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Abstract

We define Hamilton—De Donder systems on a dual jet bundle, and show that
they are variational in a general sense. We explore the relationship between these
systems and Ehresmann connections. We also consider regularity conditions for such
systems and show that, when regular, they arise from Lagrangian systems on the
original jet bundle.
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1 Introduction

In this paper we consider those second-order partial differential equations arising as the
variational equations of a regular Lagrangian. We explain the Hamiltonian formalism for
these equations: more precisely, we examine the geometry of the Hamilton—De Donder
equations for a regular Lagrangian, both on a jet bundle and also on the corresponding
dual jet bundle, and we compare the two approaches. To each regular Lagrangian system
we associate a Hamiltonian system, and we establish conditions under which the reverse
correspondence holds.

The main approach of the paper involves the use of connections related to the Hamil-
tonian systems and the corresponding second-order partial differential equations. Our
main results concern the construction of connections satisfying the condition that every
integral section is an extremal of the variational problem, and conversely we show that
every extremal can be embedded in a connection of this kind. We give an explicit de-
scription of all such connections, and in this way we can describe all the local solutions
of the Euler—Lagrange equations in terms of the related connections.

The point of view we have adopted is a generalization of the Hamiltonian formalism
of symplectic geometry: in that case, with a single independent variable, the extremals of
a regular variational problem can be expressed as the integral curves of a vector field [13].
It is well known that there are several ways of formulating a generalization to the case of
several independent variables, as needed for the study of PDEs and field theory, and our
approach uses a multisymplectic formulation on dual jet bundles [9]. We concentrate on
the most familiar case of the Hamilton—De Donder equations of a regular Lagrangian,
and we also investigate the same equations using the geometric framework originated by
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Goldschmidt and Sternberg [8] (following De Donder [4]). We see that there is a strong
parallel between these two approaches and the corresponding geometric structures. Some
selected references are [1, 2, 3, 5, 6, 7, 10, 11, 14].

The structure of this paper is as follows. In Section 2 we review the affine duality
structure of jet bundles in n independent variables and give an invariant definition of
those systems of first-order partial differential equations that may be described as being
of Hamilton—De Donder type and are therefore generated by a Hamiltonian. We show
that such equations are variational, and give conditions for a general system of first-order
PDEs in the correct format to be Hamilton—De Donder equations. This approach, which
we subsequently refine in Section 5, also gives us the solution of the inverse variational
problem in a Hamiltonian formulation, so that we can see when a given system of first
order PDEs is a Hamilton—De Donder system related to a regular Lagrangian, and it also
allows us to reconstruct the corresponding Lagrangian system of second-order variational
PDEs.

In Section 3 we move on to consider the compatibility relationship between Hamilton—
De Donder equations and the equations arising from an Ehresmann connection, show-
ing that a global compatible connection always exists, and that every solution of the
Hamilton—De Donder equations is also, locally, an integral section of some compatible
connection; this allows us to give a definition of a completely integrable Hamilton—De
Donder system. In Section 4 we compare this to the theory of Goldschmidt and Stern-
berg, where Hamilton-De Donder equations are defined on a jet bundle rather than its
dual, and the corresponding connections are semispray connections. We are able to give
an explicit formula for the family of connections satisfying these conditions. Finally in
Section 5 we consider both Lagrangian and Hamiltonian structures together, showing
that if a Lagrangian is regular in the usual sense then there is a corresponding Hamilto-
nian structure, and that conversely if the Hamiltonian is ‘regular’ then it arises from a
Lagrangian; we also revisit the inverse problem in this context.

2 Hamiltonian systems on jet bundles

2.1 Dual jet bundles

Let # : Y — X be a fibred manifold with dimX = n, dimY = n + m and let 7y :
J'Y — X be its first jet bundle over X. The manifold J'Y is also the total space of an
affine bundle 71 : J'Y — Y modelled on the vector bundle VxY @ 7*T*X — Y, where
VxY — Y is the bundle of vectors tangent to Y and vertical over X. We shall use the
notation J,Y for a fibre ﬂié(y) C JYY where y € Y, and put z = 7(y) € X.

To see how this affine structure arises, let y be a local section of 7 satisfying vy(z) = y.
The equivalence class of local sections 7 defining the jet jlv is the same as the equivalence
class defining the tangent map (77), : T, X — T,Y, so that we may identify jlvy € J?}Y
with

(T)s € Hom(T, X, T,Y) 2 T,Y @ T* X ,

where we consider the latter space as a subspace of the tensor space T,Y @ T;Y". Taking



(2%,59), 1 <i < n, 1 <o <m as local fibred coordinates on Y, with (¢, y",yjq) as the
associated coordinates on J'Y, the jet jlvy corresponds to the tensor

9 o(:1 9 )
(5 + 900k 55 ) o

at y € Y, where the coefficient of 9/9z7 is (5{ because 7 is a local section.

Every affine space of dimension m is associated with a vector space of dimension
m + 1, its extended dual, whose elements are the real-valued affine maps on the space.
Applying this construction to the fibres J?}Y of the affine bundle 7 g gives the manifold

J'Y, the extended dual of J'Y. If ¢ € J'Y and ¢ : J;Y — R we put 7T£0(¢) =y, and
then 7TLO : J'Y — Y becomes a vector bundle.

Each fibre JJY of the extended dual is a vector space containing a distinguished
subspace of constant maps. The quotient space will be denoted J;Y, and the union of
all the quotient spaces forms another vector bundle, the reduced dual J*Y. We shall let
p: JIY — J*Y denote the quotient map, and T JY =Y denote the induced map.
The composition o w7, : J'Y — X will be denoted by 7. We can see how all these
maps fit together in the following diagram.

