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Abstract— We present a novel technique to perform the model
order reduction of multiport systems under the effect of statistical
variability of geometrical or electrical parameters. The proposed
approach combines a deterministic model order reduction phase
with the use of the Polynomial Chaos expansion to perform the
variability analysis of the system under study very efficiently.
The combination of model order reduction and Polynomial
Chaos techniques generates a final reduced-order model able
to accurately perform stochastic computations and variability
analysis. The novel proposed method guarantees a high-degree
of flexibility, since different model order reduction schemes can
be used and different types of modern electrical systems (e.g.
filters, connectors) can be modeled. The accuracy and efficiency
of the proposed approach is verified by means of two numerical
examples and compared with other existing variability analysis
techniques.

Index Terms— Multiport systems, variability analysis, polyno-
mial chaos, model order reduction.

I. INTRODUCTION

Recently, the necessity of employing efficient techniques to
perform the variability analysis (VA) of the modern integrated
circuits has become evident. The Monte Carlo (MC) -based
techniques, that represent the standard for the VA due to their
accuracy and ease of implementation, have the drawback of
requiring a very high computational cost. In particular, the
application of the MC method to complex high-speed systems
analyzed by means of electromagnetic (EM) methods [1]–
[3] is unfeasible. Indeed, EM methods usually produce very
large systems of equations which are expensive to solve, and
the use of the MC analysis would lead to an extremely high
computational cost.

In this scenario, a reliable alternative to MC-based methods
is represented by techniques based on the Polynomial Chaos
(PC) expansion [4]–[8], which describes a stochastic process
using a base of orthogonal polynomial functions with suit-
able coefficients. The resulting polynomial model allows to
efficiently perform the VA with good accuracy, at the cost of
the calculation of an augmented system [4]–[8]. Unfortunately,
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the application of the PC expansion to systems described by a
large numbers of equations, such as the ones resulting by the
use of EM methods, is not trivial due to the need of calculating
an augmented system.

Different techniques [9]–[13] have proposed PC-based
methodologies for the VA of systems described by a large
numbers of equations based on combinations of a PC expan-
sion on the original system matrices and MOR techniques.
Indeed, the MOR techniques allow to reduce the complexity
of large scale models and, therefore, the computational cost
of the simulations [14]–[16]. Recently, the techniques [11]–
[13] propose a more general PC-based method for the VA of
large scale systems described by Helmholtz equations. The
recently proposed methods described in [11]–[13] are based
on the following steps:

• the evaluation of the original large system of equations
over a discrete set of points in the stochastic space, chosen
using a Smolyak grid [17]–[19];

• the use of a deterministic MOR technique for each system
of equations to generate the corresponding projection
matrices;

• the calculation of the PC expansion of the original large
system matrices and of the projection matrices;

• the computation of the PC coefficients of the reduced
system using congruence transformations;

• the calculation of a PC-based augmented system.
Despite their accuracy and efficiency with respect to the MC-
based methods, the techniques [11]–[13] can be expensive both
in terms of memory and computational time, since they require
the calculation of a PC-based model of the original large scale
equations and of the projection matrices.

We propose in this paper a novel method that follows these
steps:

• the evaluation of the original large system of equations
over a discrete set of points in the stochastic space, chosen
using a regular grid;

• the calculation of a corresponding set of reduced order
models with common order using a common compact
projection matrix, following the technique [20];

• the computation of the PC expansion of the reduced
models;

• the calculation of a PC-based augmented system.
This new proposed technique is able to overcome the pre-
viously mentioned limitations by first calculating a set of
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reduced order models with common order using a common
compact projection matrix and then computing the PC expan-
sion of the reduced models.

This paper is structured as follows. First, an overview of PC
theory is given in Section II. The proposed stochastic model
order reduction technique is described in Section III, while
its validation is performed in Section IV by means of two
pertinent numerical examples. Conclusions are summed up in
Section V.

II. POLYNOMIAL CHAOS PROPERTIES

A stochastic process H with finite variance can be expressed
by means of the PC expansion as [8]

H =
∞∑

i=0

αiϕi(ξ) (1)

where the terms αi are called PC coefficients and ϕi(ξ)
are the corresponding orthogonal polynomials that depend
on the normalized random variables in the vector ξ. The
polynomials ϕi(ξ), also called basis functions, satisfy the
following orthogonality condition [6]

< ϕi(ξ), ϕj(ξ) >=
∫
Ω

ϕi(ξ)ϕj(ξ)W (ξ)dξ = aiδij (2)

where ai are positive numbers, δij is the Kronecker delta and
W (ξ) is a probability measure with support Ω.

Obviously, (1) must be truncated up to a finite number of
polynomials M + 1 to be used for practical applications. In
particular, if the random variables ξ are independent, it is
possible to prove that

M + 1 =
(N + P )!

N !P !
(3)

where N is the number of random variables ξi in the vector
ξ and P is the maximum order of the polynomials used in
the truncated PC expansion. Indeed, for independent random
variables the probability measure W (ξ) can be written as

W (ξ) =
N∏

i=1

Wi(ξi) (4)

since the global probability density function (PDF) is the prod-
uct of the PDFs of the single random variables. Consequently,
the corresponding orthogonal polynomials can be expressed as
product combination of the basis functions corresponding to
each random variable ξi as

ϕj(ξ) =
N∏

k=1

φik
(ξk) with

N∑
k=1

ik ≤ P and 0 ≤ j ≤ M

(5)
Furthermore, if the random variables ξ have specific PDFs (i.e.
Gaussian, Uniform, Beta distribution), the corresponding basis
functions are the polynomials of the Wiener-Askey scheme
[4]. Indeed, the choice of these polynomials guarantee an
exponential convergence rate of the PC expansion, since the
associated probability measure W (ξ) corresponds to the PDF
of the random variable ξ, when placed in a standard form
[4], [6]. Finally, in [6] it is presented a numerical method to

calculate the basis functions that guarantee an exponential con-
vergence rate for independent random variables with arbitrary
distributions.

In the more general case of correlated random variables
with arbitrary PDFs, the basis functions can be calculated
following the approach described in [5]–[7]. In this case, the
PC expansion convergence rate may not be exponential, since a
variable transformation, such as the Nataf transformation [21]
or the Karhunen-Loéve expansion [22] is needed to obtain the
decorrelation.

