
ORIGINAL RESEARCH ARTICLE
published: 23 July 2013

doi: 10.3389/fncom.2013.00099

MACOP modular architecture with control primitives
Tim Waegeman*, Michiel Hermans and Benjamin Schrauwen

Department of Electronics and Information Systems, Ghent University, Ghent, Belgium

Edited by:

Andrea D’Avella, IRCCS Fondazione
Santa Lucia, Italy

Reviewed by:

Florentin Wörgötter, University
Goettingen, Germany
Andrea D’Avella, IRCCS Fondazione
Santa Lucia, Italy

*Correspondence:

Tim Waegeman, Department of
Electronics and Information
Systems, Ghent University,
Sint-Pietersnieuwstraat 41, Ghent,
B9000 East-Flanders, Belgium
e-mail: tim.waegeman@ugent.be

Walking, catching a ball and reaching are all tasks in which humans and animals exhibit
advanced motor skills. Findings in biological research concerning motor control suggest a
modular control hierarchy which combines movement/motor primitives into complex and
natural movements. Engineers inspire their research on these findings in the quest for
adaptive and skillful control for robots. In this work we propose a modular architecture
with control primitives (MACOP) which uses a set of controllers, where each controller
becomes specialized in a subregion of its joint and task-space. Instead of having a
single controller being used in this subregion [such as MOSAIC (modular selection and
identification for control) on which MACOP is inspired], MACOP relates more to the idea
of continuously mixing a limited set of primitive controllers. By enforcing a set of desired
properties on the mixing mechanism, a mixture of primitives emerges unsupervised which
successfully solves the control task. We evaluate MACOP on a numerical model of a
robot arm by training it to generate desired trajectories. We investigate how the tracking
performance is affected by the number of controllers in MACOP and examine how the
individual controllers and their generated control primitives contribute to solving the task.
Furthermore, we show how MACOP compensates for the dynamic effects caused by a
fixed control rate and the inertia of the robot.

Keywords: reservoir computing, echo state networks, motor primitives, movement primitives, motor control,

MOSAIC, robot control

1. INTRODUCTION
Catching a ball, reaching for a cup of coffee and drawing a figure
on a blackboard are all tasks in which humans exhibit advanced
motor control. We are able to perform such tasks robustly and
adaptively, constantly anticipating an uncertain environment.
Robots are most commonly used in environments which are fully
deterministic, and are programmed in such a way that all pos-
sible situations are foreseen by the engineer. However, inspired
by humans and biology in general, more and more techniques
emerge in which robots can be used in dynamic environments
without explicitly defining a set of rules to achieve advanced
and adaptive motor control. The study of motor skills in nature
also has sparked the interest of modular representations in both
planned and actual motor commands. For instance, research
performed on frogs (Bizzi et al., 1991) showed that electrical
microstimulation of different areas of the lumbar cord gener-
ated distinct types of force fields in the frog’s isometric leg
movement. Similar research on frogs (Mussa-Ivaldi et al., 1994;
Kargo and Giszter, 2000) and rats (Tresch and Bizzi, 1999) has
shown that simultaneous stimulation of such areas result in a
superposition of the separate recorded force fields, suggesting a
modular control system. In Mussa-Ivaldi and Bizzi (2000), this
work has been extended to the planning of limb movements and
how to transform this planning into a sufficient set of motor
commands.

Instead of using invasive and/or stimulation techniques to
investigate the existence of a modular control system, researchers
(d’Avella et al., 2003) also developed methods to find out if a
large set of natural movements is the result of a combination

of a limited set of motor primitives, solely based on mus-
cle activity observations. By measuring such activations with
Electromyography (EMG) and applying a decomposition tech-
nique over multiple EMG recordings, they found primitive
representations, called synergies. These experiments were first
conducted on frogs and later on humans (Hart and Giszter, 2004;
Cheung et al., 2005; d’Avella and Bizzi, 2005).

Also on the behavioral level it has been demonstrated that
humans try to follow mental templates of motion when exe-
cuting a task (Bernstein, 1967). The presence of these mental
templates or movement primitives can also be detected as velocity
bumps (Doeringer and Hogan, 1998) during online movement
corrections. A more detailed overview of primitives at the neural,
dynamic and kinematic level can be found in Flash and Hochner
(2005).

The idea of movement primitives also inspired research in
robotics (Schaal et al., 2003). In Muelling et al. (2010) they
demonstrate a robot that learned to play table tennis based on
a set of primitives learned by imitating human table tennis move-
ments. In Schaal et al. (2005), a flexible and reactive framework
for motor control was presented which uses dynamic movement
primitives (DMPs) (Schaal, 2006). This framework showed to be
useful in the generation of walking motion of a biped based on
oscillating DMPs or the generation of the swimming and walking
motions of a salamander robot (Ijspeert et al., 2007) when DMPs
are used as central pattern generator.

Most of these approaches define the primitives as oscillators
or learned movements, and learn how to adapt them to get
the desired objective. In this work, however, we take a different

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 99 | 1

COMPUTATIONAL NEUROSCIENCE

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2013.00099/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=TimWaegeman&UID=58546
http://community.frontiersin.org/people/MichielHermans/101706
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=BenjaminSchrauwen&UID=39390
mailto:tim.waegeman@ugent.be
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Waegeman et al. MACOP modular architecture with control primitives

approach in which a similar decomposition emerges naturally,
such that their combination converges to the objective. For this,
we inspired our work on MOSAIC (modular selection and identi-
fication for control), originally proposed by Wolpert and Kawato
(Wolpert and Kawato, 1998; Haruno et al., 2001) which suggest
a feasible strategy on how a human motor control system learns
and adapts to novel environments. For instance, when moving
an empty cup or one filled with coffee. As both objects have dif-
ferent dynamics, MOSAIC learns a different controller for each
object and assigns a “responsibility”-function, which allows for
smooth switching between the controllers’ individual contribu-
tions. When a new object is introduced, MOSAIC will generalize,
by combining the contribution of each controller. To determine
which controller should be used, each controller contains a for-
ward model that predicts the next state of the object based on
the previous control commands. If a controller’s forward model
is predicting well compared to the others, that controller is used.
This architecture, however, can not be related to the idea of move-
ment or motor primitives, as the number of controllers roughly
depends on the number of objects, such that when handling a
known object, a single controller’s output is used.

Many variants of MOSAIC have been studied. The original
implementation uses a gradient based method and later hidden
Markov models. In Lonini et al. (2009), an alternative archi-
tecture based on locally weighted projection regression (LWPR)
(Vijayakumar and Schaal, 2000) was presented which allows a bet-
ter incremental learning of new tasks. Another approach (Oyama
et al., 2001) uses a separate performance prediction network to
determine which module should be used to learn the inverse
kinematics of an arm. Likewise, in Nguyen-Tuong et al. (2009),
they propose a localized version of Gaussian Process Regression
in which a different model is trained for different regions in
task-space.

The modular architecture with control primitives (MACOP)
which we propose in this work is also inspired on MOSAIC.
However, we want to build upon the idea of using a limited set
of controllers whose contributions are continuously combined
to produce the desired objective. Each controller’s contribution
should be mixed in a manner which permits all controllers to
contribute to the objective, while still allowing for each controller
to specialize in a part of the task. Due to the similarity with
motion/motor primitives we will call the contributions of the
individual controllers control primitives. We will provide a more
detailed explanation on the similarities and differences with the
common notion of primitives in the Discussion section of this
paper.