JY -
1,0
. Y X
Wf,o
JTY—p>J*Y T

If y is in the domain of the chart (x%,47), let yf(y) be the restrictions of the induced
coordinate functions y to the fibre JZ}Y, so that yf(y) are affine functions and are elements
of the fibre JJY. The constant function 1(,) : J;Y — R is also an affine function, and
together the functions (1), yz?‘(y)) form a basis for the vector space J;/r Y. Denote the dual
basis of (JJY)* by (Py), Pg(y)); then the functions P, P! defined locally on J1Y by these

fibre functions are smooth, and the functions (2%, y°, P, P%) form an adapted coordinate
system. Similarly the functions (x?,y?, P.) are coordinates on the reduced dual J*Y.

Now suppose that there is a given volume n-form wy on X such that the coordinates
x* satisfy wg = dz' Ada® A --- Adz™, and consider the bundle of cotangent n-vectors

NITY ={0 e N"T*Y : £&,n € VxY = igi,0 =0},
so that an element 6 of this bundle may be written in the coordinates (z%,y%) as
0 = Opwo + Hf,dy(’ A wj

where w; = ig/5,:wo. We may identify this bundle with the extended dual in the following
way. Take 6 € AT, Y, and let v be any local section satisfying v(z) = y. The pull-back
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cotangent n-vector v*(0) € A\"T; X depends only on the value and first derivatives of
at x, and so the function

0 : J;Y — R, 5(]';7)(»0 = 5%(0)
is well-defined. In coordinates
~ . d,}/cr . )
0(iz7) =00+ 05 ——| =00+ 0637 (127)
L xr
showing that 0 is an affine function. This correspondence is a linear isomorphism of the
fibres, under which the basis (1), yg’(y)) of J;Y corresponds to the basis (woly, dy” Aw;ly)

of /\?T; Y, and gives rise to a diffeomorphism J'Y = ATT*Y. The canonical n-form
O = Puwo + PLdy” Aw;

on AJT*Y may therefore be regarded as an n-form on the extended dual J'Y, and
similarly the (n 4 1)-form Q = d© may be regarded as an (n + 1)-form on JTY. As Q is
a multisymplectic form, (JTY, Q) becomes a multisymplectic manifold. Note that, owing
to the affine structure, the multisymplectic form § is canonical for the manifold J'Y,
although it is not the only multisymplectic form on J'Y. For reasons which will become
clear later on, we shall also call 2 the Hamilton—De Donder multisymplectic form.

2.2 Hamilton—De Donder systems

Any local section h of the quotient projection p : JIY — J*Y, with domain U C J*Y,
gives rise to a local ‘Hamilton—De Donder system’ in the following way. Consider the
pullbacks O = h*0, Q, = h*Q of the canonical forms to U, and let H = —(P o h) be
(minus) the nontrivial component of the section h in the given coordinates, so that H is
a function defined on U; then

Onh = —Hwo + Pidy® Aw;, Q= —dH Awo + dPLAdy® Aw;.

We now define the Hamilton-De Donder system D}, to be the exterior differential system
on U generated by the family of n-forms i¢{2,, where £ runs over all vector fields on U
that are vertical over X. Taking for ¢ each of the basis vector fields (9/9y°, 0/0PL), we
see that locally

OH

(2.1) Dy = span{n,,n7 }, Mo = 50 dPiNw;, nf =

H
—apiwo—i—dy"/\wi.

If ¢ is a local section of 7 : J*Y — X then ¢ annihilates Dy, (that is, ¢ is a solution of the
Hamilton—De Donder exterior differential system) if and only if v satisfies the equation

(2.2) ¥* (i) =0  for every vector field £ on J*Y, vertical over X.

In coordinates,

OH o OH | T _

@3 o ~aw =" “am T aw -




for the components 17 = y o9 and . = P! o) of . (The apparently perverse choice
of sign for these equations is needed to ensure that, as we shall see in the next section,
the equations are strictly variational without needing a multiplier.) We shall refer to
these equations as Hamilton equations of De Donder type, or as Hamilton—-De Donder
equations. The images of solutions 1 are immersed n-dimensional submanifolds of the
(n +m + nm)-dimensional manifold J*Y.

Remark 2.1. It is easy to check that condition (2.2) is equivalent to
(2.4) ¥" (i) =0  for every vector field £ on J*Y.

So considering the exterior differential system Dy, generated by n-forms i¢{2, where { runs
over all vector fields on U, we can see that D), and D}, have the same set of solutions,
even though Dy G Dy.

Theorem 2.2. The ideal generated by Dy, is a differential ideal, and its Cauchy distri-
bution is trivial.

Proof. As

dr’ Ang =dPI Awg, dx' An? = —ndy’ Awp,

we obtain
= _aj:;‘yy dy” A wo — ajj%dz?ﬁ A wo
_ Tllajj;';”dxi Ay — ayaj;iﬁdxj Ay
dnf = —8]83227/” dy” N wy — %d}?ﬁ A wo
1 PH PH

2 v
3

noPioy " " gpiapy

proving the first of the assertions. We also observe that ¢ belongs to the Cauchy distri-
bution only if i¢n, = 0 and i = 0, showing that ¢ = 0. O

2.3 Variational principles for Hamiltonian systems

Our aim now is to look for a variational principle whose extremals are local sections v
of the fibred manifold 7 : J*Y — X that are precisely the solutions of the Hamilton—De
Donder equations (2.3). These equations are system of first order PDEs over the fibred
manifold 7 : J*Y — X and define a submanifold of J(J*Y) projecting to U C J*Y,
so that we can tackle the problem directly by applying the Helmholtz conditions to the
equations.



