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The efficient evaluation of tensor expressions involving sums over multiple indices is of significant importance
to many fields of research, including quantum many-body physics, loop quantum gravity, and quantum chemistry.
The computational cost of evaluating an expression may depend strongly on the order in which the index sums are
evaluated, and determination of the operation-minimizing contraction sequence for a single tensor network (single
term, in quantum chemistry) is known to be NP-hard. The current preferred solution is an exhaustive search,
using either an iterative depth-first approach with pruning or dynamic programming and memoization, but these
approaches are impractical for many of the larger tensor network ansatze encountered in quantum many-body
physics. We present a modified search algorithm with enhanced pruning which exhibits a performance increase of
several orders of magnitude while still guaranteeing identification of an optimal operation-minimizing contraction
sequence for a single tensor network. A reference implementation for MATLAB, compatible with the ncon() and
multienv() network contractors of arXiv:1402.0939 and Evenbly and Pfeifer, Phys. Rev. B 89, 245118 (2014),

respectively, is supplied.
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I. INTRODUCTION
A. Overview

The need to efficiently contract a tensor expression is one
which arises in many different areas of research, including
both quantum chemistry and quantum many-body physics,
and has been an area of intense study since at least 1997 (see,
e.g., Refs. [1-17]), despite being known to be NP-hard [14].
In quantum many-body physics interest in this problem has
been driven by the increasing complexity of tensor network
ansatze for many-body systems (see Sec. 1B), while in
quantum physical chemistry it has long been acknowledged
that determination of the optimal contraction sequences for
increasingly complex tensor networks represents a significant
bottleneck in the development of new algorithms [1,2,4,13].

In its most general form, the problem is to evaluate a
multidimensional tensor sum such as

Z Aijklekamprq +ZAijijqu (1)
Jksm,p ik

as rapidly as possible subject to the constraints of avail-
able computing hardware. This problem may be seen as a
generalization of the matrix-chain multiplication problem,
described in Appendix A, where a string of matrices are to
be multiplied together as efficiently as possible. Unlike the
matrix-chain multiplication problem, however, this problem
cannot be solved in polynomial time through the use of
dynamic programming techniques [14].

While this optimization problem is intrinsically multidi-
mensional, balancing available memory and (for multinode
machines) internode communication delays against the num-
ber of floating-point operations which must be performed,
the predominant approach to this problem is, first, to identify
the ideal contraction procedure which would be performed
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on a single node with infinite resources, minimizing the
number of floating point operations to be performed (operation
minimization), before trading off performance against memory
constraints and distributing the problem across multiple
nodes [2,7,8,12,15,17]. Consequently, the task of operation
minimization is of fundamental importance.

A significant difference between applications in quantum
chemistry and quantum many-body physics is that the ansitze
of the former frequently yield tensor expressions involving
many summed terms which may be factorized in numerous
different ways, and it is necessary to explore both the different
factorizations and the different index contraction sequences for
a given factorization, with the latter task having been termed
single term optimization [10]. On the other hand, in quantum
many-body physics an ansatz is typically made up of a single
term, but this term may involve substantially more factors than
are encountered in the single terms of quantum chemistry. The
problem of factorizing multiple-term tensor expressions for
optimal computational efficiency has been explored in depth
elsewhere [10,11] and itself depends on the determination of
efficient contraction sequences for single terms, so the task
of single term operation minimization is of key importance
in both quantum chemistry and quantum many-body physics
(where it is synonymous with optimal contraction of a tensor
network). It is the problem of rapid single term optimization
which is addressed in this paper.

As the primary interest of the authors is in quantum
many-body physics, we will frequently favor quantum physics
terminology over that of quantum chemistry or linear algebra.
It should therefore be noted that a tensor network is syn-
onymous with a single term in a tensor expression and that
the optimal contraction sequence is assumed to be that which
minimizes the number of floating point operations performed.
For a single term, if it is assumed that evaluation of

Cij = ZAik x By 2)
k
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begins by constructing an array of appropriate size for matrix
C;; and populated with zeros, then minimization of the
number of floating point operations is synonymous with
minimizing the number of floating point multiplications as
the ratio of multiplications to additions is 1:1. We note that
identifying an optimal contraction sequence for a single tensor
network corresponds to solving the “multiplication problem”
of Ref. [14] and thus is known to be NP-hard.

An index i runs from 1 to |i|, where |i| is termed the
dimension of index i and may also be denoted &;. The
dimension of a tensor, e.g., |C;jxl, is then the product of
the dimension of its indices and corresponds to the number
of entries in the multidimensional array Cjj.

For complicated tensor networks involving large numbers
of tensors and index sums, we will use a graphical notation
which is a simplification of that of Penrose [18] and is
summarized in Sec. 1.2 of Ref. [19]. In this notation, shapes
represent tensors and lines (or legs) represent indices. A line
connecting two shapes therefore represents an index appearing
on the tensors corresponding to both shapes. We follow the
Einstein summation convention, where any repeated index
appearing once in the upper position and once in the lower
position is assumed summed, unless otherwise specified. The
multiplication of two matrices C = A x B may therefore be
written as

Cij = AuBY, 3)

and represented graphically as in Fig. 1(a), while the inner
product of a matrix and two column vectors, vTMw, may be
written as

c=vM'w; 4)

and represented graphically as in Fig. 1(b).

B. Tensor network algorithms in quantum many-body physics

Tensor network algorithms provide powerful tools for
the study of a wide variety of physical systems. They are
perhaps best known for their use in condensed-matter physics
as numerical techniques for the study of quantum many-
body systems on a lattice (e.g., Refs. [20—44]), but recent
breakthroughs blending ideas from quantum information with
advanced numerical techniques have led to the construction of
new ansatze (e.g., Refs. [26,27,45-48]) having applications
in fields as diverse as holography and the anti-de Sitter—
conformal field theory correspondence [49-51], the study of
many-body entanglement [33,45,48,52], and the classification
of topological phases in quantum spin systems [53-56]. As a
numerical tool, a tensor network algorithm typically comprises
an ansatz for the description of pure or mixed quantum states,
which is composed of a network of tensors, and an iterative
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FIG. 1. Example graphical representations of tensor networks:
(a) matrix multiplication, C;; = Ay B;f , and (b) inner product of a
matrix and two vectors, ¢ = vI Mw.
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procedure for updating this ansatz. Examples include the den-
sity matrix renormalization group (DMRG) [57,58] and time
evolving block decimation (TEBD) algorithms [59,60], both
of which are based on the matrix product state (MPS) ansatz,
and tree tensor networks (TTNs) [61], projected entangled
pair states (PEPS) [62,63], and the multiscale entanglement
renormalization ansatz (MERA) [26,27,45-48,64].

The fundamental challenge to the numerical study of
quantum many-body systems on a lattice is that the number of
degrees of freedom, and thus the computational cost associated
with exact simulation, grows exponentially with the size of the
system. To overcome this challenge, tensor network ansatze
replace the coefficients ¢;, ;, of a quantum state [y,

W) =D ciilits . ooin), )

...y

with a network of tensors whose dimensions are such that
the number of coefficients required to describe the network
exhibits a better scaling in n, the number of lattice sites, than
does the number of coefficients ¢;, ;, in Eq. (5). Indeed, for
many tensor networks this scaling in n is polynomial rather
than exponential.

Given this reduction in the number of coefficients in
the description, a tensor network ansatz is capable only of
representing states which lie within some restricted region
of the Hilbert space of the system, but nevertheless these
ansatze and associated algorithms are capable of providing
substantial insight into the physics of a wide variety of
systems in appropriate regimes [e.g., one-dimensional (1D)
quantum critical systems, systems with limited long-range
entanglement, and 2D systems obeying an area law. Details
vary with the specifics of the tensor network employed—see
Refs. [20—44] for examples].

In order for a tensor network algorithm to be useful as a
tool for numerical computation, it must be possible to perform
the operations of the algorithm for a reasonable computational
cost. An economical description of the relevant part of the
Hilbert space of a system is a good start, but this is not the only
factor which must be taken into account: When determining
whether a given tensor network algorithm is computationally
feasible, the structure of the tensor network itself also plays
a significant role. In describing scaling of the cost of a tensor
network algorithm, it is customary to express this in the form
of a polynomial in some refinement parameter x, which may
(for example) correspond to the dimensions of indices within
the tensor network. Assuming that the coefficients of this cost
polynomial are small, costs which scale as excessively large
powers of x may then reflect an algorithm which pushes the
limits of computational feasibility.

The trade-off between sophistication of an ansatz and the
associated cost of the update algorithm represents a critical
tension in the development of novel tensor network algorithms.
For example, the structure of the 4:1 2D MERA [25,26]
indicates that this particular ansatz will provide a powerful
representation of highly entangled 2D systems, and this has
been confirmed analytically in Ref. [65], where it is shown to
furnish a compact and physically meaningful description of
the toric code. However, numerical computations using this
ansatz are hindered by an update cost of O(2°). The ability to
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FIG. 2. Graphical representation of one of the tensor networks
which must be contracted during variational optimization of the 3:1
MERA [26,47]. The individual tensors are labeled for subsequent
reference, and the tensor expression corresponding to this diagram is
given in Eq. (38) of Sec. III.

quickly and conveniently determine the cost of contracting
different tensor networks is therefore of great importance
to researchers employed in the development of novel tensor
network algorithms.

