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Abstract

We derive two sets of inequalities for regular near polygons and study the
case where one or more of these inequalities become equalities. This will
allow us to obtain two characterization results for dual polar spaces. Our
investigation will also have implications for triple intersection numbers and
m-ovoids in regular near polygons. In particular, we obtain new results on
triple intersection numbers in generalized hexagons of order (s, s3), s ≥ 2,
and prove that no finite generalized hexagon of order (s, s3), s ≥ 2, can have
1-ovoids. We also show that in one case, the existence of a 1-ovoid would
allow a construction of a strongly regular graph srg(47125, 12012, 3575, 2886).

Key words: regular near polygons, generalized polygons, inequalities,
m-ovoids, distance-2-ovoids

1. Introduction

A point-line incidence structure S = (P ,L, I) with nonempty point set P ,
line set L and incidence relation I ⊆ P × L is called a partial linear space if
every line is incident with at least two points and if every two distinct points
are incident with at most one line. The collinearity graph of S has as vertices
the points of S, with two distinct points being adjacent whenever they are
incident with a common line. A partial linear space S = (P ,L, I) is called a
near polygon if for every point x and every line L, there exists a unique point
on L nearest to x. Here, distances d(·, ·) are measured in the collinearity
graph Γ of S. If d ∈ N is the diameter of Γ, then the near polygon is also
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called a near 2d-gon. A near 0-gon is a point and a near 2-gon is a line. Near
quadrangles are usually called generalized quadrangles. If x ∈ P and i ∈ N,
then Γi(x) denotes the set of points at distance i from x. If ∅ 6= X ⊆ P,
then Γi(X) denotes the set of points at distance i from X, i.e. the set of all
y ∈ P for which d(y,X) := min{d(y, x) |x ∈ X} = i.

A near polygon S is said to have order (s, t), where s, t ≥ 1, if every line
of S is incident with precisely s + 1 points and if every point of S is incident
with precisely t+1 lines. A near 2d-gon S with d ≥ 2 is called regular if there
exist constants s, t and ti, i ∈ {0, 1, . . . , d}, such that S has order (s, t) and
for every two points x and y at distance i from each other, there are precisely
ti +1 lines through y containing a (necessarily unique) point at distance i−1
from x. If this holds, then (t0, t1, td) = (−1, 0, t) and we say that S is regular
with parameters (s, t2, t3, . . . , td−1, t). The finite regular near polygons are
precisely those near polygons whose collinearity graph is distance-regular.
The intersection numbers ai, bi, ci (i ∈ {0, 1, . . . , d}) of the distance-regular
graph associated with a regular near 2d-gon S are easily derived from its
parameters (s, t2, t3, . . . , td−1, t). Indeed, we have that ai = (s − 1)(ti + 1),
bi = s(t − ti) and ci = ti + 1 for every i ∈ {0, 1, . . . , d}. A regular near
2d-gon with parameters (s, t2, t3, . . . , td−1, t) is a generalized 2d-gon if ti = 0
for every i ∈ {2, 3, . . . , d − 1}. We note that all finite regular near 2d-gons
with d ≥ 4, c2 > 2 and s ≥ 2 have been classified. By results of Brouwer &
Cohen [4, Corollary 2, p. 195], Brouwer & Wilbrink [8, Section (m)] and De
Bruyn [15] we know that every such regular near 2d-gon is a so-called dual
polar space.

The main results of this paper will be discussed and proved in Section
3. In Theorem 3.2, we will prove that if S is a regular near 2d-gon with
parameters (s, t2, t3, . . . , td−1, t), s ≥ 2, and associated intersection numbers
ai, bi, ci (i ∈ {0, 1, . . . , d}), then c2 ≤ s2 + 1 and

(si − 1)(ci−1 − si−2)

si−2 − 1
≤ ci ≤

(si + 1)(ci−1 + si−2)

si−2 + 1
(1)

for all i ∈ {3, 4, . . . , d}. The two inequalities given in (1) extend a result of
Neumaier [31, Theorem 3.1] who already proved the validity of the upper
bound in (1) in case i is odd and the validity of the lower bound in case i is
even. Hence the two inequalities of Neumaier hold regardless of the parity of
i. The upper bound with i = d = 3 is also known as the Mathon bound [30].

We will discuss the structure of those regular near polygons for which
at least one of the bounds in (1) is attained. Our investigation leads to two
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characterization results for dual polar spaces (Theorems 3.4 and 3.5). In case
of equality in the obtained bounds, we are also able to derive some relations
between the intersection numbers (Theorem 3.7) and between triple intersec-
tion numbers (Theorem 3.8 and Corollary 3.9). We also obtain a number of
results on m-ovoids of a regular near polygon, an m-ovoid being a set of points
intersecting each line in precisely m points. Also for m-ovoids some results
regarding intersection sizes are obtained (Theorem 3.12, Corollary 3.13 and
Corollary 3.15). This will allow us to give a new proof for the non-existence
of 1-ovoids in the dual polar spaces DQ(2d, q) and DW (2d − 1, q) for every
d ≥ 3 (Corollary 3.14). We also prove that with every 1-ovoid of a regular
near hexagon for which the Mathon bound is attained, there is associated a
strongly regular graph (Theorem 3.17). The fact that the parameters and the
multiplicities of the eigenvalues of this strongly regular graph are nonnega-
tive integers puts restrictions on the parameters of the regular near hexagon.
In particular, this allows us to prove that no generalized hexagon of order
(s, s3), s ≥ 2, can have 1-ovoids (Corollary 3.19). This will have implica-
tions regarding the non-existence of certain semi-finite generalized hexagons
(Corollary 3.20).

2. Preliminaries

In this section, we collect some known facts about distance-regular graphs
that will be useful later. We refer to Brouwer, Cohen & Neumaier [5] for
proofs and much more information on these graphs.

Let Γ be a finite undirected connected graph, without loops or multiple
edges, with vertex set Ω and diameter d ≥ 2. The distance-i-relation Ri in Γ
consists of all pairs of vertices at distance i. The graph Γ is called distance-
regular if there exist natural numbers ai, bi, ci (i ∈ {0, 1, . . . , d}), known as
the intersection numbers, such that for any two vertices x and y at distance
i from each other, we have |Γi(x) ∩ Γ1(y)| = ai, |Γi+1(x) ∩ Γ1(y)| = bi and
|Γi−1(x) ∩ Γ1(y)| = ci. For the remainder of this section, we assume Γ is
a distance-regular graph. The number |Γi(x) ∩ Γj(y)| with x and y points
at distance k then only depends on i, j and k, and is denoted by pk

i,j. We
also define ki := p0

i,i,∀i ∈ {0, 1, . . . , d}, the number of vertices at distance
i from any given vertex. Note that ai = pi

1,i, bi = pi
1,i+1, ci = pi

1,i−1 and
k1 = b0 = ai +bi +ci for every i ∈ {0, 1, . . . , d}. We also have ki+1 = kibi/ci+1

for every i ∈ {0, 1, . . . , d − 1} and |Ω| =
∑d

i=0 ki.
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Put Ω = {p1, p2, . . . , p|Ω|} and let Ai, i ∈ {0, 1, . . . , d}, be the (|Ω| × |Ω|)-
matrix over R whose (j, k)-th entry is equal to 1 if d(pj, pk) = i and equal to
0 otherwise. Clearly, A0 = I and A0 + A1 + · · · + Ad = J , where I denotes
the identity matrix and J the all-one matrix.

The real vector space spanned by {A0, A1, . . . , Ad} is a commutative (d+
1)-dimensional algebra of symmetric matrices, known as the Bose-Mesner
algebra. It can be shown that the Bose-Mesner algebra has a unique basis
{E0, E1, . . . , Ed} of minimal idempotents for which EiEj = δijEi, ∀i, j ∈
{0, 1, . . . , d}, E0 + E1 + · · · + Ed = I and E0 = J/|Ω|. These minimal
idempotents are positive semidefinite.

The adjacency matrix A1 of Γ has exactly d+1 distinct eigenvalues. There
exists a bijective correspondence between these d+1 eigenvalues and the d+1
minimal idempotents. Indeed, for every minimal idempotent E there exists
a unique eigenvalue λ such that A1E = λE, and then the column span of E
is precisely the (right) eigenspace of A1 for λ.