Based on some interesting observations we omit the use of
forward models (unlike MOSAIC) and use a simple heuristic
to achieve the desired mixing mechanism which determines the
“responsibility”. The controllers are constructed from Echo State
Networks (ESNs) (Jaeger, 2001) which are inherently dynamic
and therefore provide a natural platform for modeling and con-
trolling a dynamic system such as a robot arm. After giving a
description of MACOP we validate it by letting it learn the inverse
kinematics (IK) of a 6 degrees-of-freedom (DOF) robot arm and
we analyze its behavior. In the discussion we will address the
following key points and differences with other techniques:

• Unsupervised learning of the mixing mechanism given some
high-level requirements.

• Learning an inverse kinematic mapping which includes
dynamical effects.

• How it allows to solve a task with control primitives where the
complexity of a single controller is insufficient to solve the full
task.

• How a control primitive compares with the notion of
motor/motion primitives.

2. MATERIALS AND METHODS
2.1. DIFFICULTY OF CONTROLLING AN UNKNOWN SYSTEM
When controlling a system we want to find a way to control the
states of that system by changing its input without actually know-
ing how the system internally works. All we can do is observe
how the system responds to a certain input. Consider for instance
the scenario in which we have a student trying to manipulate a
cup of coffee with a robot arm. The actions that are under direct
control of the student are the joint-torques, and this at a fixed
control-rate. The variables that the student wishes to control,
however, represents the trajectory of the cup of coffee. The stu-
dent needs to use trial and error to learn to produce the desired
result. In this process, he or she will need to implicitly learn the
connection between his or her actions and the resulting trajec-
tory of the cup. The main difficulties concerning this task can be
summarized as:

• Learning an implicit mapping from actions to the resulting
trajectory without prior knowledge.

• Handling redundancies because controlling multiple joints
results in a mapping which is not unique.

• Because of a fixed control rate, the dynamic behavior of the
robot needs to be anticipated.

Similar to this scenario, the system we use is a multi-jointed
robot arm that needs to trace out a desired trajectory in its
task-space.

2.2. ROBOT ARM PLATFORM
In this work we perform all our experiments on a dynamic Webots
simulation model of the PUMA 500 robot arm which has 6 DOF.
This numerical model allows us to apply joint-angles and mea-
sure its actual values in the dynamical environment of the robot.
We interact with this simulation model every 32 ms (default
Webots configuration), which means that between every sample
we take, 32 ms passed in the simulation environment, regardless
of the computation time needed for the proposed algorithm. We
control the joint-angles of the robot arm which are converted
to joint-torques by PID (proportional-integral-derivative) con-
trollers. Each joint is equipped with an encoder which allows us
to measure the actual joint-angles. Additionally, the simulation
environment provides us with the euclidean end-effector position
of the robot arm.

2.3. MACOP
As mentioned before, controlling a system such as a robot arm
poses some difficulties when the internal mechanisms of the robot

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 99 | 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Waegeman et al. MACOP modular architecture with control primitives

are unknown. Although classical kinematic models are known
for most commercial robots available, the increasing use of soft
materials with passive compliant properties requires an adap-
tive modeling approach. Often a learning algorithm is used to
create a model of the robot such that the model exhibits the
same behavior (outcome) when perturbed by the same inputs
(actions), which is called a forward model. By using for instance
a neural network as model, the known structure of this net-
work can be exploited to calculate a gradient which can be used
to determine the actions that are needed to change the out-
come as desired. Another approach is to learn an inverse model
which maps a desired outcome to an action. However, learning
such a model is difficult when the correct actions to a certain
outcome are unknown. A more detailed overview on training
and using such models can be found in Jordan and Rumelhart
(1992).

Often the modeling complexity of a control problem can be
reduced by decomposing the problem into less complex parts.
For instance, if we again consider the cup lifting scenario for
which we want to learn a model. This model will approximate
the underlying dynamics of the particular task. If we extend this
problem to lifting other objects, the resulting model needs to be
able to approximate a single function that includes both tasks with
different dynamics each.

One of the approaches that can solve such problems is called
MOSAIC (Wolpert and Kawato, 1998; Haruno et al., 2001),
which suggest a feasible strategy on how a human motor con-
trol system learns and adapts to new dynamic characteristics
of the environment. MOSAIC learns a different controller for
each different task, and uses a “responsibility”-function to decide
which controller will be used, while still allowing for smooth
switching between the controllers individual actions. When intro-
ducing a new task, MOSAIC will generalize, by combining
the actions of each controller. To determine each controller’s
“responsibility”, every controller contains a forward model that

predicts the next state of the object based on the previous
control actions. If a controller’s forward model is more accu-
rate compared to the others, that controller’s inverse model is
trained further with the new observations and used to control the
robot arm.

One potential weakness of this approach is that the perfor-
mance of a forward model is not necessarily a good indicator
of the modeling performance of the inverse model. To confirm
this we have tried an approach directly based on MOSAIC. For
each controller, we trained a reservoir (see section 2.4.2) to serve
as both an inverse and forward model at the same time. We
found that all forward models had initially roughly the same pre-
diction error, leading to an equal responsibility factor for each
controller as a result. During the training phase, however, small
variations in performance error influenced both the training of
the forward and the inverse models. Eventually this always causes
one controller to be fully responsible at all times, making the
other controllers redundant. These findings confirm the obser-
vations made in Haruno et al. (2001) even though in the original
MOSAIC setup, the inverse and forward models are completely
separate from each other, meaning that there is no relation at
all between the modeling performance of the inverse and for-
ward model. Based on these experiments one can argue that the
responsibility of a controller is fully determined by noise on the
forward modeling performance of a controller. Any other con-
troller selection mechanism might thus be as useful as the one
used by MOSAIC.

Therefore we propose a Modular Architecture for Control with
Primitives (MACOP) which is inspired on MOSAIC, and depicted
in Figure 1. Instead of using both an inverse and forward model,
we only use inverse models to produce actions for our robot arm.
Determining when a controller (inverse model) should contribute
to the task is learned unsupervised given the robot’s state and
some desired mixing properties. This can be related to a Kohonen
map (Kohonen, 1998).

FIGURE 1 | Illustration of MACOP which consists of an ensemble of

controllers depicted in Figure 2. The desired (objective) and the
current end-effector position are used as external inputs to each
controller. The controller outputs are weighted by a scaling factor ζi

and superimposed with each other such that the resulting joint-angles
control the robot. The used ζi represent the responsibility of a
controller and is determined by the measured joint-angles and
end-effector position.

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 99 | 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Waegeman et al. MACOP modular architecture with control primitives

2.3.1. Controller selection
As depicted in Figure 1, the actual control signal is a weighted
sum of the outputs of a limited number of controller outputs. The
weight (or scaling) factors (which are the equivalent of MOSAIC’s
“responsibility”), depend on observable properties of the robot.
Each controller learns to control the robot arm by creating an
inverse robot model. Simultaneously, the mixing mechanism is
trained, also online. In order for a controller to distinguish itself
from others, the rate at which each controller is trained will be
modulated according to its corresponding responsibility. This will
be explained in more detail when we describe the operation of a
single controller.

Suppose we have Nc controllers. We denote the output of the
i-th controller as xi(t). The controlled joint-angles x(t) are then
given by:

x(t) =
Nc∑

i = 1

ζi(t)xi(t), (1)

where ζi(t) is the scaling factor, or “responsibility” of a con-
troller, which decides how much each controller is expressed
in the final control signal. Ideally, we would like to let ζi(t)
express the momentary accuracy of each controller. For exam-
ple, if each controller is randomly initialized before training,
certain controllers may be better than others when the arm is
near a certain pose, and we would like to use the ζi to scale up
the control signal of these controllers, and suppress that of the
others. In reality, however, we cannot directly measure the accu-
racy of each individual controller, as the robot is driven with
the weighted sum of the control signals, and not the individual
controllers.

Therefore, we will apply a different strategy. We will introduce
a way in which the scaling factors will automatically start to rep-
resent local parts of the operating regime of the robot, and next
we will specialize the associated controllers to be more accurate
within this local area.

