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ABSTRACT 

According to dominant neuropsychological theories of affect, emotions signal salience of 

events and in turn facilitate a wide spectrum of response options or action tendencies. Valence 

of an emotional experience is pivotal here, as it alters reward and punishment processing, as 

well as the balance between safety and risk taking, which can be translated into changes in the 

exploration-exploitation trade-off during reinforcement learning (RL). To test this idea, we 

compared the behavioral performance of three groups of participants that all completed a 

variant of a standard probabilistic learning task, but who differed regarding which mood state 

was actually induced and maintained (happy, sad or neutral). To foster a change from an 

exploration to an exploitation-based mode, we removed feedback information once learning 

was reliably established. Although changes in mood were successful, learning performance 

was balanced between the three groups. Critically, when focusing on exploitation-driven 

learning only, they did not differ either. Moreover, mood valence did not alter the learning 

rate or exploration per se, when titrated using complementing computational modeling. By 

comparing systematically these results to our previous study (Bakic, Jepma, De Raedt, & 

Pourtois, 2014), we found that arousal levels did differ between studies, which might account 

for limited modulatory effects of (positive) mood on RL in the present case. These results 

challenge the assumption that mood valence alone is enough to create strong shifts in the way 

exploitation or exploration is eventually carried out during (probabilistic) learning. In this 

context, we discuss the possibility that both valence and arousal are actually necessary 

components of the emotional mood state to yield changes in the use and exploration of 

incentives cues during RL. 
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INTRODUCTION 

 

Many students would agree that studying for an exam after a heartbreak is a 

particularly hard thing to do. On the other hand, some professors would argue that, if one 

wants to excel, also the happy, falling in love phase is best avoided altogether. Even if it was 

possible, would it really be best if emotions were somehow hushed and kept at bay in order to 

learn? Or is it possible that both happiness and sadness can enhance learning? If so, which one 

works better? 

Emotions are complex, multi-faceted phenomena that signal importance of events and 

guide actions to maximize benefits and minimize damage. From an evolutionary perspective, 

development of such variety and richness of emotions as we know today enabled more 

flexible, more adaptive functioning, and ultimately, a wider spectrum of response options 

(Lang & Bradley, 2010). In that sense, valence of emotional experiences plays a pivotal role: 

positive emotions (such as happiness, joy, amusement, pleasantness) are hypothesized to 

signal safety and instigate creativity, exploration, playfulness, and risk-taking. In contrast, 

negatively valenced emotions, such as fear, sadness, anger, disgust, or frustration, signal 

threat and the need to recruit additional resources to deal with potential harm or loss (Ashby, 

Isen, & Turken, 1999; Fredrickson, 2004; Isen, 1993).  

From this initial premise, different expectations about the effects of positive and 

negative emotions on cognition and behavior can be derived. Most research on the topic was 

performed by inducing mood, using different strategies (including movie clips, images, music, 

autobiographical pieces, guided imagery; see Martin, 1990; Westermann, Stahl, & Hesse, 

1996). Moods are considered to be more enduring and milder than emotions, and are not 

directed towards a certain entity, but are rather “non-focal” (Bolte & Goschke, 2010). Mood 
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effects have been examined in the area of creative thinking (Isen, Daubman, & Nowicki, 

1987; Isen, Johnson, Mertz, & Robinson, 1985; Isen, 1984), attention (Huntsinger, 2012; 

Vanlessen, Rossi, De Raedt, & Pourtois, 2014), and cognitive control (Fröber & Dreisbach, 

2014; van Steenbergen, Band, & Hommel, 2010). Effects of mood on performance are rather 

mixed though, with some studies showing that positive mood does not necessarily translate 

into improved (behavioral) performance (Braem, Verguts, Roggeman, & Notebaert, 2012;  

van Steenbergen, et al., 2010; Zwosta, Hommel, Goschke, & Fischer, 2013), or that negative 

mood automatically leads to detrimental effects for cognition and behavior (for example, see 

Cavanagh, Bismark, Frank, & Allen, 2011). Hence, the prevailing notion that positive 

emotions are unequivocally beneficial for functioning, while negative ones are necessarily 

detrimental has been challenged recently. For example, recent studies showed that positive 

affect can actually lower proactive control (Dreisbach, 2006; Vanlessen, De Raedt, Mueller, 

Rossi, & Pourtois, 2015), which, depending on the task at hand, can be either detrimental or 

beneficial. Moreover, positive affect can foster the dominant cognitive style, while negative 

affect can counteract it, an observation that speaks against the idea that positive valence is 

unconditionally related to a broad focus and enhanced flexibility, while negative valence is 

related to a narrow focus and enhanced rigidity (Hunsinger, Isbell, & Clore, 2012). In this 

context, positive mood does not simply correspond to the mere opposite of negative mood 

along a valence dimension or continuum. 

As a matter of fact, reinforcement learning (RL) is a particularly good candidate as a 

process to be modulated by mood, because by definition, it relies directly on the processing of 

positive vs. negative information or incentives to achieve a goal at hand. Stimulus-response 

associations (S-R) are being formed in a trial-and-error fashion, based on externally provided 

feedback, reward or punishment, about one’s own actions (Sutton & Barto, 1998). If current 

mood provides an emotional context for the learning situation, then it could change the 
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salience of error and reward, or how threatening and appetitive they are eventually perceived, 

and in turn processed. A performance monitoring system in charge of learning will value 

opportunities and threats in surroundings differently depending on the current state and the 

needs of the organism. Most theories of RL argue that performance optimization is based on 

the right amount of exploitation of rewarding options, and exploration of less known, but 

potentially even more beneficial alternatives (Aston-Jones & Cohen, 2005; Behrens, 

Woolrich, Walton, & Rushworth, 2007; Cohen, McClure, & Yu, 2007; Jepma & 

Nieuwenhuis, 2011). These two concurrent processes, exploration and exploitation, have 

complementary benefits or functions: while it is important to keep current goals in mind and 

not allow for distractions (i.e., favor exploitation), it is at the same time important to keep the 

environment in check for potential changes that might reliably influence performance (i.e., 

foster exploration). We  hypothesize that this trade-off between exploration and exploitation 

might be susceptible to changes in the current mood state of the participant. If positive mood 

leads to more exploration of less known options, while sad mood is accompanied by a more 

stringent focus (Bolte & Goschke, 2010), oriented towards negative information, then this 

effect should be visible in the exploration-exploitation trade-off during RL. Moreover, we can 

expect that mood manipulation will also influence the usage of positive and negative feedback 

for response updating, such that happy participants could update more based on positive (than 

negative) feedback, while sad subjects could avoid negative feedback. 