The dual eigenvalue sequence of a minimal idempotent E is the unique
sequence θ∗0, θ

∗
1, . . . , θ∗d of real numbers such that E = |Ω|−1(θ∗0A0 + θ∗1A1 +

· · · + θ∗dAd). We then say Γ is Q-polynomial with respect to E if there is a
(necessarily unique) ordering E0 = J/|Ω|, E1 = E,E2, . . . , Ed of the minimal
idempotents such that every Ej, j ∈ {0, 1, . . . , d}, can be written in the

form |Ω|−1
∑d

i=0 qj(θ
∗
i )Ai for some real polynomial qj of degree j. If θ is the

eigenvalue for A1 corresponding to E, then we also say Γ is Q-polynomial
with respect to θ.

The distance-regular graph Γ is said to have classical parameters (d, b, α, β)
where α ∈ R and b, β ∈ R \ {0} if

bi =
(

[

d

1

]

b

−

[

i

1

]

b

)(

β − α

[

i

1

]

b

)

, (2)

ci =

[

i

1

]

b

(

1 + α

[

i − 1

1

]

b

)

(3)

for every i ∈ {0, 1, . . . , d}. Here,
[

i
1

]

b
= i if b = 1 and

[

i
1

]

b
= (bi − 1)/(b− 1)

if b 6= 1. Graphs with classical parameters are Q-polynomial with respect to
[

d−1
1

]

b
(β − α) − 1.

We say that a graph with v vertices is strongly regular with parame-
ters (v, k, λ, µ), and write srg(v, k, λ, µ), if every vertex has exactly k ≥ 1
neighbors, and every two distinct vertices have exactly λ or µ neighbors in
common, depending on whether these two vertices are adjacent or not. The
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strongly regular graphs srg(v, k, λ, µ) with k < v − 1 and µ > 0 are precisely
the distance-regular graphs of diameter 2, and are Q-polynomial.

The finite dual polar spaces of rank d ≥ 2 constitute an important class
of regular near 2d-gons. In a finite projective space Σ of (projective) dimen-
sion at least three, the subspaces that are contained in a given nonsingular
quadric or are totally isotropic with respect to a given symplectic or Her-
mitian polarity of Σ define a so-called polar space. Its rank d is the vector
dimension of the maximal totally isotropic subspaces. With each such polar
space P there is associated a dual polar space ∆, see Cameron [10]. This
∆ is the point-line geometry whose points and lines are the maximal and
next-to-maximal subspaces of P , respectively, with incidence being reverse
containment. In the corresponding collinearity graph, two vertices are at
distance i when their intersection has dimension d − i.

3. Main results

Throughout this section, S = (P ,L, I) denotes a finite regular near 2d-
gon, d ≥ 2, with parameters (s, t2, t3, . . . , td−1, t), s ≥ 2, and associated inter-
section numbers ai, bi, ci (i ∈ {0, 1, . . . , d}). We denote by Γ the collinearity
graph of S. Similarly as in Section 2, if i, j, k ∈ {0, 1, . . . , d} and x, y are two
points at distance k from each other, then pk

i,j denotes the number of points
at distance i from x and distance j from y. We also define ki := p0

i,i.
Suppose P = {p1, p2, . . . , p|P|} and let Ai, i ∈ {0, 1, . . . , d}, be the (|P| ×

|P|)-matrix over R whose (j, k)-th entry is equal to 1 if d(pj, pk) = i and
equal to 0 otherwise. We also define

M :=
d

∑

i=0

(

−
1

s

)i

Ai.

For every subset X ⊆ P, let χX be the characteristic vector of X, i.e. the
i-th entry of X is equal to 1 if pi ∈ X and equal to 0 otherwise. We regard
χX as a column matrix.

For a proof of the following lemma, see e.g. Vanhove [41, Lemma 1].

Lemma 3.1. The element M of the Bose-Mesner algebra of Γ is a mini-
mal idempotent up to a positive scalar, and its column span is precisely the
eigenspace of the eigenvalue −(t + 1) of A1.

In this section, we obtain the main results of this paper. We start by
proving the two inequalities already mentioned in Section 1.
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Theorem 3.2. Suppose S is a finite regular near 2d-gon, with s ≥ 2 and
d ≥ 2. Then c2 ≤ s2 + 1 and

(si − 1)(ci−1 − si−2)

si−2 − 1
≤ ci ≤

(si + 1)(ci−1 + si−2)

si−2 + 1
(4)

for all i ∈ {3, 4, . . . , d}. Suppose x and y are two points of S at distance
i from each other where 3 ≤ i ≤ d, and put Z := Γ1(x) ∩ Γi−1(y) and
Z ′ := Γi−1(x) ∩ Γ1(y). Then the following holds.

(a) If ci = (si− (−1)i)(ci−1− (−1)isi−2)/(si−2− (−1)i) then Mv = 0 where

v = s(ci−1 − (−1)isi−2)(χ{x} − χ{y}) + (χZ − χZ′).

(b) If ci = (si +(−1)i)(ci−1 +(−1)isi−2)/(si−2 +(−1)i) then Mv = 0 where

v = s(ci−1 + (−1)isi−2)(χ{x} + χ{y}) + (χZ + χZ′).

Proof. Let i be a fixed element of {2, 3, . . . , d} and put v = αχ{x} + βχ{y} +
γχZ + δχZ′ for some α, β, γ, δ ∈ R. We will compute si(vT Mv). If j ∈
{0, 1, . . . , d}, then by definition of the sets Z and Z ′, we have

(χ{x})
T Ajχ{x} = (χ{y})

T Ajχ{y} = δ0j, (χ{x})
T Ajχ{y} = δij,

(χ{x})
T AjχZ = (χ{y})

T AjχZ′ = δ1jci, (χ{x})
T AjχZ′ = (χ{y})

T AjχZ = δi−1,jci,

(χZ)T A0χZ = (χZ′)T A0χZ′ = ci, (χZ)T A2χZ = (χZ′)T A2χZ′ = ci(ci − 1),

(χZ)T AjχZ = (χZ′)T AjχZ′ = 0 if j /∈ {0, 2}.

Suppose now that px ∈ Z and py ∈ Z ′. Since d(px, y) = i−1 and d(y, py) = 1,
we have d(px, py) ∈ {i− 2, i− 1, i} by the triangle inequality. We prove that
the possibility d(px, py) = i − 1 cannot occur. If d(px, py) = i − 1, then the
fact that also d(px, y) = i−1 would imply that there exists a point p′y on the
line pyy at distance i−2 from px, but at distance i from x. This is impossible
since x and px are collinear.

If px ∈ Z, then Γi−2(px)∩Γ1(y) ⊆ Γi−1(x)∩Γ1(y) = Z ′. Hence, |Γi−2(px)∩
Z ′| = ci−1 and |Γi(px) ∩ Z ′| = ci − ci−1. So, we have

(χZ)T Ai−2χZ′ = cici−1, (χZ)T AiχZ′ = ci(ci−ci−1), (χZ)T AjχZ′ = 0 if j /∈ {i−2, i}.
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By the above equalities, we readily see that si(vT Mv) = [α, β, γ, δ] · F ·
[α, β, γ, δ]T , where F is the following (4 × 4)-matrix:

F :=













si (−1)i −si−1ci (−1)i−1sci

(−1)i si (−1)i−1sci −si−1ci

−si−1ci (−1)i−1sci si
(

ci + ci(ci−1)
s2

)

si
(

cici−1

(−s)i−2 + ci(ci−ci−1)
(−s)i

)

(−1)i−1sci −si−1ci si
(

cici−1

(−s)i−2 + ci(ci−ci−1)
(−s)i

)

si
(

ci + ci(ci−1)
s2

)













.

By Lemma 3.1, the matrix M is positive semidefinite. So, also F is positive
semidefinite, implying that the determinant of every principle submatrix of
F is nonnegative. The fact that the determinant of the principle submatrix
determined by the first three rows and columns is nonnegative implies that

ci ≤
s2i − 1

s2 − 1
. (5)

In particular, we have c2 ≤ s2 + 1. (The inequality (5) was already derived
in Vanhove [41, Theorem 1]).

Suppose now that i ≥ 3. Then det(F ) is equal to

−c2
i (s

2−1)2(si−2+1)(si−2−1)
(

ci−
(si − 1)(ci−1 − si−2)

si−2 − 1

)(

ci−
(si + 1)(ci−1 + si−2)

si−2 + 1

)

.

The fact that ci−1 ≤ (s2(i−1) − 1)/(s2 − 1) implies that

(si − 1)(ci−1 − si−2)

si−2 − 1
≤

(si + 1)(ci−1 + si−2)

si−2 + 1
.

