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Fossil evidence for low gas exchange capacities for Early
Cretaceous angiosperm leaves

Taylor S. Feild, Garland R. Upchurch Jr., David S. Chatelet, Timothy J. Brodribb,
Kunsiri C. Grubbs, Marie-Stéphanie Samain, and Stefan Wanke

Abstract—The photosynthetic gas exchange capacities of early angiosperms remain enigmatic.
Nevertheless, many hypotheses about the causes of early angiosperm success and how angiosperms
influenced Mesozoic ecosystem function hinge on understanding the maximum capacity for early
angiosperm metabolism. We applied structure-functional analyses of leaf veins and stomatal pore
geometry to determine the hydraulic and diffusive gas exchange capacities of Early Cretaceous fossil
leaves. All of the late Aptian—early Albian angiosperms measured possessed low vein density and low
maximal stomatal pore area, indicating low leaf gas exchange capacities in comparison to modern
ecologically dominant angiosperms. Gas exchange capacities for Early Cretaceous angiosperms were
equivalent or lower than ferns and gymnosperms. Fossil leaf taxa from Aptian to Paleocene sediments
previously identified as putative stem-lineages to Austrobaileyales and Chloranthales had the same
gas exchange capacities and possibly leaf water relations of their living relatives. Our results provide
fossil evidence for the hypothesis that high leaf gas exchange capacity is a derived feature of later
angiosperm evolution. In addition, the leaf gas exchange functions of austrobaileyoid and
chloranthoid fossils support the hypothesis that comparative research on the biology of living basal
angiosperm lineages reveals genuine signals of Early Cretaceous angiosperm ecophysiology.
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Introduction

Evolutionary transitions in the ways orga-
nisms process energy and resources represent
pivotal turning points in the history of life
(Vermeij 1999). In particular, evolutionary
changes in plant metabolic function cascade
across a network of planet-wide biogeochem-
ical and hydrological processes. Of the major
transitions in plant gas exchange function,
diverse lines of evidence point to the emer-
gence of highly photosynthetically active
angiosperm leaves as a transformative shift
underpinning the assembly of modern eco-
system processes (Boyce et al. 2009; Brodribb
and Feild 2010). For example, maximal leaf
gas exchange capacities that define today’s
ecologically dominant angiosperms far out-
strip those of all known non-angiosperms
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(Korner 1995; Lusk et al. 2003; Brodribb et al.
2007; Boyce et al. 2009; Brodribb and Feild
2010). The evolution of high leaf gas exchange
capacity may have stabilized or increased
gross primary productivity of the vegetation
under conditions of falling CO, during the
Cretaceous and/or later Cenozoic (Volk 1989;
Robinson 1994; McElwain et al. 2005; Bond
and Scott 2010). In addition, the functional
prerequisites for constructing leaves capable
of high rates of photosynthesis and functional
by-products of such leaves as they transpire
and eventually decompose may have elicited
enhanced positive feedbacks on vegetation—
hydrological cycle interactions, fire frequen-
cy, nutrient cycles, and weathering and
biomineralization processes that changed
climates and/or formed new selective inter-
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faces for diverse organisms during the Creta-
ceous (Volk 1989; Robinson 1994; Martin 1995;
Boyce et al. 2009; Taylor et al. 2009; Bond and
Scott 2010; Brodribb and Feild 2010). Howev-
er, an unresolved issue is when high leaf gas
exchange of angiosperm leaves first evolved,
and how this functional transition influenced
early angiosperm evolution (Wing and Bou-
cher 1998; Feild et al. 2009; Brodribb and Feild
2010).

An influential hypothesis is that the earliest
angiosperms functioned with high photosyn-
thetic gas exchange capacities (Stebbins 1974;
Doyle and Hickey 1976; Hickey and Doyle
1977; Retallack and Dilcher 1981, 1986; Taylor
and Hickey 1996). Paleoecological interpreta-
tions of the ecomorphology and depositional
environments of Early Cretaceous fossil an-
giosperm leaves suggested that high photo-
synthetic capacity and high rates of weedy
growth favored initial angiosperm success in
sun-exposed point-bar zones along fast mov-
ing rivers (Stebbins 1974; Doyle and Hickey
1976; Hickey and Doyle 1977; Retallack and
Dilcher 1981, 1986; Taylor and Hickey 1996).
Thus, the evolution of high leaf gas exchange
capacity by angiosperms did not spark the
global ecological sweep of the angiosperms.
Such is the case because the earliest angio-
sperms, while capable of high productivity,
remained rare and ecologically confined to
early successional zones for nearly 20 Myr
after their first fossil appearance (Hickey and
Doyle 1977; Wing and Boucher 1998; Heim-
hofer et al. 2005). Later evolution of other
functions in the reproductive system and/or
mutualisms with animals gave considerable
lift to angiosperm ecological success and
allowed the export of high leaf gas exchange
capacity to diverse environments.

By contrast, comparative ecophysiological
evidence from extant early diverging angio-
sperm lineages motivated a hypothesis that
the first angiosperms functioned with low
metabolic capacity (Feild et al. 2004, 2009).
Low leaf gas exchange capacity was associat-
ed with the early diversification of angio-
sperms in low-evaporative-demand, shady
habitats underneath forest canopies formed
by gymnosperms and ferns. Later, angio-
sperms evolved greater capacities for photo-
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synthesis and transpiration, as they dominat-
ed forest canopies and open disturbed zones.
Under this hypothesis, the rise in ecological
abundance of angiosperms evolved synchro-
nously with their ability to expand into a
range of high photosynthetic capacities pre-
viously unexplored by other vascular plants
(Brodribb and Feild 2010). However, there is
no known fossil evidence supporting the
hypothesis that the earliest angiosperms
functioned with low leaf gas exchange poten-
tial. Indeed, any literal reading of early
angiosperm leaf gas exchange evolution
based on extant basal angiosperm taxa is
fraught with uncertainty. Uncertainty exists
because these lineages experienced consider-
able range contraction over the last 100 Myr,
they may have become ecologically modified
by later angiosperm evolution or shifts in
global environment, and they may fail to
sample extinct early angiosperm functional
diversity (Feild et al. 2009; Royer et al. 2010).
Recent discoveries on how leaf vein and
stomatal pore anatomy determine leaf gas
exchange capacity offer new potential for
testing hypotheses on early angiosperm leaf
gas exchange function in the fossil record
(Brodribb et al. 2007; Boyce et al. 2009;
Brodribb and Feild 2010, McKown et al.
2010). These new approaches are potentially
informative because previous inferences were
based on traits, including leaf size, leaf shape,
major vein architecture patterns, and estimat-
ed leaf mass per area of fossil leaves, which
cannot accurately specify where a species falls
along a spectrum of low to high leaf gas
exchange capacity nor specify the hydraulic
costs of leaf photosynthesis (Doyle and
Hickey 1976; Hickey and Doyle 1977; Retal-
lack and Dilcher 1981, 1986; Taylor and
Hickey 1996; Ackerly and Donoghue 1998;
Wing and Boucher 1998; Royer et al. 2010).
The first goal of our investigation was to
explore how venation and stomatal pore
structure are linked to leaf gas exchange
capacity and to use these mechanistic linkag-
es to test previous hypotheses on how early
angiosperm fossil leaves functioned. The
focus is on fossil Zone I leaves from the
Potomac Group of North America because
these fossils represent one of the oldest
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known records of early angiosperm leaves,
and these fossils formed the conceptual
cornerstone of the ancestral weed hypothesis
(Doyle and Hickey 1976; Hickey and Doyle
1977; Taylor and Hickey 1996). The second
goal was to determine whether gas exchange
capacities of fossil leaves related to extant
terrestrial basal angiosperm lineages, specifi-
cally Austrobaileyales and Chloranthales, fell
outside the range of extant relatives. The
purpose of these comparisons was to evaluate
the hypothesis that similar leaf gas exchange
capacities have been conserved in extant basal
angiosperm leaves since the Cretaceous. To
do so, we determined the relations among
vein and stomatal pore anatomy with leaf gas
exchange capacity across a broad sample of
extant basal angiosperm leaves and used
them to interpret fossil leaf function.