Along these lines, Unger, Kray and Mecklinger (2012) have shown that, in a learning 

paradigm, inducing a feeling of performance-related failure changes the strategy towards 

more error-driven behavioral control, while it concurrently increases early 

electrophysiological markers of error monitoring (at the level of the error related negativity, 

ERN). In a previous study, using a probabilistic learning paradigm, we also showed that 

happy mood increased the ERN when learning was deterministic, and was associated with an 
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augmented learning rate (but not exploration, see Bakic et al., 2014). More specifically, we 

used a probabilistic learning task (Eppinger, Kray, Mock, & Mecklinger, 2008) in which the 

different S-R associations that had to be learned across multiple and successive encounters 

had actually different reward probabilities, unknown to the participants. This situation usually 

creates a certain amount of uncertainty that learning agents have to overcome in order to 

optimize their learning performance. Presumably, this uncertainty might be dealt with 

differently depending on the current emotional state of the participant. Even though in this 

study we demonstrated that, by modulating the current mood of the participant, we were able 

to modulate the learning rate (accompanied by change on the electrophysiological level as 

well, more precisely for the ERN component; see Bakic et al., 2014), we failed however to 

show that positive mood led to clear benefits or impairments in the actual learning 

performance during this probabilistic task (i.e., happy participants did not perform better or 

worse than neutral participants during RL). 

Accordingly, in the present study, we sought to adapt this experimental paradigm (see 

Bakic et al., 2014) in a way that would allow us to maximize the chance to capture such a 

difference at the behavioral level between the two groups. For this purpose, in addition to a 

standard initial learning phase (consisting of trials made each time of stimulus-response-

feedback associations) that is identical as in previous research (Bakic et al., 2014; Eppinger et 

al., 2008), we added a second phase, where feedback on task performance was omitted. In 

other words, during this second phase (when learning was already established), we changed 

the trial structure in such a way that a standard stimulus-response-feedback sequence was 

changed to stimulus-response one, preventing participants from using feedback information 

(and thereby exploration) to guide learning. At this point, participants could only use stored 

value estimates, and were no longer able to track state transitions of value. Based on the 

results obtained in our previous study, we already knew that S-R associations were already 
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formed during the first phase before they moved to the second one. More specifically, 

internalization of task rules took place and externally provided feedback was no longer 

necessary to perform the task accurately. This is consistent with the assumption that 

exploration of different response alternatives was no longer needed, and the (direct) 

exploitation of the acquired knowledge could be carried out. Using this specific manipulation, 

we wanted to examine whether creating such clear-cut difference between the exploration and 

exploitation stage of the task could eventually lead to a clearer difference at the behavioral 

level between the two groups than in our previous study (Bakic et al., 2014). Additionally, 

other than comparing only happy and neutral mood, in the current study, we added a third 

group of participants who received a similar mood induction procedure (MIP) but with a sad 

content. This way, we could assess whether sadness might perhaps produce different effects 

on RL compared to happiness, thereby confirming that mood valence plays a critical role in 

triggering specific changes during RL.  

To summarize, the goal of this study was to test the effects of inducing happy, neutral 

or sad mood on RL (operationalized using a probabilistic learning task; see Bakic et al., 

2014), when this process was broken down into two consecutive phases: an initial learning 

phase relying on the use of external feedback information to guide learning (where both 

exploration and exploitation are used in synergy), followed by a second phase where feedback 

was omitted (and exploitation alone is encouraged). Our experimental design involved 

comparisons of three groups of participants differing from one another regarding the actual 

mood state induced (happy, neutral, or sad), but using the same guided imagery procedure 

(Holmes & Mathews, 2010). Based on our first study (Bakic et al., 2014), during the first part 

of the task, we did not expect to find group differences in rough measures of learning (e.g., 

accuracy). We surmised, however, that the happy group could show a higher learning rate 

(with no change in exploration), compared to the neutral (and/or sad) group. If sad mood 
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influences learning performance in an opposite manner compared to the positive mood group, 

then we could expect a lower learning rate in this group compared to the two other ones 

(happy and neutral). Additionally, we predicted that during the second phase of the task where 

feedback information was no longer available, happy mood could be associated with a better 

learning performance than either neutral or sad mood given that this specific mood state could 

bolster internalization of the task rules and in turn exploitation (Nadler, Rabi, & Minda, 

2010). Alternatively, if positive mood truly fostered the dominant response tendency or 

cognitive style (Hunsinger, Isbell, & Clore, 2012), then we could expect that following its 

induction an increased use of the learned S-R associations could be observed during this part 

of the experiment where exploitation of prior knowledge was encouraged. 

METHODS 

 

Participants 

Fifty two participants (undergraduate psychology students) took part in the study in 

exchange for course credits. They were randomly assigned to one of the three mood groups: 

happy, neutral or sad mood. They were all right-handed, with no past or current neurological 

or psychiatric problems, they had normal or corrected-to normal vision, and all gave written 

informed consent prior to the start of the experiment. The data of seven participants were 

removed according to the following exclusion criteria (see also Bakic et al., 2014). First, one 

participant was excluded in the happy group because of the lack of a marked increase in 

happy mood following the MIP compared to the baseline (i.e., the average increase was not 

different than the baseline value). Likewise, one participant was excluded from the sad group 

due to the lack of a marked increase in sadness relative to the baseline mood measurement. 