Given fibred coordinates (z, z/) = (z ‘ Y7, P) on J*Y, denote the associated coordi-
nates on J!(J*Y) by (xi,zl,zfj) = (2%,9°, P! Y By ‘]) so that equations (2.3) take the
form

(-5 —Fi)eiv=0. (-5 +uf)ei'v=o

Writing E for the (n + 1)-form

oH

E:Ejdz‘]/\wo:(—a—ya— Uh)dy /\w0+< §ﬁ+y‘z)dpz/\wo

and substituting into the Helmholtz conditions

E E E E E
0E; OBy _ OE a‘]+dia‘]:0

927 0L T 927 92l 0z1

lé li |i

we see that the conditions are satisfied, showing that the Hamilton—De Donder equations
are variational. A corresponding local Lagrangian can then be computed using the Tonti
formula

1
E—zl/o (Ejox)du where x(u,(z', 2’ z[{)):(xi,uz‘],uzfg)

defined on a proper star-shaped neighborhood of each point in 7 (U) Using the explicit
formula for the functions Ej then gives

£h:y0/01<—§;— ;i)oxdu+Pg/01( SJZ—'_yI%)OXd“

L[ oH . [t OH 1 o pi
(25) =—y / (aiya o X) du — PJ/O (8PZ ) du+ ( O’y|2 ) Pa\i)
=—H+ C,y‘z

+ a term of the form d;f?, providing zero Euler-Lagrange expressions.

If D C X is a connected compact n-dimensional submanifold with boundary, the action
yielding the Hamilton—De Donder equations is therefore the function

0 H/ Jhy* (—H+P;yg)dx1 Ao Ada™
D

on the set of sections of the fibred manifold 7 : J*Y — X satisfying D C Dom and
Im+ C Dom Ly,; variations are then vector fields on U C J*Y projectable to X. Note
that the Lagrangian Ly, is a first order Lagrangian that is affine in the first derivatives,
so that its Euler—Lagrange equations are indeed first order equations.

There is an alternative, more geometric, approach to this problem, obtained from a
direct use of the fibred manifold 7 : J*Y — X and its jet prolongation 7, : J1(J*Y) — X.



Let h and p; denote the horizontalization and 1-contactization operators with respect to
71, and let

07 = dy” —ylda! ,  w, = dP, — Py ;da’

denote the corresponding local contact 1-forms. We use the pullback O, = —Hwg +
Pldy° Aw; of the canonical n-form on J*Y', defined on the domain U of the hamiltonian
section h.

Theorem 2.3. The Hamilton-De Donder equations of the (n + 1)-form Qn, = dOy, are
the Euler—Lagrange equations of the Lagrangian

(2.6) An =h(On) = (=H + Pyyf) wo -
Proof. Although this follows immediately from the definition of the Tonti Lagrangian
Lyp=-H+ P;yg

given above, we can also provide a different argument: it is easy to see that the Cartan
form ©,, of the Lagrangian Ay, is the pullback of ©, to J!(J*Y), so the Euler-Lagrange
equations for Ay, are exactly equations (2.2) and are given in coordinates by (2.3). [

For this reason we shall call the Euler-Lagrange form FE} of the Lagrangian A, =
h(©y) the Hamilton-De Donder form; its coordinate expression is of course

By = p1dOn, = Py = py(—dH Awo + (7, + PL
(2.7) OH i\ o OH
_<87y0'+PO"7'>19 /\WO—(TPg.

dz?) A (97 + yf-da:j) A w;)

|5 J

- yﬁ)ﬂf, Awp .

As the Hamilton—De Donder equations are variational, we shall use the term Hamilton—
De Donder extremal to denote any section ¢ of 7 : J*Y — X that is a solution of the
Hamilton—De Donder equations.

2.4 The inverse problem

The Hamilton—De Donder equations are a system of first order PDEs which, as we have
seen, come from a variational principle on the dual jet bundle. We may therefore consider
the inverse problem which can be stated in general terms as follows.

Given a system of first-order PDEs

EJ(xi,zK,zK) =0,

i
1s there a Lagrangian such that these equations are equations for the extremals of that
Lagrangian?

This is a familiar problem which, when expressed more precisely as a question about the
corresponding dynamical form, may be considered on two levels, local and global. In



both cases the solution is well known. In our case we let 7 : J*Y — X be the reduced
dual bundle, and we say that a system of m 4+ mn differential equations

P’

0y’ -
- =0 O’

2. .
(28) L~ F

+ Gy =0, 1<o<m, 1<i<n

for local sections 1h(z) = (*(x),y° (), Pi(x)) of 7 is locally variational if, for each point
of J*Y, there is a Lagrangian function L defined on some neighbourhood of that point
such that the Euler-Lagrange expressions of L coincide with the given equations “as they
stand”. Applying the known results, we obtain the following.

Corollary 2.4. The system of equations (2.8) is locally variational if and only if the
functions FY and G, obey the integrability conditions

(2.9) 0G, 0G, _ 0 OF7 ory oG, ory
oy oy 9Pk 9P: 7 OPk Oyo
If this is the case then, locally,
OH OH
Ff = — c=—,
RG] 2 ¢ oy
where

1 1
H=1y° / (G, o x)du + Pg / (F7 o x)du.
0 0

A corresponding local Lagrangian function on an open subset of J'(J*Y) is
L=—H+ Py

Furthermore, the function H defines a local Hamiltonian section h of the projection p :
JY — J*Y such that equations (2.8) represent a local Hamiltonian system.

In the language of PDEs this result concerns a system of first order PDEs for a vector
function and a tensor function of n independent variables, such that the equations for
the vector function are in the explicit form, and those for the tensor function are in
divergence form.