We wish for ζi(t) to only depend on the current end-effector
position y(t) and the measured joint-angles x̂(t), both of which
are observable properties of the robot arm. As each controller will
attempt to learn an inverse model, the combined control signal
will need to be of the same magnitude as the individual control
signals. Therefore, we will make sure that the scaling factors are
always positive, and always sum to one:

Nc∑
i = 1

ζi(t) = 1 and 0 ≤ ζi(t) ≤ 1. (2)

Both these qualities can be ensured if ζi is calculated by a softmax
function. First we use a linear projection from the joint-angles
and end-effector position to a vector r:

r(t) =

⎡⎢⎢⎢⎢⎣
r1(t)

r2(t)
...

rNc (t)

⎤⎥⎥⎥⎥⎦ = V(t)

[
y(t)

x̂(t)

]
, (3)

Next, we compute the softmax function.

ζi(t) = exp(ri(t))∑Nc
j = 1 exp(rj(t))

, (4)

The projection matrix V(t) is a matrix of size Nc by Ny + Nx̂,
where Ny and Nx̂ are the dimensions of y(t) and x̂(t), respectively.
Dependence on time comes from the fact that, like all parameters,
V is trained online.

V(t) is randomly initialized, with elements drawn from a
normal distribution N (0, 0.1). It will determine how the respon-
sibilities are distributed. We need to train V(t) in such a way that
MACOP learns to generate the target trajectories by mixing all
contributions as we desire. In this work we wish to obtain the
following two qualitative properties:

• Each controller should contribute in a unique way to the
movement generation of the robot. In order for a controller
to distinguish itself from the others, its corresponding ζi(t)
should peak over the others. We wish that there is sufficient
variation, such that at each moment in time some controllers
are significantly more responsible than others.

• On the other hand we wish to make sure that there are no
responsibilities that are close to zero at all times, such that all
controllers are put to good use, and we fully exploit the poten-
tial power of the ensemble. We wish to avoid the situation we
observed when we implemented the MOSAIC-based controller
ensemble, where eventually only one controller contributed to
the task.

Based on these two desired properties, we will construct a learn-
ing algorithm for training V(t). The first property of our mixing
mechanism can be achieved by gradually increasing the magni-
tude of V. This results in a more strongly peaked distribution
for the scaling factors. This can be understood by looking at
the limit situations. If all elements of V(t) are zero, all scaling
factors are equal. If the magnitude goes to infinity, the soft-
max function will be equal to one for the highest element, and
zero for all others. Controlling the magnitude of V(t) allows us
to make a smooth transition between these extremes. We chose
to increase the magnitude of V(t) linearly each time step by
adding a small increment, equal to V(t) divided by its Frobenius
norm.

The second mixing property requires that all controllers con-
tributes significantly to the robot motion. The manner in which
we chose to do this was to suppress the scaling of the momentary
maximal scaling factor. This ensures that no single scaling factor
can remain dominant for a long time. Suppressing one scaling fac-
tor automatically scales up the others, such that in the end none of
the scaling factors remains very small at all times. In order to train
V(t) to get this effect, we need to set target values for the ζi(t) at
each time step. We set the target value of the highest ζi(t) equal
to N−1

c (which would be the long-term time average of all scaling
factors if they all contribute equally). At the same time we have to
make sure that the sum of the target values is equal to one (i.e., a
target that can be reached by a softmax function). To obtain this,
the target values of the other ζi(t) are equal to themselves, scaled

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 99 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Waegeman et al. MACOP modular architecture with control primitives

up to ensure that the sum of the targets equals one. If we denote
the target value for ζi(t) as θi(t), we can write

θi(t) =
{

h(t)ζi(t), if i �= argmax(ζi(t))
1

Nc
if i = argmax(ζi(t))

, (5)

with

h(t) = 1 − N−1
c

1 − max(ζi(t))
. (6)

To train V according to these target values, we calculate the gra-
dient of the cross-entropy1 H(θi, ζi) with respect to V. For both
desired properties we have defined an update rule and each time
step we add up both contributions, resulting in the following
update rule:

V(t + 1) = V(t) + ηg
V(t)

||V(t)||F + ηs[yT(t), x̂T(t)](ζ(t) − θ(t)),

(7)
where ζ(t) and θ(t) are column vectors with the responsibility fac-
tors and their targets, respectively, and ηg and ηs are two learning
rates. In order to prevent one mixing property to dominate the
other, we set these learning rates such that both properties are
present. Left on its own, Equation (7) never converges. What will
happen is that the magnitude of V slowly keeps on increasing,
and in the long term, the scaling factor distribution will become
highly peaked (at each moment, one will be close to one, the oth-
ers close to zero). Therefore, during all our experiments, unless
mentioned differently, we calculate the root mean-square-error
(RMSE) between the desired and the measured end-effector posi-
tion 2 over a moving time-window of 1000 samples. When this
RMSE becomes smaller than 1 mm we start to linearly decrease
both ηg and ηs over the course of 5000 samples until they reach 0.
After this point the elements of V no longer change.

2.4. SINGLE CONTROLLER
As described before, we will use inverse models for controlling our
multi-jointed robot arm. Rather than finding the mapping from
joint-angles (actions) to end-effector position (outcome), we
will approximate the inverse mapping: from outcome to action.
Essentially, this means that we train a model to directly provide
us with the correct joint-angles for any given desired end-effector
position.

2.4.1. General setup
As described before, the end-effector position (outcome) is
denoted by y(t), and the joint-angles (the actions) by x(t). We
assume that we can train a model (model A in Figure 2) to
approximate the past joint-angles x(t − δ), δ being a fixed delay

1Here we treat the scaling factors and their target values as if they were proba-
bilities, which stems from the common use of a softmax function: to model a
multinomial distribution function (Bishop and Nasrabadi, 2006). We could as
well use mean-square error to train V(t) on the target values, but the resulting
update equations would be more complicated, whereas cross-entropy leads to
a simple formula.
2This is the average distance, such that we can express RMSE in millimeter or
centimeter.

FIGURE 2 | Schematic representation of a single controller. Model A and
B are identical at every moment in time, but receive different input signals.
The optional limiter limits the values x(t) to a desired range which, for
example, represent imposed motor characteristics. Afterwards, the limited
values x̃(t) excite the plant (robot in this work). The signal x̃(t − δ) is the
desired output which model A is trained to generate from the plant output,
i.e., it learns the inverse model. This inverse model is then simultaneously
employed as a controller to drive the plant (model B), which receives a
desired future plant state yd (t + δ) as input, instead of the actual one.

period, given that it receives the current and the delayed end-
effector position y(t) and y(t − δ), respectively. This part of the
control mechanism is the inverse model.

Simultaneous with training the inverse model, we use it as a
controller. In order to do this, we use an identical copy of the
model (model B in Figure 2), which has as input the current end-
effector position y(t), and a desired future end-effector position
yd(t + δ). This model, given that the inverse model performs suf-
ficiently well, provides the required joint-angles x(t) to reach the
set target after the delay. For some plants it might be necessary to
limit these values to a certain range. For instance, when control-
ling a joint, the angle in which it can be positioned is bounded. In
Figure 2 this bounding is represented by a limiter which converts
x(t) values to x̃(t).

In general, the optimal δ depends on the rate at which
the dynamics are observed (sample rate) and the kind of
dynamics (fast or slow) that are inherent to the control
task. Plants (the system under control) with fast dynam-
ics usually require a smaller δ than slower dynamical sys-
tems when using the same sample rate. In this work we
chose δ = 1, because one time step delay is sufficient to cap-
ture the dynamics of the task at hand. More details con-
cerning this parameter can be found in Waegeman et al.
(2012).