Methods

Abbreviations.—D,, vein density (mm
mm?); ¢S4, maximum stomatal conduc-
tance to water vapor calculated from stomatal
pore geometry (mmol H,O m™ s7'); g.V*™,
maximal stomatal conductance to water va-
por calculated from vein density (mmol H,O
m > s'); gm measured maximum stomatal
conductance to water vapor (mmol H,O
m~? s7'); Pc, measured maximum photosyn-
thetic capacity on leaf area basis (umol CO,
m*s'); ¥, water potential (MPa); Wjeas, leaf
water potential (MPa); W, soil water poten-
tial (MPa); Sp, stomatal density (number
mm~?); Sy, stomatal guard cell length (um);
Sw stomatal guard cell width (um); Porer,
stomatal pore length (um); Porep, stomatal
pore depth (um); SPA, stomatal pore area at
maximal aperture (m?); VPD, vapor pressure
deficit (kPa).

Extant Species and Fossil Leaf Collections.—
The comparative investigations of leaf struc-
ture—function focused on 87 species of extant
basal angiosperms, including Amborella, Nym-
phaeales, Austrobaileyales, and Chloranthales
(Appendix I in the supplementary material
online at http://dx.doi.org/10.1666/10015.
s1). Most species studied were in natural
populations in Australia, Costa Rica, China,
Dominican Republic, French Polynesia, Fiji,
Jamaica, New Caledonia, New Zealand, Peru,
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Papua New Guinea, Thailand, United States,
and Vietnam. Ten individuals per species were
sampled. In addition, we studied 18 species,
represented by three to ten individuals, in an
outdoor garden collection in Knoxville,
Tennessee. Plants were watered using a
timed drip irrigation system, and all plants
received fertilization every two to three weeks
to ensure healthy leaves for physiological
measurements. The species sampled encom-
passed the modern diversity of life form, life
zone, and regeneration ecology found in extant
terrestrial basal angiosperms (Appendix I,
online) (Feild et al. 2004, 2009). Diverse lines
of phylogenetic and paleobotanical data
support these lineages as having diverged
near the base of extant angiosperm phylogeny
(Jansen et al. 2007; Moore et al. 2007; Saarela et
al. 2007; Feild et al. 2009; Endress and Doyle
2009).

To examine intraspecific variation of leaf
structure in relation to light, we sampled sun
and shade leaves of each species when
possible. Sun and shade environments were
designated by field observations (Keeling and
Phillips 2007). Sun leaves were taken as those
that fully expanded under greater than 70%
exposure to open sky. Shade leaves were
taken as those that fully expanded in the
forest understory, defined as less than 5%
exposure to open sky. For shade-demanding
and short-lived pioneer species, only shade
and sun leaves were available for sampling,
respectively.

Details on the localities, ages, and proposed
systematics of the sampled fossils are sum-
marized in Appendix II (online). The fossils
represented seven localities spanning approx-
imately 60 Myr (early Aptian to earliest
Paleocene). Two groups of fossils were
focused on (1) leaf fossils from Zone I of the
Potomac Group (Doyle and Hickey 1976;
Hickey and Doyle 1977) and (2) leaf fossils
that previous systematic investigations iden-
tified as possible stem-lineage relatives to
extant Austrobaileyales and Chloranthales,
referred hereafter as austrobaileyoids and
chloranthoids, respectively (Appendix II, on-
line). Appendix III (online) presents evidence
for stratigraphic ages and systematic place-
ments for the fossils measured.



198

Maximum Photosynthetic Rates and Stomatal
Conductances.—To test how leaf venation and
stomatal pore structure related to photosyn-
thetic gas exchange, water vapor and CO,
exchange fluxes were measured with a
photosynthesis infrared gas analyzer (LiCOR
6400XT, Li-COR Biosciences, Lincoln, NB,
United States of America). We chose 30 basal
angiosperm species to obtain a broad sam-
pling of phylogenetic and ecological diversity
(Appendix I, online) (Feild et al. 2004, 2009).

Stomatal water vapor conductance (gm,
mmol H,O m™ s') and photosynthetic
capacity (Pc, pmol CO, m™ s™') were mea-
sured on clear mornings (0900-1130 h) to: (1)
avoid heterogeneities on leaf gas exchange
due to passing clouds, (2) ensure leaves were
dry, and (3) ensure that maximal stomatal
opening and light-induction of photosynthe-
sis occurred before midday stomatal closure.
Microclimate around leaves during measure-
ments was controlled at 25 + 1.5°C, 1300 umol
quanta m* s' photosynthetic photon flux
density (PPFD), vapor pressure deficit (VPD)
between 0.9 and 1.1 kPa, and 380 = 5 uL L'
CO,. The light intensities provided saturated
photosynthesis but did not induce photoinhi-
bition (Feild et al. 2004). Measurements under
these optimal conditions served as the pho-
tosynthetic and stomatal conductance maxi-
ma attainable for a species. Photosynthetic
gas exchange capacity for each species was
based on a sample of five undamaged and
fully expanded leaves from each of five
individuals.

Vein Density (Dy) of Extant and Fossil Leaves
to Calculate Leaf Gas Exchange Capacity.—Vein
density is the length of veins ramifying in a
given amount of leaf area (mm mm ). Data
from living plants demonstrated that photo-
synthetic capacity and stomatal conductance
to water vapor can be predicted from D,
(Brodribb et al. 2007; Boyce et al. 2009;
Brodribb and Feild 2010, McKown et al.
2010). D, is a major determinant of leaf
CO,/H;0 exchange because water transport
and photosynthetic gas exchange are coupled
(Sperry 2003). Leaf hydraulic capacity is set
by vein structure because increased vein
branching brings xylem tissues that are
specialized for water transport closer to the
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sites of water evaporation in the leaf (Brod-
ribb et al. 2007; McKown et al. 2010). Hence,
D, defines the hydraulic supply limit of water
vapor exchange that secondarily dictates
maximum CO, assimilation by leaves (Brod-
ribb et al. 2007; Brodribb and Feild 2010).

