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Abstract

The Stahel-Donoho estimator is defined as a weighted mean and covariance,
where the weight of each observation depends on a measure of its outlyingness.
In high dimensions, it can easily happen that an amount of outlying measure-
ments is present in such a way that the majority of the observations is contami-
nated in at least one of its components. In these situations, the Stahel-Donoho
estimator has difficulties in identifying the actual outlyingness of the contami-
nated observations. An adaptation of the Stahel-Donoho estimator is presented
where the data are huberized before the outlyingness is computed. It is shown
that the huberized outlyingness better reflects the actual outlyingness of each
observation towards the non-contaminated observations. Therefore, the result-
ing adapted Stahel-Donoho estimator can better withstand large amounts of
outliers. It is demonstrated that the Stahel-Donoho estimator based on huber-
ized outlyingness works especially well when the data are heavily contaminated.

Key words: robust multivariate estimators, outlier identification,
outlyingness, huberization.

1. Introduction

The Stahel-Donoho (SD) estimator, proposed independently in [21] and [8],
is a well-known robust estimator of multivariate location and scatter. It was
the first affine equivariant estimator with breakdown point (i.e., the maximum
fraction of outliers that the estimator can withstand) close to 50% for any
dimension. It has excellent robustness properties as shown in [18, 11, 23, 7],
which make the estimator useful for multivariate outlier detection (see [9, 4, 22]).

The SD estimator weighs the observations depending on a measure of their
“outlyingness”. This measure is based on the one-dimensional projection in

∗Corresponding author. Email: Stefan.VanAelst@UGent.be Phone: +32-9-2644908. Fax:
+32-9-2644995.

Preprint submitted to Computational Statistics & Data Analysis August 18, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55887391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


which the observation is most outlying. The underlying idea is that every mul-
tivariate outlier must be a univariate outlier in some projection. Hence, obser-
vations with large outlyingness receive a small weight. Recent applications of
the Stahel-Donoho outlyingness measure can be found in [3, 15, 14, 6].

To study the performance of robust estimators, contamination or mixture
models are used. Most multivariate contamination models assume that the ma-
jority of the observations comes from a nominal distribution such as a multivari-
ate normal distribution, while the remainder comes from another distribution
that generates outliers (see e.g. [12, 17]). Unfortunately, such models are not
realistic for many large multivariate data sets. In high dimensions, it can easily
happen that outlying measurements are present in such a way that the majority
of the observations is contaminated in at least one of the components. To handle
this case [2] proposed a new contamination model that can allow for instance
contamination that appears in each of the variables independently. In such sit-
uations, the SD estimator has difficulties in identifying the actual outlyingness
of the contaminated observations if the percentage of outlying observations ap-
proaches or exceeds its breakdown point. Indeed, the SD estimator considers all
one-dimensional projections of the data and selects the projection in which the
observation is most outlying. An observation that is contaminated in only one
of its components is visible in the projection along the component in which the
observation is contaminated. However, observations which are contaminated in
more than one component usually have an outlyingness that far exceeds the
componentwise outlyingnesses. This outlyingness is then achieved in a direc-
tion which is a linear combination of the various components. Now, if there is
a majority of outlying observations in the data, then every such direction will
produce a majority of projected outliers and this may prevent the detection of
large outlyingness in that direction due to masking.

To overcome the masking effect when measuring outlyingness in this setting,
we pull the outliers back to the bulk of the data, componentwise, before com-
puting the outlyingness of an observation. This is done by using a lower and an
upper bound for the various components of the observations. Extreme low and
high values are set equal to the lower respectively upper bound as proposed in
[13]. This componentwise shrinking of the extreme data is called huberization or
winsorization (see e.g. [1, 16]) and makes it possible to determine more reliably
the outlyingness of each observation by reducing the effect of other outliers.