Now, det(F ) ≥ 0 implies that

(si − 1)(ci−1 − si−2)

si−2 − 1
≤ ci ≤

(si + 1)(ci−1 + si−2)

si−2 + 1
,

finishing the proof of the first part of the theorem.
Now, we have Mv = 0 ⇐⇒ vT Mv = 0 ⇐⇒ [α, β, γ, δ] · F · [α, β, γ, δ]T =

0 ⇐⇒ F · [α, β, γ, δ]T = 0. If

{

ci = (si−(−1)i)(ci−1−(−1)isi−2)
si−2−(−1)i ,

(α, β, γ, δ) = (s(ci−1 − (−1)isi−2),−s(ci−1 − (−1)isi−2), 1,−1),

7



or
{

ci = (si+(−1)i)(ci−1+(−1)isi−2)
si−2+(−1)i ,

(α, β, γ, δ) = (s(ci−1 + (−1)isi−2), s(ci−1 + (−1)isi−2), 1, 1),

then F · [α, β, γ, δ]T = 0 and hence Mv = 0, finishing the proof of the last
part of the theorem.

Remark 3.3. In the proof of Theorem 3.2, other principle submatrices of F
have to be positive semidefinite as well of course, but this yields no stronger
inequalities.

The upper bound c2 ≤ s2 + 1 in Theorem 3.2 is also a consequence of
Higman’s inequality for generalized quadrangles [27, (6.4)] and the fact that
regular near 2d-gons with parameters (s, t2, t3, . . . , td−1, t) satisfying s ≥ 2
and c2 ≥ 2 admit quads (Shult & Yanushka [34, Proposition 2.5]). If i =
d = 3, then the upper bound in Theorem 3.2 is the so-called Mathon bound
[30] for regular near hexagons with parameters (s, t2, t), s ≥ 2; t + 1 ≤
(t2 + s + 1)(s2 − s + 1). If t2 = 0, then the Mathon bound reduces to the
well-known Haemers-Roos inequality [26] for generalized hexagons of order
(s, t), s ≥ 2; t ≤ s3. We call a regular near hexagon with parameters (s, t2, t),
s ≥ 2, for which t + 1 equals the Mathon bound (t2 + s + 1)(s2 − s + 1) a
maximal regular near hexagon.

An inequality of Brouwer & Wilbrink [8, p. 161] states that cd ≤ (s2 +
1)cd−1 if d is even. If we compare this upper bound for cd with the one pro-
vided by (4), we see that the inequality of Brouwer and Wilbrink is stronger

if cd−1 < (sd+1)sd−4

sd−4+1
and weaker if cd−1 > (sd+1)sd−4

sd−4+1
. Hiraki & Koolen [28,

Theorem 1(1)] also obtained an upper bound for cd in terms of s and cd−1.
Also this bound is sometimes stronger and sometimes weaker than the one
given by (4).

As already mentioned in Section 1, the two inequalities given by (4) ex-
tend a result of Neumaier [31, Theorem 3.1] who already proved the validity
of the upper bound in (4) in the case i is odd and the validity of the lower
bound in the case i is even. The upper bound for i even and the lower bound
for i odd also follow from an inequality obtained in very recent independent
work of Tonejc [40] on general distance-regular graphs.

We now give a list of all known regular near 2d-gons, d ≥ 3 and s ≥ 2,
for which equality holds in one of the inequalities in (4).

• Suppose S is the Hermitian dual polar space DH(2d − 1, q2), d ≥ 3,
associated with a Hermitian polarity of the projective space PG(2d − 1, q2).
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(The collinearity graph is also denoted by 2A2d−1(q).) Then s = q and ci =
(q2i − 1)/(q2 − 1) for every i ∈ {0, 1, . . . , d}. The lower and upper bound in
(4) is attained for any i ∈ {3, 4, . . . , d}.

• Suppose S is one of the following dual polar spaces of rank d ≥ 3:
(i) the orthogonal dual polar space DQ(2d, q) associated with a nonsingular
parabolic quadric of PG(2d, q); (ii) the symplectic dual polar space DW (2d−
1, q) associated with a symplectic polarity of PG(2d−1, q). (The collinearity
graphs are also denoted by Bd(q) and Cd(q), respectively.) Observe that
DQ(2d, q) ∼= DW (2d − 1, q) if and only if q is even. Then s = q and ci =
(qi−1)/(q−1) for every i ∈ {0, 1, . . . , d}. The lower bound in (4) is attained
for any i ∈ {3, 4, . . . , d}.

• Suppose S is a (maximal) generalized hexagon of order (s, s3), s ≥
2. Then the upper bound in (4) is attained if i = 3. The only known
generalized hexagons of order (s, s3), s ≥ 2, are the dual twisted triality
hexagons T(q, q3), where q is some prime power. These generalized hexagons
were constructed by Tits [39]. (The collinearity graphs of these generalized
hexagons are also denoted by 3D4,2(q).)

• Suppose S is the unique regular near hexagon with parameters (s, t2, t) =
(2, 1, 11) (Brouwer [2]; Shult & Yanushka [34, Section 2.5]), also denoted by
E1. An explicit description of this near hexagon will be given in the ap-
pendix. The regular near hexagon E1 is maximal as the upper bound in (4)
is attained if i = 3.

• Suppose S is the unique regular near hexagon with parameters (s, t2, t) =
(2, 2, 14) (Brouwer [3]; Shult & Yanushka [34, Section 2.5]). Then S is iso-
morphic to the point-line geometry E2 whose points are the blocks of the
unique Steiner system S(5, 8, 24) and whose lines are the triples of mutually
disjoint blocks (natural incidence). The regular near hexagon E2 is maximal
as the upper bound in (4) is attained if i = 3.

In Vanhove [41, Theorem 1], it was proved that ci ≤ (s2i − 1)/(s2 − 1)
for every i ∈ {2, 3, . . . , d} (see also the proof of Theorem 3.2). In [41], the
regular near polygons for which some ci, i ∈ {2, 3, . . . , d}, attains the upper
bound (s2i−1)/(s2−1) were not yet classified. By relying on the inequalities
given in (4), we are now able to achieve this goal if d ≥ 3.

Theorem 3.4. Suppose S is a finite regular near 2d-gon, with s ≥ 2 and
d ≥ 3. If ci = (s2i−1)/(s2−1) for a certain i ∈ {2, 3, . . . , d}, then s is a prime
power and S is isomorphic to the Hermitian dual polar space DH(2d−1, s2).

Proof. First, suppose cj = (s2j − 1)/(s2 − 1) for some j ∈ {2, 3, . . . , d − 1}.
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By Theorem 3.2, we then have

s2(j+1) − 1

s2 − 1
=

(sj+1 − 1)(cj − sj−1)

sj−1 − 1
≤ cj+1.

Together with cj+1 ≤ (s2(j+1) − 1)/(s2 − 1) this implies that cj+1 = (s2(j+1) −
1)/(s2 − 1).

Next, suppose cj = (s2j − 1)/(s2 − 1) for some j ∈ {3, 4, . . . , d}. By
Theorem 3.2, we then have

s2j − 1

s2 − 1
= cj ≤

(sj + 1)(cj−1 + sj−2)

sj−2 + 1
,

and hence (s2(j−1) − 1)/(s2 − 1) ≤ cj−1. The fact that cj−1 ≤ (s2(j−1) −
1)/(s2 − 1) again implies that cj−1 = (s2(j−1) − 1)/(s2 − 1).

By a straightforward inductive argument, we now see that cj = (s2j −
1)/(s2 − 1) for every j ∈ {2, 3, . . . , d}. Results of Cameron [10] and Brouwer
& Wilbrink [8, Lemma 26] (see also Brouwer, Cohen & Neumaier [5, Theorem
9.4.4]) now imply that S is a dual polar space. The fact that t2 = s2 then
implies that s is a prime power and that S is isomorphic to DH(2d−1, s2).

In case one of the intersection numbers ci, i ∈ {3, 4, . . . , d}, attains the
lower bound in (4), we only have a complete classification if i = 3.

Theorem 3.5. Suppose S is a finite regular near 2d-gon, with s ≥ 2 and
d ≥ 3. If c3 attains the lower bound (s2 + s + 1)(c2 − s) in (4), then s must
be a prime power and S is isomorphic to either DQ(2d, s), DW (2d − 1, s)
or DH(2d − 1, s2).

Proof. Note that since c3 = (s2 +s+1)(c2−s) > 0, we must have c2 > s and
thus t2 ≥ s. We know from Brouwer & Wilbrink [8, Theorem 4] (mentioned
as Theorem 2.3 in De Bruyn [14]) that S has subgeometries, the so-called
hexes, that are regular near hexagons with parameters (s, t2, t3) = (s, t2, (s

2+
s + 1)(t2 + 1− s)− 1). For each such regular near hexagon, an inequality by
Brouwer & Wilbrink [8, p. 161] yields that

0 ≤ t23 − ((s2 + 1)(t2 + 1) − 1)t3 + s4(t2 + 1)

= s(s2 + s + 1)(t2 − s)(t2 − s2).