Even when the cost of updating a tensor network algorithm
is known, the implementation of these algorithms is frequently
a nontrivial affair. The process of contracting a tensor network
may always be optimally realized as a series of pairwise
contractions (see Appendix B), and the overall cost of
contracting the network is highly dependent on the sequence
in which these contractions are carried out. For instance,
the network shown in Fig. 2 is one network which must
be contracted during the variational optimization of the 3:1
1D MERA [26,47]. If each index has dimension x, then the
most efficient contraction sequences yield a cost of O(x®),
for example,

(((RHUHW YWD WD W D)), (6)

but careless choices of sequence can yield costs as high as
O(x "), for example,

(WRDR)(WDWDHU*H WD), (7)

Thus the ability to determine the optimal contraction sequence
for a tensor network is as important to those implementing
pre-existing tensor network algorithms as it is to those
developing them if the algorithms are to be implemented in a
computationally efficient manner.

Until recently, manual optimization has largely been the
preferred approach within the tensor network community.
However, the increasing complexity of tensor network ansatze
(e.g., 2D MERA [25-27] and branching MERA [48]) renders
this approach increasingly time-consuming and, with an
exhaustive search out of the question, it may be difficult to be
certain that an optimal contraction sequence has indeed been
identified. This situation is exemplified by the 4:1 2D MERA of
Refs. [25,26], which was believed for a number of years to have
a minimal contraction cost of O(?®) operations and has only
recently been shown to be contractible for only O(x?%) [66].
As tensor network algorithms increase in size and complexity,
and implementations begin the transition from single-node
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to parallel computing architectures, the limitations of manual
optimization are likely to become increasingly apparent.

C. Floating point operations and tensor contractions

When working with tensor network algorithms, the primary
objects of interest are single tensor networks made up of a large
number of constituent tensors. The principal operation applied
to these networks is the contraction of a pair of tensors to form
a single tensor, e.g.,

Cijx = AL By;. (8)

Evaluation of C;j; proceeds by iteration over indices i, j, and
k and summation over index /. If the array representing tensor
C;jx is initialized to zero, then construction of C;j; involves
&€ £,& floating-point multiplications and the same number of
additions. With the number of multiplications and additions
being equal, it is customary to count only multiplications, and
the above calculation is described as having a cost of ;&£
operations.

This may be contrasted with the operation counting adopted
by the quantum chemistry and computer science communities.
In quantum chemistry ansatze, both tensor contraction and
tensor summation play important roles and thus independent
tallies must be kept of multiplication and addition operations.
The calculation of C;j; given above may in principle be
decomposed into two steps [14],

(C*)éj,d = Afk x Bj; (no sum over ), 9)

Cij = Y _(CHi» (10)
1

where the first calculation is iterated over i, j, k, and [/
for &;&;&,& floating-point multiplication operations, and the
second is iterated over i, j, and k, and for each set of
values {i,j,k} the right-hand side is summed over / for a
total of &;&;£.&; floating-point addition operations. In practice,
there is seldom reason to generate the intermediate object C*
explicitly.

It is noted in Ref. [14] that, following multiplication, it
is never suboptimal to immediately sum over all repeated
indices on the resulting object (for example, / on C* in
the above example). If this is performed, then the process
of multiplication followed by summation over all repeated
indices is directly equivalent to contraction of two tensors
over all shared indices.

In the present context of optimizing the contraction of
a single tensor network, all operations may therefore be
understood as pairwise tensor contractions. It is consequently
unnecessary to separately count floating-point additions and
multiplications (as these numbers are always equal), so for
simplicity we shall adopt the approach of the tensor network
algorithm community by counting operations which consist
of one floating-point multiplication and one floating-point
addition apiece. Revisiting the simple examples of Fig. 1,
evaluation of C in Eq. (3) therefore incurs a cost of &;&;&;
operations, while evaluation of ¢ in Eq. (4) attracts a cost
dependent on the order of pairwise contractions. If one begins
by contracting v with M,

xl=vMY, c=xw,, (11)
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then the cost of computing c is §;&; + &; operations, whereas
if one first contracts w with M,

y=Mw;, c=uv, (12)

the cost is &;&; +&; operations. Finally, if one begins by
performing an outer product between v and w,

zij = viwj, c¢=z;MY, (13)

then this approach incurs a cost of 2&;§;.

II. SINGLE TERM OPTIMIZATION

This section discusses algorithms for the identification of
an optimal (operation-minimizing) contraction sequence for a
single-term tensor expression. In describing these algorithms
it is assumed that the expression contains no indices of
dimension one and that it may not be factorized into two
disjoint parts sharing no common indices.

Regarding the first of these requirements, note that an index
of dimension one may freely be deleted or reinserted at any
time without changing the calculation described, and thus this
condition may be imposed without loss of generality.

Regarding the second, note that for any network A
which is factorizable into two or more disjoint subnetworks

NN, ... eg.,
AT B'Cjy Dy = (AYCjr)(B' Dyy), (14)

and where contraction of these subnetworks yields tensors of
dimension greater than 1, an optimal contraction sequence
may always be constructed by sequentially concatenating
optimal contraction sequences for each subnetwork. In these
circumstances we lose no capability (and make substantial per-
formance gains) by addressing each subnetwork individually.'
Note also that the disjoint or nondisjoint nature of the network
is to be assessed only after any indices of dimension one have
been deleted.

Finally, it is assumed that no index appears more than once
on any of the initial tensors. As mentioned in Ref. [14], it
is always optimal to perform the sums over such indices
immediately, and thus it is assumed that these have already
been performed before the algorithms described in this section
are invoked.

"Where one or more subnetworks does contract to a tensor of
dimension one (i.e., a single number, a scalar), the situation is a little
more complex. In theory, the optimal time to multiply by this number
may arise part-way through the evaluation of another tensor network if
the contraction of that network yields an especially small intermediate
object. In practice, the best time to multiply by this number is usually
during the calculation of human-readable results, which are seldom
expressed in terms of large, multi-dimensional tensors. The problem
of determining the optimal time to multiply by a scalar is therefore
frequently outside the context addressed by the present paper but
frequently admits the same approach as discussed above, namely
independent contraction of each individual subnetwork.

PHYSICAL REVIEW E 90, 033315 (2014)

A. Existing approaches
1. Depth-first constructive approach

We begin with a review of the approach to single-term
optimization first described in Ref. [14]. Slightly paraphrased,
the algorithm proceeds as follows:

(1) Compute a single contraction sequence as follows:

(@ () LetTy,...,T, be alist of n tensors.

(i) Letd = n be a counter enumerating the total
number of unique objects.

(iii) Let ¢ be a counter initialized to zero.

(b) (i) Incrementd.

(i) Choose a pair of tensors {7,,7}} such that the
set indices appearing on 7, is identical to that
appearing on Tj, or, if no such pair exists,
choose a pair such thata < b and b > c.

(iii) Contract these two tensors over all common
indices (if any). Call the resulting object Ty.

(iv) Remove tensors T, and T, from the list of
tensors.

(v) Append T; to the list of tensors.

(vi) Setctoa.

(c) Repeat step (1b) until no further actions can be
applied. Determine the cost of the contraction
sequence performed.

(2) Repeat step (1) while iterating through all possible
choices of pairs {T,, T} using a depth-first approach to
explore the space of all possible contraction sequences
without duplication. Note the cheapest contraction
sequence thus found.

Note, in particular, that tensors 7, and 7} need not share
any common indices at all. A contraction where tensors do
not share any common indices is termed an outer product, and
there exist tensor networks for which an outer product is a
necessary part of the optimal contraction sequence. A simple
example is given by

Dy = A'B/Cijy (15)

for& > &; and &, > §&;. Writing (XY) to denote the contraction
of a tensor X with a tensor Y, the sequence ((AB)C) is seen
to be cheaper than either ((AC)B) or (BC)A).

2. Breadth-first constructive approach

A slightly more sophisticated approach may be found in
Ref. [10], and has been incorporated into the TENSOR CON-
TRACTION ENGINE [12], a tool for optimizing the evaluation
of tensor expressions which enjoys widespread use in the
quantum chemistry community. Whereas implementation of
the depth-first search of Sec. IT A 1 will typically be achieved
through the use of recursion, the breadth-first approach
described in Ref. [10] is iterative and may be summarized
as follows:

(1) Let Sy ={T\,...,T,} be the set of n tensors which
make up network NV
(2) Let ¢ be a counter running from 2 to n. For each value
of c:
(a) Let S, be the set of all objects made up by
contracting together ¢ unique tensors from Sj.
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(b) For each pair of sets Sy, S.—g, | < d < L%J, and
foreach T, € S;, T, € S._; such that each element

of §; appears at most once in (7,7}):

(i) Determine the cost u of contracting 7, with
1.

(i) Where T, and/or T, do not belong to S,
add to pu the previously determined cost of
constructing T, and/or T} as appropriate.

(iii) Let the contraction sequence Q for construct-
ing this object be written Q@ = (T, T,). Where
T, and/or T, do not belong to S;, optimal
contraction sequences for 7, and 7, will have
been previously recorded. In Q, replace each
appearance of T, and/or T}, with these optimal
contraction sequences.

(iv) Locate the object in S, which corresponds
to (T,Tp). If o is the cheapest known cost
for constructing this object, record the cost
w and the associated contraction sequence Q
against this object.