Once the M + 1 basis functions ϕi(ξ) are calculated, (1)
can be truncated as

H ≈
M∑
i=0

αiϕi(ξ) (6)

where the only unknown terms are the PC coefficients αi,
that can be calculated following one of the two main methods
described in the literature: the spectral projection and the linear
regression technique [7].

The most interesting characteristic of the PC expansion is
the analytical representation of the system variability: complex
stochastic functions of H , such as the PDF, can be efficiently
calculated following standard analytical formulas or numerical
schemes [23], while the mean µ and the variance σ2 of H can
be expressed as [7]

µ = α0 (7)

σ2 =
M∑
i=1

α2
i < ϕi(ξ), ϕi(ξ) > (8)

Finally, if the stochastic process is written in a matrix form
H , the corresponding PC expansion is

H ≈
M∑
i=0

αiϕi(ξ) (9)

where the terms αi are matrices of PC coefficients, corre-
sponding to the i-th polynomial basis, calculated for each entry
of H . For an extensive reference to polynomial chaos theory,
the reader may consult [4]–[8].

III. STOCHASTIC MODEL ORDER REDUCTION

The proposed technique aims to perform the VA of a generic
multiport system represented by a descriptor state-space form
as

(sC (ξ) + G (ξ))X (s, ξ) = B (ξ) (10)

H (s, ξ) = LT (ξ)X (s, ξ) (11)

where the descriptor state-space matrices C, G, B, L, that
depend on a vector of random variables ξ, are large matrices
calculated by an EM method, such as the Partial Element
Equivalent Circuit (PEEC) technique [2]. The superscript T
represents the matrix transpose. The dimensionality of descrip-
tor state-space matrices in (10) and (11) is C ∈ RZ×Z , G ∈
RZ×Z ,B ∈ RZ×Np , L ∈ RZ×Np , where Z is the number
of state-vector unknowns and depends on the particular EM
method used to compute (10) and (11), and Np represent the
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number of ports of the system. In some recent contributions
[24]–[26], it is proven that is possible to calculate efficiently
the PC expansion of the system starting from the PC expansion
of the corresponding model (state-space models in [24] and
transmission line models in [25], [26]). Theoretically, a similar
approach could be used for systems described by equations
(10) and (11). Indeed, using the PC expansion (9) to express
the state-space matrices, the state-vector and the output in
equations (10) and (11) yields

s
M∑
i=0

M∑
j=0

CiXj(s)ϕi(ξ)ϕj(ξ) =

−
M∑
i=0

M∑
j=0

GiXj(s)ϕi(ξ)ϕj(ξ) +
M∑
i=0

Biϕi(ξ) (12)

M∑
j=0

Hj(s)ϕj(ξ) =
M∑
i=0

M∑
j=0

LT
i Xj(s)ϕi(ξ)ϕj(ξ) (13)

Let us assume for the moment that the PC expansion of the
state-space matrices in equations (12) and (13) is already cal-
culated. Therefore, the only unknowns are the PC coefficient
matrices of the state vector Xj and of the transfer function
Hj .

The desired PC coefficient matrices can be calculated by
projecting the equations (12) and (13) on each basis function
ϕp(ξ) for p = 0, . . . ,M (this procedure is referred as Galerkin
projections [4], [25] in the PC theory). Indeed, projecting (12)
on the basis function ϕp(ξ) yields

s
M∑
i=0

M∑
j=0

CiXj(s) < ϕiϕj , ϕp >=

−
M∑
i=0

M∑
j=0

GiXj(s) < ϕiϕj , ϕp > +
M∑
i=0

Bi < ϕi, ϕp >

(14)

where the explicit dependency on the vector ξ is omitted, for
the sake of clarity. Repeating this operation for p = 0, . . . ,M
gives a frequency dependent linear system of the form

ΦXXα = Bα (15)

where ΦX ∈ R(M+1)Z×(M+1)Z , Xα ∈ R(M+1)Z×Np , and
Bα ∈ R(M+1)Z×Np .

To describe how it is possible to obtain equation (15), let us
assume for simplicity that one random variable and two basis
functions are used for the PC expansion. In this simplified
case, equation (14) can be rewritten as

(sC0 + G0) X0ϕ0ϕ0 + (sC1 + G1) X0ϕ1ϕ0

+ (sC0 + G0) X1ϕ0ϕ1 + (sC1 + G1)X1ϕ1ϕ1 =
B0ϕ0 + B1ϕ1 (16)

Now, thanks to the orthogonality relation (2), the projection
of (16) onto the basis function ϕ0 gives

E0(s)X0 < ϕ0ϕ0, ϕ0 > +E1(s)X0 < ϕ1ϕ0, ϕ0 >

+ E0(s)X1 < ϕ0ϕ1, ϕ0 > +E1(s)X1 < ϕ1ϕ1, ϕ0 >=
B0 < ϕ0, ϕ0 > (17)

where Ei(s) = (sCi + Gi) for i = 0, 1. The projection of
(16) onto the basis function ϕ1 yields

E0(s)X0 < ϕ0ϕ0, ϕ1 > +E1(s)X0 < ϕ1ϕ0, ϕ1 >

+ E0(s)X1 < ϕ0ϕ1, ϕ1 > +E1(s)X1 < ϕ1ϕ1, ϕ1 >=
B1 < ϕ1, ϕ1 > (18)

Next, equations (17) and (18) can be rewritten in the form
(15) as (

ΦX00 ΦX01

ΦX10 ΦX11

)(
X0

X1

)
=

(
B0

B1

)
(19)

where

ΦX00 = E0(s)
< ϕ0ϕ0, ϕ0 >

< ϕ0, ϕ0 >
+ E1(s)

< ϕ1ϕ0, ϕ0 >

< ϕ0, ϕ0 >

ΦX01 = E0(s)
< ϕ0ϕ1, ϕ0 >

< ϕ0, ϕ0 >
+ E1(s)

< ϕ1ϕ1, ϕ0 >

< ϕ0, ϕ0 >

ΦX10 = E0(s)
< ϕ0ϕ0, ϕ1 >

< ϕ1, ϕ1 >
+ E1(s)

< ϕ1ϕ0, ϕ1 >

< ϕ1, ϕ1 >

ΦX11 = E0(s)
< ϕ0ϕ1, ϕ1 >

< ϕ1, ϕ1 >
+ E1(s)

< ϕ1ϕ1, ϕ1 >

< ϕ1, ϕ1 >

(20)

The frequency dependent system (19) can now be solved
for each frequency of interest, upon calculation of the scalar
products in (20). Finally, the PC coefficients of the output
Hj(s) can be computed using the PC coefficients of state
vector Xj(s). Indeed, the projection of equation (13) onto
the basis functions ϕp(ξ), p = 0, ...,M , leads to

Hp(s) =
M∑
i=0

M∑
j=0

LT
i Xj(s)

< ϕi(ξ)ϕj(ξ), ϕp(ξ) >

< ϕp(ξ), ϕp(ξ) >
(21)

where all the scalar products were already calculated in order
to build the matrix ΦX .