Since t2 ≥ s and t2 = c2 − 1 ≤ s2 (see for instance Theorem 3.2), we see
that t2 = s or t2 = s2. Hence c3 − 1 = t3 = t2(t2 + 1). Results of Cameron
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[10] and Brouwer & Wilbrink [8, Lemma 26] (see also Brouwer, Cohen &
Neumaier [5, Theorem 9.4.4]) imply that each of the hexes is a dual polar
space. Brouwer & Cohen [4, Corollary 2, p. 195] then implies that S itself
must also be a dual polar space. The fact that t2 ∈ {s, s2} then forces s to
be a prime power and S to be isomorphic to either DQ(2d, s), DW (2d−1, s)
or DH(2d − 1, s2).

In case c3 attains the upper bound in (4), the following can be said by
relying on Terwilliger’s work.

Theorem 3.6. Suppose S is a finite regular near 2d-gon, with s ≥ 2 and
d ≥ 3. Then the following are equivalent:

(a) c3 = (s2 − s + 1)(c2 + s);

(b) for every even i ∈ {3, 4, . . . , d}, the lower bound in (4) is attained, and
for every odd i ∈ {3, 4, . . . , d}, the upper bound in (4) is attained;

(c) Γ is Q-polynomial with respect to the eigenvalue −t − 1;

(d) Γ has classical parameters (d,−s, α, β) for certain α, β ∈ R.

If any of these conditions hold, then we have

α = −
s + t2
s − 1

, β = s +
(−s)d−1 − 1

s2 − 1
s(s + t2),

and hence

ci = −
(−s)i − 1

s + 1

(

1 +
s + t2
s2 − 1

((−s)i−1 − 1)
)

, ∀i ∈ {0, 1, . . . , d}.

Moreover, if 1 ≤ h ≤ d and 0 ≤ i, j ≤ d, then for any two points x and
y with d(x, y) = h, we then have Mv = 0, where Z = Γi(x) ∩ Γj(y), Z ′ =
Γj(x) ∩ Γi(y) and

v = −ph
i,j

(−1
s
)i − (−1

s
)j

1 − (−1
s
)h

(χ{x} − χ{y}) + (χZ − χZ′).

Proof. We know from Lemma 3.1 that the idempotent corresponding to
eigenvalue −(t + 1) has, up to a positive scalar, the following dual eigen-
value sequence: 1,−1/s, . . . , (−1/s)d. The equivalences now follow imme-
diately from Terwilliger [35, Theorem 4.2]. The precise values of α and β
follow from equations (2) and (3), taking into account that c2 = t2 + 1 and
b0 = a1+b1+c1 = sc1+b1. The equality Mv = 0 follows from the equivalence
(v) ↔ (vii) in Terwilliger [35, Theorem 3.3].
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We note that Weng [43, Theorem C] has classified all regular near 2d-gons
with Q-polynomial collinearity graphs (with respect to any eigenvalue) with
d ≥ 4, c2 ≥ 2 and s ≥ 2.

The fact that one of the bounds in (4) is attained implies some relations
between the intersection numbers.

Theorem 3.7. Suppose S is a finite regular near 2d-gon, with s ≥ 2 and
d ≥ 3.

(a) If ci = (si − 1)(ci−1 − si−2)/(si−2 − 1) for a certain i ∈ {3, 4, . . . , d},
then for every j ∈ {0, 1, . . . , i} \ { i

2
}, we have

ci−1 − si−2 =
si−2 − 1

s2j−i − 1
cj +

si−2 − 1

si−2j − 1
ci−j. (6)

(b) If ci = (si + 1)(ci−1 + si−2)/(si−2 + 1) for a certain i ∈ {1, 2, . . . , d},
then for every j ∈ {0, 1, . . . , i}, we have

ci−1 + si−2 =
si−2 + 1

s2j−i + 1
cj +

si−2 + 1

si−2j + 1
ci−j. (7)

In particular, we have ci/2 = (ci−1 + si−2)/(si−2 + 1) = ci/(s
i + 1) if i

is even.

Proof. Note that claim (b) is correct if i ∈ {1, 2}. Now consider two points
x and y at distance i ≥ 3, and let p be a point at distance j from x and at
distance i− j from y. Suppose Z = Γ1(x)∩Γi−1(y) and Z ′ = Γi−1(x)∩Γ1(y).
The point p will be at distance j − 1 from exactly cj elements in Z. No
point px ∈ Z can be at distance j from p, since then the line xpx would
contain a point p′x with d(p′x, p) = j − 1, d(p, y) = i − j and d(p′x, y) = i,
which is impossible. Hence p is at distance j + 1 from the remaining ci − cj

elements of Z. Similarly, the point p will be at distance (i − j) − 1 from
ci−j elements of Z ′ and at distance (i − j) + 1 from the remaining ci − ci−j

elements of Z ′. Note that (χ{p})
T AiχX = |Γi(p)∩X| for any subset X of P .

If ci = (si − 1)(ci−1 − si−2)/(si−2 − 1), then take v = s(ci−1 − si−2)(χ{x} −
(−1)iχ{y})+(χZ − (−1)iχZ′), and if ci = (si +1)(ci−1 + si−2)/(si−2 +1), then
take v = s(ci−1 + si−2)(χ{x} + (−1)iχ{y}) + (χZ + (−1)iχZ′). Working out
(χ{p})

T Mv = 0 (see Theorem 3.2) now yields an equation in ci−1, ci−j and
cj, which we can solve for ci−1, unless i = 2j and ci attains the lower bound
in (4).
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Observe that equality in (6) and (7) in Theorem 3.7 trivially holds if
j ∈ {0, 1, i − 1, i}. Also, (6) and (7) remain unchanged if we replace j by
i − j.

In case cd attains one of the two bounds in (4), the following can be
said regarding triple intersection numbers. This will give some alternative
explanation for some properties of well-known near 2d-gons.

Theorem 3.8. Suppose S is a finite regular near 2d-gon, with s ≥ 2 and
d ≥ 3. The following holds for three points x, y and z of S, pairwise at
distance d.

(a) If cd = (sd − (−1)d)(cd−1 − (−1)dsd−2)/(sd−2 − (−1)d) then

|Γ1(x) ∩ Γd−1(y) ∩ Γd−1(z)| = |Γd−1(x) ∩ Γ1(y) ∩ Γd−1(z)|.

(b) If cd = (sd + (−1)d)(cd−1 + (−1)dsd−2)/(sd−2 + (−1)d) then

|Γ1(x) ∩ Γd−1(y) ∩ Γd−1(z)| = |Γd−1(x) ∩ Γ1(y) ∩ Γd−1(z)|

=
(sd−1 + (−1)d)(cd−1 + (−1)dsd−2)

sd−2 + (−1)d
.

Proof. Suppose Z = Γ1(x) ∩ Γd−1(y) and Z ′ = Γd−1(x) ∩ Γ1(y). Note that
(χ{z})

T Adχ{x} = (χ{z})
T Adχ{y} = 1 and that (χ{z})

T Aiχ{x} = (χ{z})
T Aiχ{y} =

0 for i 6= d. Note also that points in Z or Z ′ can only be at distance d − 1
or d from z. We have (χ{z})

T AiχZ = 0 if 0 ≤ i ≤ d − 2, (χ{z})
T Ad−1χZ =

|Γ1(x) ∩ Γd−1(y) ∩ Γd−1(z)|, (χ{z})
T AdχZ = cd − |Γ1(x) ∩ Γd−1(y) ∩ Γd−1(z)|,

and similarly (χ{z})
T AiχZ′ = 0 if 0 ≤ i ≤ d−2, (χ{z})

T Ad−1χZ′ = |Γd−1(x)∩
Γ1(y) ∩ Γd−1(z)|, (χ{z})

T AdχZ′ = cd − |Γd−1(x) ∩ Γ1(y) ∩ Γd−1(z)|.
(a) Suppose cd = (sd − (−1)d)(cd−1 − (−1)dsd−2)/(sd−2 − (−1)d). We

know from Theorem 3.2 that Mv = 0 if v = s(cd−1 − (−1)dsd−2)(χ{x} −
χ{y}) + (χZ − χZ′). If we denote |Γ1(x) ∩ Γd−1(y) ∩ Γd−1(z)| by nx and
|Γd−1(x) ∩ Γ1(y) ∩ Γd−1(z)| by ny, then

0 = (χ{z})
T Mv = (χ{z})

T M(χZ − χZ′)

= nx

(

−
1

s

)d−1

+ (cd − nx)
(

−
1

s

)d

− ny

(

−
1

s

)d−1

− (cd − ny)
(

−
1

s

)d

= (nx − ny)
((

−
1

s

)d−1

−
(

−
1

s

)d)

and hence nx = ny.
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(b) Suppose cd = (sd + (−1)d)(cd−1 + (−1)dsd−2)/(sd−2 + (−1)d). By
Theorem 3.2, Mv = 0 if v = s(cd−1 + (−1)dsd−2)(χ{x} + χ{y}) + (χZ + χZ′).
Working out (χ{z})

T Mv = 0 now yields:

|Γ1(x) ∩ Γd−1(y) ∩ Γd−1(z)| + |Γd−1(x) ∩ Γ1(y) ∩ Γd−1(z)| =

2
(sd−1 + (−1)d)(cd−1 + (−1)dsd−2)

sd−2 + (−1)d
.