(3) The optimal cost ppese and a sequence Qpese Which
realizes this are recorded against the only element
in S,.

3. Dynamic programming

Finally, as with the matrix-chain problem discussed in
Appendix A, an exhaustive search of all possible contraction
sequences may also be performed using dynamic program-
ming with memoization:

(1) Isnetwork N\ trivial (one tensor)? If so, let T denote this
tensor, and return zero cost and a contraction sequence
O=T.

(2) Has network N been costed before? If so, return the
known optimal cost and sequence, previously recorded
as Mbesl(N) and Qbest(N)-

(3) Otherwise, for each bipartition of A into two subnet-
works A and N, (either or both of which may be
disjoint):

(a) Invoke this algorithm twice more to obtain the
optimal cost and sequence for each of A/; and A>.

(b) Let T; be the tensor obtained on fully contracting
Ni1. Let T» be the tensor obtained on fully con-
tracting \V2. Let u be the cost of the contraction
(T T).

(¢) Add to u the optimal cost for contracting N; and
the optimal cost for contracting N>.

(d) Define a sequence Q = (Q;Q,) where Q,, is the
optimal sequence for contracting subnetwork N/.

(e) If w is the best cost observed, record the values
of wand Q as wpest(N) and Opes(N), overwriting
any previous values thus recorded.

(4) Return /J/best(N) and Qbest(N)~

Note the role of memoization in preventing unnecessary dupli-
cation of efforts: While iterating over all possible bifurications
of networks at all levels of recursion, the same subnetworks
will frequently be encountered on many different occasions.
As a simple example, given a network N'={ABCDEF},
the subnetwork {BC} may be encountered by splitting " into
{ADEF}and {BC} or by splitting ' into {ABC} and {DE F'}
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and then splitting {ABC} into A and {BC} or in numerous
other ways.

B. Beyond existing approaches

While the approaches described in Sec. II A are adequate for
small tensor networks, they become rapidly more expensive
as n, the number of tensors in the network, increases. This
section introduces two modifications to the search process.
The first, described in Sec. II B 1, represents a reordering of
the search process in favor of cheapest-first. As the search may
now terminate once a contraction sequence has been identified,
this approach prunes the search tree to exclude all contraction
sequences costing more than the optimal contraction cost
of the tensor network. The second modification, described
in Sec. IIB2, excludes large numbers of outer product
contractions which are shown to be unnecessary for the
identification of an optimal contraction sequence.

1. Cost capping

The refinement described in this section may be applied
to any of the search algorithms described in Sec. ITA.
However, to obtain the most benefit it should be applied to
an algorithm incorporating some form of memoization, either
explicitly (the dynamic programming algorithm of Sec. IT A 3)
or implicitly (the recording of objects and their associated costs
and sequences in the breadth-first algorithm of Sec. IT A 2).
Of the two, the breadth-first algorithm of Sec. IIA2 is
found to perform significantly better with the cost-capping
refinement as the initial space to be explored [n(n — 1)/2
possible pairwise tensor contractions] is both smaller than,
and typically contains less expensive (and therefore more
relevant) elements than, the initial space of the dynamic
programming algorithm (2"~! bifurcations of the initial
network A).2

To implement cost capping in the breadth-first algorithm
of Sec. IT A2, two modifications are required. First, the sets
S, are initialized empty and are only populated as contraction
sequences which yield their elements are identified. Second,
pairwise contractions are rejected if their cost exceeds some
maximal value ftcop. By choosing a value of fic, Which is
sufficiently low, the first invocation of the modified breadth-
first search can be guaranteed to terminate with S, empty, i.e.,
without constructing an object containing all of the tensors in
Sy. If the value of ficqp is then increased, and the former value
is stored in pqg, the existing contents of the sets S; act as
memos for the second invocation of the breadth-first search.
On this second invocation it is only necessary to consider
contractions where the cost p of (7,T}) satisfies toq < it <
cap OF Where 1 < polg and one or both of 7, and T, was itself
only constructed during the second invocation. If, following
the second invocation, S, is still empty, fic,p is increased once
more, [oq 1S updated, and the process is repeated. The net
result is to yield a cheapest-first construction process where

2Example results for a dynamic programming algorithm with cost
capping and some restrictions on outer products may be found in
Table V of Ref. [66]. They are most appropriately compared with
column ““fi,p” of Table ITin Sec. III, with performance of the breadth-
first code being between 8 and 60 times faster.
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no object is constructed which costs significantly more than
the contraction of network N.

For tensor network algorithms, it is common to define bond
dimensions in terms of some refinement parameter y , assumed
to be large. In this context, pc,, may be taken as a bound
on the maximum power of x which appears in the algebraic
expression for the contraction cost. Alternatively, one may
supply numeric values for the index dimensions and fic,p then
comprises a cap on the actual contraction cost.

Let &nin denote the dimension of the smallest index in
the network, let u(), denote the value of jic,, on invocation
i of the algorithm, and let /Lgect represent the cost of the
cheapest rejected pairwise contraction on iteration i — 1.
We obtained good performance by initializing u() to 1

and requiring that each subsequent ul), = &minptlly, ", except
@) (=1

when e > Eminitlly, ", for which we assign pul) = -
However, for networks with many indices of some dimension &
and a much smaller number of indices of dimension &;, < &
we acknowledge that it may be preferable to instigate a more
rapid increase in &y;p-

Writing cost[(AB)] for the cost of contracting tensor A
with tensor B, a cost-capped breadth-first algorithm may be
realized as follows:

(1) Let Sy ={Ty,...,T,} be the set of n tensors which
make up network N

(2) Flag each tensor in S; as “old.”

(3) Let {S;]i € Z,2 < i < n} be empty sets.

(4) Let pteap = 1,let poig = 0, and let &y, be the dimension
of the smallest index.

(5) While S, is empty:
(a) Let fipexr = 00.
(b) Let c be a counter running from 2 to n.

For each value of ¢, and each pair of sets Sy, S.—g,

1 <d < 5], and each T, € Sy, T, € Sc—4 such

that each element of S; appears at most once in

(TuTy):

(i) Let u = cost[(T,T)].

(i) Where T, and/or T, do not belong to S,
add to w the previously determined cost of
constructing T, and/or T} as appropriate.

(iii) Ifeither T, or T is flagged as “new,” let ;o =
0. Otherwise, let (o = olq-

(IV) If n > Heap and M < HKnexts let Mnext = M-

(v) If o < 0 < Meap:

(A) Let the contraction sequence Q for
constructing this object be written as
Q = (T,T,). Where T, and/or T}, do not
belong to i, the best-known contraction
sequences for T, and T, will have been
previously recorded. In Q, replace each
appearance of T, and/or T, with these
optimal contraction sequences.

(B) If no object corresponding to (7,7;)
has yet been created in S, create it.
Otherwise, locate the object in S, which
corresponds to (7,Tp).

(C) If p is the cheapest known cost for
constructing this object, then record the

PHYSICAL REVIEW E 90, 033315 (2014)

cost 1 and the associated contraction
sequence Q against this object and flag
the object as “new.”
(c) Let Mold = Mcap-
(d) Set piceap equal to the larger of fipeys and Eminfheap-
(e) Flag all tensors in all S; as “old.”
(6) The optimal cost ppey and a sequence Qpese Which
realizes this are recorded against the only element
in S,.

2. Restricting outer products

a. Overview. As noted in Sec. I A 1, there exist tensor
networks for which outer products form a necessary part of the
optimal contraction sequence. Consequently, when iterating
over pairs of tensors to contract in the breadth-first search
algorithm, this iteration must include not only pairs of tensors
which share one or more common indices but also pairs
of tensors which do not. In Secs. IIB2b-IIB2c a number
of criteria are introduced for the rejection of outer product
operations, and it is proven that application of these criteria
will never prevent the identification of an optimal contraction
sequence. Use is made of the following two lemmas:

Lemma 1 (Combination of shared indices). Suppose there
exist two tensors, P and Q, which share two or more indices.
Let us denote these indices {a;,a», . ..,a,}. We may combine
these indices into a single index a.

Proof. Let a enumerate all possible sets of values
{ay,as, ... ,a,}. |

Lemma 2 (Combination of external indices). Next, sup-
pose we are only interested in the subnet comprising tensors
P and Q. Let us denote all indices on P which do not connect
to Q by {b,by, ...,b,}. We may similarly replace all of these
indices by a single combined index b.

Proof. Let b enumerate all possible sets of values
{b1,b2, ...,by}. ]

b. Constraints on tensors participating in the outer product.
Let A and B be two tensors which we wish to contract
together as part of our contraction sequence and which share
no common indices. For a nondisjoint network NV, object (A B)
will necessarily be subsequently contracted with some other
tensor C. If C is not a fundamental tensor (i.e., one belonging to
S1), we may always implement our contraction sequence such
that C is assembled before contraction (A B) is performed. We
will denote the subnetwork comprising tensors A, B, and C
by Nagc.