However, the approach described above can not be effi-
ciently used for systems described by equations (10) and
(11). The calculation of the PC expansion (9) for the large
matrices C,G, B, L, would be very expensive both in terms
of memory and computational time, since each corresponding
PC coefficient matrix would have the same dimension of the
original matrix. Furthermore, the PC expansion of the matrices
C, G, B, L, would lead to an augmented system in the form
(15) of such a high dimension that the computational cost
required to solve it may compromise the efficiency of the PC
expansion with respect to the MC analysis.

The previously developed techniques [11]–[13] partially
solve these issues for systems described by Helmholtz equa-
tions. Indeed, in [11]–[13] it is proposed to evaluate first
the original large system of equations over a discrete set of
points in the design space and then employ a deterministic
MOR technique for each system of equations to generate
the corresponding projection matrix. Then, it is calculated a
PC model of the original large system matrices and of the
projection matrix. It is important to notice that, following the
approaches described in [11]–[13], all the projection matrices
calculated for the initial discrete set of points must have
common dimensions, otherwise it is not possible to compute
the corresponding PC model of the projection matrix via
numerical integration (see, for example, equation (33) in
[13]). Indeed, it is not possible to calculate a summation of
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matrices with different dimensions. Finally, it is performed the
computation of the PC coefficients of the reduced system that
leads to an augmented system in a form similar to (15), but
the overall dimension of this augmented system is drastically
reduced. A compact PC expansion of the original system can
be now calculated by employing standard deterministic tech-
niques to solve the obtained augmented system. This approach
is accurate and efficient with respect to the MC analysis (that
has an extremely high computational cost, since it requires a
huge number of simulation of the original large scale model).
Furthermore, the techniques [11]–[13] offer the possibility to
use different MOR techniques to calculate the corresponding
reduced order PC models. However, the techniques [11]–[13]
can be expensive both in terms of memory and computational
time since it is required

• to calculate a PC model of the original large scale
equations;

• to calculate a PC model of the projection matrices;
The novel method described in this paper is able to over-

come these limitations by first calculating a set of reduced
order models with common order using a common compact
projection matrix, following the technique [20], and then com-
puting the PC expansion of the reduced system. In particular,
the method described in [20] is implemented using a worst-
case choice for the estimation of the reduced model order and
a global approach to build the common compact projection
matrix. In the following, we will describe in details the novel
proposed method.

Note that, fixing the value of the random variables ξ = ξ
in equations (10) and (11) yields(

sC
(
ξ
)

+ G
(
ξ
))

X
(
s, ξ

)
= B

(
ξ
)

(22)

H
(
s, ξ

)
= LT

(
ξ
)
X

(
s, ξ

)
(23)

Now, it is possible to calculate an equivalent reduced order
models as(

sĈ
(
ξ
)

+ Ĝ
(
ξ
))

X̂
(
s, ξ

)
= B̂

(
ξ
)

(24)

H
(
s, ξ

)
= L̂

T (
ξ
)
X̂

(
s, ξ

)
(25)

where the reduced order matrices, indicated with the super-
script ∧, can be calculated by means of a suitable projection
matrix F as:

Ĉ
(
ξ
)

= F T C
(
ξ
)
F (26)

Ĝ
(
ξ
)

= F T G
(
ξ
)
F (27)

B̂
(
ξ
)

= F T B
(
ξ
)

(28)

L̂
(
ξ
)

= F T L
(
ξ
)

(29)

The projection matrix F can be calculated using a MOR
technique, such as the Krylov-based Laguerre-SVD [27] or
PRIMA [28] algorithms. Therefore, it is possible to calculate
for each combination of values of the random variables ξ in
the stochastic space Ω the corresponding reduced system in
a descriptor state-space form. Let us suppose that we have

calculated K set of reduced matrices
[
Ĉk, Ĝk, B̂k, L̂k

]K

k=1
with common dimension for the corresponding values of the

random variables [ξk]Kk=1 (initial sampling) in the stochas-
tic space Ω. To evaluate the common order for all the K
reduced models that will lead to accurate results, first we
calculate a reduced order model only for the set of U corner
points [ξu]Uu=1 where U ⊂ K, aiming at minimizing the
error with respect to the system frequency response H(s, ξu)
calculated with the original large dimension system matrices
C(ξu), G(ξu), B(ξu), L(ξu), for u = 1, . . . , U . Next, we
compute the corresponding set of K projection matrices of
common order F k for k = 1, . . . ,K. Finally, all the projection
matrices calculated so far are stacked in a projection matrix
as

F Union =
[
F 1, F 2, . . . , F K

]
(30)

The accuracy of the K reduced models with common order,
which is estimated by using the U corner points, can be
verified by comparing the corresponding frequency responses
with respect to the system frequency responses calculated
using the K original large dimension system matrices. If, for
a particular example, the desired accuracy can not be achieved
by using only the U corner points for the order evaluation, it
is always possible to estimate the common order using all the
K initial samples. However, the choice of using corners to
estimate the common order has proven to be accurate in many
cases and allows to save computational time [20].