Completely analogously, we also have

|Γd−1(x) ∩ Γ1(y) ∩ Γd−1(z)| + |Γd−1(x) ∩ Γd−1(y) ∩ Γ1(z)| =

|Γ1(x) ∩ Γd−1(y) ∩ Γd−1(z)| + |Γd−1(x) ∩ Γd−1(y) ∩ Γ1(z)| =

2
(sd−1 + (−1)d)(cd−1 + (−1)dsd−2)

sd−2 + (−1)d
,

which allows us to compute |Γ1(x)∩Γd−1(y)∩Γd−1(z)| and |Γd−1(x)∩Γ1(y)∩
Γd−1(z)|.

In the special case that S is isomorphic to the Hermitian dual polar space
DH(2d−1, q2), d ≥ 3, Theorem 3.8 implies that |Γ1(x)∩Γd−1(y)∩Γd−1(z)| =
|Γd−1(x) ∩ Γ1(y) ∩ Γd−1(z)| = (qd−1 + (−1)d)(qd − (−1)d)/(q2 − 1). This fact
also follows from Thas [37, Lemma, p. 538].

In the special case that S is isomorphic to the symplectic dual polar
space DW (2d − 1, q), d ≥ 3, we know from Theorem 3.8 that |Γ1(x) ∩
Γd−1(y) ∩ Γd−1(z)| = |Γd−1(x) ∩ Γ1(y) ∩ Γd−1(z)| if d is even and |Γ1(x) ∩
Γd−1(y) ∩ Γd−1(z)| = |Γd−1(x) ∩ Γ1(y) ∩ Γd−1(z)| = (qd−1 − 1)/(q − 1) if d
is odd. However, it follows from Klein, Metsch & Storme [29, Theorem 21]
that |Γ1(x) ∩ Γd−1(y) ∩ Γd−1(z)| = |Γd−1(x) ∩ Γ1(y) ∩ Γd−1(z)| ∈ {(qd/2 −
1)(qd/2−1 + 1)/(q − 1), (qd/2 + 1)(qd/2−1 − 1)/(q − 1)} if d is even and q odd,
|Γ1(x) ∩ Γd−1(y) ∩ Γd−1(z)| = |Γd−1(x) ∩ Γ1(y) ∩ Γd−1(z)| ∈ {(qd−1 − 1)/(q −
1), (qd − 1)/(q − 1)} if d and q are even, and |Γ1(x) ∩ Γd−1(y) ∩ Γd−1(z)| =
|Γd−1(x) ∩ Γ1(y) ∩ Γd−1(z)| = (qd−1 − 1)/(q − 1) if d is odd.

In the case that S is isomorphic to the dual polar space DQ(2d, q), d ≥ 3,
an approach similar to the one of [37, Lemma, p. 538] or [29, Theorem 21]
allows one to prove that |Γ1(x) ∩ Γd−1(y) ∩ Γd−1(z)| = |Γd−1(x) ∩ Γ1(y) ∩
Γd−1(z)| ∈ {(qd−1 − 1)/(q − 1), (qd − 1)/(q − 1)} if d is even, and |Γ1(x) ∩
Γd−1(y) ∩ Γd−1(z)| = |Γd−1(x) ∩ Γ1(y) ∩ Γd−1(z)| = (qd−1 − 1)/(q − 1) if d is
odd.
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Haemers [25, Theorem 5.2.6] proved that any (maximal) generalized hexagon
of order (s, s3), s ≥ 2, satisfies some very nice combinatorial properties. More
precisely, he showed that the number pijk(L, x, y) of points at distance i from
a line L, at distance j from a point x and at distance k from a point y only
depends on i, j, k and the “configuration” induced on L, x and y (and not on
the particular choice of L, x and y). The following corollary of Theorem 3.8
gives a new combinatorial property, similar to the one obtained by Haemers,
that needs to be satisfied for a maximal generalized hexagon.

Corollary 3.9. If S is a generalized hexagon of order (s, s3), s ≥ 2, then
|Γ1(x)∩Γ2(y)∩Γ2(z)| = |Γ2(x)∩Γ1(y)∩Γ2(z)| for any three points x, y and
z of S, pairwise at distance 3.

Our next results regard m-ovoids of regular near polygons. Recall that
an m-ovoid of S is a set of points such that each line contains exactly m of its
elements. One easily proves that an m-ovoid must have size (m/(s+1)) · |P|.
The notion “m-ovoid” was introduced for generalized quadrangles by Thas
[36]. Investigations of such substructures using algebraic graph theory were
done in Eisfeld [24], Bamberg, Law & Penttila [1] and De Wispelaere & Van
Maldeghem [22]. The 1-ovoids are precisely those cocliques of the collinearity
graph Γ of maximum size |P|/(s + 1).

We first state some lemmas.

Lemma 3.10. [41, Lemma 4] If O is an m-ovoid of S, then its characteristic
vector χO can be written as (m/(s + 1))χP + Mw for some (|P| × 1)-matrix
w.

Lemma 3.11. [41, Lemma 5] If O is an m-ovoid of S, then

|Γi(x) ∩ O| = ki

( m

s + 1
+

(

−
1

s

)i(

1 −
m

s + 1

))

for every point x ∈ O and every i ∈ {0, 1, . . . , d}.

Theorem 3.12. Suppose O is an m-ovoid of a finite regular near 2d-gon S,
with s ≥ 2 and d ≥ 3. Let x and y be points at distance i ≥ 3 from each
other, and put Nx := |Γ1(x) ∩ Γi−1(y) ∩O| and Ny := |Γi−1(x) ∩ Γ1(y) ∩O|.

(a) If x, y ∈ O and ci = (si − (−1)i)(ci−1 − (−1)isi−2)/(si−2 − (−1)i), then
Nx = Ny.
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(b) If x ∈ O, y /∈ O and ci = (si − (−1)i)(ci−1 − (−1)isi−2)/(si−2 − (−1)i),
then Nx − Ny = −s(ci−1 − (−1)isi−2).

(c) If x, y 6∈ O and ci = (si − (−1)i)(ci−1 − (−1)isi−2)/(si−2 − (−1)i), then
Nx = Ny.

(d) If x, y ∈ O and ci = (si + (−1)i)(ci−1 + (−1)isi−2)/(si−2 + (−1)i), then

Nx + Ny = (ci−1 + (−1)isi−2)
(

2m
si−1 + (−1)i

si−2 + (−1)i
− 2s

)

.

(e) If x ∈ O, y /∈ O and ci = (si + (−1)i)(ci−1 + (−1)isi−2)/(si−2 + (−1)i),
then

Nx + Ny = (ci−1 + (−1)isi−2)
(

2m
si−1 + (−1)i

si−2 + (−1)i
− s

)

.

(f) If x, y 6∈ O and ci = (si + (−1)i)(ci−1 + (−1)isi−2)/(si−2 + (−1)i), then

Nx + Ny = (ci−1 + (−1)isi−2)
(

2m
si−1 + (−1)i

si−2 + (−1)i

)

.

Proof. Put Z := Γ1(x) ∩ Γi−1(y) and Z ′ := Γi−1(x) ∩ Γ1(y). We know from
Lemma 3.10 that we can write χO = m

s+1
χP + Mw for some (|P| × 1)-matrix

w. Hence when choosing v as in Theorem 3.2, we have in every case:

(

χO −
m

s + 1
χP

)T

v = wT (Mv) = 0.