By combining indices in the manner described in Lemmas
1 and 2, the most general form of subnetwork ANy pc is that
given in Fig. 3. If an outer product between A and B is a
necessary part of the contraction sequence, it follows that
sequence ((A B)C) is cheaper than either ((AC)B) or (BC)A).
Comparison with sequence ((AC)B) gives us the inequality

cost[((AB)C)] < cost[((AC)B)]

16)
sa‘i:hsdse + sa‘i:hécgdé}‘e < $aécgd§e + EangCSea (
which simplifies to

§vEa < §c(&p + &0 — Ep&a). )
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. a < ) d
-
FIG. 3. Two tensors A and B share no common index; should
they be combined using an outer product before contracting with
tensor C? Letters a, ...,e denote indices of dimensions &, ...,&,
respectively. In Sec. IIB2b it is shown that when searching for an

optimal sequence we need only consider contraction (A B) if indices
a, ...,e satisty the conditions given in Fig. 4.

Since all dimensions are positive integers, this requires

& +&1— 58 >0 (18)

and may only be satisfied if &, = 1 or §; = 1. The condition
obtained from sequence ((BC)A) is equivalent under the
exchanges

A& Basbdse, 19)
and so yields

ga‘i:e < sc(%-a + ‘i:e - Sa%-e)s (20)

which requires either §, =1 or & = 1. There are, conse-
quently, only three scenarios in which sequence ((AB)C) is
superior to either ((AC)B) or ((BC)A), and thus an outer
product may be required:

(1) & = &, = 1: Following an outer product between A
and B, all indices on the resulting tensor (AB) are
shared with a single tensor C [Fig. 4(a)].

(2) &; =&, = 1: Following an outer product between A
and B, the next operation in the contraction sequence is
a further outer product between (A B) and C [Fig. 4(b)].

(B3) & =& =1 or & =& =1: Either A or B is a
scalar [Figs. 4(c) and 4(d)]. Provided network N is
nondisjoint, these scenarios will never occur and so
may be disregarded.

Regarding scenario 1, substitution of &, =&, =1 into

Egs. (17) and (20) reveals the further constraints

§c>8 & >6&. (21)

As scenario (1) is the only admissible scenario in which the
outer product object (A B) shares common indices with tensor
C, we may conclude that contraction of an outer product

FIG. 4. Scenarios for which the outer product ((AB)C) may be
of lower cost than either ((AC)B) or ((BC)A): (a) &, =&, = 1;
& =E=10&=8=1DE =¢£=1

PHYSICAL REVIEW E 90, 033315 (2014)

object (AB) with a tensor C is only necessary if it satisfies
the following constraints:

(1) All indices on tensor (AB) must be shared with

tensor C.

(2) The indices on (AB) and C must satisfy Eq. (21).
Note in particular that when & =§&; or & = &,, the cost
of sequence ((AB)C) is equal to that of either ((AC)B) or
((BC)A), respectively, but the latter two sequences do not
involve outer products. By discarding sequence ((A B)C) when
these are equal while retaining either or both of ((AC)B) and
((BC)A) we guarantee contraction of AMypc at a cost equal
to or less than cost[((AB)C)], without requiring an outer
product.

Regarding scenario (2), note that in this context all three
sequences ((AB)C), ((AC)B), and ((BC)A) involve outer
products. Substitution of §; = £, = 1 into Egs. (17) and (20)
yields

§c >80 &> &, (22)

as the conditions under which sequence ((AB)C) is su-
perior to sequence ((AC)B) and ((BC)A). However, if
cost[((AB)C)] = cost[((AC)B)], then enforcement of Eq.
(22) as a strict inequality will eliminate sequence ((AB)C),
but (AC) in sequence ((AC)B) is also an outer product and
under permutation of labels

B&Cbhbsc (23)

this constraint becomes

& >80 & >& (24)

and sequence ((AC)B) will also be rejected. This may be
contrasted with scenario (1) where sequence ((AC)B) is not
an outer product, and is therefore not at risk of being rejected,
and hence at least one sequence for contracting Nypc at a
cost equal or less than that of ((AB)C) is retained. In order to
ensure that the optimal contraction sequence for subnetwork
Npc is not inadvertently discarded when cost[((AB)C)] is
optimal and is equal to cost[((AC)B)] or cost[((BC)A)],
the correct constraint to apply when contraction ((AB)C) is an
outer product is

§c 280 &2 &, (25)

corresponding to the requirement that multiple outer products
be performed in nondescending order of tensor dimension.

c. Constraints on tensors contracting with an outer product.
We now consider in further detail the situation where contrac-
tion of (AB) with C is not an outer product and tensor C is
composite. In Sec. II B 2 b we assumed that a composite tensor
C was always constructed before performing the outer product
(AB). If the final two tensors involved in the construction of
C are denoted D and E, this corresponds to evaluating (DE)
before (AB) in the sequence ((AB)(DE)). However, with no
impact on cost we might equally well choose to evaluate (AB)
before (DE).

Consider now a situation involving composite C where op-
timal contraction of A4 ¢ is only achieved through sequence
((AB)C) and where the optimal sequence for the construction
of C is unique. If contraction of (AB) with (DE) is not an
outer product, then by virtue of scenario (1) the most general
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FIG. 5. (a) Let tensor C in Fig. 4(a) be composite, with the final
step in its construction being the contraction together of two tensors
D and E. If contraction (AB) is performed prior to the final step in
the construction of C, the most general form of network M p)pe is
as shown. (b) If contraction sequence ((AB)(DE)) is superior to both
(((AB)D)E) and (((AB)E)D), diagram (a) must reduce to the form
shown here (up to an exchange of labels D <> E, a — b, d — e).
(c) Consequently, in scenario (1) of Sec. II B 2 b either tensor C is not
composite or the final two tensors in the optimal construction of C
admit the form shown here. Note in particular that for a nondisjoint
network, tensor C in scenario (1) is consequently never the result of
an outer product.

form of a subnetwork comprising tensors (AB), D, and E is
given by Fig. 5(a).

In seeking the optimal contraction sequence for the entire
tensor network of which Fig. 5(a) is a part, we only need
to consider ((AB)C) as a possible optimal sequence for
subnetwork A4 pc, and thus ((A B)(D E)) as a possible optimal
sequence for NMyppe, if sequence ((AB)(DE)) is cheaper
than both (((AB)D)E) and (((AB)E)D). Comparison of
((AB)(DE)) with (((AB)D)E) yields the inequality

cost[((AB)(DE))] < cost[((AB)D)E)]
gaébscgdge + g:aéb%_d‘i:e < Saébfcéd + gbécédse (26)

= &bvEabe < Ec(8ubpba + Epbabe — EabpEabe), (27)

and because all index dimensions are positive integers this
requires

Eaébéd + Ehédgg > Eaéb&iée
= & +& > &b, (28)

which can only be satisfied for £, = 1 or £, = 1. Similarly,
requiring

cost[((AB)(DE))] < cost[(AB)E)D)]

sasbgcédée + éaébédée < Sagbgcge + Eaéeédée

yields &, = 1lor§; = 1.

Letting & =&, =1 yields a configuration for which
the sequence ((AB)(DE)) is prohibited by scenario (1) of
Sec. IIB2b, and letting &, = &, = 1 is prohibited by our
assumption that contraction of (AB) with C is not an
outer product. Consequently, sequence ((AB)(DE)) is only
preferable to both (((AB)D)E) and (((AB)E)D) if either
&, =& =1or & =&, =1, both corresponding (up to an
interchange of labels) to the network given in Fig. 5(b).
It therefore follows that, in addition to the constraints of
Sec. II B 2 b, we need only consider contractions ((AB)(DE))
for (A B) an outer product under the following circumstances:

(29)

PHYSICAL REVIEW E 90, 033315 (2014)

(1) when contraction of (AB) with (DE) is itself an outer
product or
(2) when either tensor D or tensor E contributes no
unsummed indices to tensor (D E).
Further, substituting &, = &, = 1 back into Eqs. (26) and (29)
yields the inequalities

Ea8ckq + 8.6 < 888+ 88, = & <&, (30)
§abcba + Eaba < Eabc + 8ubcba = Ea < &, (31

respectively, which also imply
& > IDI. (32)

Given tensors D and E consistent with Fig. 5(c), the constraints
of Egs. (30) and (31) are both necessary and sufficient to
ensure the satisfaction of Egs. (26) and (29), and thus it is only
necessary to consider a composite tensor C in scenario (1) of
Sec. II B 2 b if these two inequalities are satisfied.

As a slight subtlety, note that contraction of (A B) with E is
an outer product, and so for £; = &, the sequence (((AB)E)D)
is a priori excluded by Eq. (21). It might therefore appear
necessary to relax condition (31) to

a4 < &es (33)

permitting retention of sequence ((AB)(DE)) as a non-outer-
product alternative when &; = &.. In practice this situation
never arises, as sequences involving the outer product (A B) are
never necessary for the optimal contraction of such a network.
This result is demonstrated in Appendix C.

We have now shown that if the optimal sequence for
constructing tensor C is unique, Fig. 5(c) and Egs. (30)
and (31) define the situations under which it is necessary to
consider a composite tensor C in scenario (1) of Sec. IIB2b.
Now consider situations where there exist multiple contraction
sequences of optimal cost for the construction of tensor C.
If any of these sequences are inconsistent with Fig. 5(c) or
Egs. (30) and (31), then there exists a contraction sequence for
subnetwork Ay ppr which is cheaper than ((AB)(DE)), and
we may omit consideration of sequences for the full network
which involve the contraction of tensor (AB) with tensor
(DE). It is therefore only necessary to consider a composite
tensor for the role of tensor C in scenario (1) in Sec. [IB2b
if no construction of optimal cost for tensor C exists which
is inconsistent with Fig. 5(c), and the smallest value of &,
encountered in any of these sequences satisfies Eqs. (30)
and (31).