Now, it is necessary to compute a common projection matrix
to be able to calculate a parametric reduced order model over
the design points [ξk]Kk=1. This goal is achieved in two steps:
first the SVD decomposition of the projection matrix F Union

is calculated as:

UΣV T = svd (F Union) (31)

Second, to guarantee the compactness of the common pro-
jection matrix it can be defined a common reduced order
r based on the first r significant singular values, where
the individuation of the desired r significant values can be
performed by setting a threshold to the ratio of the singular
values with respect to the largest singular value. Indeed, a
common projection matrix QC can now be expressed as:

QC = U r (32)

where U r is the matrix U resulting from the SVD decom-
position (31) for the first r significant singular values. Hence,
the desired reduced order matrices with common order can be
expressed as:

C̃k (ξk) = QT
CC (ξk) QC (33)

G̃k (ξk) = QT
CG (ξk) QC (34)

B̃k (ξk) = QT
CB (ξk) (35)

L̃k (ξk) = QT
CL (ξk) (36)

for k = 1, . . . ,K, where the superscript ∼ represents the
reduced matrices with common order.

Finally, the PC model for the matrices C̃, G̃, B̃, L̃ can
be computed. First of all, it is necessary to calculate the
basis functions [ϕi]

M
i=0 following the approaches indicated in

Section II. Without loss of generality, let us suppose that the
random variables ξ are independent. Hence, the number of
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basis function M + 1 can be chosen upfront according to (3)
considering that P can be limited between two and five [4],
[24], [26] for practical applications. Finally, the PC coefficient
matrices of C̃, G̃, B̃, L̃ of (33)−(36) can be calculated by
means of the linear regression approach (see Section II). The
linear regression approach calculates the desired PC coeffi-
cients solving a suitable over-determined least-square system
[7], that for the reduced state-space matrix C̃ can be written
as

Ψα = R (37)

where Ψ ∈ RKZ̃×(M+1)Z̃ , α ∈ R(M+1)Z̃×Z̃ , R ∈ RKZ̃×Z̃

and Z̃ represents the order of the matrix C̃. In particular,
the k−th row of the matrix Ψ contains the multivariate
polynomial basis functions ϕi for i = 0, . . . ,M evaluated
in ξk for k = 1, . . . ,K multiplied by the identity matrix of
the same dimension as the matrix C̃. The corresponding set
of values of the matrix C̃k (ξk) for k = 1, . . . ,K are stored
in the matrix R. Finally, the desired PC coefficients C̃i for
i = 0, . . . ,M are collected in the matrix α. Equation (37)
for the each descriptor state-space matrices can be solved in
a least squares sense using an element-wise, columnwise or
matrix-wise approach.

Since the linear regression approach requires to solve an
over-determined linear system in the form (37), the number of
initial samples K is chosen according to the following relation
[7]

K ≈ 2 (M + 1) (38)

Note that, equation (37) can be solved in a least squares sense
using an element-wise, column-wise or matrix-wise approach.

At this point we have calculated a PC model of the reduced
descriptor state-space matrices in the form (9). For example,
the matrix C̃ (ξ) can be written as

C̃ (ξ) ≈
M∑
i=0

C̃iϕi(ξ) (39)

Finally, it is possible to write two equations in the form
(10) and (11) for the reduced order descriptor state-space
matrices. Applying the same procedure discussed above, it
is possible to compute a frequency-dependent linear system
in the form (15), but the overall dimension of this system is
much smaller than the corresponding one related to the use of
the original large scale matrices. Therefore, the PC expansion
of the system transfer function can be calculated following the
same procedure described above (see equations (16)–(21)).

The proposed technique is flexible, since the transfer func-
tion H of a generical multiport system can be expressed by
different representations (e.g. scattering or admittance param-
eters), it allows to use different MOR techniques to calculate
the reduced systems, and it offers a reduced computational
complexity with respect to the previous approaches [11]–
[13]. The novel proposed technique allows to perform the
VA of large dimension systems, such as the ones resulting
from EM simulators, with accuracy and efficiency, thanks to
the expression of the system transfer function as a suitable
combination of PC expansion and MOR methods. Finally,
the proposed method does not require to compute a PC

model of the projection operator. The techniques [11]–[13]
assume implicitly that the projection operator as a function
of the parameters chosen for the variability analysis ξ can
be accurately modeled by a PC expansion. However, in the
authors’ experience, the calculation of a PC model of the
projection operator can be prone to inaccuracies, when the
system under study is quite sensitive to the parameters chosen
for the variability analysis or when the range of variation
of these parameters is large enough. The projection operator
is computed independently for each initial sample in the
stochastic space and it may not result smooth enough as
a function of the stochastic parameters ξ to be accurately
modeled by a PC model. Section IV illustrates this aspect.

However, the proposed technique has a limitation: it can still
be applied if the number of uncertain parameters is relatively
large (i.e. N = 10), but at the cost of a loss of efficiency.
Indeed, the number K of initial samples is chosen according
to (38), and the number of basis function M + 1 increases
rapidly with the number of uncertain parameter N , according
with (3). Therefore, the calculation of the K initial samples of
the large scale system can be expensive, and the computational
costs of (31) and of solving the reduced system in the form
(15) can increase as well. This limitation is originated by the
formulation of the PC expansion: the number M + 1 of basis
functions of any PC model in the form (9) increases rapidly
with the number of uncertain parameter N , according to (3).
Therefore, the corresponding number of M + 1 unknown PC
coefficients that must be estimated is large.

The flowchart of the proposed approach is shown in Fig. 1.

IV. NUMERICAL EXAMPLES

In this Section, we show the results of the VA performed
with the proposed technique for two different structures. In
each example, the random variables in the vector ξ are as-
sumed independent and with uniform PDF. The corresponding
basis functions are products of the Legendre polynomials [5].
The scalar products resulting from the use of the Galerkin
projections are calculated analytically beforehand.

The validation of the accuracy and efficiency of the pro-
posed technique is performed by means of a comparison
with the results of other VA techniques. The simulations are
performed using MATLAB1 R2012a on a Windows platform
equipped with an Intel Core2 Extreme CPU Q9300 2.53 GHz
and 8 GB RAM.