D, of extant taxa was measured on leaves
cleared using sodium hydroxide, sodium
hypochlorite, and heat (Hudson et al. 2010).
Veins were stained in safranin and measured
using an upright microscope over approxi-
mately 6 mm?* of area (Axio-Imager, Carl-
Zeiss, Germany). Digital images were cap-
tured with an AxioCam camera (Carl-Zeiss,
Germany) and processed using Image]
(http:/ /rsb.info.nih.gov/ij/; NIH, Bethesda,
Maryland) to measure D,. D, was measured
on compression fossils by tracing vein lengths
using Image]. Images were obtained with a
digital camera and macro lens (Nikon D300S
with Nikkor 60 mm lens, Nikon, Japan) or by
digitizing 10.1 X 12.7 cm photographic
negatives and prints of fossils at 600 dpi.
Three D, measurements on each sampled
fossil for each species were taken. Only fossils
with well-preserved venation were sampled
(Fig. 1). Details on how fossils were selected
for measurements are provided in Appendix
I (online).

We used a published model to reconstruct
photosynthetic capacity (Pc) and maximum
stomatal conductance to water vapor of fossil
leaves from D, (see Brodribb et al. 2007;
Brodribb and Feild 2010). The model assumes
that under non-limiting conditions of soil
water availability, maximum leaf hydraulic
conductance (Kje,) can be calculated from the
distance water must flow from the vein
terminals to the sites of evaporation (d,,;
Brodribb et al. 2007). By knowing Kje,s one
can calculate maximum stomatal conductance
to water vapor from vein density (g."*™),
which provides a basis for calculating maxi-
mum leaf Pc. To emphasize the impact of
vein evolution on gas exchange, we used
fixed concentrations of CO, and O, (current
ambient concentrations) to reconstruct photo-
synthetic capacity. Our emphasis was on
diffusive-hydrodynamic constraints to leaf
gas exchange rather than biochemical con-
straints upon photosynthesis such as maxi-
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FiGure 1.

Comparison of fossil preservation of minor
veins in Ficophyllum crassinerve (USNM192353), a putative
austrobaileyoid stem-lineage with a vein density of
3.52 mm mm? (A) and a sun leaf of extant Amborella
trichopoda with vein density of 3.77 mm mm~™? (B). Scale
bars, 1.5 mm.

mum electron transport and carboxylation
rates. These enzymatic processes are not
preserved in fossils. Instead of attempting a
highly uncertain reconstruction leaf gas ex-
change capacities across an uncertain range of
cross-varying Cretaceous ambient CO, and
O, concentrations (McElwain et al. 2005;
Fletcher et al. 2008; Barclay et al. 2010;
Glasspool and Scott 2010; Royer 2010), atmo-
spheric gas concentrations were constrained
to allow a comparison of gas exchange
capacities under standard conditions. Param-
eters for VPD and water potential gradient
across the leaf were set at 1 kPa and —0.5 MPa,
respectively. These physiological conditions
are associated with maximal gas exchange
capacity for terrestrial basal angiosperms
(Feild et al. 2009). Leaf thickness affects
estimates of maximum CO,/H,O gas ex-
change by varying d,, (Brodribb et al. 2007).
Thus, leaf gas exchange capacities were
calculated at lower (70 pm) and upper
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(140 pm) ends for the range of vein-epidermal
thicknesses for mesophytic angiosperm leaves
(Brodribb et al. 2007; D. S. Chatelet and T. S.
Feild unpublished data 2009). This procedure
was applied because leaf thickness cannot be
measured in compression fossils.

Measurements of Stomatal Apparatus Geome-
try in Living and Fossil Leaves and Calculation of
Maximum Stomatal Conductance to Water Va-
por—An accepted equation to calculate the
maximum diffusive conductance of the sto-
mata (gstoma) Was used (Parlange and Wag-
goner 1970; Van Gardenigen et al. 1989;
Kaiser 2009):

8stoma =1/{[(d/m+ a +b)]

+1In(4a/b)/n*a]/D+ N} (1)
where 2 = guard cell pore length/2, b =
guard cell pore width/2, d = guard cell pore
depth; D = diffusivity of water vapor in air, N
= guard cell density. Measurements of d were
made on cross-sections of FAA fixed leaves
embedded in plastic resin (JB-4, Polysciences
Inc., Warrington, Pennsylvania), and sec-
tioned at 5-um thickness on a rotary micro-
tome (RM2245, Leica Microsystems, Ger-
many). From each species, 20 guard cell
pores were imaged at 400X and measured
with Image]. 2 and N were determined on
macerated cuticles stained in safranin. Cuti-
cles were macerated using acetic acid and
hydrogen peroxide. We measured five 4-mm?*
sheets of cuticle for N at 200X. Geometric
landmarks for assessing guard cell pore
length and depth followed previous criteria
(Lawson et al. 1998). We assumed that
maximum guard cell width (b) was approx-
imated by one-third of the guard cell pore
length (Osborne et al. 2004). Using the length
and width of the stomatal pore, and approx-
imating the pore as an ellipse, we calculated
stomatal pore area at maximal aperture (SPA,
m?).

The stomata of extant basal angiosperms
and the fossil stomata investigated possessed
prominent peristomatal rims over the guard
cell pores (Upchurch 1984a,b, 1995). Vesti-
bules could lengthen the diffusional path
length from the stomatal pore to the bulk
phase. As a result, the accuracy of equation
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(1) will be affected. The calculated maximum
conductance of the stomatal pore complex
(g°™MA mmol m 2 s™') to water vapor is:

8 STOMA 1 / (Tstoma + Tvestibule) (2)

where 7goma 18 the resistance of the stoma and
Tvestibule 1S the resistance of the vestibule atop
a stoma. The resistances of each term were
calculated by substituting the length, width,
and depth of the vestibule or the stoma into
equation (1). Vestibule depth was measured
at 400X from the same cross-sections as
described above, and vestibule length and
width determined from cuticle macerations at
400X. To improve the accuracy of vestibule
geometry measurements, we observed stoma-
tal vestibules of some species with scanning
electron microscopy on critically dried leaves
(observations not shown). An approximation
of the cuticular vestibule and stomatal pore
resistors as additive in series makes three
assumptions: (1) the architectures can be
approximated as connected pores of simple
cylindrical geometry; (2) diffusion within the
two components does not involve exchange
through the walls of each; and (3) other
resistors to water vapor diffusion, such as
internal cuticle and intercellular conductance,
are not significant. Assumptions one and two
are reasonable because vestibules consist of a
thick cuticle that is likely to be impermeable
to water vapor. Assumption three is valid
because maximum conductance was calculat-
ed (Kaiser 2009).

On fossil leaf cuticles, measurements were
made on previous cuticular preparations
from four localities (Appendix III, online)
(Upchurch 1984a,b, 1995, Upchurch and
Dilcher 1990). Guard cell pore length as well
as the length and width of the vestibule
aperture were measured at 400X. Guard cell
width was approximated as one-third of the
pore length. The taxon means are from ten
stomata. Stomata pore or vestibule depths
could not be measured on the prepared fossil
cuticles. However, stomatal pore depth cor-
related with stomatal pore length (n = 113;
= 0.87) across a broad range of stomatal size
(i.e., 18 um to ~100 um in maximum length
[D. S. Chatelet unpublished data 2010]). Thus,
stomatal length measurements were used to
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calculate stomatal pore depth. Stomatal ves-
tibule depth of fossil leaf cuticles was ap-
proximated in the calculations as the average
depth (548 = 2.6 SD pm, n = 113) found
across all of the extant angiosperms sampled.