In order to train the inverse model we will use online learning,
i.e., the inverse model is trained during operation. Initially the
untrained inverse model will not be able to provide the desired
joint-angles, and the driving signal x(t) is essentially random.
Model A will use the resulting end-effector position to learn what
signal was provided by model B. The random driving signal will
assure that in this initial training phase model A is provided with
a sufficiently broad set of examples. However, to further improve

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 99 | 5

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Waegeman et al. MACOP modular architecture with control primitives

exploration and to speed up training in the initial training phase,
we add a small amount of noise [initially drawn from N (0, 7)

in mm] to the desired end-effector position, of which the stan-
dard deviation linearly diminishes to 0 over the course of 50, 000
samples of training. As soon as model A becomes sufficiently
accurate, model B will begin providing the actions for obtain-
ing the desired end-effector positions. In this phase, the inverse
model will learn to become especially accurate in the operat-
ing regime in which the robot provides the resulting end-effector
positions.

In principle, there is no need to ever stop training the inverse
model in the proposed controller. Indeed, if the experimenter
knows that the conditions of the setup may change over time, it
could be desirable to keep the online learning mechanism active
at all times in order to let it keep track of changes in the sys-
tem. For this paper, however, we chose to gradually slow down the
learning algorithm and at some point in time let it stop, such that
all parameters in the controller architecture remain fixed during
testing. More details are provided in section 2.4.4.

2.4.2. Echo state networks
We use an Echo State Network (ESN) (Jaeger, 2001) as inverse
model. An ESN is composed of a discrete-time recurrent neural
network [commonly called the reservoir because ESNs belong to
the class of Reservoir Computing techniques (Schrauwen et al.,
2007)] and a linear readout layer which maps the state of the reser-
voir to the desired output. A schematic overview of this is given
in Figure 3. An ESN has an internal state a(t) (often referred to as
reservoir state), which evolves as follows:

a(t + 1) = tanh
(

Wr
ra(t) + Wr

i u(t) + Wr
oo(t) + Wr

b

)
. (8)

Here, u(t) is the reservoir input signal and o(t) the output pro-
duced by the ESN (see below). The weight matrices Wk

g represent
the connections from g to k between the nodes of the network,
where r, i, o, b denote reservoir, input, output, and bias, respec-
tively. In the case of the controller setup we discussed earlier, the
reservoir input u(t) of model A consists of the concatenation of
the past and present end-effector positions, and that of model B of
the present and desired end-effector position. During our experi-
ments we scale the input and training signal to the ESN such that

FIGURE 3 | Description of an ESN. Dashed arrows are the connections
which can be trained. Solid arrows are fixed. Wk

g is a matrix representing
the connections from g to k, which stand for any of the letters r, i, o, b
denoting reservoir, input, output, and bias, respectively. u(t), o(t) and a(t)
represent the input, output, and reservoir states, respectively.

their values are between −1 and 1. Consequently, we will need to
undo this scaling before the generated network output represents
actual joint-angles which can control the robot.

The ESN output o(t) is generated by:

o(t) = Wo
r (t)a(t), (9)

i.e., a linear transformation of the reservoir state over Wo
r (t). The

core idea of ESNs is that only this weight matrix is explicitly
trained. The other weight matrices have fixed, randomly cho-
sen elements of which only the global scaling is set. As we use
a continuously operating online learning strategy, Wo

r (t) is time
depending. In the more common ESN setup they are trained
offline using, e.g., ridge regression, and remain fixed once they
are determined.

Each ESN in this paper is initialized by choosing the elements
of Wr

r, Wr
i , and Wr

b from a standard normal distribution N (0, 1).
Next, Wr

r is scaled such that its spectral radius equals one, and the
matrices Wr

o, Wr
i and Wr

b are multiplied with a factor 0.1 (hand
tuned).

The reservoir serves as a random non-linear dynamical system
which can extract useful information of its input. Due to its recur-
sion, a reservoir has fading memory, i.e., it retains information of
the past input signal but gradually forgets it over time and allows
ESNs to be used for processing time series.

2.4.3. Linear controllers
In order to check how much the operation of MACOP depends on
the type of controller, we also conducted an experiments in which
we used linear controllers. Here, the output of the inverse model
is a direct linear combination of its input, so no non-linearity
or memory is present in these controllers, and learning the non-
linear part of the full inverse kinematics will largely need to be
accounted for by training the scaling factors. Here too, we will
train the system online, according to the algorithm described in
section 2.4.4.

2.4.4. Recursive least squares
In order to train the inverse model online we will use Recursive
Least Squares. With each iteration the output weights are adjusted
such that the network converges to the desired output. However,
the rate at which these weights are changed is controlled by
the corresponding responsibility factor ζi. Within the proposed
MACOP architecture, such adaptive learning rate allows each
controller’s inverse model to distinguish itself from the other con-
trollers. Additionally, in order to allow the weights to converge to
fixed values, the training speed is modulated with a factor l(t).
Because our description of a controller is equal for all controllers
within MACOP we will omit the use of the index i which refers
to the i-th controller. We can therefore write the weight update
equation as follows:

Wo
r (t) = Wo

r (t − 1) − l(t)ζ(t)e(t)(Q(t)a(t))T, (10)

where

Q(t) = Q(t − 1)

λ
− Q(t − 1)a(t)aT(t)Q(t − 1)

λ(λ + aT(t)Q(t − 1)a(t))
, (11)

and

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 99 | 6

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Waegeman et al. MACOP modular architecture with control primitives

Q(0) = I

α
. (12)

Here, a(t) are the current states, λ a forgetting factor and α an
initially chosen value. Q(t) is a running estimate of the Moore–
Penrose pseudo inverse (aT a)−1, (Penrose, 2008). Q(0) denotes
the initial value of Q. The error e(t) is the difference between the
actual and the desired joint-angles. To allow Wo

r (t) to converge
together with the projection matrix V from Equation (7), l(t) is
decreased linearly from 1 to 0 in the same fashion as the learning
rates ηg and ηs in Equation (7), i.e., as long as the average error
over the last 1000 time steps is larger than 1 mm, it is equal to one,
and as soon as it is smaller, it linearly decreases to zero over the
course of 5000 time steps.

2.5. ANALYZING MACOP
Each controller learns to produce a set of joint-angles online,
which contribute to solving the IK problem. We define such a
set of joint-angles as being a control primitive. Mixing these
primitives results in a set of joint-angles to which the robot is
positioned. To analyze each controller and its contribution we
define several methods which we will describe in the remain-
der of this section. The results of these analyses can be found in
section 3.

2.5.1. Tracking a trajectory
As described above we designed MACOP such that the scaling of
a controller depends on the location of the end-effector and the
robot’s pose. A control primitive that has the largest “responsibil-
ity” [biggest ζi(t)], we will call the dominant primitive (generated
by the dominant controller). Furthermore, we study the time
course of the scaling factors, and how they relate to the motion
of the robot. We color the trajectory of the end-effector accord-
ing to which controller is the dominant one at that position, this
in order to show which controllers specialize in which regions of
task-space. We show the resulting trajectories using both ESN and
linear controllers.

2.5.2. Selecting a single controller: control primitives
Even when the scaling factors strongly fluctuate in time, this does
not necessarily mean that the controllers are sending different
control signals. Indeed, even though the learning speed is modu-
lated according to the scaling factors, all of them still are trained to
perform the same task. In order to verify if specialization indeed
occurs, we conduct experiments in which after the training phase,
only one controller is used (i.e., we set its scaling factor to 1 and
all others to 0). We show the resulting trajectories, and we study
individual model performance compared to its true scaling factor.