In this paper we investigate to what extent the adapted SD estimator based
on huberized outlyingness can withstand large amounts of contamination. Sec-
tion 2 provides a review of the contamination model introduced in [2] with an
emphasis on the case of independent contamination in the components. In Sec-
tion 3 we discuss the standard calculation of outlyingness and the resulting SD
estimator. In Section 4 we present our proposal for adapting the outlyingness
by using huberization of the data. A simulation study is performed in Sec-
tion 5, which investigates to what extent our proposal succeeds in giving larger
outlyingness to contaminated observations, while Section 6 concludes.
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2. Contamination models for high dimensions

The standard contamination model assumes that a majority of the obser-
vations are regular (outlier-free) observations following some underlying model
distribution, while the remaining minority (outliers) can be anything. In high
dimensional data, outlying measurements can come from different sources for
various reasons. As a result, it is often unrealistic to assume that there exists a
majority of completely uncontaminated data, but likely that most observations
are contaminated in some of their measurements. Alternative contamination
models are needed to handle this case. Therefore, [2] proposed the following
flexible contamination model to study robustness properties at high dimensional
data. Let X,Y and Z be p-dimensional random vectors, where Y follows some
regular distribution F with mean µ and scatter matrix Σ and Z has an arbitrary
distribution that generates the outliers. Then, the observed random variable X
follows the model

X = (I−B)Y +BZ, (1)

where B = diag (B1, B2, ..., Bp) is a diagonal matrix and B1, B2, ..., Bp are
Bernoulli random variables with P (Bi = 1) = ϵi. As in [2] we consider the
case where Y , Z and B are independent.

Different contamination models can now be obtained as special cases of (1)
by making different assumptions about the joint distribution of B1, B2, ..., Bp.
For example, the standard contamination model corresponds to the assumption
P (B1 = B2 = · · · = Bp) = 1, that is full dependence. In this case an observation
is considered to be either completely contaminated or completely clean. Such
contaminated observations are called structural outliers. Note that the fraction
of contaminated observations in this model equals ϵ1 = · · · = ϵp = ϵ and this
fraction remains fixed under affine transformations.

Another interesting case at the other end of the spectrum is the (fully)
independent contamination model which corresponds to the assumption that
B1, B2, ..., Bp are independent. Hence, this model assumes that contamination
in each variable is independent from the other variables, which leads to com-
ponentwise outliers. If P (Bi = 1) = ϵ for all components (1 ≤ i ≤ p), then each
variable contains on average a fraction (1 − ϵ) of clean measurements, but the
probability that an observation is completely uncontaminated is only (1 − ϵ)p

under this model. Even for moderate fractions ϵ this probability quickly exceeds
50% if the dimension p increases, such that there is no majority of outlier-free
observations anymore. It is important to note that contrary to the fully de-
pendent case, the independent contamination model does not support affine
transformations anymore. Indeed, while each of the components contains on
average a fraction 1 − ϵ of outlier-free measurements, linear combinations of
these components may contain a much lower fraction of clean measurements.
This phenomenon is called outlier propagation. As a consequence, estimation
methods that are affine equivariant are not very robust (low breakdown point)
under the independent contamination model as shown in [2] for well-known es-
timators such as the Minimum Covariance Determinant (MCD) and Minimum
Volume Ellipsoid (MVE) estimators [20] and S-estimators [5]. It was empirically
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illustrated in [2] that also the SD lacks robustness in the independent conta-
mination model. Moreover, using a similar argument as for the coordinatewise
median in [2] it can easily be shown that the SD has the same low breakdown
point in this model as other affine equivariant methods. In the next sections
we provide more empirical evidence that the SD is heavily biased if the data
contains a substantial fraction of componentwise contamination. Hence, estima-
tion methods that aim to be robust under the independent contamination model
need to give up on affine equivariance and resort to coordinatewise procedures.

In the next section, we study the outlyingness measure and corresponding
SD estimator in the context of the independent contamination model. By us-
ing huberization we then reduce the effect of componentwise contamination on
the SD outlyingness. Note that in practice componentwise outliers and struc-
tural outliers can occur simultaneously as discussed in [2]. Therefore, we do
not completely restrict ourselves to coordinatewise procedures to avoid lack of
robustness against the possible presence of structural outliers in the data.

3. Stahel-Donoho estimator

Let X be an n × p data matrix that contains n observations x1, . . . , xn in
IRp. Let µ and σ be shift and scale equivariant univariate location and scale
statistics. Then, for any y ∈ IRp, the Stahel-Donoho outlyingness is defined as

r(y,X) = supa∈Sp

|y′a− µ(Xa)|
σ(Xa)

, (2)

with Sp = {a ∈ IRp : ||a|| = 1}. From now on, we will denote r(xi,X) by ri.
The Stahel-Donoho estimator of location and scatter (TSD, SSD) is defined

as

TSD =

∑n
i=1 wixi∑n
i=1 wi

,

and

SSD =

∑n
i=1 wi (xi − TSD)(xi − TSD)′∑n

i=1 wi
,

where wi = w(ri) and w : IR+ → IR+ is a weight function so that observa-
tions with large outlyingness get small weights (see [21, 8]).