3 Hamiltonian connections

3.1 Fields of Hamilton—De Donder extremals

We now investigate the geometric meaning of the Hamilton—-De Donder equations by
considering them in the context of Ehresmann connections. We can see immediately, from
their structure, that the Hamilton—De Donder equations are not equations for the paths
of a single Ehresmann connection when n > 2, in contrast to the case of Hamiltonian
mechanics. We can, however, construct various local Ehresmann connections whose
solutions are always Hamilton-De Donder extremals.



To see this, consider for example the coordinate equations

T _OH Oy OH O,
oxt  OPL’ oxl oy’ oxe oz’

where the indices a, b run from 2 to n, so that these are the equations of a connection in
the given chart. Any local integral section of this connection will clearly be a Hamilton—
De Donder extremal, although the converse need not hold: it need not be the case that
every Hamilton-De Donder extremal is also a solution of the connection equations. We
can obviously write down many other sets of connection equations satisfying a similar
property.

To approach this problem more systematically, let I' denote a local Ehresmann con-
nection on 7 : J*Y — X, so that I is a local section of the fibred manifold T10 :
JYJ*Y) — J*Y. Suppose that the domain of I’ contains U, the domain of €, and that
I is represented by its horizontal projector

= da — 4+ T9— 417
'=de ® < 37 FJ " FU] 3P§>7

where I'] = y% oI and ng = P

ol © I' are the components of the section I in the local
coordinates; we then see that

)
irQnh = (n—1)Qy, — (Flgi + 6;-i>dya A wo + <F;~T —

oM
opPi

>dP;’Aw0.

If a local section ¥ of 7 : J*Y — X is an integral section of I then it will satisfy the
condition I' 0 ¢ = jl1), so that in coordinates it will satisfy

oL, o
oxi — I ozJ

We therefore have the following result (cf. [5]).

_ 1
=T,

Theorem 3.1. If an Ehresmann connection DCont:JY - X satisfies the compatibility
condition

(3.1) iFQh = (n — 1)Qh

then any integral section off’ is a solution of the Hamilton-De Donder equations (2.3),
and so is a Hamilton—De Donder extremal.

We can express this compatibility condition in terms of the Hamilton—-De Donder
form E}, = py Q.

Theorem 3.2. For any Fhresmann connection I on the fibred manifold T o : JYT*Y) —
J*Y the compatibility condition (3.1) is equivalent to the condition

(3.2) T*E, = 0.



Proof. By (2.7),

I*E, = —(;ji + ng)ﬁa A wo — <§]73§. - I‘;’)ﬂff A wo,
so that ['*E}, = 0 if and only if
79 = 877_[ (g _ai
tooopi oy’
and this holds if and only if equation (3.1) holds. O

We shall therefore call connections compatible with a Hamilton-De Donder system
fields of Hamilton—De Donder extremals. Note, however, that in general there is no guar-
antee that such a connection will have any integral sections at all, even if the Hamilton—De
Donder equations have solutions.

Although connections compatible with a Hamilton—De Donder system are not unique,
we may nevertheless describe them all locally.

Theorem 3.3. Let Qy be a Hamilton—-De Donder system on U C J*Y. If I is an
Ehresmann connection on 7 : J*Y — X that is compatible with Qy, then I' is described
locally by the horizontal projector

, 0 oH 0 1, OH -\ O
3.3) T' =dux’ — —,——(—5?— FZ»)f ;
(3.3) e <8x3 + OP. 0y° n 7 0y° * o 8Pg>
where for each index o, the matriz of functions (F;j) is an arbitrary (n X n)-matriz on
U, traceless at each point of U.

Proof. It is sufficient to check the formula for Ff,j. Fixing o, considering (ng) as a
(n x n)-matrix on U and applying the trace decomposition formula, we see that I', ; may
be expressed as

4 A 1 . 1.
(8.4) T4 = (T — -0} TrT,) + 0} TrT,.
Putting
4 . 1 .
and using the fact that TrI';, = —0H /0y, we obtain the result. O

So we have found a family of Ehresmann connections such that every integral section
of each connection is a Hamilton—De Donder extremal. In particular, for every integrable
connection I in this family (in the sense of Frobenius complete integrability) this means
that the corresponding maximal Hamilton—De Donder extremals form a n-dimensional
foliation of the open submanifold Dom I’ C J*Y.

It is now natural to ask whether the family of Ehresmann connections characterized
by Theorem 3.3 includes (at least locally) all Hamilton-De Donder extremals. The
answer is positive: every Hamilton—-De Donder extremal is locally an integral section of
some compatible connection, which is maximal in the sense that it is defined on the
domain U of h.
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Lemma 3.4. If h is a section of p : J'Y — J*Y defined on U C J*Y then there is a

connection g on U Satzsfymg ir,Sh = (n — 1)Qn. If, in particular, h is a global section
of p: JIY = J*Y then Iy is a global connection.

Proof. We consider the global case first, and use a partition of unity argument. Let
(Vi) be an open cover of Y by domains of adapted charts and put V' = (ﬂf’o)_l(Va), S0
that (V) is an open cover of J*Y by domains of adapted charts. Let (f,) be a partition
of unity subordinate to (V).

In the chart corresponding to V' define the functions I'Y and ng by

OH , 1_ 0H
F?_apg’ Flaj__ﬁ ;8y";
if we put

(0 ) )
Fo = dw ®<8x3+F]8 0+F‘”8P’)

then I', is the horizontal projector of a connection defined on V} satisfying the condition
that ir, Qp = (n — 1)Q,.
Now put I'p =Y, fal'a, so that

irQ2h = Zifarth Zfa ir,Qn) = <Z fa> n—1)% = (n—1)Q,.