Finally, we confirm that if the optimal sequence for tensor
C is inconsistent with Fig. 5(c) or Egs. (30) and (31) but a
suboptimal sequence is consistent with these constraints, we
still need not consider sequence ((AB)C). This follows im-
mediately from the observation that a suboptimal construction
for tensor C may never yield the optimal cost for sequence
((AB)C).

d. Preferred implementation of these constraints. Reduc-
tion of search runtime is best achieved by pruning as many
branches of the search tree as possible, as early as possible.
To this end, the preferred implementation of these conditions
is not only as a restriction on contractions involving tensors
which are outer products but also as a restriction on which
outer products are performed in the first place. To this end, a

033315-8



FASTER IDENTIFICATION OF OPTIMAL CONTRACTION ...

contraction (A B) which is an outer product is only performed
if a tensor C is known such that contraction of (A B) with C is
not an outer product and

(1) Subnetwork ANypc takes the form of Fig. 4(a), with
indices satisfying Eq. (21).

(2) Either tensor C is a fundamental tensor (i.e., belongs
to S;) or the final two tensors in all optimal-cost
constructions of C take the form of tensors D and E in
Fig. 5(b) with indices satisfying Eqgs. (30) and (32).

Note that multiple sequential outer products are not excluded
by these constraints, e.g.,

(((A1A2)B)C), (34)

where both contractions in ((A A;)B) are outer products. For
such sequences, if the existence of tensor C satisfies conditions
(1) and (2) for the contraction of (A;A,) with B, then it
also necessarily satisfies these conditions for the contraction
of Ay with A,, even though this contraction is not neces-
sarily immediately followed by contraction of (A;A;) with
tensor C.

On the other hand, notice that Eq. (31) is not enforced at
this time. This is because it is possible for tensor ((A;A,)B)
to satisfy this inequality while tensor (A;A;) does not. The
contraction (A A,) should not be excluded, however, as it is
a necessary precursor to the outer product of tensor (A;A»)
with B, and the subsequent contraction (((A;A,)B)C) is then
permitted. Enforcement of Eq. (31) is therefore only performed
at the time of actually contracting an outer product object with
another tensor under scenario (1) of Sec. [IB2b.

It should be noted that the pre-emptive enforcement
of conditions described here augments, not supplants, the
enforcement of these constraints during contraction of an outer
product object (AB) with a tensor C. The pre-emptive appli-
cation of some constraints prevents the construction of some
unnecessary outer product objects, but the active application of
all constraints in Sec. II B 2 during the contraction of an outer
product object (AB) with another tensor is also necessary
to ensure that the outer products which are constructed only
participate in contractions which are necessary according to
the constraints determined above. Such contractions must
therefore comply with scenario (1) or (2) of Sec. IIB2b,
along with constraints (21) or (25), respectively. If scenario 1
applies, then tensor C must also either belong to S; or have an
optimal contraction sequence whose final tensors take the form
of Fig. 5(c) of Sec. II B 2c, with indices satisfying Egs. (30)
and (31).

A pseudocode implementation of all these constraints is
rather lengthy and thus is given in Appendix D.

III. RESULTS

This section compares the performance of the basic breadth-
first algorithm of Sec. II A2 with (i) a breadth-first search
supplemented by cost capping (Sec. II B 1), (ii) a breadth-first
algorithm supplemented by the restrictions on admissible outer
products described in Sec. II B 2, and (iii) the full algorithm of
Appendix D, which incorporates both cost capping and outer
product restrictions. Each of these algorithms was applied
to seven tensor networks of varying size and complexity,
chosen to be representative of the tensor network contractions
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FIG. 6. Sample 1D tensor networks: (a) Application of a time
evolution gate in TEBD, corresponding to Eq. (35). (b) Calculation
of the environment of a tensor in a 3:1 1D TTN, corresponding to
Eq. (36). (c) “Lifting” a term in the Hamiltonian in a 2:1 1D MERA,
corresponding to Eq. (39).

W% W%

commonly encountered in condensed matter physics, where
they arise from the following scenarios:
Figure 6(a): Application of a time evolution gate in
TEBD. Six tensors. The corresponding expression in
index notation is

2D, PO ® P @33 U 35)
Figure 6(b): Variational update of a tensor in a 3:1 1D
TTN. Five tensors. The corresponding expression is

W(Z)f hki W(l)*;lja W(Z)*gdepl}?’. (36)

cde'"a
Figure 7(a): Variational update of a tensor in a 9:1 2D
TTN. Nine tensors. The corresponding expression is
Wb prIh

iwxyzaBfys' mnkl

(2)c 3)
w ;U;szj}\p_ w

x W(l)* ;Snpzrrvqﬁm W(Z)*g{ nOucnip W(3)*2pqustuu

a
ophqrstuv

x Wsgrszadyo p el (37)

Figure 2: “Lifting” the Hamiltonian in a 3:1 1D MERA.
Seven tensors. The corresponding expression is

1 2)b hl i j 1 k 2
W( )th W( )loPUimhg U*i? W( )*i‘g W( )*Z”l’. (38)

Figure 6(c): “Lifting” the Hamiltonianina2:1 1D MERA.
Eleven tensors. The corresponding tensor expression is
1 2 3 Dei prympydhl
W )Ze W )llfm W )‘l,l;q U )Zlh U )lo hcgk 9
% U(l)*;‘?’CU(Z)*’J{Z W(l)*?b W(Z)*.Sfj W(3)*;“1.

Figure 7(b): Variational update of an isometry tensor in
a 9:1 2D MERA. Nineteen tensors. The corresponding
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FIG. 7. Sample 2D tensor networks: (a) Calculation of the environment of a tensor in a 9:1 2D TTN, corresponding to Eq. (37).
(b) Calculation of the environment of an isometry tensor in a 9:1 2D MERA, corresponding to Eq. (40). (c) Calculation of the environment of
an isometry tensor in a 4:1 2D MERA, corresponding to Eq. (41). For 2D tensor networks, a modified version of the diagrammatic notation
is used in which the tensors of a diagram are arranged in layers. Unit cells on the lattice are marked on each layer as a reference guide,
and circles containing a downward-pointing arrow represent indices passing to the layer below (drawn to the left), while those containing an
upward-pointing arrow represent indices passing to the layer above (drawn to the right). Where a diagram extends over multiple rows, the
layer at the left-hand end of one row is immediately above that at the right-hand end of the row below. Circles containing both upward- and
downward-pointing arrows indicate either a location on a tensor giving rise to both upward- and downward-going indices or (if not located on
a tensor) an index line passing through a given location in a layer. Paired indices are represented by black arrows on a white background, while
unpaired indices are represented by a white arrow on black, and the diagrams are periodic, so paired indices departing upwards from the top
layer of a diagram enter the bottom layer from beneath and vice versa.
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TABLE I. Optimal costs for contraction of the tensor networks given in Eqgs. (35)—(41), and example contraction sequences which realize
these costs. Sequences were computed using the pure-MATLAB reference implementation of Appendix D [67].

Tensor
network Cost Example contraction sequence returning output as X
3:1 1D TTN 4% X = (WOWP)p)h) WD)
TEBD 10x3 + 16x2 X = (AOTDYAO@T@AN)U)
3:1 1D MERA 2x8 +2x7 +2x° X = (WOWU U WD) WD WD)
9:1 2D TTN Ax12 4 4x10 X = (WOWO((WOWIH(WDWD) p))h)W D)
2:1 1D MERA 2x° +4xd + 20 +2x° = (WOWOH((WOUY(UDhU D) U@ WD) (WO W)y
9:12D MERA 3!+ 3xM + " A = (WOWEOHNVOVONWOWD)((WOWD) VOV E)))p))
+x"+5x"+5%° X = (AU UHVEVENV OV DRy W)
4:1 2D MERA A% + 2% 422 +3x% = (WOWOH(((WHWDHNUDRUD)NHUOHUD) WO U D*y)

+3X20+X16+XI4+X13
+X12+4X8+4X7

= (AUDYWOY(WOWO ) (WOWE(WOWOUDUD)))))
X = (BWOWPNWOWD))p) W)

tensor expression is

@y M7 @)
14 Enpot 14 Zjlbcv v XY
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2 (O
w gs;né)W LKA LY

G)0E  y(dur
XV here V' hiji

Q)xvgx1 v, (3)%dvfg v, (A)xwijk v (1)L pzx
x V@ arty @eufsy ety (022

% W(2)*g&5'7/3 W(3)*g’()hav W(4)*%75‘P¢77pf7797 (40)

kafy "
Figure 7(c): Variational update of an isometry tensor in a
4:1 2D MERA. Twenty-seven tensors. The corresponding
tensor expression is
WL @ o9

fgrj krmw pva

obgr chst ipuv

W(Z)t_z

6)X
deto f w I

plgn
9a (Hvémp rr(2)oTvd
WU ;?ayXU Bxny

(3)wabc y7(4) fghi p kapy MAVET 1y (1)x8en0 77(2)% XY
xU ﬂédeU ﬁjk]hBS{i’)etK)»M U mnopU stuv

B)xkrde 774 ikl yx7(1)xbchm yx7(2)xdéns
x U Dkde it gy (bl yy 2)+d

« W(3)*({§th(4)*lrc_on‘1y W(S)*,uz)uzz W(6)*)1él_ﬁﬁ

OAGF 1x7(8)% BOST 11 7(9)x
v 4 5 4

WEGrwxyse
pETOPR @A

uv

x W S (41)

Allindices were assigned an algebraic dimension y, except for
the physical indices of the TEBD network which were assigned
dimension two. Optimal contraction costs and sequences were
computed in the limit of large x (see Appendix E). Due to the
number of indices present in these expressions it is necessary to
use both Greek and Roman alphabets twice over. The symbol
a (for example) consequently represents a different index to
«. No other meaning is attached to the bar, and no distinction
exists between Greek and Roman indices, with all indices
ranging from 1 to x.