Finally, two participants were excluded from the neutral mood group because their average 
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happiness level was higher than the mean of the happy group, whereas no change in mood 

was expected to take place in this control group. Second, participants showing no learning 

during the main task (i.e., their learning curves did not differ from chance level) were 

excluded as well (n=3; one in each group). Note that the behavioral results obtained for the 

accuracy, RT and learning rate data remained unchanged when including them in the 

statistical analyses. However, because they did not show learning, their data were deemed 

noisy and they were therefore removed from the subsequent statistical analyses. The final 

sample consisted of 45 participants (mean age= 20.62 years, S.D. =2.29, 29 females), 14 in 

the happy, 14 in the neutral, and 17 in the sad mood group. The study was approved by the 

local ethics committee.  

Mood induction 

We used a previously validated MIP (Vanlessen, Rossi, De Raedt, & Pourtois, 2013; 

Vanlessen et al., 2014; Bakic et al., 2014). Mood was induced by means of a guided imagery 

procedure, where participants were instructed to vividly imagine reliving either a happy, 

neutral, or sad (depending on the group they were assigned to) autobiographical memory 

(Holmes, Coughtrey, & Connor, 2008; Holmes, Mathews, Dalgleish, & Mackintosh, 2006). 

First, the participants were trained in taking a field perspective (i.e., imagining from one’s 

own perspective) during mental imagery. Then they had to choose an appropriate 

happy/neutral/sad event, an episodic memory that happened at least a week before, and to 

report explicitly about it. For the recall that would ensue, they were instructed to keep their 

eyes closed and visualize all the specificities of the memory, and to use the field perspective 

(Watkins & Moberly 2009, based on Holmes et al., 2008). The actual recall session was 

divided into two parts of 30s each, and in between participants were asked questions about 

different aspects of the happy/neutral/sad memory they were imagining. Participants were 

blind to the real purpose of the procedure, believing that it was about remembering an event 
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from the past as vividly as possible (and not about re-experiencing the actual emotion of this 

specific event). After each mood induction, participants marked on 10-cm horizontal visual 

analogue scales (VAS) their current level of happiness, pleasantness, and sadness, with 

“neutral” on one end/anchor to “as happy/pleasant/sad as I can imagine” on the other. Arousal 

was measured on a 9-point Likert scale. 

Probabilistic learning task 

A modified version of the probabilistic learning task previously validated by Eppinger 

et al. (2008) was used in this study, with the first phase of the experiment being the same as in 

previous studies (Bakic et al., 2014; Eppinger et al., 2008; see Figure 1B). During this phase, 

participants were asked to decipher and learn, by trial and error, several hidden stimulus-

response (S-R) mappings. For each trial, participants were asked to decide, with a time limit, 

whether the stimulus shown on the screen was associated with response 1 or 2. Visual 

feedback regarding the actual choice made by the participant was given following each and 

every response made during this first phase. Upon completion of this first phase, participants 

move to the second phase of the experiment, where a generic and uninformative feedback was 

now presented but task instructions remained unchanged (Figure 1C).  

Participants were presented with 6 visual stimuli (A-B-C-D-E-F), belonging to three 

conditions (unknown to the participants) that differed regarding the actual probability of the 

S-R mapping (100%, 80% or 50%). In the condition 100%, each stimulus of the pair was 

always associated with one of the two response keys, corresponding to a “deterministic” S-R 

mapping (i.e., response 1 was always correct for stimulus A, and response 2 for the stimulus 

B). In the condition 80 %, the S-R mapping was “probabilistic”, given that stimulus C was 

associated 80% of the time with response 1 (and thus 20% of the time with the concurrent 

response 2), while stimulus D had a symmetric probability for the S-R mapping. Finally, in 

the condition 50% (“random” S-R mapping), each stimulus of the pair was associated equally 
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often to each of the two response keys (i.e., stimuli E and F were associated 50% of the time 

with response 1 and 50% of the time with response 2). The structure of the task is presented in 

Figure 1. 

Colorful line drawings (Rossion & Pourtois, 2004) were used as visual stimuli (Figure 

1a), presented against a white homogenous background on a 17-inch computer screen. These 

stimuli were visual objects belonging to different semantic categories (artifacts, buildings, 

musical instruments, clothes, vehicles, furniture). Their mean size was 7 cm width x 5 cm 

height, corresponding to 5 x 3,6 degrees of visual angle at 80 cm viewing distance.  

For the first phase of the experiment (Figure 1B), the trial structure was as follows: it 

began with a fixation cross of 250 ms duration, followed by a 250 ms blank screen. Then, the 

stimulus was presented for 500 ms, followed by a blank screen lasting 300 ms. Response 

deadline was set to 800 ms following stimulus onset. After 500 ms, performance feedback 

was presented for 500 ms. The feedback was provided in the form of a written word (in 

Dutch) shown in black against a white homogenous background. This word was “goed” 

(correct), “fout” (incorrect), or “te traag” (too late). The inter-trial interval was constant (500 

ms) and it corresponded to a blank screen, after which a new trial ensued. Manual responses 

(i.e., key presses) were recorded using the Cedrus response box. After participants completed 

240 trials (6 stimuli x 40 repetitions), trial structure changed. During this second phase 

(Figure 1C), trial structure was the same as for the first phase of the experiment, with the 

following notable exception: instead of a meaningful feedback response (informing the 

participant about his actual accuracy) appearing on the screen after each manual response, 

there were three “x” signs shown as visual feedback each time (in the same location and for 

the same duration as in the previous phase of the experiment). In this way, trial structure 

remained identical, the only difference being the lack of informative external feedback. 
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Participants performed 120 trials (6 stimuli x 20 repetitions) with this uninformative feedback 

(“no feedback” condition hereafter). 

Each participant completed two blocks of 360 trials (240 with and 120 without 

feedback). Each block had six different stimuli. Accordingly, participants had to learn six new 

S-R associations in each block. Trial order within a block as well as the order of the two 

blocks were alternated across participants.  