The argument when h is defined on a nonempty open subset of J*Y is identical. O

Theorem 3.5. Let h be a section of p: JIY — J*Y defined on U C J*Y, and suppose
that W is a nonempty open subset of 7(U) C X. Let 1 be a local section of T : J*Y — X
defined on W and satisfying 1*(i¢Qn) = 0 for every vertical vector field & on 7= H(W).
For each x € W there is then a connection T, defined on U C J*Y and satisfying the
compatibility condition irQn = (n — 1)Qn, such that for some neighbourhood N of 1 (x)
the restriction 1/1]7(]\;) is an integral section of I.

Proof. Let V' be the domain of a chart on Y with 7] ,(¢/(x)) € V, and put V =
VNr Y (W) and W = (V). Put V* = (77{70)_1(1_/), and let v : N — (W) be an open
tubular neighbourhood of the image submanifold ¢ (W) C V*. Define the functions I'?
and Fffj on N by

o_ O i (00 L1 L (OU5N | OH

so putting

we see that I' is the horizontal projector of a connection defined on N satisfying the
conditions that ipQp = (n — 1)Qn, and that 9| y) is an integral section of I'.
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Now let I'g be a global compatible connection defined on U C J*Y as in Lemma 3.4.
Let (f,g) be a partition of unity subordinate to the open cover (N,U — {1(x)}) of U,
and let N C N be a neighbourhood of 9(z) such that f|y = 1 and g|y = 0. Then
I' = fT + gIy is the horizontal projector of a connection on U C J*Y satisfying the
compatibility condition ir{2 = (n — 1)Qp, and such that the restriction 9|,y is an
integral section of I. O

Combining Theorems 3.1 and 3.5 we obtain the following “Main Theorem”.

Theorem 3.6. Every solution of the Hamilton-De Donder equations can be locally em-
bedded in a field of Hamilton-De Donder extremals.

3.2 Integrable Hamiltonian connections

Let I' be an Ehresmann connection on U C J*Y, given by its horizontal projector

. 6 6 .0
. J T
and let
0 0 .0
(3.5) F(j):—.—FF‘-’——I—FZ

oxi T oye ' Iopi

be local generators of the corresponding horizontal distribution. The connection is flat, in
other words its curvature vanishes, if and only if the horizontal distribution is Frobenius
integrable. Notice that the Lie bracket of any two horizontal vector fields (3.5) is a vector
field vertical over X, so that the integrability conditions are

[Ty, Tyl =0,
or, more explicitly,
I (T7) =T (T7) =0, T[Tk Ty ([TE) =0.

Assuming that [ is compatible with €}, these integrability conditions take the form

0 (26) -1 () 0.

F(i)< 5fg7f_+F’“> ()< 6fg7i+F’“):o.

Rewriting them as conditions for the unknown functions Fjj we can see that the first

set represents algebraic conditions on the functions F;j, while the second represents
differential conditions on these functions. We therefore obtain the following result.

Proposition 3.7. Let ' be an Ehresmann connection on U C J*Y compatible with the
Hamilton—-De Donder form Qn; then I' is flat if and only if the horizontal distribution
span{l';), 1 <i < n} is completely integrable, and this holds if and only if the functions

F?. in the coordinate expression (3.3) satisfy
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(1) for each index o, Tr(Fy) = 0;

(2) algebraic conditions

2 2 2 2

it B A F 8,Hk:la7{( 8'7{'_ 8'7{')
oOP) opk OP, 0Py  moy” \9p]oPi dPi)P.

N PH  PH | OH PH OH PH

QxIOPL  pxigp) 9Pl Oy°OP:  OP.L gyoop)’

(3) differential conditions

iFj=k: F(i)(ng) —T(FL) = —=T ( —) no summation

i#j#k: Tu(FE) —Ty(FE) =0.

Corollary 3.8. If I is a flat connection on U compatible with Qy then the integral
sections of T' form an n-dimensional foliation of U, and the leaves of this foliation are
solutions of the Hamilton—De Donder equations. It follows that the Cauchy problem for
the given Hamilton—De Donder equations has at least one maximal solution for any given
initial condition on U, corresponding to the unique maximal integral manifold passing
through that point of U.

Definition 3.9. Let U be an open subset of J*Y. We say that a Hamilton—De Donder
system is Cauchy integrable on U if the Cauchy problem for the given Hamilton—De
Donder equations has, for every initial condition in U, at least one maximal solution.

We therefore see that a sufficient condition for the Cauchy integrability of Q0 on U is
the existence on U of a flat Ehresmann connection compatible with €. Indeed, there is
a distinguished family of Hamiltonian systems with the following desirable integrability
properties.

Definition 3.10. We say that a Hamilton—De Donder system €y, is completely integrable
if every solution (that is, every local section 1 of J*Y satisfying the Hamilton—De Donder
equations) can be locally embedded in a flat compatible Ehresmann connection.

4 Hamilton-De Donder equations in J'Y

4.1 The Goldschmidt—Sternberg setting

So far we have considered Hamiltonian systems in dual jet bundles, and the corresponding
Hamilton—De Donder equations have arisen from the canonical multisymplectic structure
as equations for sections of the bundle 7 : J*Y — X, dual to a jet bundle 7y : J'Y —
X. This model generalizes Hamiltonian systems on symplectic manifolds to the case of
several independent variables.

We shall now take a different approach, looking at Hamilton-De Donder theory in
the setting of Goldschmidt and Sternberg [8], who considered Hamilton’s equations as
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equations for sections of the bundle 7y : J'Y — X that arise from a variational problem
onm:Y — X.