All calculations proceeded to completion with the exception
of the basic breadth-first algorithm and the breadth-first
algorithm with restriction on outer products, neither of which
terminated within a reasonable time for Eq. (41). Conse-
quently, these algorithms were only applied to the simpler
tensor networks of Egs. (35)—(40). Aside from these two
exceptions, all algorithms successfully identified optimal-cost
contraction sequences for all test networks. The optimal
costs for contracting Eqs. (35)—-(41) and example sequences

realizing these costs are given in Table I, though it should
be noted that for most networks there are multiple sequences
which realize the optimal cost, and the specific sequence which
is returned by an algorithm depends on the precise order in
which the search tree is explored. As the descriptions in Sec. 11
do not specify the order in which an algorithm iterates over the
members of a set S,, the specific sequence which is returned
may be implementation dependent, though the optimal cost is
not.

The times taken by each algorithm to identify each optimal
cost along with a corresponding contraction sequence are given
in Table II and plotted in Fig. 8. These results were computed
using a Dell workstation with a 3.6-GHz Intel Xeon processor
and 48 Gb of 1333-MHz DDR3 RAM, though near-identical
performance was obtained on an early-2011 Macbook Pro with
a 2.2-GHz Intel 17 processor and 8 Gb of 1333-MHz DDR3
RAM. With cost capping enabled, memory poses no significant
constraint, even for networks as large as the 4:1 2D MERA
(27 tensors), and from the lack of dependence on processor
speed we infer that performance of the algorithm is memory
bandwidth limited.

TABLE II. Time in seconds to find a guaranteed optimal
contraction sequence for the tensor networks of Figs. 2, 6, and 7
using a breadth-first search. The first column of results corresponds
to the basic algorithm of Sec. II A2, “u,” indicates application
of the cheapest-first algorithm described in Sec. IIB 1, and “OP”
indicates restriction of allowed contractions creating or involving
outer products according to Sec. 11 B 2.

Pruning techniques

Tensor Number of
network tensors None OoP Meap  OP & phegp
3:1 IDTTN 5 0.0014 0.0014 0.0013 0.0013
TEBD 6 0.0016 0.0014 0.0015 0.0015
3:1 1D MERA 7 0.0025 0.0021 0.0020  0.0019
9:1 2D TTN 9 0.0152 0.0087 0.0036  0.0036
2:1 1D MERA 11 0.0946 0.0086 0.0136  0.0048
9:1 2D MERA 19 7298 1096  0.423 0.069
4:1 2D MERA 27 =2 -2 5507 36

#Aborted: Insufficient memory to perform calculation without swap-
ping to disk.
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FIG. 8. (Color online) Time to determine a guaranteed optimal
contraction sequence plotted against number of tensors for different
pruning algorithms. Points labeled [J correspond to the exhaustive
breadth-first search algorithm of Sec. I A 2 (column “None” in Table
II). Points labeled o incorporate the restrictions on considered outer
products described in Sec. II B2 (column “OP” in Table II). Points
labeled + correspond to the cheapest-first variant on the breadth-first
algorithm, described in Sec. II B 1 (column “fi,,” in Table II). Points
labeled x correspond to the cheapest-first variant on the breadth-first

algorithm with restrictions on outer products (column “OP & ficqp”
in Table II).

The software environment on the workstation comprised
MATLAB release 2012b paired with Gnu C++ 4.7.2-2ubuntul
for compilation of the C++ component, while that on the
laptop consisted of MATLAB release 2011a paired with with
Apple Xcode 5.0.2.

From these results the enhanced pruning algorithms of
Secs. IIB 1 and II B 2 are each seen to be capable of yielding
performance increases of up to several orders of magnitude,
dependent upon the size and structure of the tensor network
being analyzed.

It is recognized that this performance benefit is dependent
on the connectivity of the network being studied and that (for
example) all benefits of Sec. II B2 will disappear in the limit
of a fully connected network (where every tensor shares an
index with every other tensor). However, tensor networks in
condensed matter physics are typically much more sparsely
connected than the fully connected network, and the MERA
networks used as examples here represent a comparatively
highly connected example. Furthermore, the benefit persisted
even for networks with as few as five or six tensors. The
pruning algorithms of Sec. II B are therefore anticipated to be
of substantial practical benefit.

IV. DISCUSSION

A. Faster, better ansatz development and implementation

This paper has presented a detailed description (and a
reference implementation) of an improved algorithm for
determining an optimal sequence for the contraction of a
tensor network (or, in the language of quantum chemistry,
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a single term in a tensor expression), along with the associated
computational cost. The benefit of such automated algorithms
is well established in quantum chemistry, with the ability to
reduce the development time for novel ansatze by several
years [1]. Their adoption in condensed matter physics has
been slower primarily due to the larger tensor networks
involved, and the NP-hard scaling of such algorithms with
the number of tensors. The algorithm presented in this paper is
demonstrated to be faster than previously favored exhaustive
search algorithms for networks of five or more tensors and is
faster by several orders of magnitude for some of the more
complex tensor networks encountered in condensed matter
physics, making the automated determination of optimal
contraction sequences both viable and attractive.

While it could be argued that the tensor network ansatze of
condensed matter physics are only just beginning to show
the level of complexity where automated determination of
optimal contraction sequences is necessary, the advantages
of doing so have already been demonstrated: In Ref. [66], one
of the authors applied an earlier implementation of some of
the techniques described in Sec. IIB to the 4:1 2D MERA.
At the time, assuming all indices to have a dimension of yx,
the best-known contraction sequences for this ansatz scaled
as O(x2®) [27]; the automated search revealed a contraction
sequence for a cost of O(x2°).

Automated determination of optimal contraction sequences
relieves researchers from this lengthy and tiresome task and
may on occasion lead to implementations of algorithms
which are more efficient than those discovered by hand.
As increasingly sophisticated ansatze are proposed, the need
for automated search algorithms to determine optimal tensor
contraction sequences in condensed matter physics will only
increase.

B. New possibilities in condensed matter and quantum gravity

To date, tensor network algorithms in condensed matter
physics have employed fixed networks of tensors, where the
coefficients of the tensors may be updated but the structure
of the network itself remains unchanged, arguably due to
the requirement that optimal contraction sequences for these
tensor networks be hard-coded into the implementing software
at the time of programming. With the advent of an efficient
algorithm to find the optimal contraction sequence for an arbi-
trary network of tensors at runtime, algorithms which involve
a dynamically evolving tensor network become feasible. One
could, for example, propose an initial ansatz consisting of a
very highly connected tensor network with comparatively low
index dimensions and then perform variational optimization
while allowing the dimensions of these indices to vary
according to the spectra of appropriately chosen Schmidt
decompositions. By increasing bond dimensions where the
spectra are flat and decreasing them where the spectra decay
more rapidly, a tensor network may evolve to represent the
entanglement structure of the state under study. (A simple
example of this is automated reduction of index dimension in
DMRG for weakly correlated states, though in this instance the
optimal contraction sequence generally remains unchanged.)
Use of a software algorithm to determine optimal contraction
sequences (and to prohibit changes to the network whose costis
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too great) guarantees that the resulting tensor network ansatze
are contracted as efficiently as possible. The concept becomes
especially attractive when one considers results presented in
Ref. [68] showing how an O(N) speed-up may be obtained
for variational optimization of entirely nonsymmetric tensor
networks, making self-adaptive networks a potentially viable
proposition even in the absence of any obvious physical (e.g.,
spatial) symmetry.

The Netcon algorithm may also be of interest in the
numerical study of loop quantum gravity. In loop quantum
gravity, space is represented as a spin network, which may
be understood as a dynamically evolving network of SU(2)-
symmetric tensors, and calculation of observables with respect
to a given spin network necessarily involves the contraction
of a large tensor network. Further, in evolving from a state A
to a state B, multiple tensor contractions may take place, and
topological equivalence may give some freedom as to the order
in which these contractions are performed. In both situations
there is a need to determine the optimal sequence with which
to perform tensor contractions, and therefore there is a role
for an algorithm such as Netcon. Further, the proven ability
of Netcon to analyze networks involving a couple of dozen
tensors with only modest requirements in both memory and
computation time make the algorithm extremely well suited to
calculations on the sort of scales at which current numerical
simulations are likely to take place.
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APPENDIX A: MATRIX CHAIN MULTIPLICATION

The matrix chain multiplication problem is a well-known
problem in linear algebra, in which one must determine the
least number of mathematical operations required to evaluate
the product of a series of varyingly sized matrices. For
example, given the calculation

Djj = Aix x B x Cyj, (A1)

where indices 7, j, k, and [ range from 1 to §&;, &;, &, and
&, respectively (and &, is termed the dimension of index x),
one may first multiply A by B and then multiply (AB) by C
at a cost of §;£:& + &&&; operations or first multiply B by
C and then multiply A by (BC) at a cost of £§.&&; + &&.&;
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operations, where each operation comprises one floating point
multiplication followed by one floating point addition.