Phylogenetic Analyses.—To compare leaf
fossils to reconstructed nodes of trait evolu-
tion across extant angiosperm phylogeny, we
assembled a composite phylogenetic tree by
grafting species-level trees onto two well-
supported backbone topologies using Mes-
quite version 2.6 (Maddison and Maddison
2008). The species-level phylogenies included
the following clades: Chloranthales, Illicia-
ceae, Schisandraceae, Trimenia, and Nym-
phaeales (Jansen et al. 2007; Moore et al.
2007; Saarela et al. 2007; Endress and Doyle
2009; Feild et al. 2009). Published consensus
trees were used, and the polytomies treated as
soft. The composite tree was pruned to leave
the species sampled.

Ancestral state values for functional traits
were reconstructed using weighted squared-
change parsimony over species terminals
using Mesquite. This method minimizes the
sum of squared change along all branches of
the tree to reconstruct the values of internal
nodes from the trait values of the species’
terminals (Maddison and Maddison 2008).
For species with sun and shade leaves,
ancestral state trait reconstructions were
performed using the maximum trait values.
Then, a separate analysis was run using the
average of sun and shade values to define a
species trait value. In cases where the phylo-
genetic relations were uncertain, Mesquite
was used to randomly resolve phylogenetic
relations within clades (100 times), and the
trait values for nodes within the tree were
averaged (Appendix IV, online).

Results

Leaf Venation Density and Gas Exchange
Capacity in Extant and Extinct Leaves.—Leaf
photosynthetic capacity (Pc) and maximum
stomatal conductance to water vapor (gm)
increased linearly with increasing vein density
(Dy; Fig. 2A,B). Nymphaeales, however, rep-
resented exceptions with high Pc and g, but
with comparatively low D, (Fig. 2A). Across
all species, Pc increased with g, (Fig. 2C).
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Ficure 2. Coordination of structure-function relations of
the venation system and leaf gas exchange capacity across
35 extant basal angiosperm species. A, Relation between
leaf photosynthetic capacity (Pc, pmol CO, m™ s7') and
leaf vein density (D,, mm mm % excluding Nym-
phaeales, y = 2.444x, r* = 0.69). B, Relation between
measured maximum stomatal conductance to water
vapor (gm mmol H,O m™2 s™') and D, (y = 36.1x, r* =
0.62). C. Relation of Pc to g, (with Nymphaeales, y =
0.059x, > = 0.79; excluding Nymphaeales, y = 0.065x, r* =
0.42). Standardized measurement environmental condi-
tions are described in ““Methods.” Symbols denote
growth forms for A-C: O, shrubs and trees; < lianas;
0, sub-shrubs; A, terrestrial herbs; V, floating leaves of
aquatic Nymphaeales herbs. Points are the averages of
three observations made on five to ten leaves per species,
and error bars denote standard deviation about the mean.
The dotted lines in A and B refer to modeled photosyn-
thetic capacities and maximum stomatal conductances
based on vein density at 140 and 70 um leaf thicknesses.
Species information and data are provided in Appendix
I (online).
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Vein densities of extant Chloranthales
ranged from 1.62 mm mm? for shade leaves
of Hedyosmum orientale to 5.06 mm mm™> for
sun leaves of Ascarina maheswari. Extant
Austrobaileyales D, ranged from 1.94 mm
mm * for shade leaves of Austrobaileya scan-
dens to 6.35 mm mm > for sun leaves of
Kadsura heteroclita. Mean D, of all Zone I fossil
species measured from the Potomac Group
extended over approximately 50% of the
extant terrestrial basal angiosperm range,
varying from 2.8 mm mm * * 0.36 SD in
Proteaephyllum reniforme to 4.1 mm mm > *
0.18 SD in ““Sapindopsis’” elliptica. The mean for
Zone I leaves (3.38 mm mm 2 = 0.35 SD; n =
12 species) did not differ significantly from
the extant terrestrial basal angiosperm mean
(results not shown). Zone I fossil leaves also
exhibited D, values similar to the reconstruct-
ed D, trait values over the base of extant
angiosperm phylogeny (Fig. 2; Supplemental
Table 1 and Fig. S1).

Vein densities for chloranthoids averaged
3.58 mm mm * = 0.62 SD (n = 11 species;
Fig. 3) and ranged from 2.47 mm mm™* * 0.08
SD in Reynoldsiophyllum nebrascense (Rose
Creek, Late Albian) to 4.61 mm mm™2 * 0.46
in Crassidenticulum cracendentis (Courtland,
Cenomanian). D, of austrobaileyoid leaves
averaged 3.61 mm mm > * 0.46 SD (n = 5)
ranged from 3.12 mm mm ? * 0.21 SD in the
Fredericksburg sample of Eucalyptophyllum
oblongifolium (Upper Zone I, Potomac Group)
to 436 mm mm > * 0.32 SD in Longstrethia
varidentata (latest Albian, Rose Creek; Fig. 3).
In addition, mean vein densities for chlor-
anthoids and austrobaileyoids did not differ
significantly (results not shown). No trend in
D, across the sampled fossil species was
observed through time (Fig. 3). Finally, max-
imum CO, exchange and stomatal conduc-
tances to water vapor calculated from vein
density (g."*™) for chloranthoid and austro-
baileyoid species through time fell within the
10th and 90th percentiles” extant species and
reconstructed ancestral node trait values over
the base of extant phylogeny (Fig. 3).

Stomatal Pore Anatomy and Gas Exchange
Capacity in Leaves of Extant and Extinct
Species.—Stomatal size measured on fossil
cuticles encompassed approximately 60% of
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FiGure 3. Leaf vein density (D,, mm mm ?) and leaf CO,/H,0 gas exchange capacities (photosynthetic capacity, Pc,
umol CO, m 2 s! and stomatal conductance to water vapor, g."*'V) calculated from a coupled venation hydraulic-
photosynthetic model with CO, concentration set at 380 pL L=" CO, for early angiosperm leaf fossils. Gray regions on
the timescale refer to the stratigraphic age range for the fossil localities (Zone I Potomac Group [lower upper Aptian],
Braun Ranch and Rose Creek [upper Albian], Courtland [Cenomanian]). Pc and g."*'™ were parameterized using two
vein-to-epidermal hydraulic distances from 70 um to 140 pm to produce a span of predicted values encompassing the
likely morphological variability in the thicknesses of angiosperm leaves. The two points for Pc and g."*™™ for each fossil
leaf taxon reflect these values. Symbols refer to previously hypothesized systematic affinities of fossil leaves: stem-
lineage austrobaileyoids (M) and chloranthoids (@), and fossil leaves of uncertain systematic placement (<). Numbers
refer to the species: 1, Proteaephyllum reniforme; 2, Celastrophyllum latifolium; 3, Eucalyptophyllum oblongifolium
Fredericksburg sample; 4, Celastrophyllum sp. Drewry’s Bluff; 5, Drewry’s Bluff Leaf Type #1 (Moutonia); 6,
Celastrophyllum sp. (C. obovatum); 7, Vitiphyllum multifidum; 8, Quercophyllum tenunerve; 9, Eucalyptophyllum oblongifolium
Drewry’s Bluff; 10, Ficophyllum crassinerve; 11, Rogersia angustifolia; 12, cf. Ficophyllum; 13, Sapindopsis elliptica; 14,
Reynoldsiophyllum nebrascense; 15, Crassidenticulum landiase; 16, Crassidenticulum decurrens Braun Ranch samples; 17,
Longstrethia aspera; 18, Dennsinervum kaulii Rose Creek samples; 19, Crassidenticulum decurrens Rose Creek samples; 20,
Longstrethia varidentata; 21, Densinervum kaulii Courtland sample; 22, Crassidenticulum cracendtis. The dashed lines across
the three fossil data panels indicate the 10th and 90th percentiles of g.""°M* across the extant species. The box plots
depict the variation within extant clades with the bottom and top of the box indicating the 25th and 75th percentiles,
respectively, the two whiskers the 10th and 90th percentiles, respectively, and the horizontal line within the box, the
median value. Symbols beyond the whiskers are outliers.