Let X\ be a Lagrangian on J'Y, and consider its Poincaré-Cartan form

oL
4.1) 0y = Lwog+ —w’ Aw;.
( ) A 0 ayf i
If the Poincaré—Cartan form is expressed in the canonical basis given by differentials of
the coordinate functions, rather than in the basis adapted to the contact structure as

above, the components of @) are called the momenta and the Hamiltonian of A. We then
obtain

(4.2) 0y = —Hwo + pLdy® A w;,

where the momenta and Hamiltonian are local functions on J'Y given by

oL oL . -
(4.3) p, = ENa H=-L+ aT/gyz = —L+ pyy5 .
KA

7

Using the first variation formula it can be shown that a local section v of 7 is an
extremal of the action of A if and only if it satisfies the Euler-Lagrange equations

(4.4) j'4%iedfy =0 for every vector field £ on J'Y vertical over X.

Denote by Dy the exterior differential system generated by n-foms i¢dfy where &
runs over all vector fields on J'Y that are vertical over X. Then, in terms of exterior
differential systems theory, equations (4.4) can be viewed as equations for special solutions
of Dy, namely those which are local sections of 71 and have the form of prolongations of
local sections of 7. The equations for all integral sections ¢ of D) (that is, sections that
need not be prolongations) take the form

(4.5) ¢*igdfy =0 for every vertical vector field £ on Jy,

and are called Hamilton-De Donder equations: the terminology arises from the local
expression of these equations in the Legendre coordinates of a regular Lagrangian. Recall
that a Lagrangian is called regular if

(4.6) det(%) £0;
i Y

the momenta p! of a regular Lagrangian are independent, and can be used to define
new local coordinates (z°,y%,p.) on J'Y called Legendre coordinates. In these Legendre
coordinates, and using the Hamiltonian H, we see that local generators of D, are

OH

. H
(4.7) —8—y0w0 — dp;, A\ wj, —gpiwg +dy’ ANw;.

(o

14



We may then use equations (4.5) to obtain

oy® OH opt. _ OH

(48) oxt  Opt’ o'~ Oy’

the Hamilton equations as introduced by De Donder [4].

We can see that equations (4.5) are more general than (4.8), as they are coordinate-
independent and do not require regularity of the Lagrangian. Compared with the Euler—
Lagrange equations, equations (4.5) generally have more solutions. It can, however, be
shown that if \ satisfies the above regularity condition then the Hamilton—De Donder
equations (4.5) are equivalent to the Euler-Lagrange equations, in the sense that solutions
of the former equations must now necessarily be prolongations, and so are in bijective
correspondence with solutions of the latter equations.

Following Krupka and Stepankova [12], we may now consider the first jet prolongation
of the fibred manifold 7;. Given a Lagrangian A on J'Y, put

where h represents horizontalization with respect to the projection 7, so that \is a
horizontal form (a Lagrangian) on J'(J'Y). Using 65 = (m1)7 06, We see that the
Euler—Lagrange form of A is E5 = p1dfy, and that (m1)7 od0x is projectable to JY. We
immediately obtain the following result [12].

Theorem 4.1. The Hamilton-De Donder equations (4.5) are variational, and they are
Euler—Lagrange equations of the Lagrangian .

4.2 Semispray connections in Hamilton—De Donder theory

Now consider the bundle of semiholonomic jets J2Y — X, and let ¢ : J2Y — J2Y be the
natural inclusion. Let T' be a local semiholonomic semispray connection on J'Y, so that
I is a local section J'Y — J2Y. With such connection we can associate a vector-valued
one-form

~ 0 0 0
I' = da A S— T —
dx' ® ((%W +v; RG + ”8y}-’>

called its horizontal form, and also a horizontal distribution spanned locally by the

semisprays

0 0
T
J

)
L) = 50

where I'7; are the components of I'. Using the fibre product decomposition

J2Y = J2Y %y (/\ZT*X ® VY)

15



([15], Theorem 5.3.4) we see that the symmetric part of a semiholonomic connection r

is a holonomic connection I'g, with yi; o Iy = F(w)’ and the skew-symmetric part is a

vector-valued 2-form on J'Y, the torsion

T =T, (da’ Adal) i

where for each index o we let ' ‘(’ij) and I’ ‘[’ij] denote the symmetric and skew-symmetric

parts of the matrix ' = (T'Y;). Using the vertical lift correspondence

S (d:c ®a§) Ha‘;,, S((dzi/\dxj)e@aaya) =§<da:i®a§?—dxj®a§g>

i
we may therefore write the horizontal projector of I as a sum

o . 9 .
9l g0 TG >aj> +F{w15((d$ Adlﬁ)@@)'

F:clxi@)(aaZ

A local section v of 7 such that Im jly C Dom I" will be called an integral section of the
semiholonomic connection I" if

Loojly =%,
and we see that such integral sections are solutions of a system of second order PDEs
given by
8270

— g

Dion L)

Indeed, if ¢ is a local section of my : J'Y — X such that Im¢ C DomT, and if Fog=
gt € J2Y C JLJ'Y (so that ¢ is an integral section in the usual sense of I', where the
latter is regarded as an ordinary Ehresmann connection on J'Y — X) then

0¢°

o = oxt

so that ¢ = j'v for some local section v of 7, and then ~ is an integral section of I as
defined above.

Now given a Lagrangian A on J'Y, we say that a (holonomic or semiholonmic)
semispray connection I is A-compatible if

iFdQA = (n — 1)d9)\.
Theorem 4.2.

(1) A holonomic semispray connection I is A\-compatible if and only if T*Ey = 0.

16



(2) If the matrix

; %L
BtZT]V = g v
dys Oy
is symmetric in i, j, namely

0'1/_81.,‘7

then a semiholonomic semispray connection I s A-compatible if and only if f‘SEA =

0.