Note that (χP)T χ{x} = (χP)T χ{y} = 1, (χP)T χZ = (χP)T χZ′ = ci and
(χO)T χZ = Nx, (χO)T χZ′ = Ny. Also, (χO)T χ{x} = 1 if x ∈ O, (χO)T χ{x} =
0 if x /∈ O, (χO)T χ{y} = 1 if y ∈ O and (χO)T χ{y} = 0 if y /∈ O. Working
out the above expression, we now obtain the desired results.

The following is a consequence of Theorem 3.12.

Corollary 3.13. Suppose O is a 1-ovoid of a finite regular near 2d-gon S,
with s ≥ 2 and d ≥ 3, and let x, y be two points of S at distance i ≥ 3 from
each other such that x ∈ O and y 6∈ O.

(a) If ci = (si − (−1)i)(ci−1 − (−1)isi−2)/(si−2 − (−1)i), then

|Γ1(y) ∩ Γi−1(x) ∩ O| = s(ci−1 − (−1)isi−2).
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(b) If ci = (si + (−1)i)(ci−1 + (−1)isi−2)/(si−2 + (−1)i), then

|Γ1(y) ∩ Γi−1(x) ∩ O| = (ci−1 + (−1)isi−2)
(

2
si−1 + (−1)i

si−2 + (−1)i
− s

)

.

Proof. Since O is a 1-ovoid and x ∈ O, we have |Γ1(x) ∩ Γi−1(y) ∩ O| = 0.
The exact value of |Γ1(y) ∩ Γi−1(x) ∩ O| then follows from Theorem 3.12
(b)+(e).

The following corollary of Theorem 3.12 is already known. Indeed, the
dual polar space DQ(2d, q), d ≥ 3 and q odd, cannot have 1-ovoids since none
of its quads have 1-ovoids (Payne & Thas [33, 3.4.1]). A result of Thomas
[38, Theorem 3.2] implies that the dual polar space DW (5, q) cannot have
1-ovoids either. An argument of Shult (as exposed in Pasini & Shpectorov
[32, Proposition 2.8]) gives an alternative proof for the non-existence of 1-
ovoids in DQ(6, q) ∼= DW (5, q), q even. Another proof for the non-existence
of 1-ovoids in DW (5, q), q odd, can be found in Cooperstein & Pasini [11]
(see also De Bruyn & Pralle [17, Appendix]). Finally, observe that the dual
polar spaces DQ(2d, q) and DW (2d − 1, q) (d ≥ 3) have full subgeometries
(i.e. every line of the subgeometry is incident with the same set of points in
both geometries) that are isomorphic to DQ(6, q) or DW (5, q). Hence the
non-existence of 1-ovoids in these subgeometries implies the non-existence of
1-ovoids in the dual polar spaces themselves.

Corollary 3.14. Let S be one of the dual polar spaces DQ(2d, q) and DW (2d−
1, q). If d ≥ 3, then S has no 1-ovoids.

Proof. In both cases, the dual polar space is a regular near 2d-gon with
parameters s = q and ci = (qi − 1)/(q − 1), i ∈ {0, 1, . . . , d}. Suppose O
is a 1-ovoid of S. It follows from Lemma 3.11 that there exist two elements
x and y in O at distance 3. Theorem 3.12(d) with i = 3 now implies that
|Γ1(x) ∩ Γ2(y) ∩ O| + |Γ2(x) ∩ Γ1(y) ∩ O| = 2. This is however impossible,
because as O is a coclique of the collinearity graph, we must have Γ1(x)∩O =
Γ1(y) ∩ O = ∅.

The following is a special case of Theorem 3.12.

Corollary 3.15. Suppose O is an m-ovoid of a generalized hexagon of order
(s, s3), s ≥ 2, and let x, y be two points at distance 3. Then |Γ1(x)∩ Γ2(y)∩
O| = |Γ2(x) ∩ Γ1(y) ∩O| if either x, y ∈ O or x, y 6∈ O and |Γ2(x) ∩ Γ1(y) ∩
O| − |Γ1(x) ∩ Γ2(y) ∩ O| = s(s + 1) if x ∈ O and y 6∈ O.
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The only known generalized hexagons of order (s, s3), s ≥ 2, are the dual
twisted triality hexagons T(q, q3) where q is some prime power. It is not
known whether T(q, q3) can have m-ovoids with 0 < m < q + 1. As we shall
see in Corollary 3.19, the dual twisted triality hexagon T(q, q3) cannot have
1-ovoids.

Lemma 3.16. Suppose S is a maximal regular near hexagon, O is a 1-
ovoid of S and x, y are points of S such that x ∈ O and y 6∈ O. Then
|Γ2(x)∩Γ1(y)∩O| = t2+1 if d(x, y) = 2 and |Γ2(x)∩Γ1(y)∩O| = s(t2+s+1)
if d(x, y) = 3.

Proof. Suppose d(x, y) = 2. Then every neighbor of y at distance 2 from x
must be on one of the t2 + 1 lines through y at distance 1 from x. Each of
these t2 + 1 lines contains exactly one point of O, and that point must be at
distance 2 from x since O is a coclique of Γ. Hence, |Γ2(x)∩Γ1(y)∩O| = t2+1.

The claim in the case d(x, y) = 3 is a consequence of Corollary 3.13(a).

It was shown in Vanhove [41, Theorem 4] that (q+1)/2-ovoids in the dual
polar space DH(2d− 1, q2) induce distance-regular graphs. We now prove a
somewhat similar result for 1-ovoids in maximal regular near hexagons.

Theorem 3.17. Suppose S is a maximal regular near hexagon and O is a 1-
ovoid of S. Then the distance-2-relation R2 induces a strongly regular graph
srg(v, k, λ, µ) on O with parameters

v =
(s2 − s + 1)(s2 + st2 + s + 1)(s4 + s3t2 − s2t2 − s2 + t2 + 1)

t2 + 1
,

k =
s(s2 − s + 1)(s + t2 + 1)(s3 + s2t2 − st2 + t2)

t2 + 1
,

λ =
(s2 − s + 1)(s4 + 2s3t2 + 2s3 + t22s

2 + 2t2s
2 − st2 − s − t2 − 1)

t2 + 1
,

µ =
(s2 − s + 1)(s + t2 + 1)(s3 + s2t2 − st2 − s + t2 + 1)

t2 + 1
,

eigenvalues θ0 = k, θ1 = (s−1)(s2−s+1)(s+t2+1)2/(t2+1), θ2 = −s2+s−1,
and corresponding multiplicities m0 = 1,
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m1 =
s2(s − 1)(s2 + st2 + s + 1)(s3 + s2t2 − st2 + t2)

(s2 + st2 + s − t2 − 1)(s + t2)
,

m2 =
s(s2 + st2 − t2)(s

3 + s2t2 − st2 + t2)(s + t2 + 1)(s4 + s3t2 − s2t2 − s2 + t2 + 1)

(t2 + 1)(s2 + s + st2 − t2 − 1)(s + t2)
.

Proof. The size v follows from |O| = (k0 + k1 + k2 + k3)/(s + 1). Each
element of O is at distance 2 from exactly k2/s = st(t + 1)/(t2 + 1) elements
of O by Lemma 3.11. Now consider x, x′ ∈ O at distance 2 or 3 from each
other. We will count in two ways the number N of ordered pairs (p, y) with
d(x, p) = 2, d(p, y) = 1, d(y, x′) = 1 and p ∈ O \ {x′}. Note that if (p, y)
is such an ordered pair, then p must be at distance 2 from x′. For a fixed
p ∈ Γ2(x) ∩ Γ2(x

′) ∩ O, there are c2 = t2 + 1 possibilities for y, and hence

N = |Γ2(x) ∩ Γ2(x
′) ∩ O| · (t2 + 1).

Firstly, suppose d(x, x′) = 2. There are t2+1 possibilities for y with d(x, y) =
1, (s − 1)(t2 + 1) for y with d(x, y) = 2 and s(t − t2) for y with d(x, y) = 3.
In the first case, there are t − 1 lines through y, not containing x or x′, and
hence t − 1 possibilities for p as they all intersect O in one point. In the
second case, there are (t2 +1)−1 possibilities for p (since we have to exclude
x′) by Lemma 3.16. Finally, in the third case, there are s(t2 + s + 1) − 1
possibilities for p (since we have to exclude x′), again by Lemma 3.16. Hence

N = (t2 + 1)(t − 1) + (s − 1)(t2 + 1)t2 + s(t − t2)(s(t2 + s + 1) − 1).