Procedure 

In order to get acquainted with the task, participants first completed a short practice 

session of 20 trials. Next, a happy, neutral, or sad mood was induced by means of the MIP 

before the beginning of the first block. In order to sustain the targeted mood throughout the 

whole experimental session, the same MIP was briefly rehearsed (5 minutes) during both 

blocks, every 120 trials (corresponding to two bins; see data analysis here below). The same 

procedure was also repeated during the break between two blocks. Hence, in total, 

participants encountered the MIP 7 times. Additionally, participants assigned to the sad group 

received one more MIP at the very end of the experiment. This MIP consisted of actively 

reliving a happy past memory episode (very much like what was made in the happy mood 

group) in order to make sure that these participants (sad mood group) would not leave the lab 

with a lingering sad mood. Self-ratings after this MIP showed that happiness ratings for the 

sad mood group went back to a neutral mood baseline, being in turn comparable to those of 

the neutral mood group after the experiment (see Figure 2). 

In order to strengthen the effect of mood, an evaluative feedback was added 

(rewarding in the happy mood group, neutral in the neutral group, and mildly negative in the 

sad mood group) at the end of each block. This (bogus) feedback consisted of a small text 

fragment shown on the screen, informing participants that they had to wait briefly until the 
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computer had calculated online their learning performance up to that trial number. After a few 

seconds, an Excel-like scatter plot appeared on the screen, showing them their performance 

level allegedly relative to a group of peers. Their score was indicated by means of a color dot. 

This dot was positioned systematically either higher up in the distribution of scores for 

participants in the happy mood group, somewhere in the middle of the distribution for those 

belonging to the neutral mood group, and slightly lower for the participants in the sad mood 

group. Next to this scatter plot, a specific written message was included. It informed them to 

try to keep the same level of performance or perform better if possible. Manipulation checks 

based on VASes (see results below) confirmed that this procedure (combined with the MIP) 

actually produced the desired effects: an increase of happiness in the happy mood group, with 

no change in affect (neither happy, nor sad) in the neutral mood group, and a decrease of 

happiness in the sad mood group. However, it should be mentioned that because we used the 

MIP in conjunction with this bogus feedback manipulation, the changes in mood observed (at 

the subjective level; see results here below) were likely to be explained no only by the MIP, 

but also (albeit to a lower degree) by some motivational processes involved in the processing 

of this (bogus) feedback information. However, we have good reasons to believe that the 

change in happiness (or sadness in the sad mood group) was mainly due to the MIP and the 

use of guided imagery (see also Vanlessen et al., 2013, 2014), and not so much to this 

(infrequent) feedback manipulation that occurred only four times during the course of the 

experiment. Moreover, after each block, participants were asked to indicate, for each of the 6 

stimuli, the clarity and certainty of each of the six stimulus-response (S-R) associations, by 

means of a horizontal 10-cm VAS. Furthermore, they were asked to rate the amount of 

positive vs. negative feedback they thought they received during this last block (using a 10 cm 

VAS going from “exclusively negative” to “exclusively positive”), as well as how much they 
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liked or disliked these positive vs. negative feedback when receiving them (using a Likert 

scale spanning from 0 to 100).  

Finally, participants were asked to fill out two trait-related questionnaires: the Beck 

Depression Inventory (Beck, Steer, Ball, & Ranieri, 1996), and the Resilience scale translated 

in Dutch (Portzky, De Bacquer, Audenaert, & Wagnild, 2010). The whole experiment lasted 

for about 2 hours. 

Data analysis 

Mood manipulation. The efficiency of the increase/decrease in happy mood (relative 

to the neutral group) following the MIP was assessed by means of mixed model ANOVAs 

with group (n=3) as between subjects factor and time (n=7) as within subjects factor.  

Accuracy analyses. Accuracy data were expressed in proportions of correct responses 

from the total number of trials, separately for each probability (n=3). Moreover, for each 

probability separately (2 stimuli x 40 repetitions), changes of learning performance as a 

function of time were captured by grouping the data into bins of equal sizes (i.e., 20 trials; see 

Eppinger et al., 2008; Bakic et al., 2014 for a similar approach). These data were then 

submitted to a mixed model ANOVA with Group (n=3) as between subjects factor, and 

Probability (n=3) and Bin (n=4) as within subjects factors. Additionally, in order to compare 

possible differences between learning with vs. without feedback, we averaged the scores of 

bins 3 and 4 together (exploitation and exploration), and bin 5 and 6 (exploitation only), and 

submitted these mean values to a mixed model ANOVA with Group as between subjects 

factor, and Probability and Phase as within subject factors. Where necessary, Greenhouse-

Geisser correction for sphericity was performed, and corrected p values were reported, 

together with uncorrected eta square measure of effect size. 
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RL model. For the first phase of the experiment (with feedback information provided 

to the participants), we used two complementary measures based on the modeling procedure 

described previously in Bakic et al. (2014). We computed first the learning rate parameter (α), 

which determines the impact of the most recent feedback on the current S-R association, such 

that higher learning rates correspond to larger fluctuations in response behavior from trial to 

trial while lower learning rates index more stable response behavior. We also calculated a 

second parameter, β, which is a “noise” parameter that reflects how random choices are (and 

hence it provides an indirect measure of exploration). 

RESULTS 

Mood 

The analysis of the MIP ratings showed a significant Time*Group interaction for 

pleasantness (F(7.25, 152.22)= 8.53, p<.01, η
2
= .29), happiness (F(9.45, 198.40)= 11.18, 

p<.01, η
2
= .35), sadness (F(9.84, 81.19)= 6.98, p<.01, η

2
= .25), and arousal (F(8.22, 172.53)= 

2.36, p<.05, η
2
= .10). The main effect of Group was also significant for pleasantness (F(2, 

42)= 42.02, p<.01, η
2
= .67), happiness (F(2,42)= 43.71, p<.01, η

2
= .68), sadness (F(2,42)= 

24.71, p<.01, η
2
= .54), and arousal (F(2,42)= 5.79, p<.05, η

2
= .22). Independent samples t-

tests for direct comparisons between the happy and the neutral, and the neutral and the sad 

group showed that there were no significant differences at baseline, whereas in each 

subsequent measure (hence following the MIP each time) the happy group showed an increase 

compared to the neutral group, while the sad group showed a marked decrease in levels of 

pleasantness (Table 1). The same was true for happiness ratings (Figure 2, Table 2). 