Proof. The result follows from a direct computation. In fibred coordinates we have

2 ..
dfy = Asw® Awgy + Ww” ANw? Aw; + Bg,dyi Aw” A w;,
K]
where we have put
OL O*L o’L g 0L

A — _ s /B —
7 Oy 03 0y? 3y”8y§’y]’ ™ Oy oyl

so that B, = A, — Bf,],,yfj = A, — B((,l,f)yl”] We then see that

irdfy = (n—1)d0x + (As — B, T)w” Awo = (n—1)d6x + T Ex — BEITY, 10" Aw .

oVt ij

O]

From now on we shall assume that A is a regular Lagrangian. Recall that in this case
(i) around every point in J'Y there are Legendre coordinates (x?, 3, pZ,-)7

(ii) the Hamilton—De Donder equations are equivalent to the Euler-Lagrange equa-
tions of A, so that the only solutions of the Hamilton-De Donder equations are
prolongations of extremals.

In Legendre coordinates the horizontal form I' of a semispray connection I' takes the
form

+yf o + 17
7 o1 apj

where now the y are considered as functions of the Legendre coordinates; the trans-

formation rule between the remaining components in fibered and Legendre coordinates

becomes

I‘:dmi®<aal a a)

_ W,

J
Fai

17



In Legendre coordinates we have

. OH
d0y = —dH Nwy+ dp. ANdy’ ANw; and yf:ai,
Po

and so the compatibility condition applied to df gives

i _ OH oL
ot aya_aya'

Using the results of the previous section, we can now obtain similar results for semis-
pray connections compatible with reqular Lagrangians. First we discuss the existence of
A-compatible connections. From the formulas above it is clear that the local existence
is guaranteed: indeed we can obtain such a local connection simply by putting, in any
Legendre chart,

re. = 1 i.ai

7T oy
But the same partition of unity arguments we used in the proof of Lemma 3.4 can also
be applied in the present situation, to give the following result.

Theorem 4.3. Given a reqular Lagrangian \ on J'Y, there exists a A-compatible semis-
pray connection I' : J'Y — J?Y.

The existence of a family of A-compatible connections is again obtained with help of
the trace decomposition.

Theorem 4.4. If X\ is a regular Lagrangian then any local A-compatible semispray con-
nection is, in Legendre coordinates, described by the horizontal projector

. 0 OH 0 1 . 0H . 0
4. F: J ey —_—— — — 17 FZ' —_
(4.9) e (5333 - opl 0y <n67 oy° * ‘”> 3p3) ’

where for each index o the matriz of functions (F;]) is a traceless (n x n)-matriz.

Our final task is to establish a relationship between solutions of the compatible con-
nections and solutions of the Euler—Lagrange equations. However, guided by the corre-
sponding theorems in the previous section, and under our regularity assumption on the
Lagrangian, the results follow immediately.

Theorem 4.5. Let )\ be a regular Lagrangian. If a local semispray connection r:JY —
J2Y is A-compatible then the prolongation of any integral section of I' is a solution of
the Hamilton-De Donder equations (4.8), so that any integral section is an extremal.

Theorem 4.6. Let A\ be a reqular Lagrangian on J'Y, and let v be a local section of
m:Y — X defined on a nonempty open subset W C X and satisfying the Euler—Lagrange
equations jlfy*igde,\ = 0 for every vertical vector field & on 7T1_1(W). For each x €¢ W
there is a A-compatible semispray connection I such that, for some neighbourhood N of
jty(z), the restriction Ylmy (v @8 an integral section of I.

18



Once again the proof is completely analogous to the proof of Theorem 3.5, and
relies on the construction of a suitable compatible semispray connection defined on an
open tubular neighborhood v around the image of the given prolonged extremal. If we
denote by (2%, u’,v%) the components of j'v in Legendre coordinates, we can take the
“momentum components” of I in the form

i =u* Ovy —ldi v* % +8£
o OxJ nJ Oxk oy’ )’

A global compatible semispray connection such that v is its (local) integral section is
then obtained by the partition of unity arguments from the local connection above and
a global connection, the existence of which we have proved in Theorem 4.3.

In summary, therefore, for every regular Lagrangian we have found a family of semis-
pray connections, parametrized by traceless matrices, and such that every integral section
of each connection is an extremal, a solution of the Euler—Lagrange equations. Moreover,
the integral sections of this family of semispray connections include, at least locally, all
extremals.

Remark 4.7. If we consider the integrability of A-compatible holonomic semispray con-
nections, we have symmetry of the connection components in fibered coordinates, and we
know that yJ = 0H/0p?. Consequently, the integrability conditions for the connection
are simpler. The “algebraic conditions” for the unknown functions F

o (28) =i (32

become just

Laoy(w7) =Ty W),

which is equivalent to I'7; = I'?,. But this is an identity due to the symmetry, and is hence
redundant. It follows that the integrability conditions in fibered coordinates reduce to
just the “differential conditions” for the functions F', and these are the conditions for the
curvature of the connection to vanish. It should, however, be noted that, as equations for
the unknown functions F', these conditions are more complicated than the “differential”
integrability conditions in Legendre coordinates.

5 Lagrangian-Hamiltonian duality

Our aim now is to establish a duality relationship between the “Lagrangian side” and
“Hamiltonian side” for Hamilton—-De Donder systems.
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5.1 From Lagrangian to Hamiltonian

Consider the affine dual JTY % J*Y 5 X for a fibred manifold 7 : Y — X as above,
with the canonical n-form © = Pwg+ Pidy® Aw; and the canonical multisymplectic form
Q=dO on JIY. On 7 : J'Y — X let a Hamilton-De Donder system be given by a
Lagrangian A and its Poincaré—Cartan form 8. Both the sides of the picture can be
related by means of a map Leg : J'Y — JTY fibred over the identity of Y, defined by

(5.1) Leg"© = 6,.