Next, suppose d(x, x′) = 3. There are t + 1 possibilities for y with
d(x, y) = 2, and (s − 1)(t + 1) for y with d(x, y) = 3. In the first case,
there are t2 + 1 possibilities for p by Lemma 3.16. In the second case, there
are s(t2 + s + 1) possibilities for p, again by Lemma 3.16. Hence

N = (t + 1)(t2 + 1) + (s − 1)(t + 1)s(t2 + s + 1).

Using t+1 = (s2−s+1)(t2 +s+1) and solving for |Γ2(x)∩Γ2(x
′)∩O| yields

the desired constants λ and µ. Note that µ > 0 and 1 ≤ k < v − 1. The
eigenvalues and their multiplicities can now be computed in a straightforward
way (see for instance Brouwer, Cohen and Neumaier [5, Theorem 1.3.1]).
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Remark 3.18. The fact that a 1-ovoid O as in Theorem 3.17 yields a strongly
regular graph in fact immediately follows from Brouwer, Godsil, Koolen &
Martin [6, Theorem 2], since the so-called degree of O is 2 and the so-called
dual width of O is 1.

With the aid of a computer we determined all parameters (s, t2, t) with
2 ≤ s ≤ 107, 0 ≤ t2 ≤ s2 and t + 1 = (s2 − s + 1)(t2 + s + 1) for which all
the parameters v, k, λ, µ, m1, m2 defined in Theorem 3.17 are nonnegative
integers, and t/t2 is an integer if t2 > 0 (as forced by Brouwer & Wilbrink
[8, Theorem 6]). We found the following three possibilities.

• We have (s, t2, t) = (2, 1, 11) and (v, k, λ, µ) = (243, 132, 81, 60). In this
case, S ∼= E1. By De Bruyn [13, Theorem 4.2], E1 has up to isomor-
phism a unique 1-ovoid. In the appendix, we show that the strongly
regular graph associated with each 1-ovoid of E1 is isomorphic to the
graph whose vertices are the codewords of the (11, 5) ternary Golay
code, with two codewords being adjacent whenever their difference has
weight 6. This strongly regular graph, which was first constructed in
[19, Example 2, p. 54], is known as the Delsarte graph in the literature.

• We have (s, t2, t) = (2, 2, 14) and (v, k, λ, µ) = (253, 140, 87, 65). In
this case, S ∼= E2. All 1-ovoids of this regular near hexagon have
been classified by Brouwer & Lambeck [7, p. 105] (see also De Bruyn
[14, Section 6.6.2]). Every 1-ovoid of E2 consists of all 253 blocks of
S(5, 8, 24) through a distinguished point of S(5, 8, 24). The strongly
regular graph associated with each such 1-ovoid is easily seen to be iso-
morphic to the graph whose vertices are the blocks of the unique Steiner
system S(4, 7, 23), with two distinct blocks being adjacent whenever
they intersect in precisely three points.

• We have (s, t2, t) = (4, 1, 77) and (v, k, λ, µ) = (47125, 12012, 3575, 2886).
We do not know whether there exists a regular near hexagon or a
strongly regular graph with these parameters. The collinearity graph of
such a regular near hexagon would have classical parameters (3,−4,−5/3, 24)
and spectrum (312)1(22)89232(−13)145464(−78)928 (see for instance Brouwer,
Cohen & Neumaier [5, §8.4] or De Bruyn [14, Section 3.3]). The
strongly regular graph, if it exists, would have spectrum (12012)1(702)840(−13)46284.

The 1-ovoids in generalized 2d-gons are also known as distance-2-ovoids.
In general, distance-2-ovoids in generalized hexagons of order (s, t) with
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s, t > 1 are hard to find, but some constructions were given in De Wis-
pelaere & Van Maldeghem [20, 21, 23]. De Wispelaere & Van Maldeghem
[20, Subsection 7.2] proved that the dual twisted triality hexagons T(2, 8)
and T(3, 27) cannot have 1-ovoids, and suggested that this might hold for all
prime powers. The following corollary of Theorem 3.17 extends these latter
results to all generalized hexagons of order (s, s3), s ≥ 2.

Corollary 3.19. A generalized hexagon S of order (s, s3), s ≥ 2, cannot
have 1-ovoids.

Proof. Suppose O is a 1-ovoid of S. We can apply Theorem 3.17 with t2 = 0
to obtain a strongly regular graph with eigenvalue multiplicity m1 = (s5 −
s4 + 2s3 − 4s2 + 6s− 10) + (16s− 10)/(s2 + s− 1), which is impossible since
this number is never an integer if s ≥ 2.

A generalized polygon of order (s′, t′) with s′ > 1 finite and t′ infinite
is called semi-finite. The question whether semi-finite generalized polygons
exist is one of the most important problems in the theory of generalized
polygons (see Problem 5 of Van Maldeghem [42, Appendix E]). The following
consequence of Corollary 3.19 shows the non-existence of certain semi-finite
generalized polygons.

Corollary 3.20. A (not necessarily finite) generalized hexagon of order (s, t′)
cannot have maximal generalized hexagons as full proper subgeometries.

Proof. Let S = (P ,L, I) be a generalized hexagon of order (s, t) = (s, s3),
s ∈ N \ {0, 1}, and suppose S is a full proper subgeometry of a generalized
hexagon S ′ = (P ′,L′, I′) of order (s, t′). Then t′ > t = s3, and hence t′ must
be infinite by the Haemers-Roos inequality.

Suppose z is a point of S ′ at distance 2 from P . Every line of S contains
a unique point nearest to z which necessarily lies at distance 2 from z. So,
the set of points of P at distance 2 from z is a 1-ovoid of S. But that is
impossible by Corollary 3.19. So, every point of S ′ lies at distance at most 1
from P .

Now, let x be a point of S ′ at distance 1 from P . If x is collinear with
two distinct points y1 and y2 of S, then y1 and y2 lie at distance 2 from each
other in S and hence their unique common neighbor x would be a point of
S, a contradiction. So, there is only one line L through x that meets P in a
point.
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Let X denote the set of points of S at distance 2 from x and let Y denote
the set of all neighbors y of x that lie on a path of length two connecting x
with one of the points of X. Since X is finite, also Y must be finite.

If y is a neighbor of x not contained in L, then y 6∈ P is collinear with a
unique point in P which necessarily belongs to X, implying that y ∈ Y . So,
x has only a finite number of neighbors. This is in contradiction with the
fact that t′ is infinite.

Appendix: The strongly regular graphs associated with 1-ovoids of

E1

We know from Theorem 3.17 that 1-ovoids of the regular near hexagon
E1 yield strongly regular graphs srg(243, 132, 81, 60). In this appendix, we
will verify that all strongly regular graphs arising in this way are isomorphic
to the Delsarte graph.

Let V be a 6-dimensional vector space over the field F3 of order 3 with
basis B = {ē1, ē2, ē3, ē4, ē5, ē6} and let N be the following matrix over F3:

N :=

















1 0 0 0 0 0 1 1 1 1 1 0
0 1 0 0 0 0 0 1 −1 −1 1 −1
0 0 1 0 0 0 1 0 1 −1 −1 −1
0 0 0 1 0 0 −1 1 0 1 −1 −1
0 0 0 0 1 0 −1 −1 1 0 1 −1
0 0 0 0 0 1 1 −1 −1 1 0 −1

















.

The subspace C of (F3)
12 generated by the six rows of N is the so-called

extended ternary Golay code. With respect to the basis B, the 12 columns of
N define a set K of 12 points of Σ := PG(V ) ∼= PG(5, 3). For every point x of
Σ, let iK(x) denote the smallest strictly positive integer k with the property
that there exist k points y1, y2, . . . , yk ∈ K for which x ∈ 〈y1, y2, . . . , yk〉.
We call iK(x) the K-index of the point x. The set K satisfies several nice
properties (see e.g. Coxeter [12] and De Bruyn [14, Section 6.5]). Several of
these properties are mentioned in the following proposition.

Proposition A.1. (a) Every point of Σ has K-index 1, 2 or 3.
(b) The stabilizer G of K in PGL(V ) ∼= PGL(6, 3) is isomorphic to the

Mathieu group M12 and acts sharply 5-transitive on the set K.
(c) Every i ∈ {1, 2, . . . , 5} distinct points of K generate a subspace of Σ

with projective dimension i − 1.
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(d) If x1, x2, . . . , x5 are five distinct points of K, then the hyperplane
〈x1, x2, . . . , x5〉 of Σ contains precisely 6 points of K.

(e) Let D be the point-line geometry whose points are the elements of K
and whose lines are all the sets of 6 points that arise as intersections of K
with suitable hyperplanes of Σ (natural incidence). Then D is isomorphic to
the unique Steiner system S(5, 6, 12).