2.5.3. One vs. multiple controllers
One of the main research questions of this paper is of course how
much we can profit from using MACOP versus a single controller.
In order to answer this, we measure how well the setup performs
as a function of the number of controllers. In order to keep this
comparison fair, we make sure that for each setup the number of
trainable parameters (the total number of output weights of the
ESN) remains constant.

2.6. DYNAMIC EFFECTS OF KINEMATIC CONTROL
An inverse kinematic mapping maps a desired task-space posi-
tion to the corresponding joint-angles. In most evaluations of
learning inverse kinematics, a new command is only sent when
the previous desired joint-angles are reached. For this, a direct
inverse mapping without memory suffices. However, in our
experiments we do not wait for the robot to reach the com-
manded joint-angles and send new joint-angles at a constant
rate (every 32 ms). As shown in Figure 4, a PID-controller,
which applies the necessary torque to reach a desired joint-
angle, has a dynamic transition before reaching a new target
angle. These dynamic transitions need to be compensated by
the controllers as well, in order to reach the desired outcome in
time 3. Such transitions require memory instead of a direct
mapping. We evaluate the MACOP’s ability to cope with these
dynamic effects by changing the P-parameter of each joint’s PID-
controller (which determines how fast the robot can react to
changes in the desired joint-angles) such that these dynamic
effects become more important.

3. RESULTS
All training parameters for the experiment are provided in
Table 1. The RLS parameters λ and α we chose based on previ-
ous experience. The learning rates ηg and ηs we found by trial
and error, but we experimentally verified that performance does
not change much in a broad region around the provided values.

3.1. TRACKING A TRAJECTORY
To investigate the overall behavior of MACOP, we applied mul-
tiple desired trajectories of the robot end-effector. In both

3This means that the control signal the robot receives can no longer be simply
interpreted as joint-angles, but more as a type of motor commands.

FIGURE 4 | Illustration of a sudden change in desired joint-angle of the

bottom joint (black dashed line) of the PUMA 500. The robot response
is shown for this particular joint with different P -parameters, to illustrate the
effect of a changed P value. By decreasing the P -parameter the dynamic
transition time from one position to the other increases.

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 99 | 7

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Waegeman et al. MACOP modular architecture with control primitives

Table 1 | Simulation parameters.

Parameter Value

λ 1 − 10−4

α 0.01

ηg 0.00008

ηs 0.0002

Figures 5, 6, we show the resulting trajectories (after conver-
gence) of following a rectangular and circular-shaped target tra-
jectory. In both experiments an RMSE of 10 cm was achieved
within 10,000 samples and a RMSE of 1 mm (point of conver-
gence) within 100,000 samples, demonstrating that the system is
able to follow a desired trajectory closely.

In the first experiment, we train the robot to generate a rectan-
gular trajectory which spirals back and forth into the X-direction
over several passes. For this we used 5 controllers, each with 50
neurons. In the top panel of Figure 5 we show the trajectory gen-
erated by the robot after convergence (all learning rates are 0 and
RMSE = 1 mm). Each part of the trajectory is colored according
to which controller is dominant (has the maximum scaling fac-
tor) at that time. The responsibilities ζi(t) themselves are shown
in the bottom panel of Figure 5. It appears that the 5 controllers
have formed a specialization for certain regions of task-space,
their responsibilities ζi peaking at the corresponding parts of the
trajectory.

Notice that the depth of the trajectory in the X-direction is
rather small (20 cm), and yet the scaling factors strongly vary
as a function of it (as is especially apparent in the green and
blue parts of the trajectory). This strong change in scaling fac-
tor is caused mostly by the pose of the robot, and not so much
the end-effector position, as we have verified by experimentally
testing the sensitivity of the scaling factors as a function of the
joint-angles and position. This suggest that the control architec-
ture effectively uses information of the robot pose to solve the
task.

A second experiment (Nc = 4, 50 neurons each) extends
the difficulty of the previous trajectory to demonstrate
responsibility/task-space correlations over a larger time period of
the desired movement. The trajectory describes four passes of a
circle in a single direction during 8 s, after which the trajectory
smoothly switches to describing a shifted circle in the opposite
direction of the previous circle.

We show the result after convergence in Figure 6. The rotation
direction in which the trajectory is followed is indicated by the
arrows. In the left part of the circular trajectory the blue controller
is contributing a significant part to the control of the robot. This
contribution is reduced when the robot is performing the right
circular movement. In this part of the trajectory, the red controller
is contributing more. In order to verify MACOPs robustness we
consider the double circle trajectory after training, and suddenly
jump ahead in time in the desired trajectory such that there is a
discontinuous jump in the target end-effector position. The result
is shown in Figure 7. It appears that after a large initial over-
shoot, the robot recovers and is eventually capable of tracking the

FIGURE 5 | Top panel: the resulting end-effector trajectory generated by
the robot arm for the rectangular target trajectory after convergence (RMSE
< 1 mm for the full trajectory). The corresponding color of the dominant
controller is shown. Bottom panel: the responsibility factors ζi (t) as a
function of time.

FIGURE 6 | Top panel: the resulting end-effector trajectory generated by
the robot arm for the circular target trajectory after convergence. The
corresponding color of the dominant controller is shown. The arrows
indicate the direction of the trajectory. Bottom panel: the responsibility
factors ζi (t) as a function of time.

desired trajectory again. The overshoot can be largely explained
by the fact that the controller never saw a discontinuous jump
during training, such that it has seen no examples of what hap-
pens when large torques are applied on the joints. Furthermore,
the sudden jump forces the robot arm into a region of task-space
where it never resided during training, causing unpredictable
behavior.

After training MACOP (same configuration as before) with the
double circle trajectory we define a test grid on the plane of the
training trajectory with a resolution of 1 cm. The test target points
of this trajectory are visited by sweeping the grid back and forth

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 99 | 8

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Waegeman et al. MACOP modular architecture with control primitives

FIGURE 7 | Top panel: a part of the generated trajectory before the switch
and after a jump, where the dominant controllers are represented by a
corresponding color. The direction in which the trajectory is tracked is
indicated by the arrows. Bottom panel: visualization of the generalization
performance of the learned IK (circular training trajectory: dashed line) on a
test grid. Color scale is the RMSE in m.

in the Z-direction. The result of such an experiment is shown in
the bottom panel of Figure 7. Each pixel represents the RMSE (in
meters) of a specific grid point. Averaged over 10 experiments
(different initialization and training) a mean RMSE = 4.4 mm
with a standard deviation of 3.1 mm is achieved. Note that the
RMSE in the grid corners are bigger because they are harder to
reach.

In the final experiment of this paragraph, we tried a set of lin-
ear controllers to see if MACOP is able to still control the robot
arm to generate a trajectory with very low-complexity controllers.
We found that we need at least 9 controllers to approximate the
target trajectory with a final RMSE = 1.5 cm. Using MACOP with
fewer controllers does not work. Figure 8 shows the resulting tra-
jectory and the scaling factors of the individual controllers. The
fact that MACOP is capable of solving the tracking task with
such basic controllers is a strong indicator that the presented
training algorithm for the scaling factors is quite successful in
distributing the complexity of the full task. It also demonstrates
that MACOP can be easily extended to include any kind of inverse
model.

3.2. ONE VS. MULTIPLE CONTROLLERS
One of the main assumptions underlying MACOP is that we
assume it is beneficial to distribute the full control task over mul-
tiple controllers. The first check we performed was to make sure
that the mixing using the softmax function is in fact responsi-
ble for the increase in performance, and not just having several
distinct controllers in the first place. We have tested this by keep-
ing the responsibility factor ζi(t) constant and equal to N−1

c for
each model, and this in the case of 5 ESN-controllers. It turns out
that this situation leads to the same performance that is attained
by using a single, large reservoir (which performs worse, as we
will show next), showing that the variable responsibility factors
directly increases performance.