Independent t-tests for the sadness ratings (Table 3) showed that the happy and the neutral 

group had comparable, low and unchanged levels of sadness, whereas in the sad group 

sadness increased after the first MIP and stayed significantly higher than in the neutral group 



16 

 

throughout the duration of the experiment (except for the last measurement following a 

positive MIP meant to restore a neutral mood state in this group; see methods). More 

specifically, a paired sample t-test for the sad group showed that after the final happy MIP 

(M=14.5, SD=12.2), this group had significantly lower sadness scores than after the last sad 

MIP (M=31.36, SD=17.64), (t(16)=4.51, p<.01). At the same time, happiness scores increased 

significantly from last sad MIP (M=18.43, SD= 14.14) to the happy MIP (M=48.43, 

SD=17.09), (t(16)=-7.04, p<.01). The happy and the sad group did not differ significantly in 

arousal levels (Table 4), but the sad group showed somewhat lower arousal scores than the 

neutral group. 

Too late responses 

 The number of too late responses was modest (M=1.64, SD= 0.93) and not different 

between the three mood groups (p’s>.05). There was a significant Group*Bin interaction 

(F(10, 210) =3.02, p<.01, η
2
=.13), showing that neutral group had a larger number of too late 

responses compared to the other two groups for the final two bins without feedback. 

Additionally, there was a significant main effect of Probability (F(2, 84) =9.64, p<.01, 

η
2
=.19), and Bin (F(3.71, 155.95) =2.94, p<.05, η

2
=.10). In the deterministic condition 

(M=1.37, SD=0.93), the number of too late responses was lower than in the random condition 

(M=2.02, SD=1.19), (t(44)=-5.20, p<.01), but not different than in the probabilistic condition 

(M=1.54, SD=1.06), (p>.05). This latter condition differed significantly from the random 

condition (t(44)= -3.48, p<.01). Moreover, paired samples t-tests showed that the number of 

too late responses differed only between bin1 (M=2.08, SD=1.39) and bin2 (M=1.76, 

SD=1.38) (t(44)=2.34, p<.05), while the other comparisons between bins did not reach 

significance (all ps>.05). 

Accuracy 
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 Results showed a significant Probability*Bin interaction (F(10,420)=6.13, p<.01, 

η
2
=.13), as well as significant main effects of Probability (F(1.70, 71.89)=334.96, p<.01, 

η
2
=.89), and Bin (F(3.92, 164.70)=34.27, p<.01, η

2
=.45). This interaction indicated, as can be 

seen from Figure 3, that accuracy was higher and that learning was steeper in the 

deterministic than in the probabilistic condition, while there was no learning (across time) 

whatsoever in the random condition. 

Next, we averaged performance for the two last Bins in the learning phase with 

feedback and compared it to the two bins of the “no feedback” phase in order to assess 

whether learning still increased once feedback information on task performance was removed, 

and exploitation only was required (Figure 3). This analysis showed a significant main effect 

of Phase (F(1,42)=10.02, p<.01, η
2
=.19), suggesting that learning still increased reliably after 

removing the feedback. There was also a significant main effect of Probability 

(F(2,84)=365.28, p<.01, η
2
=.90). However, there were no significant group-related effects (all 

p’s>.05). 

Reaction times (RTs) for correct responses 

Results showed a significant effect of Probability (F(1.95, 81.95)=3.78, p<.05, 

η
2
=.08). Follow-up t-tests showed that the random condition (M=412.61, SD=39.32) had 

marginally significantly longer RTs than the probabilistic (M=408.62, SD=35.66), (t(44)=-

1.85, p=.07). RTs for the random condition were significantly longer than for the 

deterministic condition (M=406.78, SD=35.22), (t(44)=-3.05, p<0.01). The deterministic and 

probabilistic conditions did not differ significantly from each other (p.> .05). Unexpectedly, a 

significant main effect of Group was evidenced, (F(2,42)=10.82, p<.01, η
2
=.34). Follow-up 

independent t-tests showed that the sad group (M=382.81, SD=34.20) had overall 
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significantly faster RTs (see Figure 4) than the happy (M=424.22, SD=19.81), (t(29)=4.00, 

p<.01) and the neutral mood group (M=426.68, SD=32.35), (t(29)=3.64, p<.01). 

Learning rate  

The main effect of feedback valence was significant (F(1,42)=172.78, p<.01, η
2
=.80), 

showing that this parameter was overall larger for positive than negative feedback, as already 

found in our previous study (Bakic et al., 2014). Other effects remained all non-significant (all 

p’s >.05; see Figure 5). 

Exploration parameter 

The one way ANOVA showed no significant group differences in exploration (Figure 

6). 

Post-experiment ratings 

The mixed-model ANOVA carried out on the clarity ratings showed a significant main 

effect of Probability (F(1.70, 71.61)= 708.28, p< .01 η2=.94), showing that clarity increased 

monotonically as a function of increasing reward probability (Table 5). The analysis 

performed on the certainty ratings revealed a significant Phase*Probability interaction 

(F(2,84)=76.97, p< .01, η
2
= .65), as well as significant main effects of Phase (F(1,42) =53.12, 

p<.01, η
2
=.56) and of Probability (F(2,84)=228.89, p< .01, η

2
= .85). This significant 

interaction was followed up by a paired t-tests to compare certainty across the two phases for 

each probability separately. The only significant difference was found in the deterministic 

condition, where certainty in the no feedback Phase (M= 82.93, SD=5.66) was significantly 

higher than in the Phase with feedback (M=61.49, SD= 11.48), (t(44)= -15.32, p<.01). 
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The analyses pertaining to subjective reports about the amount of positive vs. negative 

feedback received during the whole experimental session, as well as the like/dislike reactions 

to them revealed no significant group differences (all p’s>.05). 