A. Transmission line

In this first example, the scattering parameters of two
coupled uniform microstrip lines are considered as a stochastic
process with respect to the length of the line in the frequency
range [100 kHz− 3 GHz]. The cross section of the microstrip
lines is shown in Fig. 2.
The frequency independent per-unit-length parameters of the

1The Mathworks, Inc., Natick
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Fig. 1. Flowchart of the proposed modeling strategy.

lines are [29]

Rpul =
[
0.2 0
0 0.2

]
Ω
m

(40)

Lpul =
[
0.28 0.07
0.07 0.28

]
nH
m

(41)

Gpul =
[
0 0
0 0

]
S
m

(42)

Cpul =
[

0.122 −0.05
−0.05 0.122

]
pF
m

(43)

Starting from the per-unit-length parameters, the correspond-
ing matrices for the admittance representation are computed
using the segmentation method described in [27] by divid-
ing the lines in 1650 sections of equal length, which gives
state-space matrices of order 6602. Then, these matrices
are converted into the corresponding ones for the scattering
representation as in [30]. The corresponding descriptor state-

d
w

t

h
ε   tanδ

Fig. 2. Example A. Cross section of the coupled microstrips.

space representation is

(sC + G)X (s) = B (44)

H (s) = LT X (s) + D (45)

where the matrix D is the identity matrix of dimension Np ×
Np.

It is important to notice that, the scattering parameters of
the two coupled microstrips can be efficiently computed using
the exact transmission line theory, therefore the VA could
be performed without the calculation of a large descriptor
state-space model. However, the calculation of a state-space
representation of order 6602 allows to verify the performances
of the novel proposed method for the case in which the SVD
decomposition (31) is computed for a very high dimension
matrix. Finally, the VA of the system in Fig. 2 is performed
with respect to the length of the lines in two different ranges
of variations and for different orders of the PC models. The
performances of the proposed method are compared with the
results of the technique [13], for the same number of initial
length samples. Note that, the reduced model in the form (16)
of [13] are calculated by means of the Galerkin projections
instead of truncating the corresponding expansion, since the
order of the PC models used in this example is greater than
one.

First, the length of the lines varies within the range
[9.75 − 10.25] cm with a nominal value L0 = 10 cm as a
uniform random variable. The corresponding PC expansion
is calculated using P = 2 and M = 2, according to (3).
Therefore, the descriptor state-space form (44) and (45) is
computed over a regular grid of K = 6 samples. The MOR
technique PRIMA [28] is used to calculate the reduced order
model, and a maximum absolute model error of −50 dB over
80 frequency samples is targeted to estimate the common
order of the reduced models. To build the common projector
matrix, 0.0001 is chosen as threshold to individuate the first
r significant singular values of the SVD decomposition in
(31) leading to a common projection matrix QC ∈ R6602×64.
Finally, K reduced models in a descriptor state-space form of
order 64 are computed and modeled using PC expansions as
previously discussed.

The Table I shows the total computational time of the pro-
posed technique detailing the cost of the different operations.
In particular, the element “Initial Data” in Table I represents
the operation of calculating the descriptor state-space matrices
for the chosen length samples and the corresponding scattering
parameters for the two corner points. It is important to specify
that, the latter operation takes 1h 11min 9.7s, while the
calculation of the descriptor state-space matrices for all the
six length samples requires only 29min 24.8s. Hence, a MC
analysis performed calculating the scattering parameters using
the corresponding descriptor state-space models would require
approximately 281d 3h 10min 33.3s, considering 10000
length samples. Therefore, to validate the results of the VA for
this example, the MC analysis is performed using the exact
transmission line theory. The element “Projection Operator”
in Table I indicates the calculation of the projection operator
with common order for all the initial length samples, while the
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element “Reduced DSS Matrices” represents the calculation
of the reduced matrices in the form (33) − (36), where the
symbol DSS stands for descriptor state-space. Note that, the
latter operation requires only few seconds, even if the initial
descriptor state-space has order 6602. Finally, the elements in
the last three rows of Table I indicate the calculation of the PC
model of the reduced descriptor state-space matrices using the
linear regression method, the computation of the PC model of
the scattering parameters solving an augmented linear system
for the reduced state-space matrices in the form (15), and the
computation of the mean and the variance of the magnitude of
the scattering parameters using the corresponding PC model,
respectively.

TABLE I
EXAMPLE A. COMPUTATIONAL TIME OF THE PROPOSED PC-BASED

TECHNIQUE FOR L ∈ [9.75 − 10.25] CM

Technique Computational time

Proposed PC-based Method 2h 11min 4.9s

Detailed Description of the Computational Time

Initial Data 1h 40min 34.5s

Projection Operator 30min 22.6s

Reduced DSS Matrices 3.2s

PC Model Reduced DSS Matrices 0.9s

PC Model S-param 0.8s

Mean and Variance S-param 2.9s

Table II shows the computational time for the VA performed
with the technique [13], in a similar form of Table I. Again,
to estimate the common order of the projection operators
calculated for all the initial length samples −50 dB is assumed
as maximum absolute model error. Note that, the element
“PC Model Initial DSS Matrices and Proj. Op.” in Table II
describes the calculation through numerical integration of the
PC model of the initial descriptor state-space matrices and of
the projection operator.

In this case, the novel proposed method is more efficient
in terms of computational time with respect to the technique
[13]. Indeed, the calculation of the SVD decomposition of
the projection operator (31) is much more efficient than the
calculation of the PC model of the initial descriptor state-space
matrices and projection operator required by [13], see Tables
I and II, even if just three PC coefficients must be estimated
via numerical integration for [13].

Furthermore, the novel proposed PC method is much more
efficient in terms of memory requirements, as shown in Table
III. As memory requirements we indicate the amount of
Mbytes that are necessary to load a particular matrix in the

TABLE II
EXAMPLE A. COMPUTATIONAL TIME OF THE TECHNIQUE [13] FOR

L ∈ [9.75 − 10.25] CM

Technique Computational time

PC-based Technique [13] 2h 17min 0.3s

Detailed Description of the Computational Time

Initial Data 1h 40min 29.6

Projection Operator 30min 18s

PC Model Initial DSS Matrices and Proj. Op. 5min 54.1s

PC Model Reduced DSS Matrices 14.5s

PC Model S-param 1.1s

Mean and Variance S-param 3s

TABLE III
EXAMPLE A. MEMORY REQUIREMENTS OF THE PROPOSED PC-BASED

TECHNIQUE AND OF THE TECHNIQUE [13] FOR L ∈ [9.75 − 10.25] CM

Elements New technique Technique [13]

Original DSS Matrices 3991.67 Mbytes 3991.67 Mbytes

Projection Operator 16.92 Mbytes 16.92 Mbytes

Common Proj. Op. (32) and
Reduced DSS Matrices (33)−(36)

3.23 Mbytes

PC Model Initial DSS Matrices
and Projection Operator

2004.29 Mbytes

PC Model Reduced Matrices 1.58 Mbytes 1.03 Mbytes

computer RAM. In particular, the memory necessary to store
the descriptor state-space matrices for all the initial length
samples and the corresponding projection operators is the
same for both the techniques, see the elements “Original
DSS Matrices” and “Projection Operator” in Table III, while
the computation of the reduced matrices (33)−(36) using the
common projection operator (32) is much more efficient than
the calculation of the PC models of the descriptor state-space
matrices and of the projection operator, see elements “Com-
mon Proj. Op. (32) and Reduced DSS Matrices (33)−(36)” and
“PC Model Initial DSS Matrices and Projection Operator” in
Table III, respectively.