FIGURE 8 | Illustration of the tracking performance of MACOP with 9

linear controllers after convergence. Top panel: the resulting trajectory,
colored according to the dominant controller. The dashed line is the target.
Bottom panel: the corresponding responsibilities as a function of time.

To investigate how much the tracking performance depends on
the number of controllers we conducted an experiment in which
we measure the mean error on the trajectory for different number
of controllers. We measure the distance from the end-effector to
the target averaged over 5000 samples after training. We linearly
reduce all learning rates to 0 after 100,000 samples of training
(because some experiments will never reach the requirement of an
RMSE less than 1 mm). For an increasing number of controllers
we apply MACOP on trajectories which are based on all 26 let-
ters in the English alphabet, which we have drawn by hand and
of which we recorded position as a function of time. As the tra-
jectory is repeated periodically, we also made sure that the end
and starting point are the same in each trajectory (to avoid sud-
den jumps). After recording we scaled the trajectories and placed
them in the YZ-plane in reach of the robot.

In each experiment we train a randomly initialized controller
ensemble to produce a single letter, and we measure the RMSE
after convergence. For each number of controllers, we measure
the average RMSE over 50 instantiations of each letter, such that
the measured result for each Nc is averaged over 50 × 26 = 1300
experiments. In order to keep the comparison fair, we keep the
number of trainable parameters (the total number of output
weights of all the ESNs) constant. In practice this means we
used 250 neurons for a single controller, 125 for 2 controllers,
etc. In Figure 9 we present the results. A single controller per-
forms rather poorly. The optimal number of controllers for the
entire English alphabet is around 6 controllers. When the num-
ber of controllers increases further, the number of neurons, and
hence the modeling power, of each controller becomes smaller.
Similar to the experiment with the linear controller, this experi-
ment shows that great deal of the modeling complexity is covered
by the mixing mechanism.

It should be noted that in some cases, due to the random ini-
tialization, the robot can get stuck in a certain pose (as some

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 99 | 9

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Waegeman et al. MACOP modular architecture with control primitives

FIGURE 9 | Effect of the number of controllers on the tracking

performance of MACOP on the English alphabet trajectories. The
mean, median, standard deviation, minimum and maximum values over
1300 experiments are shown for each controller configuration.

joint-angles are limited between certain values), and never reach
the desired trajectory. This is the reason why the maximum values
in Figure 9 are much bigger than the mean over all its experi-
ments. If we disregard these cases we get an RMSE of 1 mm within
100,000 training samples.

3.3. CONTROL PRIMITIVES
As we have mentioned in the introduction, what we call control
primitives in this paper differs from the regular notion of prim-
itives. In this section, we investigate how the actual individual
contributions of the controllers behave. Due to the MACOP setup
it is not straightforward to get a good understanding of the role of
a single controller. At all points in time, all controllers influence
the robot, and due to the feedback, each controller influences all
other controllers. We can think of two ways in which to study
the individual controller contributions. Either we use a single
controller in the ensemble (with scaling set to one) for steering
the robot, which then ignores potential feedback by the influ-
ence of the other controllers, and as such emergent synergies are
not expressed. Alternatively, we could record the control signals
of the individual controllers during normal operation, and use
these recordings to steer the robot afterwards. Even though this
approach will take into account potential synergies between the
controllers, during testing it has no feedback at all, such that the
trajectory could start to drift from the objective. In our setup,
however, it seems that such an effect does not occur. Therefore
we will use this approach. We have tried the other approach as
well, and the results were qualitatively similar.

To get a qualitative idea of how the individual contribu-
tions look, we revisit the task inspired on the English alphabet,
and train a controller ensemble to draw the letters of the word
“amarsi”4 one after another. After training, we use the recorded

4AMARSi is an EU project concerning adaptive motor skills for robots.

contributions of a single controller (unscaled) to steer the Webots
simulation, and record the robot response.

The result is shown in Figure 10A, the five rows starting from
the top show what trajectory each individual control primitive
produces if it alone is present in the control architecture (in a
corresponding color), plotted over the target value (gray). The
bottom row shows the trajectory of the full ensemble, colored
according to the most dominant controller. It is interesting to
note that, even though all individual controllers produce a trajec-
tory that resembles the target, all of them strongly deviate from
the true target, and each of them produces a distinctly different
response. The scaled combination of them, however, tracks the
objective far more closely, which again indicates that the mix-
ing mechanism works well to combine contributions of several
controllers.

A second experiment we perform is to see whether true special-
ization occurs. After all, even though one controller is dominant,
the other controllers will also strongly contribute to the total
motion. In order to check this, we have performed a similar exper-
iment to the double-circle objective, depicted in Figure 6. We
used four controllers, and used the individual recordings to drive
the robot. Next, we record the distance error of the end-effector
as a function of time, which we compare with the correspond-
ing scaling factor of the controller. If specialization occurs, we
would expect to see some negative correlation between the error
on the trajectory and the corresponding scaling of the controller.
If the scaling factor of a certain controller is high, this would indi-
cate that it specializes in the current region of task-space, and
the resulting error should be low. Vice versa, if the scaling is low
the controller should perform worse, as it is not its region of
specialization.

The result for each controller is shown in Figure 10B. For some
controllers there seems to be a strong relation between the error
and the scaling of the corresponding model. Especially in the case
of the red and blue controller. The relation is weaker, however, for
the other two. Indeed, the scaling factor for these two controllers
fluctuate less, such that they are able to train their corresponding
inverse models throughout the full trajectory, leading to better
overall generalization. From this we can conclude that MACOP
uses both specialization and signal mixing to obtain good control
over the robot arm.

3.4. COPING WITH DYNAMIC EFFECTS
As mentioned before, during training MACOP is capable of han-
dling dynamic effects/transitions caused by the inherent inertia
of the robot and the fixed control signal rate. To demonstrate this
ability, we apply MACOP to the robot with the square objective
we used in Figure 5, but reduce the velocity of each joint. The
P-parameter in the PID-controllers is reduced from 10 to 2, of
which the effect is shown in Figure 4. Furthermore, in order to
assess the effect of a sudden jump, we periodically shift the square
by half a meter, which introduces discontinuous moments in the
objective.

In Figure 11 we show the Z-coordinate as a function of
time for the desired trajectory and resulting trajectories for the
different P-parameters. The top panel depicts the results dur-
ing the beginning of the experiment (30.4–38.4 s), while the

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 99 | 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Waegeman et al. MACOP modular architecture with control primitives

A B

FIGURE 10 | (A) Overview of the resulting trajectory with the
“amarsi” target by using a single controller contribution. Each row
shows the resulting end-effector trajectory of the robot arm. From
left to right a part of the continuous writing is shown such that
every letter of the word “amarsi” is presented. The coloring of the
trajectory illustrates which controllers contribution is used (one for

each row). The bottom row show the target trajectory, together with
the actual generated trajectory. (B) The error of a single controller
contribution (the black curves), plotted with their corresponding
scaling factors (colored) as a function of time. The vertical scale of
the error is provided on the left vertical axis, and that of the
scaling on the right.