Questionnaires  

There were no significant group differences on BDI or RS-nl.  

DISCUSSION 

 

In this study, we sought to assess whether happy or sad mood could change RL, when 

compared to an active control condition or group with a neutral mood content. Even though 

no general consensus has emerged yet in the literature regarding effects of mood valence on 

learning (Gray, 2001; Huntsinger, 2012; Nadler et al., 2010; van Steenbergen et al., 2010), it 

is usually agreed that being in a state of increased emotionality (either positive or negative) 

alters motivational processes activated by cues signaling reward or punishment (Lang & 

Bradley, 2010), and hence learning by extension when this process is based on the direct 

exploitation of these incentives, like in the present case. More specifically, our primary goal 

was to assess if inducing happy mood could eventually lead to a gain in performance during 

RL, especially when externally-provided feedback information on task performance (hence 

cues signaling reward or punishment) were omitted and exploitation of learned reward 

probabilities was fostered. For this purpose, we adapted a previously validated probabilistic 

learning task (Bakic et al., 2014; Eppinger et al., 2008; Unger et al., 2012) and introduced a 

second phase during the experiment where feedback on task performance was removed and 

hence learning could no longer be based on these (external) incentives, i.e., negative or 

positive feedback regarding task performance. During the initial phase of the experiment 
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where this feedback information was still available, we expected to replicate the results of our 

previous study (Bakic et al., 2014), where we found that inducing positive mood led to an 

increase in the learning rate. Based on this previous study as well as the evidence currently 

available in the literature, we formulated a specific prediction: if the valence of the mood 

plays an important role in RL (Bolte & Goschke, 2010; Chiew & Braver, 2014), then happy 

and sad participants should behave in opposite ways. More specifically, we expected that the 

learning rate would be larger in the happy compared to the neutral mood group, while it 

would be lower in the sad mood group compared to the control mood group. Moreover, by 

removing feedback as soon as learning was established, we hoped to exacerbate possible 

mood-related group differences in RL, bearing in mind that only standard accuracy and RT 

data could be extracted during this specific phase of the experiment (while computational 

modeling parameters could be estimated during the first phase of the experiment only, as in 

our previous study; see Bakic et al., 2014) .  

The results of this study confirm that guided imagery provides a valid method to 

induce and maintain specific mood states, characterized either by happiness or sadness. The 

happy mood group had a substantial increase in self-reported levels of happiness, comparable 

in size to the increase of sadness in the sad mood group.  

Learning was clearly evidenced during the first phase of the experiment, equally 

strongly in the three mood groups however, challenging our assumption that mood valence 

(either positive or negative) could influence this process. Moreover, when considering two 

standard learning parameters extracted from a computational model (Bakic et al., 2014; Jepma 

& Nieuwenhuis, 2011), we still failed to reveal significant group differences, unlike what we 

found in our previous study where happy mood was associated with a larger learning rate 

(without concurrent change in exploration) compared to neutral mood. Strikingly, our results 

for the second phase of the experiment showed that participants (in all three groups) 
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continued to learn in the absence of direct feedback information regarding task performance, 

suggesting that they unambiguously used or exploited abstract mental representations to 

comply with the task demands, as opposed to using or exploring externally provided cues 

signaling punishment or reward solely or primarily. However, neither happy nor sad mood did 

influence this learning process operating without exploration (second phase of the 

experiment).  

Nieuwenhuis and colleagues (2005) previously discussed the importance of feedback 

delivery and content: when it is delivered on a trial level, subjects tend to rely on external 

information more than on the internal monitoring system, and this may lead to reduced 

uncertainty levels as there is always an external check of the prediction. When the feedback is 

removed, it is expected that internal monitoring processes and the knowledge of the 

associations will be even more activated. Our current results add indirect support to this claim 

as we saw that removing feedback content did not lead to a cost, but learning still progressed 

as if a boost of exploitation was triggered by this manipulation. 

The failure to replicate our previous findings for the learning rate parameter during the 

first phase of the experiment (see Bakic et al., 2014) is puzzling at first sight, given that aside 

from the inclusion of a sad mood group in the current study, the experimental procedure was 

kept identical between these two studies for this phase. However, a closer look at the 

subjective ratings in these two studies might give us some hints on some of the reasons 

underlying this apparent discrepancy. When comparing mood changes directly between the 

two studies (i.e., the present one and Bakic et al., 2014), we found that the MIP in our 

previous study led to a large and significant difference between the two mood groups (happy 

and neutral) not only in valence, but also in arousal (t(30)=3.10, p<.01), while this was not the 

case in the current study (p=.10) (see Figure 7). Hence, in our previous study (Bakic et al., 

2014), participants in the happy mood group were not only more happy than in the neutral 
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mood group, but also more aroused by the MIP; an effect that was not found in the current 

study. Moreover, in our previous study, we found that the increase in happiness following the 

MIP (relative to the pre-MIP baseline measurement) correlated strongly with the increase in 

arousal (r=.63, p<.01), and importantly with both the positive (r=.44, p<.01) and the negative 

learning rate (r=.51, p<.01) as well. Hence, in our previous study (Bakic et al., 2014), the 

higher learning rate found in the positive than in the neutral mood group was likely explained 

by changes occurring both in valence and arousal as a function of the MIP. By comparison, no 

similar correlation was evidenced in the current study. Likewise, we also failed to find 

evidence in this study for significant group differences regarding the perceived amount and 

like/dislike reactions to the feedback given during the RL task, while we did so in our 

previous study (see Bakic et al., 2014), suggesting that the elected MIP had probably a 

different and stronger impact (in terms of emotional changes brought about) in the positive 

mood group in our previous compared to the current study. Accordingly, it is tempting to 

conclude that our failure to replicate our previous findings for the learning rate (which was 

increased in the happy compared to the neutral mood group; see Bakic et al., 2014) in the 

present study might be imputed to the failure to elicit a reliable increase in levels of arousal in 

the happy compared to the neutral or sad mood group with our MIP. More generally, we 

believe this systematic comparison between our two studies is valuable because it confirms 

that arousal is probably an important dimension to consider (besides valence per se) in order 

to better understand modulatory effects on RL as a function of positive mood, as we 

previously observed (Bakic et al., 2014) but failed to replicate here. However, it should be 

added that in the domain of creative thinking, earlier studies already showed that (positive) 

valence, rather than arousal per se, was accompanied by a gain in performance (Isen et al., 