the stomatal size and density range for extant 53.57; n = 104; r* = 0.8). Similarly, g-"°™*

Austrobaileyales and Chloranthales (Fig. 4A).
Across extant terrestrial basal angiosperms
(excluding the sun leaves of Kadsura coccinea
that possessed unusually large stomata),
maximum calculated stomatal conductance
from pore geometry (g.°"°™*) increased with
maximal stomatal pore area (SPA) for diffu-
sive exchange (Fig. 4B; g~°"™* = 30.15 SPA —

increased with greater SPA in fossil cuticles
[(g°TOM”) = 34.36 (SPA) — 75.73, n = 10, r* =
0.82; Fig. 4B].

Maximum calculated stomatal conductance
from pore geometry ranged from 105 mmol
H,O m™ s™! in the austrobaileyoid Ficophyl-
lum crassinerve to 327 mmol H,O m 2 s™! in
Celastrophyllum latifolium (Figs. 4B, 5). Over
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FiGure 4. Relations among stomatal morphology and
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H,O m™ s7') for extant basal angiosperms and fossil
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(number mm? of leaf area) for extant basal angiosperms
and fossil cuticles. B, Maximal stomatal conductance to
water vapor calculated from stomatal pore dimensions
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the one-to-one relation. O, extant basal angiosperm leaves
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the fossil species sampled, no time-dependent
pattern in g.°"°* was found (Fig. 5). Maxi-
mum calculated stomatal conductance from
pore geometry of fossil cuticles nested within
the range of extant species (Figs. 4B, 5).
Consistent with the result that SPA drives
much of g°™M*, water vapor conductances of
stomatal vestibules were three to six times
greater than calculated stomatal conductances
of just the stomata pore across all of the extant
and extinct leaves sampled (Fig. 4C).

g°TMA was related positively to maximum
stomatal conductance (g,) as measured by
leaf gas exchange analysis across terrestrial
basal angiosperm species (g.°"™* = 1.632 (gm)
+ 9.04, n = 30; r* = 0.64; Fig. 6A). g~
values, however, were greater than g, in
terrestrial basal angiosperm species (Fig. 6A).
By comparison, maximal stomatal conduc-
tance to water vapor calculated from vein
density (g-"*™) yielded estimates closer to
measured stomatal conductance maxima on
extant leaves (g."*™ = 0.514 (gm) — 57.56, n =
30; r* = 0.60; Fig. 6A). Nymphaeales leaves,
however, exhibited much greater g, in
comparison to g™ and g."*™ (Fig. 5B). D,
and SPA were unrelated, as were g5"™* and
g.""™ (Fig. 6C).

Discussion

Fossil Evidence for Low Gas Exchange Capacity
in Early Angiosperm Leaves.—All Zone I
Potomac Group fossil angiosperm leaves
measured had structural traits related to
lower gas exchange capacities, in contrast to
modern ecologically dominant angiosperms.
D, values of late Aptian—early Albian fossil
angiosperm leaves occurred in the narrow
range of low densities found across ferns and
gymnosperm clades that dominated plant
communities during the Early Cretaceous
(Lupia et al. 1999; Boyce et al. 2009). The
uniform pattern of low vein densities across
Zone | angiosperm fossil leaves contrasts with
the widespread dominance of high vein

«—

(including Amborella, Austrobaileyales, Chloranthales, and
Nymphaeales); and @, fossil cuticles (see Appendix II,
online, for the taxa sampled).
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FiGure 5. Maximum stomatal conductance to water vapor calculated from stomatal pore dimensions (g.°"°**, mmol
H,O m™ s™') of fossil austrobaileyoid (M), chloranthoid (@), illicioid cuticles ([J filled gray), and of uncertain
systematic placement (&) as compared to extant Chloranthales, Amborella-Austrobaileyales, and Illiciaceae plus
Schisandraceae. Numbers refer to taxa: 1, cf. Ficophyllum; 2, Eucalyptophyllum; 3, Drewry’s Bluff Leaf Type #1; 4,
Celastrophyllum sp.; 5, Celastrophyllum latifolium; 6, Moutonia; 7, Longstrethia varidentata; 8, Illiciales Type I; 9, Illiciales
Type 2; 10, Protoilliciales. Gray regions on the timescale refer to the stratigraphic ages for the fossil localities ([Zone I
Potomac Group [lower upper Aptian], Rose Creek and Kiowa Formation [upper Albian], and Sugarite Coal [upper
Maastrichtian and lowest Paleocene]). The dashed lines across the three fossil data panels indicate the over extant range
from the 10th and 90th percentiles of g.°"**. The box plots depict the variation within extant clades with the bottom
and top of the box indicating the 25th and 75th percentiles, respectively, the two whiskers the 10th and 90th percentiles,

respectively, and the horizontal line within the box, the median value. Symbols beyond the whiskers are outliers.

densities characterizing the vast majority of
ecologically abundant angiosperms today
(Boyce et al. 2009; Brodribb and Feild 2010).
The functional contrast between Zone I
angiosperms and extant angiosperms be-
comes especially striking when regeneration
habitat is controlled. Extant floodplain colo-
nizing angiosperms from warm temperate
and tropical regions, which represent ecolo-
gies thought to approximate the depositional
settings for many Zone I angiosperms, exhibit
vein densities ranging from 10 to 20 mm mm 2
(Doyle and Hickey 1976; Hickey and Doyle
1977; Brodribb et al. 2007; Boyce et al. 2009;
Brodribb and Feild 2010). Photosynthetic
capacities and stomatal conductances of these
high D, angiosperms delimit the extant limits
of C;3 photosynthesis in woody plants, oper-
ating close to 30 pmol CO, m™ s ' and
700 mmol H,O m= s™! (Feild and Balun
2008; T. S. Feild, unpublished data from
Papua New Guinea 2009-2010). By contrast,
the scaling of vein density with leaf CO, and