FIGURE 11 | Comparison of the Z-coordinate of the generated

trajectories for the shifted-squares objective. Shown are the desired
Z-coordinate (black), and those generated by robots with P = 10 (blue), and
P = 2 (red). The top panel is during the early parts of the training, and the
bottom one after convergence. The abrupt change in the desired trajectory
corresponds to the shift of the squares.

bottom panel depicts the results after convergence. The robot
with the standard velocity (blue line) is able to follow the
objective more closely during the beginning of the experiment
but exhibits some fluctuations. The Z-position trajectory of the
reduced velocity configuration is unable to reach the objec-
tive closely during the first part an clearly needs more time

to learn the inverse model, indicating that the control prob-
lem is harder when the robot reacts more slowly. If we look
at the result after convergence, we notice that the small fluc-
tuations in the blue trajectory are reduced, and that MACOP
has learned to follow the objective closely. Interestingly, due
to a larger maximum velocity, the blue trajectory has a large
overshoot when the applied objective exhibits a sudden jump.
The red trajectory exhibits almost no overshoot in the begin-
ning of the experiment but after convergence, the red curve also
exhibits some overshoot. In the beginning of the experiment it’s
clear that the limited velocity of the joints causes the robot’s
end-effector to not reach its target in time, as opposed to the
version with fast control. This indicates that the desired trajec-
tory is more difficult to obtain if the robot has slow dynamics.
Indeed, the sudden changes in direction can be made far more
easily if the robot has a fast control response, and actuating a
single joint may be enough, which is a simple task. If it has
a slow response, the robot will need to use synergies between
several joints in order to cause the end-effector to switch its
direction so suddenly. This makes the control problem far more
complicated.

Reducing the velocity of each robot joint has its advantages
in terms of power consumption and safety. However, a trade-off
must be made between faster convergence, as in closely following
the objective, and the amount of overshoot allowed. In some tasks
it might be possible that the objective changes very fast, and in
such cases, reducing the reaction speed will restrict the robot in
reaching its targets.

4. DISCUSSION
In this work we described a modular architecture with con-
trol primitives (MACOP), which learns to control a robot arm

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 99 | 11

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Waegeman et al. MACOP modular architecture with control primitives

based on a pre-set number of controllers. The inspiration for
this architecture stems from MOSAIC (Haruno et al., 2001),
which is a control framework, inspired by a plausible model
on how human motor control learns and adapts to novel envi-
ronments. MOSAIC uses a strategy in which an ensemble of
inverse-model controllers is trained, one for each environment
with different properties. On top of this, a selection mechanism
selects which controller needs to be active at which moment
in time. Each controller is associated with a forward model of
the system that needs to be controlled, and controller selec-
tion happens by choosing the forward model which is the most
accurate.

Our [and others’ (Haruno et al., 2001)] observations show
that such a strategy may not be optimal. There is no reason why
the accuracy of a forward model should be correlated to that
of the inverse model. Another selection mechanism of the con-
trollers might thus be possible. In this work, we want to build
upon the idea of a fixed number of control primitives which
are continuously combined to produce a desired motion. Each
controller used in MACOP consists of an inverse model which
is trained online and consists of an Echo State Network. Given
some high-level controller mixing requirements, an unsupervised
division of the task and joint-space is achieved, which can be
related to a Kohonen map (Kohonen, 1998). The mixing mech-
anism learns a subdivision of the entire task and joint-space and
produces one scaling factor for each controller which are asso-
ciated with the current end-effector and joint-angle position of
the robot. The training error of each controller is scaled with the
same factor such that training data within a controller’s associ-
ated part of the subdivision becomes more important than other
data. As a result of this data selection mechanism, every con-
troller can specialize its function within its appointed part of
the joint and task-space. The used mixing requirements prescribe
that all controllers should contribute significantly to the task,
while still allowing for a controller to specialize itself for a certain
subregion.

We validated MACOP on an inverse kinematic learning task
where we controlled a 6 DOF robot arm by producing joint-angles
which are sent at a fixed control rate. This is in contrast with other
approaches such as Oyama et al. (2001) where a static mapping
from task-space position to joint-space is learned and where a
separate feedback control loop to approach the target joint-angles
is needed. Such a separate feedback control system results in high
control gains when their is an external perturbation of the robot’s
movement. Achieving a compliant kinematic control thus argues
for a dynamic learning approach which learns the control at a
fixed control rate. In this work we rely on the approach proposed
in Waegeman et al. (2012) for such a dynamic control method. As
a result MACOP is well suited to cope with the dynamical effects
introduced by the non-instantaneous control of the robot: even
when the robot responds slowly to the control signal, the MACOP
architecture is able to compensate for it and produce the target
trajectory.

We replaced each controller with a simple linear controller to
validate MACOP’s independence of the chosen ESN-controller.
Such a linear controller is constructed by learning a linear

combination of the architecture’s input. When the number of lin-
ear controllers within MACOP is large enough, the end-effector
will start to track the target. However, the tracking performance
of MACOP with the ESN-based controllers is better due to its
non-linear nature.

In this work, the contribution of a single controller to all
the robot’s joint-angles is called a control primitive. Motor and
motion primitives generally refer different building blocks at dif-
ferent levels of the motor hierarchy. They can be kinematic (e.g.,
strokes, sub movements), dynamic (e.g., joint torque synergies,
control policies) or both. According to Flash and Hochner (2005)
their crucial feature is that a wide variety of movements can be
derived from a limited number of stored primitives by applying
appropriate transformations. Within this definition a controller’s
contribution to the joint-angles can be called a primitive. Their
organization is stored within the mixing transformation such that
after convergence a consistent controller selection is achieved.
What is different from the common interpretation of primi-
tives is that in our case, the control primitives are mixed and
rescaled constantly, instead of truly being selected and weighted
statically.

MACOP learns to spread a set of controllers in the vicinity of
the target trajectory such that primitives produced by controllers
can help in tracking this trajectory. Even when the complexity of
these controller is reduced (using linear controllers), the task is
still solvable. Unlike in Nori and Frezza (2004), the MACOP con-
trol primitives and their mixing values both depend on the state
of the robot, and because they are adapted online they become
dependent on the task. After convergence (all learning rates are 0)
this task dependency is removed.

In future work we wish to investigate how well MACOP is able
to simplify the full dynamic control (e.g., controlling torques)
of such systems including real-world robot platforms. Secondly,
we wish to investigate how the mixing mechanism adapts to
new tasks when the controllers are assumed to be fixed (training
completed).

One interesting observation needs more scrutiny. Even though
we showed that a single controller is unable to learn the inverse
kinematics, we still found that for the controller ensemble, indi-
vidual controller contributions perform relatively well in tracking
the target trajectory. We suspect that this is caused by the used
mixing mechanism and its effect on the controller’s learning rate.
The training data used to update a controller is weighted such
that a good local model can be learned more easily instead of
polluting the controller with data from other positions. Later,
generalization to other positions in task-space can be performed
more gradually, simplifying the full training problem. Further
tests will be needed to confirm this hypothesis.

ACKNOWLEDGMENTS
We thank J. P. Carbajal for the valuable and inspiring discus-
sions and useful suggestions. This work was partially funded by
a Ph.D. grant of the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen)
and the FP7 funded AMARSi EU project under grant agreement
FP7-248311.

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 99 | 12

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Waegeman et al. MACOP modular architecture with control primitives

REFERENCES
Bernstein, N. A. (1967). “The

problem of interrelation of co-
ordination and localization,” in
The Co-ordination and Regulation
of Movements (New York, NY:
Pergamon Press), 15–59.

Bishop, C. M., and Nasrabadi, N.
M. (2006). Pattern Recognition and
Machine Learning. Vol. 1. New York,
NY: Springer.

Bizzi, E., Mussa-Ivaldi, F. A., and
Giszter, S. (1991). Computations
underlying the execution of
movement: a biological perspec-
tive. Science 253, 287–291. doi:
10.1126/science.1857964

Cheung, V. C. K., d’Avella, A., Tresch,
M. C., and Bizzi, E. (2005). Central
and sensory contributions to the
activation and organization of
muscle synergies during natural
motor behaviors. J. Neurosci.
25, 6419–6434. doi: 10.1523/
JNEUROSCI.4904-04.2005

d’Avella, A., and Bizzi, E. (2005).
Shared and specific muscle
synergies in natural motor
behaviors. Proc. Natl. Acad.
Sci. U.S.A. 102, 3076–3081. doi:
10.1073/pnas.0500199102

d’Avella, A., Saltiel, P., and Bizzi,
E. (2003). Combinations of mus-
cle synergies in the construction
of a natural motor behavior.
Nat. Neurosci. 6, 300–308. doi:
10.1038/nn1010

Doeringer, J. A., and Hogan, N. (1998).
Intermittency in preplanned elbow
movements persists in the absence
of visual feedback. J. Neurophysiol.
80, 1787–1799.