1987), suggesting that during the encounter of positive mood or affect, valence and arousal 

could very well have different effects depending on the specific context and task demands. As 
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a matter of fact, arousal has often been conceived as an important determinant of learning 

(and more specifically the exploration-exploitation trade-off) in the past, providing salience 

information to the organism. For example, according to the adaptive gain theory of Aston-

Jones and Cohen (2005), exploration and exploitation are two decision strategies that depend 

directly on tonic and phasic changes in arousal, which is modulated by salience estimation 

generated in prefrontal areas. Jepma and Nieuwenhuis (2011) previously used this specific 

framework using a “four-armed bandit” task in healthy adult participants (without any mood 

induction) and showed that changes in the pupil diameter (a putative index of locus coeruleus 

activity) correlated with transitions from exploration to exploitation. A recent study 

corroborated the assumption that arousal-related processes (captured by the pupil size) indeed 

contributed to shape learning in a volatile setting (Browning, Behrens, Jocham, Reilly, & 

Bishop, 2015). Moreover, Fröber and Dreisbach (2012) recently confirmed the importance of 

arousal during the experience of positive affect to account for modulatory effects of the 

current affective state on proactive control mechanisms. Speculatively, it may therefore be the 

case that our MIP in the present study failed to increase arousal substantially in the happy 

mood group (unlike what we found in Bakic et al., 2014), which in turn did not change the 

exploration-exploitation trade-off and/or the learning rate in this group. Alternatively, arousal 

(resulting from the MIP we used here and in our previous study) could also foster 

probabilistic learning, when elicited to a sufficient degree, by influencing specific (short-term) 

memory processes needed to resolve the task, given that arousal usually heightens memory 

(Mather & Carstensen, 2005; Clewett & Mather, 2014). At any rate, future studies are needed 

to assess whether (positive) mood valence could create changes in RL if and only if this 

specific mood state is accompanied by variations along the arousal dimension too. 

Several limitations of our study warrant comment. First, if arousal plays an important 

role in mediating effects of mood on RL, then it is likely that a MIP tailored to increase 
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arousal selectively (rather than valence) might provide a more promising avenue to evidence 

effects of mood on the exploration-exploitation trade-off during RL (Knutson, Katovich, & 

Suri, 2014). Here by contrast, we created three groups differing primarily regarding the 

valence of the mood induced (happy, sad or neutral), which may eventually have blurred 

rather than cleared some of the group differences during RL. The choice of a (low-arousing) 

sad mood as comparison for the happy mood group was motivated by many earlier studies 

and models in the literature arguing that sadness can be conceived as the opposite of 

happiness, as well as a good proxy of the anhedonic component in depression, for which there 

is already good evidence for modulatory effects on learning behavior, especially when it is 

based on either reward or punishment incentives/cues (Chase et al., 2010; Liu et al., 2014; 

Padrão, Mallorquí, Cucurell, Marco-Pallares, & Rodriguez-Fornells, 2013; Pizzagalli, 2014; 

Taylor Tavares et al., 2008). However, in our study, despite the successful experience of sad 

mood, we note that participants from this group did not perform worse during the probabilistic 

learning task (for none of the two phases) than the two other mood groups, casting doubt in 

turn on the notion that effects of sad mood on learning and cognition can simply be opposed 

to effects associated with happy mood.  

Second, even though happy or sad mood did not alter learning at the behavioral (or 

computational modeling) level, we cannot rule out the possibility that these mood states could 

influence specific electrophysiological markers of RL, including the ERN and FRN 

components. Noteworthy, in our previous study (Bakic et al., 2014), we found that happy 

compared to neutral mood increased the ERN component in the deterministic condition 

selectively. Accordingly, it could be valuable in future studies to add EEG correlates of RL 

and performance monitoring (Koban & Pourtois, 2014) in order to assess whether mood could 

alter early stages of error monitoring (in the absence of obvious changes at the behavioral 

level) or not, especially when feedback information on task performance is removed and 
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learning has therefore to operate primarily based on the direct exploitation of known S-R 

associations (carrying a high reward probability).  

Finally, the probabilistic learning task used here (relying on a simple speeded two-

alternatives forced choice task; see Eppinger et al., 2008) may not be sensitive enough to 

capture subtle changes in learning related to labile mood states, such as elicited after the MIP 

(based on guided imagery) used in this study. Perhaps mood does change choice behavior, but 

not decision making per se, a hypothesis that would require the use of other experimental 

paradigms than the one used here, and where not only the amount but also the type of learning 

strategy at stake could be probed (see Frank et al., 2015). Presumably, the specific structure of 

the task used here, as well as the specific task requirements, may have weakened the 

expression of mood-related changes during RL. Likewise, reversal learning paradigms (see 

Chase, Swainson, Durham, Benham, & Cools, 2011) or more complex and volatile learning 

environments based on the use of more than two-alternatives forced choice task (see 

Browning et al., 2015; Jepma & Nieuwenhuis, 2011) could perhaps help to reveal clearer and 

stronger modulatory effects of either positive or negative mood on RL. 
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Table 1. Results of the Pleasantness scores. Means (+1 Standard Deviation) and results of the group comparison (based on independent-samples 

t-tests) between the Happy and Neutral (df=26) or the Neutral and Sad (df=29) mood Group. 