Following [18], we use for w the Huber-type weight function, defined as

w(r) = I(r≤c) + (c/r)2I(r>c), (3)

for some threshold c. The choice of the threshold c is a trade-off between robust-
ness and efficiency. Small values of c quickly start to downweigh observations
with increasing outlyingness while larger values of c only downweigh observa-
tions with extreme outlyingness value. Several choices for the threshold c have
been proposed in the literature, see e.g. [17]. [19] argues that a small value of the
threshold c is needed to obtain robust estimates in high dimensions. Following

their proposals for c, we choose the threshold as c = min(
√
χ2
p(0.50), 4).
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To attain maximum breakdown point (see e.g. [18, 10]) the univariate lo-
cation statistic µ is taken to be the median (MED) and the scale statistic σ is
chosen to be the modified MAD, defined as

MAD∗(Xa) =
|Xa−MED(Xa)|⌈n+p−1

2 ⌉:n + |Xa−MED(Xa)|(⌊n+p−1
2 ⌋+1):n

2β
,

(4)
where β = Φ−1( 12 (

n+p−1
2n +1)), ⌈x⌉ and ⌊x⌋ indicate the ceiling and the floor of

x respectively and vi:n denotes the ith order statistic of the data vector v.
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Figure 1: Data set of size n = 50 from a two-dimensional standard normal distribution with
20% componentwise outliers independently in both components.

As an example, we generated a data set of size n = 50 from a bivariate
standard normal distribution and introduced componentwise outliers in both
components independently, by randomly replacing 20% of its values with values
generated from a normal distribution with mean 10

√
2 and standard deviation

0.1. The resulting data are shown in Figure 1. To ease interpretation later
on, we use squares to mark observations that are outlying in both components.
Furthermore, circles correspond to observations that are only outlying in the first
component and triangles are used for observations that are only contaminated
in the second component.

Since exact computation of the supremum in the outlyingness (2) is imprac-
tical (see [24]), usually a random search algorithm based on subsampling is used.
We use a Matlab implementation of the algorithm in [18]. The number of ran-
dom directions considered by the algorithm is a trade-off between computational
feasibility and quality of the obtained approximate solution, see [18] for an ex-
tensive discussion. For bivariate data, the computations are performed quickly,
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Figure 2: Plot of (a) the SD outlyingnesses and (b) the corresponding weights of the obser-
vations in Figure 1.

so we used 10000 random directions. This is most likely much more than needed,
but we want to obtain a very good approximation to the SD outlyingnesses.

The outlyingnesses and the corresponding weights of the observations are
shown in Figures 2(a) and 2(b) respectively. The majority of observations re-
ceive a low outlyingness ri and hence their weight wi is close to 1. The large
outlyingnesses correspond to the outliers in the data set and lead to weights wi

that are approximately zero. The intermediate weights shown in Figure 2(b),
stem from the most remote regular observations.

For more insight in the computation of the outlyingnesses ri, we look at the

directional outlyingnesses
|x′

ia−µ(Xa)|
σ(Xa) (i = 1, . . . , n) for some specific directions

a ∈ Sp. In Figure 3(a) we depict the outlyingness for a = (1, 0)′. Clearly, the
largest values correspond to observations indicated with a square or a circle.
Indeed, only these observations have a contaminated first component and hence
they are more aberrant than the other observations in this direction. Figure
3(b) shows the results for direction a = (1, 1)′. The squared observations now
have the largest outlyingness as both of their components are contaminated. The
circles and triangles have a somewhat smaller outlyingness here because only one
of their components is contaminated. Finally, the majority of the observations
have small outlyingness, because both components were non-contaminated.