Finally, the proposed PC-based stochastic model order
reduction technique shows an excellent accuracy compared
with the MC analysis, performed over 10000 L samples, in
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computing system variability features, as shown in Figs. 3
- 4. In particular, Figs. 3 - 4 show the mean and standard
deviation of the magnitude of the element S32 obtained with
the MC analysis, the proposed PC method and the technique
[13]. Similar results can be obtained for the other entries of
the scattering matrix.
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Fig. 3. Example A. The top plot shows a comparison between the mean
of the magnitude of S32 obtained with the MC analysis (full black line), the
proposed PC-based method (red dotted line) and the technique [13] (green
dashed line). The lower plot shows the absolute error of the two PC-based
VA techniques with respect to the MC analysis.
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Fig. 4. Example A. The top plot shows a comparison between the standard
deviation of the magnitude of S32 obtained with the MC analysis (full black
line), the proposed PC-based method (red dotted line) and the technique [13]
(green dashed line). The lower plot shows the absolute error of the two PC-
based VA techniques with respect to the MC analysis.

Next, the lines length is considered as a uniform random
variable varying in the range [9 − 11] cm. An example of the
scattering parameters variability with respect to the chosen
random variable is given in Fig. 5. The reduced order models
are calculated again using the MOR technique PRIMA [28],
targeting an absolute model error of −50 dB over 80 frequency
samples. The common projector matrix, obtained choosing

0.0001 as threshold to individuate the first r significant sin-
gular values of the SVD decomposition in (31), has order
QC ∈ R6602×72.

The proposed PC-based stochastic model order reduction
technique is more efficient both in terms of memory and
computational requirements with respect to technique [13], see
Tables IV - VI, and it shows a great accuracy compared with
the classical MC analysis, performed over 10000 L samples,
in computing system variability features, as shown in Figs.
6 - 8. In particular, Figs. 6 - 7 show the mean and standard
deviation of the magnitude of the element S43 obtained with
the MC analysis, the proposed PC method and the technique
[13]. Similar results can be obtained for the other entries of
the scattering matrix.

TABLE IV
EXAMPLE A. COMPUTATIONAL TIME OF THE PROPOSED PC-BASED

TECHNIQUE FOR L ∈ [9 − 11] CM

Technique Computational time

Proposed PC-based Method 2h 32min 14.3s

Detailed Description of the Computational Time

Initial Data 1h 50min 0.3s

Projection Operator 42min 2.6s

Reduced DSS Matrices 4.8s

PC Model Reduced DSS Matrices 1.7s

PC Model S-param 1.5s

Mean and Variance S-param 3.4s

It is important to notice that, in this case, the results of the
VA performed using the technique [13] are inaccurate with
respect to the MC analysis performed using the transmission
lines theory over 10000 L samples, see Figs. 6 - 7. Indeed
the calculation via numerical integration of the PC model of
the projection operator is inaccurate, see Fig. 9. It is worth
to notice that, the calculation of the PC model of the original
descriptor state-space matrices and of the projection operator
is two times more expensive with respect to the previous case,
see Tables II and V, and it requires much more memory, see
Tables III and VI.

B. Bended Conductors

In this second example, a system of three bended conductors
in free space has been modeled. Its layout is shown in Fig.
10. The copper conductors, placed at a distance of S0 = 2
mm the one from the other, have width W0 = 0.5 mm and
length L0 = 5 mm. The copper conductivity is assumed equal
to 5.8 · 107 S/m.
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TABLE V
EXAMPLE A. COMPUTATIONAL TIME OF THE TECHNIQUE [13] FOR

L ∈ [9 − 11] CM

Technique Computational time

PC-based Technique [13] 2h 45min 51.2s

Detailed Description of the Computational Time

Initial Data 1h 49min 28.4s

Projection Operator 42min 24.7s

PC Model Initial DSS Matrices and Proj. Op. 13min 11.5s

PC Model Reduced DSS Matrices 41.8s

PC Model S-param 1.3s

Mean and Variance S-param 3.5s

TABLE VI
EXAMPLE A. MEMORY REQUIREMENTS OF THE PROPOSED PC-BASED

TECHNIQUE AND OF THE TECHNIQUE [13] FOR L ∈ [9 − 11] CM

Elements New technique Technique [13]

Original DSS Matrices 5322.22 Mbytes 5322.22 Mbytes

Projection Operator 24.18 Mbytes 24.18 Mbytes

Common Proj. Op. (32) and
Reduced DSS Matrices (33)−(36)

3.62 Mbytes

PC Model Initial DSS Matrices
and Projection Operator

2673.2 Mbytes

PC Model Reduced Matrices 2.45 Mbytes 1.48 Mbytes

The system admittance parameters are considered as a
stochastic process first with respect to the couple of ran-
dom variables (L, S) varying in a range of ±10% with
respect to the central values previously mentioned. The ad-
mittance representation is evaluated in the frequency range
[100 kHz − 5 GHz] using the PEEC method [31] over a grid
composed of 4×4 (L, S) samples for the geometrical param-
eters. The corresponding set of descriptor state-space matrices
computed has order 2124 for each initial (L, S) sample. The
Laguerre-SVD MOR technique [27] is used to calculate the
reduced order models. The evaluation of the common order
of the reduced models is performed assuming 0.0001 as max-
imum weighted rms error between the admittance parameters
of the reduced model and the original system over Ks = 50
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Fig. 5. Example A. Variability of the magnitude of S12 calculated for
L ∈ [9 − 11]. The blue lines are the results of the MC simulations and the
red thick line corresponds to the nominal value for L0 = 10 cm.
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Fig. 6. Example A. The top plot shows a comparison between the mean
of the magnitude of S12 obtained with the MC analysis (full black line), the
proposed PC-based method (red dotted line) and the technique [13] (green
dashed line). The lower plot shows the absolute error of the two PC-based
VA techniques with respect to the MC analysis in logarithmic scale.