Flash, T., and Hochner, B. (2005).
Motor primitives in vertebrates and
invertebrates. Curr. Opin. Neurobiol.
15, 660–666. doi: 10.1016/j.conb.
2005.10.011

Hart, C. B., and Giszter, S. F.
(2004). Modular premotor
drives and unit bursts as prim-
itives for frog motor behaviors.
J. Neurosci. 24, 5269–5282. doi:
10.1523/JNEUROSCI.5626-03.2004

Haruno, M., Wolpert, D. M., and
Kawato, M. (2001). Mosaic model

for sensorimotor learning and con-
trol. Neural Comput. 13, 2201–2220.
doi: 10.1162/089976601750541778

Ijspeert, A. J., Crespi, A., Ryczko,
D., and Cabelguen, J. M. (2007).
From swimming to walk-
ing with a salamander robot
driven by a spinal cord model.
Science 315, 1416–1420. doi:
10.1126/science.1138353

Jaeger, H. (2001). The Echo State
Approach to Analysing and Training
Recurrent Neural Networks.
Technical Report, GMD Report
148, German National Research
Center for Information Technology.

Jordan, M. I., and Rumelhart, D.
E. (1992). Forward models:
supervised learning with a distal
teacher. Cogn. Sci. 16, 307–354. doi:
10.1207/s15516709cog1603_1

Kargo, W. J., and Giszter, S. F. (2000).
Rapid correction of aimed move-
ments by summation of force-field
primitives. J. Neurosci. 20, 409–426.

Kohonen, T. (1998). The self-
organizing map. Neurocomputing
21, 1–6. doi: 10.1016/S0925-
2312(98)00030-7

Lonini, L., Dipietro, L., Zollo,
L., Guglielmelli, E., and Krebs,
H. I. (2009). An internal model
for acquisition and retention
of motor learning during arm
reaching. Neural Comput. 21,
2009–2027. doi: 10.1162/neco.2009.
03-08-721

Muelling, K., Kober, J., and Peters,
J. (2010). “Learning table ten-
nis with a mixture of motor
primitives,” in 2010 10th IEEE-
RAS International Conference on
Humanoid Robots (Humanoids)
(Nashville, TN: IEEE), 411–416.
doi: 10.1109/ICHR.2010.5686298

Mussa-Ivaldi, F. A., and Bizzi,
E. (2000). Motor learning through
the combination of primitives.
Philos. Trans. R. Soc. Lond. B
Biol. Sci. 355, 1755–1769. doi:
10.1098/rstb.2000.0733

Mussa-Ivaldi, F. A., Giszter, S. F., and
Bizzi, E. (1994). Linear com-
binations of primitives in verte-
brate motor control. Proc. Natl.

Acad. Sci. U.S.A. 91, 7534–7538. doi:
10.1073/pnas.91.16.7534

Nguyen-Tuong, D., Seeger, M., and
Peters, J. (2009). Model learning
with local gaussian process regres-
sion. Adv. Robot. 23, 2015–2034.
doi: 10.1163/016918609X1252928
6896877

Nori, F., and Frezza, R. (2004).
“Biologically inspired control of a
kinematic chain using the super-
position of motion primitives,” in
43rd IEEE Conference on Decision
and Control, 2004. CDC. Vol. 1
(Nassau: IEEE), 1075–1080. doi:
10.1109/CDC.2004.1428835

Oyama, E., Agah, A., MacDorman,
K. F., Maeda, T., and Tachi,
S. (2001). A modular neu-
ral network architecture for
inverse kinematics model learning.
Neurocomputing 38, 797–805. doi:
10.1016/S0925-2312(01)00416-7

Penrose, R. (2008). “A general-
ized inverse for matrices,” in
Mathematical Proceedings of the
Cambridge Philosophical Society.
Vol. 51 (Cambridge: Cambridge
University Press), 406–413.

Schaal, S. (2006). “Dynamic move-
ment primitives-a framework for
motor control in humans and
humanoid robotics,” in Adaptive
Motion of Animals and Machines,
eds H. Kimura, K. Tsuchiya, A.
Ishiguro, and H. Witt (New York,
NY: Springer), 261. doi: 10.1007/4-
431-31381-8_23

Schaal, S., Ijspeert, A., Billard,
A., Schaal, S., Ijspeert, A., and
Billard, A. (2003). Computational
approaches to motor learning by
imitation. Philos. Trans. R. Soc.
Lond. B Biol. Sci. 358, 537–547. doi:
10.1098/rstb.2002.1258

Schaal, S., Peters, J., Nakanishi, J., and
Ijspeert, A. (2005). Learning move-
ment primitives. Robot. Res. 15,
561–572.

Schrauwen, B., Verstraeten, D., and
Van Campenhout, J. (2007). “An
overview of reservoir computing:
theory, applications and implemen-
tations,” in Proceedings of the 15th
European Symposium on Artificial

Neural Networks, (Bruges), 471–
482.

Tresch, M. C., and Bizzi,
E. (1999). Responses to spinal
microstimulation in the chronically
spinalized rat and their relationship
to spinal systems activated by low
threshold cutaneous stimulation.
Exp. Brain Res. 129, 401–416. doi:
10.1007/s002210050908

Vijayakumar, S., and Schaal, S. (2000).
“Locally weighted projection
regression: an o(n) algorithm
for incremental real time learn-
ing in high dimensional space.”
in Proceedings of the Seventeenth
International Conference on Machine
Learning (ICML 2000). Vol. 1,
(Stanford, CA), 288–293.

Waegeman, T., Wyffels, F., and
Schrauwen, B. (2012). Feedback
control by online learning an
inverse model. IEEE Trans. Neural
Netw. Learn. Syst. 23, 1637–1648.
doi: 10.1109/TNNLS.2012.2208655

Wolpert, D. M., and Kawato, M. (1998).
Multiple paired forward and
inverse models for motor control.
Neural Netw. 11, 1317–1329. doi:
10.1016/S0893-6080(98)00066-5

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 26 January 2013; accepted: 03
July 2013; published online: 23 July 2013.
Citation: Waegeman T, Hermans M
and Schrauwen B (2013) MACOP mod-
ular architecture with control primi-
tives. Front. Comput. Neurosci. 7:99. doi:
10.3389/fncom.2013.00099
Copyright © 2013 Waegeman,
Hermans and Schrauwen. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in other
forums, provided the original authors
and source are credited and subject to
any copyright notices concerning any
third-party graphics etc.

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 99 | 13

http://dx.doi.org/10.3389/fncom.2013.00099
http://dx.doi.org/10.3389/fncom.2013.00099
http://dx.doi.org/10.3389/fncom.2013.00099
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	MACOP modular architecture with control primitives
	Introduction
	Materials and Methods
	Difficulty of Controlling an Unknown System
	Robot Arm Platform
	MACOP
	Controller selection

	Single Controller
	General setup
	Echo state networks
	Linear controllers
	Recursive least squares

	Analyzing Macop
	Tracking a trajectory
	Selecting a single controller: control primitives
	One vs. multiple controllers

	Dynamic Effects of Kinematic Control

	Results
	Tracking A Trajectory
	One vs. Multiple Controllers
	Control Primitives
	Coping with Dynamic Effects

	Discussion
	Acknowledgments
	References