It can be seen from Figures 3(a) and 3(b) that the outlyingnesses of the
squared points in direction (1,1) are lower than the outlyingnesses in direction
(1,0), even though their distance to the uncontaminated points is clearly max-
imized in a projection close to (1,1) (as can be seen from Figure 1). The large
number of other outliers, mainly the circles and triangles, have affected the pro-
jection in direction (1,1) and somewhat masked the outlyingness of the squares.
In this example the impact of this masking effect is small, since all contaminated
observations obtained sufficiently high outlyingnesses in other directions than
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Figure 3: Simulated data in Figure 1: plot of the directional outlyingnesses for (a) direction
(1,0) and (b) direction (1,1).

(1,1), and all non-contaminated points have a relatively small SD outlyingness.
Our next example illustrates a more severe case of masking. Moreover,

this example also illustrates that a swamping effect can occur. That is, some
regular observations receive a large outlyingness and therefore are incorrectly
downweighted. Figure 4 again shows 50 bivariate standard normal observations
(using the same symbols as before), but now the amount of componentwise
outliers in both components is increased to 40%. The corresponding SD out-
lyingnesses and weights of the observations are shown in Figures 5(a) and 5(b)
respectively. Clearly, the SD does not succeed in identifying the outliers. In-
deed, while the outliers do receive a fairly low weight, the same holds for the
non-contaminated points and hence the estimator of the mean and covariance
will be severely affected by the outliers.

Figures 6(a) and 6(b) show the directional outlyingnesses in directions (1,0)
and (1,1) respectively. In direction (1,0), the squared and circled observations
have the largest outlyingness, as expected. In direction (1,1) however, the un-
contaminated observations are among the points with highest outlyingness. In
fact, the outlyingness of these observations is such that they will be considered
as outlying by the SD, an effect known as swamping. This swamping effect is
caused by the large amount of outliers. Indeed, from Figure 4 it can be seen
that the observations indicated with a triangle or circle constitute the bulk of
the projected data in direction (1,1) on which the median and MAD will be
based. As a result, the SD is severely affected by the outliers in the data.

4. Stahel-Donoho estimator with huberized outlyingness

To avoid the masking and swamping effects explained in the previous sec-
tion, we propose an adaptation of the SD outlyingness by first huberizing the
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Figure 4: Data set of size n = 50 from a two-dimensional standard normal distribution with
40% componentwise outliers independently in both components.
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Figure 5: Plot of (a) the SD outlyingnesses and (b) the corresponding weights of the obser-
vations in Figure 4.

data before the SD outlyingness is computed. These adapted outlyingness mea-
sures should yield a better approximation of what could be perceived as the
outlyingness of an observation. The calculation of the huberized outlyingness
of an observation xi can be summarized as follows:

(i) Huberize the data to obtain the modified data matrix XH (i.e. component-
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Figure 6: Simulated data in Figure 4: plot of the directional outlyingnesses for (a) direction
(1,0) and (b) direction (1,1).

wise winsorize the data)

(ii) For each direction a that is considered, compute the corresponding projec-
tion of XH and the accompanying median and (modified) MAD.

(iii) Compute the outlyingness of each original observation xi with respect to
XH (that is, using the medians and MADs obtained in step (ii).

The huberized observations x1,H , . . . , xn,H of the data matrix XH in step
(i) are defined as

xij,H =

 MED(Xj)− cH MAD(Xj) if cij < −cH
xij if − cH ≤ cij ≤ cH ,
MED(Xj) + cH MAD(Xj) if cij > cH

where xij,H denotes the j-th component of xi,H , cij =
xij−MED(Xj)

MAD(Xj)
, MED(Xj)

is the median of Xj = {x1j , . . . , xnj} and MAD(Xj) = MED(|Xj −MED(Xj)|).
The cutoff parameter cH determines the amount of huberization. This cutoff is
again a trade-off between robustness and efficiency. We choose cH = Φ−1(0.975),
i.e. the 97,5% quantile of a standard normal distribution, which is a standard
choice for univariate outlier identification. While small changes in the value of
cH do not have much effect on the resulting outlyingnesses and corresponding
weights in our experience, large changes in cH (e.g. 1 instead of almost 2) have
an impact on the properties of the resulting estimator.