By Proposition A.1(a)+(c), we know that there are 12 points with K-
index 1, 132 points with K-index 2 and 220 points with K-index 3.

Suppose that Σ is embedded as a hyperplane in the projective space
PG(6, 3). Then let E1 be the point-line geometry whose points are the points
of PG(6, 3) not contained in Σ, and whose lines are those lines of PG(6, 3)
not contained in Σ and containing a unique point of K (natural incidence).
By De Bruyn & De Clerck [16] (see also De Bruyn [14, Theorem 6.59]), E1

is a regular near hexagon with parameters (s, t2, t) = (2, 1, 11) (the unique
one with these parameters). If x and y are two distinct points of E1 and the
line 〈x, y〉 of PG(6, 3) through them intersects Π in a point z, then by De
Bruyn & De Clerck [16, Lemma 4.2] the distance between x and y in the
near hexagon E1 is equal to the K-index of z.

Lemma A.2. Every hyperplane of Σ intersects K in either 6, 3 or 0 points.
Every three distinct points of K are contained in a unique hyperplane that
intersects K in precisely three points. There are precisely 132 hyperplanes of
Σ that contain 6 points of K, 220 hyperplanes that contain precisely 3 points
of K and 12 hyperplanes that are disjoint from K.

Proof. This easily follows from the fact that every i ∈ {1, 2, . . . , 5} distinct

points of K are contained in precisely 36−i−1
2

hyperplanes of Σ and
(

12−i
5−i

)

/
(

6−i
5−i

)

blocks of the Steiner system D (see Proposition A.1). The fact that every
hyperplane of Σ intersects K in either 6, 3 or 0 points is also a consequence
of the fact that the code C only contains vectors of weight 0, 6, 9 or 12, see
e.g. De Bruyn [14, Lemma 6.57].

We denote the hyperplane of Σ with equation a1X1+a2X2+a3X3+a4X4+
a5X5 + a6X6 = 0 also by [a1, a2, a3, a4, a5, a6]. We denote by K∗ the set of
12 hyperplanes of Σ that are disjoint from K. After some straightforward
calculations, we find that K∗ consists of the following 12 hyperplanes:

α1 := [1, 1, 1, 1, 1, 1], α2 := [1, 1, 1, 1,−1,−1], α3 := [1, 1, 1,−1,−1, 1],
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α4 := [1, 1,−1, 1,−1,−1], α5 := [1,−1,−1,−1,−1,−1], α6 := [1,−1, 1,−1,−1, 1],

α7 := [1, 1,−1,−1, 1,−1], α8 := [1,−1, 1,−1, 1,−1], α9 := [1, 1,−1,−1, 1, 1],

α10 := [1,−1,−1, 1, 1, 1], α11 := [1,−1, 1, 1, 1,−1], α12 := [1,−1,−1, 1,−1, 1].

The set K∗ is a set of points of the dual Σ∗ of the projective space Σ. Now,
let B be the following nonsingular symmetric matrix over F3:

B :=

















1 1 1 1 1 1
1 1 1 1 −1 −1
1 1 1 −1 −1 1
1 1 −1 1 −1 −1
1 −1 −1 −1 −1 −1
1 −1 1 −1 −1 1

















.

Let ζ denote the orthogonal polarity of the projective space Σ which maps
each point (X1, X2, . . . , X6) of Σ to the hyperplane [a1, a2, . . . , a6] of Σ, where
[a1, a2, . . . , a6]

T = B · [X1, X2, . . . , X6]
T .

Proposition A.3. The polarity ζ maps the 12 points of K to the 12 hyper-
planes of K∗, the 132 points of K-index 2 to the 132 hyperplanes intersecting
K in precisely 6 points and the 220 points of K-index 3 to the 220 hyperplanes
intersecting K in precisely 3 points.

Proof. If Ci, i ∈ {1, 2, . . . , 12}, denotes the i-th column of the matrix B ·N ,
then the row vector CT

i describes the hyperplane αi defined above. Hence
ζ maps the 12 points of K to the 12 hyperplanes of K∗. In order to prove
the remaining claims of the lemma, it suffices to prove that ζ maps each of
the 132 points of K-index 2 to one of the 132 hyperplanes intersecting K in
precisely 6 points.

Let q be a point of K-index 2 and suppose q ∈ 〈p1, p2〉 where p1 and p2

are two distinct points of K. Put β1 := pζ
1, β2 := pζ

2 and γ1 := qζ . Then γ1 is
one of the two hyperplanes through β1 ∩ β2 distinct from β1 and β2. Let γ2

denote the other hyperplane. Since β1 ∩K = β2 ∩K = ∅ and β1 ∪β2 ∪γ1 ∪γ2

consists of all points of Σ, we necessarily have that |γ1 ∩ K| = |γ2 ∩ K| = 6
by Lemma A.2.

Now, suppose Π is one of the 12 hyperplanes belonging to K∗ and put
p := Πζ . The projection of K \ {p} from the point p on the hyperplane Π
is a set K′ of 11 points of Π. The Mathieu group M11, which is isomorphic
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to the stabilizer of p in G, acts as a group of collineations of Π fixing K′.
The set K′ is a two-character set of Π, that is a set of points of Π having
two possible intersection sizes with the hyperplanes of Π. Indeed, Lemma
A.2 implies that every hyperplane of Π intersects K′ in either 2 or 5 points.
The two-character set K′ is isomorphic to the set described as example RT6
in Calderbank & Kantor [9, p. 112], which is up to isomorphism the unique
two-character set of that size with those intersection numbers in PG(4, 3).
The rows of the (5 × 11)-matrix with the 11 coordinate vectors as columns
generate the (11, 5) ternary Golay code with nonzero weights 6 and 9. The
set of 66 hyperplanes of Π that intersect K′ in precisely 5 points is a two-
character set X∗ of the dual Π∗ of Π with intersection sizes 30 and 21. This
two-character set is a so-called projective dual of K′ and is precisely example
RT6d of Calderbank & Kantor [9, p. 112]. The two-character sets RT6 and
RT6d of [9] were already described in Delsarte [18].

Lemma A.4. The set X of points of K-index 2 contained in Π is a two-
character set of Π which is isomorphic to the two-character set X∗ of Π∗

defined above.

Proof. If x is a point of Π, then xζ′ := 〈p, x〉ζ = pζ ∩ xζ is a hyperplane of
Π = pζ . The map ζ ′ defines a polarity of Π. Now, x is a point of K-index 2
if and only if the hyperplane xζ (which contains p) intersects K in precisely
6 points by Proposition A.3, i.e. if and only if xζ′ ∈ X∗.

With every nontrivial two-character set X of the projective space PG(k−
1, q), k ≥ 2, there is associated a strongly regular graph ΓX , see Calderbank
& Kantor [9, Theorem 3.2]. To define ΓX , embed PG(k−1, q) as a hyperplane
in PG(k, q). Then the vertices of ΓX are the points of PG(k, q) not contained
in PG(k−1, q), and two distinct vertices x1 and x2 of Γ are adjacent whenever
the unique line of PG(k, q) through them has a point in common with X.

So, we know that with the two-character set X∗ of Π∗ there is associated
a strongly regular graph ΓX∗ . By Calderbank & Kantor [9, Theorem 5.7],
the strongly regular graph ΓX∗ must be isomorphic to the Delsarte graph on
243 codewords as defined in Section 3.

By Theorem 3.17, we also know that with every 1-ovoid O of E1 there is
associated a strongly regular graph ΓO. We can now prove the following.

Theorem A.5. If O is a 1-ovoid of E1, then the strongly regular graph
ΓO is isomorphic to the strongly regular graph ΓX∗ associated with the two-
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character set X∗ of Π∗. As a consequence, ΓO is isomorphic to the Delsarte
graph.

Proof. By De Bruyn [13, Theorem 4.2], there exists a hyperplane α 6= Σ
in PG(6, 3) such that Π := α ∩ Σ ∈ K∗ and O = α \ Π. Let X be the
set of vertices of Π whose K-index is equal to 2. By Lemma A.4, X is a
two-character set of Π and ΓX

∼= ΓX∗ .
Now, the vertices of ΓO are the points of α \ Π and two vertices are

adjacent whenever they lie at distance 2 from each other, i.e. whenever the
unique line of PG(6, 3) through them contains a point of X. It follows that
ΓO

∼= ΓX . So, ΓO
∼= ΓX∗ as we needed to prove. We have seen in the

preceeding paragraph that ΓX∗ is isomorphic to the Delsarte graph.
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