H,0O exchange capacity across vascular plants
indicates that maximum leaf gas exchange
capacities of low-D,, late Aptian—early Albian
angiosperms would be on average three times
lower than in modern weedy riparian angio-
sperms photosynthesizing under physiologi-
cally optimal conditions (Fig. 3) (Brodribb et
al. 2007; Boyce et al. 2009). Instead, photosyn-
thetic and transpirational capacities modeled
from veins and the stomatal pore geometry of
Zone I fossil leaves as well as extant terrestrial
basal angiosperm leaves equaled the low
capacities of mesic shade-tolerant woody
angiosperms, ferns, and some extant conifers
and cycads (Korner 1995; Brodribb and Hill
1997; Brodribb and Feild 2000, 2010; Lusk et
al. 2003; Brodribb et al. 2007; Feild and Balun
2008; Franks and Beerling 2009; Kaiser 2009).
Other ferns (Dicranopteris, Dipteris, Gleichenia),
lycopods (Lycopodium), conifers (several Pinus
species), and Gnetum from sun-exposed dis-
turbed habitats possessed higher leaf gas
exchange capacities than those inferred for
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FIGURE 6. Comparisons of maximum stomatal conduc-
tances to water vapor (mmol H,O m™*s™') as calculated
from stomatal pore geometry (g.°"°"*) and vein density
(g"™™) across extant basal angiosperm leaves with
measured stomatal conductances g, (mmol H,O
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Symbols are as in Figure 2, with open symbols denoting
g™ and filled symbols denoting g¢.V*™. B, Stomatal
pore area (m* X 10°) versus vein density (mm mm?) over
all of the extant angiosperm species sampled for gas
exchange change measurements. C, ¢.:°"°M* versus g."*™
for all of the extant angiosperm species sampled for gas
exchange change measurements. Error bars have been
omitted for clarity.
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late Aptian—early Albian angiosperms (Brod-
ribb et al. 2007; Brodribb and Feild 2008; Feild
and Balun 2008; T. S. Feild, unpublished data
from New Caledonia, 2009).

Evidence for Conservatism of Low Leaf Gas
Exchange Capacities in Extant Terrestrial Basal
Angiosperm Leaves.—Vein densities, maximal
stomatal pore areas, and calculated gas
exchange capacities for all species of austro-
baileyoid and chloranthoid fossil leaves sam-
pled fell within the narrow range of low
values characterizing modern diversity of
extant terrestrial basal angiosperm leaves
(Appendix I, online). In addition, the func-
tional trait values of fossils nested within the
range of ancestral trait values reconstructed
from extant angiosperms across major early-
diverging nodes up to the common ancestor
of eudicots, monocots, and magnoliids
(Figs. 3, 5). Thus, our results support the
hypothesis that extant Austrobaileyales and
Chloranthales retain genuine functional sig-
nals of the photosynthetic capabilities found
in some Early Cretaceous angiosperms.

A caveat to the view that metabolic capac-
ities of extant basal angiosperm leaves equal
those of some Early Cretaceous angiosperms is
that phylogenetic relations of the hypothesized
fossil austrobaileyoid and chloranthoid leaf
fossils are difficult to know. A robust phylo-
genetic analysis of fossil leaf taxa sampled and
extant angiosperms remains elusive because
too few characters are preserved (Doyle 2007).
Another issue is that some characters suggest-
ing that fossils are stem-lineages to Amborella,
Austrobaileyales, and/or Chloranthales, such
as chloranthoid leaf teeth and low regularity of
venation patterns (low leaf rank), also occur in
extant magnoliids and basal eudicots (Up-
church 1984a,b; Upchurch and Dilcher 1990;
Carpenter 2005). Thus, such traits are plesio-
morphic for angiosperms as a whole and not
diagnostic of extant basal lineages (Doyle
2007). This phylogenetic pattern is important
because most magnoliids and basal eudicots
possess leaves with greater CO,/H,O ex-
change capacities than Amborella, Austrobai-
leyales, and Chloranthales species (Brodribb
and Feild 2010).

However, extant basal eudicot and magno-
liid leaves of low leaf rank (defined as 1r0—
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2r3; Todzia and Keating 1991) and with
chloranthoid teeth exhibited low D,
(Fig. 7A,B). Also, only a few basal eudicot
species with chloranthoid teeth developed
comparatively higher D, (>6 mm mm7?).
These taxa included most Gunnera species, the
poikilohydric shrub Myrothamnus flabellifolius,
and a few xeric-adapted Papaveraceae spe-
cies. These species, however, exhibited higher
leaf rank than most basal lineages and Zone I
fossil leaves (Doyle and Hickey 1976; Hickey
and Doyle 1977; Todzia and Keating 1991;
Fuller and Hickey 2005). Thus irrespective of
phylogenetic  affinity, fossil angiosperm
leaves of low rank, and especially if they also
possess chloranthoid teeth, mark relatively
low leaf gas exchange capacity. These results
support a hypothesis that D, and leaf rank
correlate across angiosperms (Brodribb and
Feild 2010). If increasing regularity of major
vein development is associated with the
ability of a higher-order venation system to
more efficiently fill in the finest areoles that

dictate hydraulic flux at the vein terminal
(Brodribb et al. 2007; McKown et al. 2010),
then leaf rank and vein density may be
developmentally linked. However, more re-
search is needed to test such a hypothesis. We
do not expect that a mechanistic relationship
holds between low vein density and chlor-
anthoid teeth, because chloranthoid leaf teeth
are involved in releasing sap pushed to the
leaves by root pressure (Feild et al. 2005). At a
minimum, our results support the hypothesis
that Early Cretaceous Zone I leaves, as well as
species of austrobaileyoid and chloranthoid
fossils, exhibited ranges of photosynthetic
and transpiration capacities analogous to
extant terrestrial basal angiosperm lineages.
Evidence for Wet Habitat Adaptation in
Ancient Austrobaileyoid/Chloranthoid Fossil
Leaves.—Although reconstructed leaf gas ex-
change capacities of austrobaileyoid and
chloranthoid leaf fossils compared well with
their hypothesized extant descendants, simi-
larity in low gas capacities, by itself, cannot
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diagnose whether these fossil leaves came
from plants adapted to wet (>2000 mm yr"
rainfall) and forest understory habitats like
those characterizing Amborella as well as most
Austrobaileyales and Chloranthales (Feild et
al. 2004, 2009). Specifying the habitat context
of austrobaileyoid/chloranthoids is critical
for determining how functional trait diversity
in extant basal lineages bears on how the first
flowering plants functioned and the selective
contexts responsible for diverse hypothesized
key innovations of early angiosperm success
(Hickey and Doyle 1977; Retallack and Dil-
cher 1981; Taylor and Hickey 1996; Feild and
Arens 2007; Williams 2008; Feild et al. 2009).
Paleoenvironmental proxy records indicate
high annual rainfalls (up to 4500 mm yr')
and tropical to paratropical temperatures for
all of the fossils sampled (Upchurch and
Wolfe 1987; Upchurch and Dilcher 1990;
Upchurch 1995; White et al. 2001; Ufnar et
al. 2008). However, there is tremendous
variation in evaporative demand within near-
ly all plant communities, and therefore
discerning the evaporative niches of fossil
leaves demands a finer specification of cano-
py position (Feild et al. 2004).