For any y ∈ IRp, the huberized Stahel-Donoho outlyingness in step (iii) is
now defined as

rH(y,X) = supa∈Sp

|y′a− µ(XHa)|
σ(XHa)

. (5)

For each direction a, µ(XHa) is the median of the projected data obtained in
step (ii) and σ(XHa) is the corresponding modified MAD of the projected data
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as defined in (4). Note that in practice Sp is a finite set of selected directions.
By huberizing the data in step (i), we reduce the effect of the outliers on the

location and scale estimates in the projections when searching for the maximal
outlyingness of an observation. Consequently, µ(XHa) and σ(XHa) better re-
flect the location and scale of the uncontaminated projected data. Note that
steps (i) and (ii) need to be performed only once. An alternative would be
to huberize all observations except xi in step (i). However, this would require
steps (i) and (ii) to be repeated for each observation xi and this may become a
computational burden. Both alternatives yield very similar results.

After computing the huberized Stahel-Donoho outlyingnesses rH(xi,X), de-
noted by ri,H in the rest of the paper, the huberized Stahel-Donoho (HSD)
estimator of location and scatter (THSD,SHSD) is defined as

THSD =

∑n
i=1 wi,Hxi∑n
i=1 wi,H

,

and

SHSD =

∑n
i=1 wi,H (xi − THSD)(xi − THSD)′∑n

i=1 wi,H
,

where wi,H = w(ri,H) and w is the Huber-type weight function in (3) as before.
To illustrate the effect of huberization, we focus again on the examples from

the previous section. In Figure 7, the data set from Figure 1 is shown after
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Figure 7: Plot of the huberized data corresponding to the data in Figure 1.

huberizing the observations. Clearly, all outliers (squares, circles and triangles)
have been pulled back, componentwise, to the bulk of the data. This can be very
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helpful when computing a measure of outlyingness. Indeed, the huberized SD
outlyingness replaces the original data setX by the huberized data setXH when
computing the univariate measures of location and scale in each of the directions
considered. By doing so, the influence of the outliers is reduced. Consequently,
the huberized outlyingness much better reflect how outlying a given observation
is with respect to the noncontaminated data. This is confirmed by Figures 8(a)
and 8(b) where the HSD outlyingnesses and weights are shown respectively.
Clearly, the outlying observations correspond to large HSD outlyingnesses and
hence small weights. This indicates that HSD succeeds in detecting the outliers.
As shown in Figures 2(a) and 2(b), SD also succeeded in identifying the outliers
in the data, but Figures 3(a) and 3(b) indicated that some SD outlyingnesses
were not as large as expected due to masking in directions close to (1,1).
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Figure 8: Based on the simulated data in Figure 1: Plot of (a) the HSD outlyingnesses and
(b) the corresponding HSD weights of the observations.

Figures 9(a) and 9(b) show the directional outlyingnesses
|x′

ia−µ(XHa)|
σ(XHa) in

direction a = (1, 0)′ and a = (1, 1)′ respectively. First note that Figure 9(a) is
very similar to Figure 3(a). That is, the outlyingnesses in direction (1,0) are
largely unaffected by the huberization. On the other hand, in Figure 9(b) we
see that the squared observations, which are outlying in both components, now
have very high HSD outlyingness in direction (1,1), which is in fact higher than
in direction (1,0). As HSD makes use of the huberized data for the computation
of µ and σ in each direction, its directional outlyingnesses were less influenced
by outliers. This result is what would be expected and hence, we can say that
the squared observations now receive the outlyingness they “deserve”.

Now, let us apply the HSD to the highly contaminated data set in Figure 4.
By huberizing the data, the outliers have been pulled back towards the center of
the data as shown in Figure 10. The HSD outlyingnesses and weights are shown
in Figures 11(a) and 11(b). As opposed to the SD estimator, HSD succeeds in
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Figure 9: Based on the simulated data in Figure 1: plot of the directional HSD outlyingnesses
for (a) direction (1,0) and (b) direction (1,1).
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Figure 10: Plot of the huberized data corresponding to the data in Figure 4.

detecting the outliers in the data set. Every contaminated observation has a
large HSD outlyingness ri,H and a small weight wi,H . Furthermore, the non-
contaminated points did not obtain a high HSD outlyingness, which means that
the swamping effect has disappeared.