frequency samples:

Errorrms =√√√√√∑N2
p

i=1

∑Ks

k=1

∣∣∣wYi(sk)
(
Yr,i(sk) − Yi(sk)

)∣∣∣2
N2

p Ks
(46)

with
wYi(s) = |(Yi(s))−1| (47)

The evaluation of the significant r singular values of the SVD
decomposition in (31) is performed assuming 0.0001 as a
threshold. Upon calculation of the common projection matrix
(32), each of the K reduced order models calculated for the
couple of random variables (L, S) has order 232. Finally, the
set of reduced order matrices is modeled using a second order
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Fig. 7. Example A. The top plot shows a comparison between the standard
deviation of the magnitude of S12 obtained with the MC analysis (full black
line), the proposed PC-based method (red dotted line) and the technique [13]
(green dashed line). The lower plot shows the absolute error of the two PC-
based VA techniques with respect to the MC analysis in logarithmic scale.
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Fig. 8. Example A. PDF and CDF of the magnitude of S12 at 835 MHz.
Full black line: PDF computed using the novel technique; Dashed black line:
CDF computed using the novel technique; Circles (◦): PDF computed using
the MC technique; Squares (2): CDF computed using the MC technique.

(P = 2) PC expansion, giving M = 5 for (L, S), according
to (3).

The results of the VA obtained with the novel proposed
method are compared with the corresponding ones given by
the technique [13] and are validated by means of comparison
with results of the MC analysis using the parameterized model
order reduction technique [31]. The latter technique is a pa-
rameterized model order reduction method that guarantees the
overall stability and passivity of parameterized reduced order
models, by using passivity preserving interpolation schemes.
In particular, first a set of reduced model with the same order
are calculated assuming 0.0001 as threshold for the error mea-
sure (46). Then, the reduced models obtained are interpolated
over the 10000 (L, S) samples used for the MC analysis. Note
that, the parameterized model order reduction technique [31]
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Fig. 9. Example A. The top plot shows a comparison between the value
of the 3317th row and 59th column of the projection operator calculated for
all the initial length samples (full black line) and the corresponding value
obtained using the PC model of the projection operator (green dashed line).
The lower plot shows the same comparison for the value of the 4200th row
and 39th column of the projection operator.

L
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S

Fig. 10. Example B. Geometry of the system of bended conductors.

is applied to the same PEEC matrices calculated for the initial
(L, S) samples used for the novel proposed technique. Finally,
the initial samples needed by the technique [13] are computed
over a Smolyak sparse grid, composed of 29 (L, S) samples
[13], while 0.0001 is assumed as maximum weighted rms
error to estimate the common order of the projection operators
calculated for all the initial (L, S) samples.

The PC model of the projection operator computed by the
technique [13] is not accurate, see Fig. 11. This leads to
poor accuracy in computing the system variability features
with respect to the corresponding results given by the novel
proposed method and the MC analysis performed using the
parameterized model order reduction technique [31], as shown
in Figs. 12, 13, although the number of initial samples used to
implement the technique [13] is almost the double of the ones
used for the proposed PC-based method. In particular, Figs. 12
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Fig. 11. Example B. The top plot shows a comparison between the value
of the 1130th row and 31th column of the projection operator calculated for
all the length samples corresponding to the value of spacing S = 2 mm
(full black line) and the corresponding value obtained using the PC model of
the projection operator (green dashed line). The lower plot shows the same
comparison for the value of the 2000th row and 11th column of the projection
operator.

and 13 show the mean and standard deviation of the magnitude
of Y24 calculated with respect to the random variables (L, S).
Similar results can be obtained for the other entries of the
admittance parameters. Furthermore, the VA performed with
the proposed method shows a great efficiency both in terms of
memory and computational time, as shown in Table VII and
VIII.
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Fig. 12. Example B. Comparison of the mean for the magnitude of Y24

with respect to the couple of random variables (L, S) obtained with the MC
analysis performed with the technique [31] (full black line), the technique
[13] (green dashed line) and the proposed PC-based method (dotted red line).

Finally, the VA of the system in Fig. 10 is performed with
respect to the set of random variables (L, S,W ), varying in a
range of ±10% with respect to the central values previously
mentioned, in order to show the performances of the proposed
PC method while increasing the numbers of random variables.
Figure 14 shows an example of the system variability with
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Fig. 13. Example B. Comparison of the standard deviation for the magnitude
of Y24 with respect to the couple of random variables (L, S) obtained with the
MC analysis performed with the technique [31] (full black line), the technique
[13] (green dashed line) and the proposed PC-based method (dotted red line).

TABLE VII
EXAMPLE B. EFFICIENCY OF THE PROPOSED PC-BASED TECHNIQUE FOR

(L, S)

Technique Computational time

Parameterized model order reduction [31] 3h 19min 37.6s

Technique [13] 1h 25min 23.7s

Proposed PC-based Method 47min 15.2s

Detailed Description of the Computational Time

Initial Data 45min 24s

Projection Operator 1min 15s

Reduced DSS Matrices 2.9s

PC Model Reduced DSS Matrices 5.7s

PC Model S-param 26s

Mean and Variance S-param 1.6s

respect to the chosen random variables (L, S,W ). The system
admittance parameters are evaluated using the PEEC method
over a grid of 3 × 3 × 3 (L, S,W ) samples. The evaluation
of the common order of the reduced models and of the
r significant singular values of the SVD decomposition in
(31) is performed with the same setting used in the previous
case, giving reduced order models of order 328. Next, the
set of reduced order matrices is modeled using a second
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TABLE VIII
EXAMPLE B. MEMORY REQUIREMENTS OF THE PROPOSED PC-BASED

TECHNIQUE AND OF THE TECHNIQUE [13] FOR (L, S)

Elements New technique Technique [13]

Original DSS Matrices 1102.45 Mbytes 1998.19 Mbytes

Projection Operator 9.33 Mbytes 16.92 Mbytes

Common Proj. Op. (32) and
Reduced DSS Matrices (33)−(36)

17.01 Mbytes

PC Model Initial DSS Matrices
and Projection Operator

416.92 Mbytes

PC Model Reduced Matrices 5.15 Mbytes 0.31 Mbytes
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Fig. 14. Example B. The top plot shows the variability of the magnitude of
Y13 with respect to the random variables (L, S, W ) in the frequency range
[100 kHz − 5 GHz]. The lower plot shows the variability of the magnitude
of Y13 in the frequency range [100 kHz− 100 MHz]. In both plots, the blue
lines are the results of the MC simulations and the red thick line corresponds
to the nominal value for L0 = 5 mm, S0 = 2 mm and W0 = 0.5 mm.

order (P = 2) PC expansion, giving M = 9 for (L, S,W ),
according to (3). The proposed PC-based method is compared
with the MC analysis performed with the technique [31] for
100, 1000, 10000 samples.