Across extant basal angiosperms, low vein
density and stomatal pore area signal large
hydraulic constraints on photosynthesis and
whole plant function, and, therefore, occur-
rence in wet low-evaporative-demand habi-
tats. Strong coupling between veins and
habitat occurs in basal angiosperms because
these taxa cannot overcome the constraints of
high xylem hydraulic resistance by operating
at large drops in water potential (i.e., tolerate
high drought stress) from the soil to leaf to
drive high transpiration (Sperry et al. 2007;
Feild et al. 2009). Instead, leaves of extant
basal angiosperms wilt and the stem xylem
vasculatures become embolized at modest
drought stress (Sperry et al. 2007; Feild et al.
2009). Thus, to determine if austrobaileyoid
and chloranthoid leaves managed hydraulic
function differently than extant relatives, a
knowledge of their water stress physiology is
necessary. In addition, how such processes
interacted with environmental conditions that
have no modern analog—particularly high
CO; and O, during the Cretaceous, which
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vary the amount of leverage that vein density
and water-use efficiency exert on whole plant
function and ecological distribution—must be
considered (Sperry 2003; McElwain et al.
2005; Brodribb and Feild 2010).

A key piece of structural evidence pointing
to low drought-stress tolerance in austrobai-
leyoids and chloranthoids is that several of
these fossils possess glandular chloranthoid
leaf teeth (Hickey and Doyle 1977; Upchurch
1984a,b, 1995; Upchurch and Dilcher 1990;
Wang and Dilcher 2006). In extant basal
angiosperms, chloranthoid leaf teeth release
guttation sap during root pressure, which
pressurizes the xylem (Feild et al. 2005). Root
pressure occurs when the soil is at full
hydration and the atmosphere saturated with
water vapor—conditions that are fleeting in
all but the wettest terrestrial habitats (Sperry
2003). Nonetheless, root pressure is an essen-
tial mechanism for restoring lost xylem
transport capacity following drought by
refilling embolized conduits across terrestrial
basal angiosperms (Sperry et al. 2007). There-
fore, we hypothesize that Early Cretaceous
angiosperms with chloranthoid teeth likely
guttated and had low drought tolerance.
Because of their low vein density and
stomatal pore area, such leaves are predicted
to have occurred in wet zones of low
transpirational pull.

Austrobaileyoid fossils, some of which lack
chloranthoid teeth, were also likely adapted to
damp, low-evaporation habitats because they
possessed large stomatal vestibules (Upchurch
1984a,b, 1995). Stomatal vestibules do not act
as anti-transpirants (Fig. 4C), but instead
decrease leaf surface wettability (Schonherr
and Bukovac 1972; Feild et al. 2005, 2009).
Vestibules in other plants have been demon-
strated to keep guard cell pores from being
drowned by continuous water films formed
over the cuticle during high-humidity conden-
sation and heavy rainfall, which otherwise
inhibit CO, uptake, favor fungal invasion, and
leach nutrients by excessive cuticle hydration
(Schonherr and Bukovac 1972; Feild et al
2005). The widespread pattern of large, low-
density stomata found across extant terrestrial
basal angiosperms and austrobaileyoid /chlor-
anthoid fossils suggests that these leaves share
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slow stomatal response kinetics and low
optimization of long-term carbon gain with
respect to water loss—functional traits of
leaves adapted to wet humid zones (Appendix
I, online) (Franks and Beerling 2009). In the
future, measurements of tracheary element
thickness-to-span ratio in leaf veins to quantify
tension-induced implosion resistance may
offer a direct window on the hydraulic and
drought-stress limits of early angiosperm
leaves (Blackman et al. 2010). At present,
interpretations of the function of fossil leaf
structure are consistent with the hypothesis
that austrobaileyoid and chloranthoid fossil
leaves occurred in wet, very humid habitats
such as underneath a canopy of non-angio-
sperms.

A remaining question is how several of the
low-D, and -SPA Aptian—earliest Albian
angiosperm leaves we measured, including
some of the austrobaileyoids and chlor-
anthoids, came to be deposited in coarse-
grained, low-carbon sediments interpreted as
sampling the front of regenerating vegetation
on riparian point bars (Doyle and Hickey
1976; Hickey and Doyle 1977; Taylor and
Hickey 1996). By contrast, no extant Austro-
baileyales and Chloranthales occur in the
pioneer thickets of open sandy point bars in
lowland tropical and temperate riparian
vegetation (Feild 2009; Feild et al. 2009). This
extant exclusion has a physiological basis,
because living terrestrial basal angiosperms
cannot tolerate the high evaporative demand
and wide fluctuations in water availability
found in riparian point bar zones (Puhakka et
al. 1992; Rood et al. 2003; Merigliano 2005;
Robertson and Augspurger 1999). When
extant basal angiosperm taxa with low-D,
leaves are forced into high evaporative
demand, chronic photoinhibition of leaf pho-
tosynthesis, dysfunction of flowering, shoot
dieback, and/or whole plant mortality occur
even when soils are prevented from drying
down (Feild et al. 2009).

In view of fossil ecomorphic traits linked to
low drought tolerance (see above), austrobai-
leyoid and chloranthoids also would be
expected to be excluded from sunny riparian
point bars. Thus, low water stress tolerance in
these early angiosperms rejects one hypothe-
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sis for why extant basal angiosperms do not
equal early angiosperms. Unlike Ginkgo,
which was likely displaced from riparian
zones by angiosperms (Royer et al. 2003),
the living descendants of low D, chlor-
anthoids and  austrobaileyoids—Chlor-
anthales and Austrobaileyales—cannot repre-
sent the sun ruderals of the Cretaceous that
lost out and secondarily retreated to the forest
understory following competitive displace-
ment by later waves of more metabolically
escalated angiosperms in the ancestral sunny,
disturbed riparian zone.

The highly sensitive turgor relations (i.e.,
wilting at a loss of <8% relative water content
and leaf water potentials from —0.8 to
—1.2 MPa) of extant basal angiosperm leaves,
and by inference those of austrobaileyoids
and chloranthoids, means that even the
highest CO, concentrations predicted for the
Cretaceous (~2000 pL. L") will not save
enough water to empower such plants into
sites with high evaporative load (Jones 1993;
Sperry 2003; Sperry et al. 2007; Feild et al.
2009; Royer 2010). More broadly, there is no
evidence that elevated CO, can shift the
canopy positioning or evaporative niche of
any extant species. Studies reporting the
effects of increased CO, on leaf gas exchange
and water relations demonstrated small or no
change in water use, leaf water potential
under maximum evaporative load, leaf and
stem xylem hydraulic conductance, and
drought tolerance under high CO, (Kerstiens
1998; Wullschleger et al. 2002; Kérner 2009). It
is notable that trait values were invariant
from the Aptian—earliest Albian to early
Paleocene (a ~40-Myr-long period) despite
considerable atmospheric and ecological
change through this interval (Wing and
Boucher 1998; Lupia et al. 1999; Royer 2010).
However, future fossil tests are needed to test
whether water use physiologies of extinct
austrobaileyoids or chloranthoids changed in
ways different from living relatives during
from the Paleocene to Quaternary. We sug-
gest that the indirect effects of CO, on varying
regional evaporative demand by increased
global temperature, feedbacks with cloudi-
ness, and variations in the intensity of the
global hydrological cycle were more impor-
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tant in influencing ecological distribution of
Early Cretaceous angiosperms (White et al.
2001; Ufnar et al. 2008).