A matrix may only ever be multiplied by one of at most
two immediate neighbours,? and, as a consequence, an optimal
sequence of pairwise matrix products may always be found in
polynomial time scaling as O(n*) using dynamic programming
techniques [69]. For networks where a tensor may share
indices with more than two immediate neighbors, however,
this reduction to polynomial time breaks down, and, as seen
in Sec. II B 2, the optimal contraction sequence may then even
require performing the outer product between two or more
tensors which do not share a common index. (Constraints
derived in Sec. IIB2b show that there must exist at least
one tensor sharing indices with three neighbors for this to be
necessary, and so outer products are never required for the
matrix chain.) One is therefore forced to consider all pairwise
contractions regardless of whether any indices are shared by
the participating tensors, and the problem of determining an
optimal contraction sequence for a general tensor network has
been shown to be NP-hard [14].

For matrix chain multiplication, an even faster algorithm is
known which returns an optimal sequence in time scaling as
O(nlogn) [70,71]. However, no extension of this algorithm to
more general tensor networks has yet been proposed.

APPENDIX B: PREFERENTIAL NATURE
OF PAIRWISE CONTRACTIONS

In Sec. I B it was stated that an optimal contraction sequence
for a tensor network may always be realized as a series of
pairwise contractions. To see this, consider the contraction of
three tensors, A, B, and C, to yield a single tensor D. Let €45
denote the product of the dimensions of all indices on tensor
A which connect to tensor B, and similarly for £4¢ and &pc.
Let £4 denote the product of all indices on tensor A which
do not connect to either B or C, and similarly for &g and &c.
The dimension of a set containing no indices is always one.
Contracting these three tensors as a single process involves a
cost of

254&pEcEapbacse. (B1)
For example, for the contraction
D* = A" By, C, (B2)
we have
§a=lal, §p=1, &c=lel,
§ap = |bl, &ac =|c|, and &pc =d|. (B3)

For each element of DY it is necessary to sum over §4p&acépc
different contributions (corresponding to the enumeration of
indices b, ¢, and d), each involving two multiplications,
and there are then &,&z&c entries in D¢, for the total
number of multiplication operations given in Eq. (B1). In
contrast, pairwise contraction may be achieved by any of the

3Indeed, the constraints of Sec. II B2 confirm that outer products
need never be considered when looking for the optimal contraction
of a matrix chain.
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sequences ((AB)C), ((AC)B), or ((BC)A), where (XY)Z)
means “contract tensor X with tensor Y, then contract the
result with tensor Z.” The sequence ((AB)C) is readily seen
to attract a total cost of

EaépEaBEacépe + EaéBEcEactBe (B4)

multiplication operations, with those for ((AC)B) and
((BC)A) being achieved by the relevant label permutations.
Since all parameters in Eqgs. (B1) and (B4) take a value greater
than or equal to 1, the value of Eq. (B4) is always less than
or equal to that of Eq. (B1). The argument extends directly to
contraction of four or more tensors, with the cost of sequential
pairwise contraction continuing to always be less than or equal
to that of more complicated contractions, and, consequently,
for any tensor network it is always possible to identify a
minimum-cost contraction sequence in which all contractions
proceed in a pairwise fashion. Note that no assumption has
been made about the values of the index dimensions, and thus
this result holds even for contraction sequences involving outer
products, which may be equated with contraction over indices
of dimension one.

APPENDIX C: EXCLUSION OF SEQUENCES ((AB)(DE))
AND (((AB)E)D) FOR &; = &, IN FIG. 5(c)

In Sec. I B 2 ¢ we showed that to find an optimal contraction
sequence we only need consider outer products where the
resulting object is contracted with a fundamental tensor
(supplied as input to the algorithm), or with a composite tensor
(denoted C) where the final step in the lowest-cost construction
of this tensor necessarily takes the form of contracting D with
E in Fig. 5(c). It was also shown that indices &,, &, and &,
must satisfy the constraints

o < & (30)
§a < &, (33)

and that where multiple lowest-cost constructions of tensor C
exist, all must be consistent with Fig. 5(c) and it is the smallest
value of &, obtained which must satisfy Eqs. (30) and (33). We
now show that Eq. (33) may be tightened to

&1 < & 31)

In Sec. IB2c¢ we considered the contraction of a tensor
(AB), formed by performing an outer product between tensors
A and B, with tensors D and E which make up composite
tensor C, under the assumption that contraction (AB) was
always performed first. We then asked when it was preferable
to contract tensor D with tensor E, thus obtaining tensor C,
rather than contracting tensor (A B) directly with either D or
E. We now relax this setup to consider the network of four
tensors, A, B, D, and E, prior to any contraction but subject
to the constraint that £, = &;. This network is shown in Fig. 9,
and Eq. (30) now corresponds to

éalgaz < Scs (Cl)

where £, §,, = &,.
From Sec. IIB2c¢ we know that when & = &, the costs
of sequences ((AB)(DE)) and (((AB)E)D) are equal and are
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d
(2 &)
aq ag

FIG. 9. Network N zpr of Fig. 5(b) prior to contraction of tensor
A with tensor B.

given by
Eabay + Ea £l + Eu Enrbe. (C2)

We now compare this with the cost of sequence (((AE)D)B),
which evaluates to

Ea ke + E0 £l + Enke. (C3)

For ((AB)(DE)) or (((AB)E)D) to be cheaper than
(((CAE)D)B) requires

Ebay + Ea £yl + Eababe < Eae + Eabak] + ke
%—ali:az < (éal + Eaz - éaISaz)éc
= 0< Sal + Eag - galgaz- (C4)

Nondisjointness of the network requires &, > 2 and &,, > 2,
so this condition is never satisfied, and we may be sure of
identifying an optimal contraction sequence without consid-
ering either ((AB)(DE)) or ((AB)E)D). Consequently, it
is entirely acceptable that (((AB)E)D) be excluded by Eq.
(21) and ((AB)(DE)) by Eq. (31). Meanwhile, for sequence
(((AE)D)B) the constraints of Eq. (21) become

“;:ul‘i:c > Saz %-aléc > & (&%)

and are automatically satisfied by virtue of Eq. (C1) and
€ay 2 2.

APPENDIX D: PSEUDOCODE IMPLEMENTATION
OF SEC.1IB

This Appendix presents a pseudocode implementation of
the pruning algorithms described in Sec. II B 1 and Sec. II B 2.
The constraints on tensor C of Sec. II B2 c are realized by
constructing a list (called L) containing the sets of index
labels appearing on admissible tensors, along with the index
dimension corresponding to & = |E| in Fig. 5(c). Whenever
the best-known contraction sequence for a tensor C ends with
a contraction (DE) consistent with the structure shown in
Fig. 5(c), its details are added to the list. However, if a sequence
is subsequently identified of equal or lower cost which does
not satisfy this construction, the details of C are removed
from the list again. If this is going to happen, it always does
so before the next increment of fic,p. Additions to the list are
therefore made provisionally, to be confirmed once a pass with
a given value of ficyp is complete, and outer products are only
performed if there exists at least one nonprovisional entry in
the list which is consistent with the requirements for tensor C
given in Sec. IIB 2 c.
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If any provisional entries are present on the list when ficap
is due to be increased, then these entries are confirmed and
another pass is performed at the same value of pi¢,p to Tesolve
the new contractions which are made possible by the additional
nonprovisional entries in the list. Waiting until the initial pass
at cost [Lcqp is complete before performing the newly available
outer products means that if a provisional entry is added to
the list but is then subsequently deleted, or its constraints
are tightened, exploration of the corresponding unnecessary
branches of the search tree can largely be avoided.*

As per Sec. I it is assumed that all indices are of dimension
2 or higher and that the tensor network is nondisjoint. A
discussion of how this algorithm may be extended to disjoint
networks and networks including indices of dimension 1
may be found in the instructions accompanying the reference
implementation [67].

Algorithm: NETCON
(1) Let 8 ={T\,...,T,} be the set of n tensors which
make up network N
(2) Flag each tensor in S; as “old.”
(3) Let{S;|i € Z,2 <i < n} be empty sets.
(4) Let peap = 1, let proig = 0, let pipexy = 00, and let &pip
be the dimension of the smallest index on any tensor.
(5) Let L be an empty list whose entries [ € L each take
the form [ = {1;,&, f1}, where [; is a list of indices, &; is
a tensor dimension, and f; is a numerical flag. For each
T; in turn, perform subalgorithm ADDTOLIST [7;,—].
(6) Assign flag O (“old entry”) to all entries in L.
(7) While S, is empty:
(a) Let ¢ be a counter running from 2 to n.
For each value of ¢,
and each pair of sets Sy, Sc—g, | < d < L%J,
and each T, € S;, T, € S._4 such that each ele-
ment of S; appears at most once in (7,7}):
(i) If T, and T, share no common indices:
(A) If ftolg # Meap» and there exists an entry
lin L with flag f; = 0 (“0ld”) for which
I; contains all indices on 7, and 7}, and
& > |T,||Ty|, advance to step (7(a)iv).
(B) If polg = fhcap, and there exists an entry
[ in L with flag f; =1 (“new”) for
which I; contains all indices on 7, and
T, and & > |T,||Ts|, advance to step
(7(a)iv).

