users. With increasing network latencies, one would in-
tuitively expect larger benefits from the speculative dis-
play system as a correct prediction results in large la-
tency reduction. However, in this case, errors are shown
on screen for a considerable time during which the user
can interact. On correction of the erroneous content, the
user might get confused. A viable solution is to limit the
number of unvalidated updates to mitigate the desyn-
chronization between speculative and actual application
output, but the introduced jitter in speculative display
updates might result in an unacceptable user experience.
As part of future research, we see opportunities to eval-
uate the impact of prediction accuracy and network la-
tency on Quality of Experience (QoE) through subjec-
tive assessment.

Acknowledgement

Bert Vankeirsbilck is funded by a Ph.D. grant of the
Institute for the Promotion of Innovation through Sci-
ence and Technology in Flanders (IWT). Part of this
work has been funded by the UGent GOA project “Au-
tonomic Networked Multimedia Systems”.

References

[1] A. Lai, J. Nieh, Limits of wide-area thin-client computing,
in: Proceedings of the 2002 ACM SIGMETRICS interna-
tional conference on Measurement and modeling of computer
systems, ACM, New York, NY, USA, 2002, pp. 228–239.
doi:10.1145/511334.511363.

[2] A. Lai, J. Nieh, On the performance of wide-area thin-client
computing, ACM Trans. Comput. Syst. 24 (2) (2006) 175–209.
doi:10.1145/1132026.1132029.

[3] N. Tolia, D. Andersen, M. Satyanarayanan, Quantifying interac-
tive user experience on thin clients, Computer 39 (3) (2006) 46
– 52. doi:10.1109/MC.2006.101.

[4] M. Jovic, M. Hauswirth, Measuring the performance of interac-
tive applications with listener latency profiling, in: Proceedings
of the 6th international symposium on Principles and practice of
programming in Java, PPPJ ’08, ACM, New York, NY, USA,
2008, pp. 137–146. doi:10.1145/1411732.1411751.

[5] R. Sharp, Latency in cloud-based interactive streaming con-
tent, Bell Labs Technical Journal 17 (2) (2012) 67–80.

14



doi:10.1002/bltj.21545.
URL http://dx.doi.org/10.1002/bltj.21545

[6] B. Vankeirsbilck, P. Simoens, J. De Wachter, L. Deboosere,
F. De Turck, B. Dhoedt, P. Demeester, Bandwidth optimiza-
tion for mobile thin client computing through graphical up-
date caching, in: Australasian Telecommunication Networks
and Applications Conference (ATNAC), 2008, pp. 385 – 390.
doi:10.1109/ATNAC.2008.4783355.

[7] J. R. Lange, P. A. Dinda, S. Rossoff, Experiences with client-
based speculative remote display, in: USENIX 2008 An-
nual Technical Conference on Annual Technical Conference,
ATC’08, USENIX Association, Berkeley, CA, USA, 2008, pp.
419–432. doi:1404014.1404048.

[8] T. Richardson, Q. Stafford-Fraser, K. R. Wood, A. Hopper, Vir-
tual network computing, IEEE Internet Computing 02 (1) (1998)
33–38. doi:10.1109/4236.656066.

[9] Microsoft Corporation, Windows Remote Desktop Protocol
(RDP), http://msdn2.microsoft.com/en-us/library/aa383015.aspx.

[10] A. Wasserman, Extending state transition diagrams for the
specification of human-computer interaction, Software Engi-
neering, IEEE Transactions on SE-11 (8) (1985) 699–713.
doi:10.1109/TSE.1985.232519.

[11] V. Chinnapongse, I. Lee, O. Sokolsky, S. Wang, P. Jones,
Model-based testing of gui-driven applications, in: S. Lee,
P. Narasimhan (Eds.), Software Technologies for Embedded
and Ubiquitous Systems, Vol. 5860 of Lecture Notes in Com-
puter Science, Springer Berlin Heidelberg, 2009, pp. 203–214.
doi:10.1007/978-3-642-10265-3 19.

[12] A. M. Memon, B. N. Nguyen, Advances in automated model-
based system testing of software applications with a gui front-
end, in: M. V. Zelkowitz (Ed.), Advances in Computers, Vol. 80
of Advances in Computers, Elsevier, 2010, pp. 121 – 162.
doi:10.1016/S0065-2458(10)80003-8.

[13] A. Memon, I. Banerjee, A. Nagarajan, GUI ripping: Reverse
engineering of graphical user interfaces for testing, in: pro-
ceedings of the 10th working conference on reverse engineering
(WCRE03), Vol. 1095, Citeseer, 2003, pp. 260–269.

[14] L. Zhong, N. K. Jha, Dynamic power optimization targeting
user delays in interactive systems, IEEE Transactions on Mo-
bile Computing 5 (11) (2006) 1473–1488.

[15] M. Sumalatha, S. Sridhar, G. Satish, A novel thin client ar-
chitecture with hybrid push-pull model, adaptive display pre-
fetching and graph colouring, International Journal of Ad hoc,
Sensor and Ubiquitous Computing (IJASUC) 3 (3) (2012) 67 –
77. doi:10.5121/ijasuc.2012.3305.

[16] TigerVNC, www.tigervnc.org.
[17] The GNOME Project, gedit,

http://projects.gnome.org/gedit/.

15