Instead, the depositional patterns of Ap-
tian—early Albian angiosperms investigated
are probably explained by taphonomic com-
plexities. Hickey and Doyle (1977) suggested
that the small size, fragmentary nature, and
rarity of Zone I leaves were consistent with
short-distance transport. Such small transport
possibilities from understory sites are highly
plausible because the depositional environ-
ments responsible for leaf compression fossil
assemblages formed by meandering riparian
zones and floodplains are complex in ways
that obscure the specification of evaporative
preference based on sediments alone (Gas-
taldo et al. 1987; Robertson and Augspurger
1999; Feild et al. 2004; Merigliano 2005;
Richardi-Branco et al. 2009). Importantly, the
regeneration niches of Austrobaileyales and
Chloranthales provide living proof that mi-
crosites combining fluvial disturbance with
low evaporative demand, low carbon, and
sandy sedimentology exist (Feild et al. 2004;
Ito et al. 2006; Feild 2009). Such dark and
disturbed sites are often near higher flow-
energy channels in tropical floodplain zones,
semi-shaded stream margins (not necessarily
with tall closed forest canopies) along up-
stream cutbanks of floodplains (Ito et al. 2006;
Feild and Arens 2007; Feild et al. 2009).

Veins Versus Stomata and the Retrodicting
Fossil Leaf Gas Exchange Capacity from Leaf
Structure—Our data allowed us to test the
accuracy of different models for reconstruct-
ing the gas exchange performance of fossil
leaves. Diffusional maxima calculated from
stomatal pore anatomy were much less
accurate than analyses based on vein density
to predict the maximum capacity of leaves to
lose water and take up CO, (Fig. 5). These
results emphasize the advantages of measur-
ing veins over stomata to infer gas exchange
capacity of fossil leaves.

Why are stomata-based estimates of maxi-
mal stomatal conductance less accurate than
those derived from veins? A key problem is
that stomata function through movement.
Animate functioning means that experimen-
tally difficult-to-test assumptions must invari-
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ably be made about what length-to-width
ratios (Pp:Pw) of the pore define the maximal
diffusive potential (Van Gardingen et al. 1989;
Kaiser 2009). The standard approach has been
to assume that maximal width is a constant
fraction of the pore length (Osborne et al.
2004; Franks and Beerling 2009). However,
P :Pw has a phylogenetic component across
vascular plants (Franks and Farquhar 2007).
Such an approach is inaccurate for clades
such as grasses that open maximally at a one-
to-one ratio of Pr:Pw (Franks and Farquhar
2007). Nymphaeales may represent a similar
case. If P;:Py is an assumed one-to-one ratio
for Nymphaeales’ stomata, then calculated
stomatal conductance maxima for most spe-
cies fall on the one-to-one line with measured
stomatal conductance. Unknown maximal
pore dimensions are important because small
errors in pore area have large effects on
calculated conductances for one-dimensional
diffusion (Parlange and Waggoner 1970).
Such errors are most problematic when the
stomatal area is large, resulting from large-
sized stomata or high stomatal density
(Fig. 6A). Another significant unknown is
the effects of stomatal ornamentations, such
as crypts, plugs, and peristomatal rims, which
pare back effective pore area (Brodribb and
Hill 1997). For stomatal vestibules of Austro-
baileyales and Chloranthales, at least, the
effects on calculated conductance are small.

By contrast, veins are fixed in space by
mesophyll tissue, which means that hydraulic
distribution is approximated by a static
geometry. Geometric spacing of veins is often
well preserved in fossils because veins are
lignified. Veins, however, are not without
significant problems. Nymphaeales, for ex-
ample, illustrate that aquatic plants represent
a functional type with venation-dependent,
liquid-phase transport uncoupled to the ca-
pacity for diffusive gas exchange. Future
studies could elucidate how vein construction
costs and how major versus minor vein
hydraulics influence leaf gas exchange capac-
ity (McKown et al. 2010).

Conclusions

The low vein densities and low maximal
stomatal pore areas found in late Aptian—
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early Albian fossil terrestrial angiosperm
leaves indicate that high leaf gas exchange
capacities evolved later than previously as-
sumed during angiosperm evolution (Feild et
al. 2004; Brodribb and Feild 2010). Although
previously at least one taxon from Zone I
sediments was proposed as adapted to the
forest understory (Doyle and Hickey 1976),
our results expose a diversity of early
angiosperms that functioned with low gas
exchange capacities and low drought toler-
ance. During the Aptian-earliest Albian,
angiosperms were minor ecological players,
making up less than 5% of the global
abundance and species diversity (Lupia et
al. 1999; Heimhofer et al. 2005; McElwain et
al. 2005). Consistent with this pattern, angio-
sperm leaves from the Zone I of the Potomac
Group explored only 10% of the functional
morphospace of leaf vein densities exhibited
by modern angiosperms (Boyce et al. 2009;
Brodribb and Feild 2010). Thus, many of the
Zone I taxa of the Potomac Group fossil
leaves that originally motivated the ancestral
weed hypothesis did not function with high
gas exchange capacities and opportunistic
energy use as found in modern weedy
angiosperms. The vast majority of living
terrestrial basal angiosperms were similarly
limited in their exploration of this functional
performance space.

Although to our knowledge the fossil
leaves measured represent the oldest assessed
for ecophysiological performance so far, our
work is limited in two important ways: the
fossils sampled represent a single region in
space and time, and they are not the earliest
known angiosperms. Therefore, other gas
exchange capacities could be ancestral. Fossil
leaves from other localities that are coeval
with Zone I of the Potomac Group or 5-10 Myr
older are known (Sun and Dilcher 2002;
Cuneo and Gandolfo 2005; Coiffard et al.
2007; Archangelsky et al. 2009). In addition,
an older radiation of the angiosperm clade,
nearly 20 Myr older than Zone I of the
Potomac Group, is evidenced by fossil pollen
(Brenner 1996; Doyle 1999). Nevertheless, the
available structural observations for other
Aptian and older fossils are consistent with
the hypothesis that low leaf gas exchange

TAYLOR S. FEILD ET AL.

capacities and drought intolerance are ances-
tral. All of the coeval and older leaves with
preserved venation appear to be of low leaf
rank, and some fossils possess chloranthoid
leaf teeth—traits associated with low D, and
wet habitats (Sun and Dilcher 2002; Cuneo
and Gandolfo 2005; Archangelsky et al. 2009).
For the older pollen fossils, it is significant
that chloranthoids represent a major compo-
nent (Brenner 1996; Doyle 1999). Analogizing
these fossils to extant Chloranthales and
younger chloranthoid leaf fossils suggests
that the plants that produced these grains
functioned with low gas exchange and
drought intolerance.

Finally, our results on Early Cretaceous
angiosperm leaf form and function provide a
first test of the extent to which extant basal
angiosperms are ecophysiologically equiva-
lent to some early angiosperms. We found
that fossil leaves hypothesized as stem-line-
age relatives to extant basal angiosperms
possessed gas exchange capacities, and likely
leaf water relations, similar to those of their
closest extant descendants. Leaf carbon—-water
use represents a fundamental determinant of
plant distribution in space and time as well as
of whole plant life history (Stebbins 1974;
Bond 1989; Sack and Holbrook 2006). Thus,
our results provide evidence for the often
inherently assumed hypothesis that compar-
ative research on extant basal angiosperm
biology reveals genuine functional signals
from the Early Cretaceous (Williams 2008;
Endress and Doyle 2009; Feild et al. 2009).
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