4This avoidance may not be perfect; consider the following
situation: Let a tensor X, consistent with (D E) in Fig. 5(c), be added to
list L and, subsequently, become nonprovisional. Let another tensor
Y be added to list L and become nonprovisional at the same time
or later than X. If addition of tensor Y to list L makes it possible to
construct X for equal-best or better cost than previously known, and in
a manner either inconsistent with Fig. 5(c) or yielding a lower value
of £. than previously obtained, then it is possible that time could
have been wasted on the performance of unnecessary contractions
(AB) and ((AB)X), where (A B) is an outer product, prior to finding
the new sequence for X and implementing the improved constraints
which that sequence implies. In practice, this scenario has yet to be
observed.
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(©) If pold = fheap, either of T, or Ty is
flagged as “new,” and there exists an
entry / in L with flag f; = 0O for which
I; contains all indices on 7, and 7}, and
& > |T,||Ty|, advance to step (7(a)iv).

(D) Otherwise, return to step (7a) and select
the next pair {7,,T}.

If either T, or T}, is the result of an outer

product, and contraction of 7, with 7, is not

an outer product:

(A) Ifboth T, and T, are outer products, this
violates the constraints of Sec. IIB2c.
Return to step (7a) and select the next
pair {T,,T3}.

(B) Let Y be the member of {7,,T,} which
is an outer product, and X be the
member of {T,,T,} which is not an
outer product. If X is not in §; and
does not satisfy the form mandated in
Fig. 5(c), return to step (7a) and select
the next pair {7,,73}.

(C) If X and Y do not satisfy Eq. (21), or X
isnotin S; and X and Y do not satisfy
Egs. (30) and (31), return to step (7a)
and select the next pair {T,,T}}.

If either T, or T, is the result of an outer

product, and contraction of T, with T is an

outer product, check that it satisfies Eq. (25).

Otherwise, return to step (7a) and select the

next pair {T,,T}}.

Let u = cost[(T,Tp)].

Where 7, and/or 7, do not belong to S,

add to u the previously determined cost of

constructing 7, and/or T} as appropriate.

If either T, or T, is flagged as “new,” let

o = 0. Otherwise, let (g = Wold-

If u > Mcap and i < fnexts 1€t Unext = M.

If o < 1 < Meap:

(A) Let the contraction sequence Q for
constructing this object be written Q =
(T, Tp). Where T, and/or T, do not be-
long to S, the best-known contraction
sequences for T, and T}, will have been
previously recorded: In Q, replace each
appearance of T, and/or T, with the
corresponding best-known contraction
sequences.

(B) If no object corresponding to (7,7T)
has yet been created in S, create it.
Otherwise, locate the object in S, which
corresponds to (7, Tj).

(C) If this is the first known sequence for
constructing this object, or u is cheaper
than any previously known cost for
constructing this object:

(I) Record the cost u and the as-
sociated contraction sequence Q
against this object.

(II) Flag the object as “new.”
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() If T, and T, have structures per-
mitting them to be identified with

D and E in Fig. 5(c) and their

dimensions satisfy Eq. (32), per-

form sub-algorithm ADDTOLIST

[(T,Tp),Q]. Otherwise, if this is

not the first known sequence for

constructing this object, perform
subalgorithm REMOVEFROMLIST

[(TaTp)].

(D) If this is not the first known sequence
for constructing this object, u is equal
to the best previously known cost for
constructing this object, and the final
contraction in the previous best-known
sequence for this object can be identi-
fied with (DE) in Fig. 5(c):

(D If T, and T} have structures per-
mitting them to be identified with
D and E in Fig. 5(c), and the
value of &, in Fig. 5(c) for se-
quence Q is lower than that of the
previous best recorded sequence
for (T,T,) but still satisfies Eq.
(32), replace that sequence with
Q and then perform subalgorithm
UPDATELIST [(T,T}),9Q].

If T, and T}, have structures per-

mitting them to be identified with

D and E in Fig. 5(c), and the value

of & in Fig. 5(c) for sequence

Q is lower than that of the pre-

vious best recorded sequence for

(T, T,) and does not satisfy Eq.

(32), replace that sequence with

Q and then perform subalgorithm

REMOVEFROMLIST [(T,T}),Q].

If T,, and T}, do not have structures

permitting them to be identified

with D and E in Fig. 5(c), re-
place the previous best recorded
sequence for (7,7,) with Q and
perform subalgorithm REMOVE-

FROMLIST (T, T})].

(B) If (T, Tp) € Sy, set picap = 4. (Solution
found; no need to consider any se-
quences more expensive than this.)

(b) Let pola = Mcap-

(c) If no entries in L are flagged 2 (“provisional”), set
Meap €qual to the larger of fpext and Eminflcap and
then set flpexy = 00.

ey

(I1D)
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Subalgorithm: ADDTOLIST [X,Q]

(D

2)

3)

“4)

If X is in Sy, let £ = co. Otherwise, considering the
final step in sequence Q, let £ be the dimension of the
tensor which corresponds to E in Fig. 5(c).
An entry in L takes the form [ = {[;,&;, fi} where [,
is a list of indices, & is a tensor dimension, and fj
is a flag. Stepping through all nonprovisional entries
{leLlfi #2}
(a) Ifindices on X exactly match /;:
(i) Set§ =5§.
(ii) If this corresponds to an increase in the value
of &, constraints have been relaxed. Set f; = 2
to ensure another pass at the same value of
Mcap-
(iii)) Terminate subalgorithm ADDTOLIST.
(b) If f; # 2, all indices on X appearin [;, and £ < &;:
(i) Anentry for X would be redundant. One may
previously have been created in L due to an
earlier sequence with a higher value of §.
If so, this is now superceded by the present
value of & and so is also redundant. Perform
subalgorithm REMOVEFROMLIST [ X].
(i) Terminate subalgorithm ADDTOLIST.
If an entry for X may previously have been created in L
with higher &, step through all provisional entries {/ €
L|f; = 2}. If an entry [ is found for which I; exactly
matches the indices on X:
(a) Setg =§.
(b) Terminate subalgorithm ADDTOLIST.
Add anew entry I’ to L, where I is a list of all indices
appearing on X, & = &, and f; = 2 (“provisional”).

Subalgorithm: UPDATELIST [X,Q]

(1)

2

Considering the final step in sequence Q, let & be the
dimension of the tensor which corresponds to E in
Fig. 5(c).

An entry in L takes the form ! = {1;,&, f;}, where I; is
a list of indices, & is a tensor dimension, and f; is a
flag. Stepping through all entries {I € L}, if I; exactly
matches the indices on X:

(a) Set§ =§.

(b) Terminate subalgorithm UPDATELIST.

Subalgorithm: REMOVEFROMLIST [X ]

(D

An entry in L takes the form ! = {1;,&, f;}, where I; is
a list of indices, & is a tensor dimension, and f; is a
flag. Stepping through all entries / € L, if the indices
on X exactly match I;:

(a) Delete entry [ from L.

(b) Terminate subalgorithm REMOVEFROMLIST.

A reference implementation of the NETCON algorithm, writ-

ten in MATLAB and C++, may be found in the Supplemental
Material associated with this paper [67]. The implementation
requires MATLAB 2011a or above, and performance may be
enhanced using of a compatible C++ compiler. It has been
tested under MATLAB 2011a with Apple XCode 5.0.2 and
MATLAB 2012b with Gnu C+4+ 4.7.2-2ubuntul. The network
contraction sequences output by the reference implementation
are fully compatible with the tensor network contraction

(d) Flag all tensors in all S; as “old.”

(e) Confirm provisional additions to L: Decrease the
flags on all entries in L by 1 to a minimum of 0.

(f) Remove redundant entries in L: For each entry
[ € L and for each entry I’ € {L|fy = 1,I’ #1}, if
I; C Iy and & < &y, delete entry [ from L.

(8) The optimal cost ppest and a sequence Qpey Which
realizes this are recorded against the only elementin S,,.
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packages ncon() and multienv() of Refs. [72] and [68],
respectively.

APPENDIX E: OPTIMAL CONTRACTION COST
AND INDEX DIMENSION

In Sec. IIT we computed contraction sequences for seven
different tensor networks, expressing the costs of these
sequences as polynomials in a parameter x corresponding
to index dimension. The costs and sequences computed are
optimal for sufficiently large values of x, but it is important
to note that the optimal contraction sequence may depend on
the value of x in a nontrivial fashion. As an example, consider
the simple network shown in Fig. 10. Contracting this network
according to the sequence ((AC)B) incurs acost of 72 x 6 while
the sequence ((BC)A) incurs a cost of 12x7. The sequence
((AC)B) is therefore clearly to be preferred in the limit of large
X, but sequence ((BC)A) is preferred for index dimensions
corresponding to values of y < 6. When comparing the costs
of different contraction sequences it is therefore necessary
either to know the value of x or to assume that y is large. The
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Index label Dimension|
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- 0 0 T o
>

FIG. 10. A simple network for which the optimal contraction
sequence varies with the value of x.

reference implementation of Appendix D which is provided
in the Supplemental Material [67] permits either scenario,
allowing index dimensions to be specified either as explicit
real numbers or as monomials a x? for real positive a and real
non-negative integer . When index dimensions are specified
as monomials, the value of x is assumed to be large.
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