We call Leg an extended Legendre map and equation (5.1) a duality equation. We also
construct a composite map leg : J'Y — J*Y by setting leg = p o Leg. This is called the
reduced Legendre map.

In local fibred coordinates on .J ly such that wp = dxz' A---Adx™ and related canonical
coordinates (z?,y”, P, PJ) and (2%, y?, P) on J'X and J*Y respectively, the maps Leg
and leg are given in coordinates by

oL , oL
Poleg=L——y7, Ploleg=—-—
Ty
and
; oL
Ploleg= —
s oleg dy? )
respectively.

If the Lagrangian is regular we can choose local Legendre coordinates on J'Y, and
then leg is represented by the identity mapping.

JY -
“
Leg Ieg Y ™ X

71,0

JTYT>J*Y T

We immediately obtain the following result.

Theorem 5.1. If )\ is reqular then every extended Legendre map is an immersion and
every corresponding reduced Legendre map is a local diffeomorphism.

We say that A is hyper-reqular if there is an extended Legendre map Leg which is
defined globally and which has the property that the corresponding reduced Legendre
map leg is a diffeomorphism. Any such map gives rise to a global Hamiltonian section
h by setting h = Legoleg™®. If A is regular rather than hyper-regular then we may
construct local sections h in this way. The negative coordinate representative of such a
section h will be the function H = —(P oh), a Hamiltonian function corresponding to A.

With help of the definition of the Legendre maps, and using Legendre coordinates,

we easily obtain the following results.
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Theorem 5.2. For a hyper-reqular Lagrangian X on J'Y the following duality assertions
hold:

1) legoH =H;

2) (]1 leg)*A = 5‘;

3) Ieg* Qh = Ieg* h*Q = dH,\;

4) rank h*Q = rank D}, = rank df\ = rank Dy = m + nm;

5) Ieg* Dh = D)\,’

6) if ¥ : X — J*Y is an integral section of Dy then leg™' ot = jlv where v is a
section of m: Y — X, and furthermore j'7y is an integral section of Dy;

(7) every integral section of Dy is of the form jlv, and ¢ = legojly is an integral

section of Dy.

NN N N /S

5.2 From Hamiltonian to Lagrangian

Now let 2, be a Hamiltonian system on the dual jet bundle 7 : J*Y — X. We have seen
that such a system is variational, in that there is a Lagrangian form A, = Lywy whose
extremals v are precisely the solutions of the Hamilton—De Donder system D;. But Ay
is a form on J'J*Y: we now wish to see if there is, at least locally, a Lagrangian form
on the original jet manifold J'Y whose extremals are related to the solutions ).

Let U C J*Y be the domain of a chart (z¢,y°, P!) contained within the domain of
h, and define a map heg : U — J'Y fibred over the identity on Y by

oH

5.2) y¢ oheg = - .
(5:2) o oheg = o7

If heg is a local diffeomorphism, so that H satisfies the regularity condition

0*H
5.3) det| ———— 0,
(5:3) (apg,apg> #
we may construct a local Lagrangian A = Lwg on J'Y by setting

(5.4) A =h(0)) where 6, = (heg™!)*Oy,

so that

oH .
_ P,

opP: °

g

(5.5) Loheg=—H +

Theorem 5.3. Let Oy, be a Hamilton-De Donder system on J*Y satisfying the regularity
condition (5.3) on U. The local Lagrangian A = Lwy (5.5) is then regular and satisfies
leg = heg™!; furthermore, the solutions of the Euler-Lagrange equations for X are in
bijective correspondence with the Hamilton—-De Donder extremals of Q.
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Proof. From (5.5) we see that

2
I (Loneg) = 2T _pi,
P} OPiOP]

whereas a direct calculation using the chain rule gives
0 oL 0 oL 0?
9 (Loheg) = (0 oheg) 2 (4f o heg) = (- o heg) 0T
oP] dy; OP} dy; OPLOP)
It then follows by regularity of €2}, that
) oL .
Pioheg ! = 57 Pioleg,

(2

so that leg = heg™! is a local diffeomorphism.
We now observe from (5.5) that

: oL
o Ieg> (Proleg) = —L+ yfa—yg
i

oH

Holeg=—L+ (.

& “\opi

so that H is the Hamiltonian function associated classically with the Lagrangian function
L. Any extremal ¥ of the Hamilton-De Donder system €2}, thus satisfies the condition
that heg o) = jlv for some extremal v of L, and conversely if v is an extremal of L then
leg 0j'y is an extremal of Q. O

5.3 The inverse problem

We remark finally that this procedure may be applied also to a family of first-order
equations

opP:
oxt

%" _pe_y,

(5:6) L~ F,

+ Gy =0

where F7, G, are functions defined locally on J*Y'; such functions may, for example,
be obtained from an Ehresmann connection I' on 7 : J*Y — X where F7 = yﬁ oI’ and

Gy = —P!, oT. Writing E for the (n + 1)-form

2
E = (Go + Py)dy” Awo + (—F7 + y;)dPs Awy
we see that Corollary 2.4 can be refined as follows.

Theorem 5.4. A system of first order PDFEs (5.6) is a Hamilton—De Donder system,
equivalent to the Euler—Lagrange equations of a (local) reqular Lagrangian L, if and only
if

0G,  0G, oFy  OFy 0G,  OF}

7 7

oy 0y’ oPk — OP’ OP. — Oy
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and

det (

OF?
oPi

);éo.

If these conditions hold then

1 1
L=FPity° / (Gy o \)du + P / (F7 o x)du,
0 0

and the inverse Legendre transformation (giving “velocities” y}’ ) is defined by the equa-
tions y7 = F7.
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