 

 

 

 

 

 

 

 

 

 

 

Measure point 

Pleasantness 

 t-test 

Happy Neutral Sad Happy vs. Neutral Neutral vs. Sad 

Baseline 47.32 (15.91) 46.38 (15.93) 43.90 (13.28) 0.16********* 0.47** 

1 65.01 (7.14) 47.86 (12.49) 32.90 (12.23) 4.46** 3.36** 

2 64.57 (10.18) 45.25 (21.56) 24.67 (11.96) 3.03** 3.36** 

3 66.36 (8.38) 51.14 (13.97) 27.68 (14.72) 3.49** 4.52** 

4 67.12 (10.78) 49.06 (19.19) 22.47 (15.30) 3.07** 4.30** 

5 68.35 (6.80) 45.74 (20.24) 24.39 (15.08) 3.96** 3.36** 

6 67.46 (7.71) 46.62 (21.47) 21.60 (13.15) 3.42** 4.00** 

*p<.05, **p<.01 



31 

 

Table 2. Results of the Happiness scores. Means (+1 Standard Deviation) and results of the group comparison (based on independent-samples t-

tests) between the Happy and Neutral (df=26) and the Neutral and Sad (df=29) mood Group. 

 

 

 

 

 

 

 

 

  

Measure point 

Happiness 

 t-test 

Happy Neutral Sad Happy  vs. Neutral Neutral vs. Sad 

Baseline 45.59*(10.84) 48.05 (10.04) 42.55 (15.55) -0.62*** 1.14*** 

1 64.16 (9.19) 43.64 (13.33) 24.75 (15.03) 4.74** 3.66** 

2 62.87 (9.79) 41.73 (22.46) 22.12 (15.69) 3.23** 2.87** 

3 66.28 (8.26) 48.29 (16.76) 23.05 (15.38) 3.60** 4.37** 

4 68.56 (7.88) 46.27 (20.40) 21.30 (16.61) 3.81** 3.86** 

5 68.81 (5.97) 44.28  (17.64) 21.07 (16.91) 4.93** 3.73** 

6 67.88 (7.52) 47.71 (20.22) 18.43 (14.14) 3.50** 4.74** 

*p<.05, **p<.01 
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Table 3. Results of the Sadness scores. Means (+1 Standard Deviation) and results of the group comparison (based on independent-samples t-

tests) between the Happy and Neutral (df=26) or the Neutral and Sad (df=29) mood Group. 

 

  Measure point Sadness 

  t-test 

 Happy Neutral Sad Happy vs. Neutral Neutral vs. Sad 

Baseline 13.59 (10.48) 8.82 (8.38) 11.64 (9.47) -1.33* -0.87** 

1 6.39 (7.54) 7.04 (5.80) 31.67 (14.68) -0.25 -5.90** 

2 5.41 (7.32) 9.32 (12.17) 33.39 (15.73) -1.03 -4.68** 

3 7.21 (7.95) 8.06 (6.70) 33.51 (17.83) -0.31 -5.04** 

4 6.28 (7.25) 5.66 (6.98) 28.06 (18.06) -0.23 -4.37** 

5 5.31 (6.61) 9.35 (11.25) 27.60 (19.17) -1.16 -3.14** 

6 8.82 (10.02) 7.94 (6.32) 31.36 (17.64) -0.28 -4.72** 

*p<.05, **p<.01 
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Table 4. Results of the Arousal scores. Means (+1 Standard Deviation) and results of the group comparison (based on independent-samples t-

tests) between the Happy and Neutral (df=26) or the Neutral and Sad (df=29) mood Group 

 

 

  

Measure point Arousal 

  t-test 

 Happy Neutral Sad Happy vs. Neutral Neutral vs. Sad 

Baseline 4.79 (1.12)** 5.07 (1.82) 3.65 (1.46) -0.50* -2.43** 

1 5.93 (1.77) 5.21 (1.37) 4.29 (1.86) -1.19* -1.54** 

2 5.93 (2.09) 5.64 (1.69) 3.47 (1.59) -0.40* -3.68** 

3 5.64 (2.41) 5.21 (1.37) 3.76 (1.48) -0.58* -2.81** 

4 5.71 (2.64) 4.64 (1.60) 4.12 (1.65) -1.30* -0.89** 

5 5.93 (2.20) 4.93 (1.69) 4.18 (1.74) -1.35* -1.21** 

6 5.86 (2.31) 3.86 (1.46) 3.94 (1.64) -2.73* -0.15** 

*p<.05, **p<.01 
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Table 5. Results of the Certainty and Clarity ratings. Means (+1 Standard Deviation) and results of the group comparisons (based on t-tests) for 

Probability (df=44). 

 

  

 Condition t-test 

Deterministic Probabilistic Random Deterministic- 

Probabilistic 

Probabilistic- 

Random 

Certainty 82.64 (5.43) 73.40 (9.94) 36.18 (6.68) 7.47*** 24.58** 

Clarity 72.16 (7.76) 47.47 (11.44) 33.03 (12.07) 14.80** 7.08** 

*p<.05, **p<.01      
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FIGURES LEGEND 

 

 

Figure1. Schematic illustrations of (A) the task structure with different probabilities 

assigned to different stimuli, (B) the trial structure in the first phase of the experiment where 

the feedback was provided after each response (and both exploration and exploitation were 

therefore required), and (C) the trial structure in the second phase of the experiment where an 

uninformative feedback was provided (and exploitation was encouraged).  

Figure 2. Happiness ratings shown separately for the happy, neutral and sad mood 

group as a function of time. Each point represents the mean and the error bar corresponds to 1 

standard error of the mean. 

Figure 3. Accuracy data (i.e., proportion of correct responses) decomposed as a 

function of bin, probability and group. The error bar corresponds to 1 standard error of the 

mean. 

Figure 4. Reaction times for correct responses decomposed as a function of bin, 

probability and group. The error bar corresponds to 1 standard error of the mean. 

Figure 5. Learning rate for positive (left panel) and negative (right panel) feedback, 

separately for the Happy, Neutral and Sad mood group. The error bar corresponds to 1 

standard error of the mean. 

Figure 6. Exploration parameter shown separately for the Happy, Neutral and Sad 

mood group. The error bar corresponds to 1 standard error of the mean. 
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Figure 7. Arousal ratings shown separately for the Happy and the Neutral mood group 

of Bakic et al. (2014) (left panel), and the three different mood groups of the current study 

(right panel). 
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