The proposed method shows a great efficiency in computing
the system variability features, as shown in Table IX that com-
pares the computational cost of the MC analysis performed
with the technique [31] for 10000 samples and of the novel
proposed method, and a great accuracy with respect to the
corresponding analysis performed with the technique [31], as
described by Figs. 15 - 17. In particular, Figs. 15, 16 show
the mean and standard deviation of the magnitude of Y43

obtained with the proposed PC-based method and the MC
analysis performed using different set of samples. Figure 17
describes the PDF and the CDF of the magnitude of Y11 at 100
kHz calculated with respect to the random variables (L, S,W )
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Fig. 15. Example B. Comparison of the mean for the magnitude of Y43

obtained with the MC analysis performed with the technique [31] using 10000
(full black line), 1000 (green dashed line) and 100 (blue ex (×)) (L, S, W )
samples and the proposed PC-based method (dotted red line).

using 10000 samples for the MC results. Similar results can
be obtained for the other entries of the admittance parameters.
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Fig. 16. Example B. Comparison of the standard deviation for the magnitude
of Y43 obtained with the MC analysis performed with the technique [31] using
10000 (full black line), 1000 (green dashed line) and 100 (blue ex (×))
(L, S, W ) samples and the proposed PC-based method (dotted red line).

V. CONCLUSIONS

In this paper, a novel and efficient technique for stochastic
model order reduction of general linear multiport systems
is presented. The core of the proposed technique is the
application of the PC expansion to a set of reduced order
system in a descriptor state-space form obtained through a
MOR step. In addition to its accuracy, the proposed approach
offers a great flexibility. Indeed, not only the novel method
can be applied to systems whose frequency-domain transfer
function can be expressed in different forms (e.g. scattering
or admittance parameters), but also different MOR techniques
can be used for the calculation of the reduced order system in
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Fig. 17. Example B. PDF and CDF of the magnitude of Y11 at 100 kHz.
Full black line: PDF computed using the novel technique; Dashed black line:
CDF computed using the novel technique; Circles (◦): PDF computed using
the MC technique performed with the technique [31] ; Squares (2): CDF
computed using the MC technique performed with the technique [31] .

TABLE IX
EXAMPLE B. EFFICIENCY OF THE PROPOSED PC-BASED TECHNIQUE FOR

(L, S, W )

Technique Computational time

Parameterized model order reduction [31] 6h 1min 42.6

Proposed PC-based Method 1h 24min 4.5s

Detailed Description of the Computational Time

Initial Data 1h 17min 58s

Calculation Projection Operator 1min 55s

Calculation Reduced DSS Matrices 7.3s

PC Model Reduced DSS Matrices 14.2s

PC Model S-param 3min 47.9s

Mean and Variance S-param 2.1s

descriptor state-space form. Two distinct pertinent numerical
examples validate the accuracy and efficiency of the proposed
method with respect to existing techniques concerning the
calculation of system variability features.
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[22] M. Loéve, Probability Theory, 4th ed. Berlin, Germany: Springer-
Verlag, 1977.

[23] A. Papoulis, Probability, Random Variables and Stochastic Processes.
Mcgraw-Hill College, 1991.

[24] D. Spina, F. Ferranti, T. Dhaene, L. Knockaert, G. Antonini, and
D. Vande Ginste, “Variability analysis of multiport systems via
polynomial-chaos expansion,” IEEE Trans. Microw. Theory Tech.,
vol. 60, no. 8, pp. 2329 –2338, Aug. 2012.

[25] D. Vande Ginste, D. De Zutter, D. Deschrijver, T. Dhaene, P. Manfredi,
and F. Canavero, “Stochastic modeling-based variability analysis of on-
chip interconnects,” IEEE Trans. Compon., Packag., Manuf. Technol.,
vol. 2, no. 7, pp. 1182 –1192, Jul. 2012.



14 IEEE TCPMT, VOL. XXX , NO. XXX , 2013

[26] I. S. Stievano, P. Manfredi, F. G. Canavero, “Parameters variability
effects on multiconductor interconnects via Hermite polynomial chaos,”
IEEE Trans. Compon., Packag., Manuf. Technol., vol. 1, no. 8, pp. 1234–
1239, Aug. 2011.

[27] L. Knockaert and D. De Zutter, “Laguerre-SVD reduced order model-
ing,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 9, pp. 1469–1475,
Sep. 2000.

[28] A. Odabasioglu, M. Celik, and L. T. Pileggi, “PRIMA: Passive reduce-
dorder interconnect macromodeling algorithm,,” IEEE Trans. Computer-
Aided Design, vol. 17, pp. 645–654, Aug. 1998.

[29] G. Antonini, “A dyadic Green’s function based method for the transient
analysis of lossy and dispersive multiconductor transmission lines,”
IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 880–895, Apr.
2008.

[30] F. Ferranti, G. Antonini, T. Dhaene, and L. Knockaert, “Guaranteed
passive parameterized model order reduction of the partial element
equivalent circuit (PEEC) method,” IEEE Trans. Electromagn. Compat.,
vol. 52, no. 4, pp. 974–984, Nov. 2010.

[31] F. Ferranti, G. Antonini, T. Dhaene, L. Knockaert, and A.E. Ruehli,
“Physics-based passivity-preserving parameterized model order reduc-
tion for PEEC circuit analysis,” IEEE Trans. Compon., Packag., Manuf.
Technol., vol. 1, no. 3, pp. 399–409, Mar. 2011.