Figure 12(a) shows that the HSD outlyingnesses in direction (1,0) are nat-
urally very similar to those in Figure 6(a). From Figures 12(b) we see that in
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Figure 11: Based on the simulated data in Figure 4: Plot of (a) the HSD outlyingnesses and
(b) the corresponding HSD weights of the observations.
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Figure 12: Based on the simulated data in Figure 4: plot of the directional HSD outlyingnesses
for (a) direction (1,0) and (b) direction (1,1).

direction (1,1) the squared observations have the largest HSD outlyingness, in
accordance to the fact that they are outlying in both components. Note that
there is only a slight difference between the HSD outlyingnesses of the remaining
outliers and the uncontaminated points (as opposed to Figure 9(b)). This is due
to the large amount of outliers in the data (66% of the observations are conta-
minated). Hence, in direction a = (1, 1)′ the majority of points is contaminated,
which leads to the median of the projected points being shifted upwards. This
results in a lower HSD outlyingness for the circled and triangled observations
in this direction. However, this is not a problem because these points achieve
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their actual outlyingness in other projections.

5. Simulation study

In this section we investigate through simulation the effect of our adaptation
of the outlyingness measure on the precision and the robustness of the corre-
sponding HSD estimator. Here, precision is meant to represent the variance of
the estimators, while by robustness we mainly refer to the bias. In particular,
we compare the mean squared errors (MSEs) of the SD and HSD estimators.
The componentwise huberization that is used to calculate the adjusted outly-
ingness does not take correlation among variables into account. Therefore, we
also investigate how effective the HSD is for correlated data.

We generated correlated normal data as in [19]. That is, samples X =
{x1, . . . , xn} were generated from a p-variate normal distribution with mean
zero and covariance matrix R2 where R is a matrix with elements Rjj =
1 (j = 1, . . . , p) and Rkl = ρ (1 ≤ k ̸= l ≤ p). Following [19] we consid-
ered values of ρ such that the multiple correlation coefficient R2 between any
component of the p-variate distribution and all the other components takes the
values 0, 0.5, 0.7, 0.9 or 0.999. In this paper, we report the results for data with
R2 = 0 and R2 = 0.9. These two cases are quite representative and show well
the effect of correlation on the performance of the estimators. For the dimen-
sion p we considered the values 5, 7 and 10, and the sample size was n = 50 (for
p = 5) and n = 100 (for p = 7, 10). Subsequently, in the first d components
(d ≤ p), we independently introduced a fraction ϵ of univariate outliers. We
consider the cases d = 2 (p = 5), d = 5 (p = 7, 10), and d = 7 (p = 7). For each
contaminated component, the outlying values were generated from a univariate
normal distribution with mean k/

√
d and standard deviation 0.1. For several

combinations of ϵ and d in the simulations, the fraction of outlying observations
can exceed the breakdown point (50% ) of the SD, so we expect that the SD has
a large MSE in these cases. The main purpose of these simulation settings is
to see to what extent the HSD can withstand these amounts of contamination
and thus avoids the adverse effect on the SD.

We considered outlying distances k = 6, 24, 64 and 160. For each situation,
N = 500 samples were generated. Then, for each sample X (l); l = 1, . . . , N and

for each observation x
(l)
i in X (l), we computed the SD outlyingness r

(l)
i and the

HSD outlyingness r
(l)
i,H , and subsequently the corresponding location and scatter

estimates (T
(l)
SD,S

(l)
SD) and (T

(l)
HSD,S

(l)
HSD). The MSE for the location estimators

of both methods was calculated as

MSE(T.) = ave
j=1,...,p

(
ave

l=1,...,N
(T (l)

. )2j

)
.

For both methods we also calculated the MSE for the diagonal elements of the
covariance matrix R2 as

MSE(Sdiag
. ) = ave

j=1,...,p

(
ave

l=1,...,N
[(S(l)

. )jj − (R2)jj ]
2

)
,
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and similarly for the MSE for the off-diagonal elements. The number of random
directions in the SD/HSD algorithms was set equal to 200p which corresponds
with the choice of [19] for data sets in higher dimensions.

ρ = 0 ρ = 0 ρ = 0.9 ρ = 0.9
ϵ Comp k = 6 k = 64 k = 6 k = 64

center 0.20 All 0.85 1.09 1.04 1.07
center 0.20 Cont 0.82 1.29 1.06 1.10
center 0.35 All 0.90 0.02 1.07 0.03
center 0.35 Cont 0.90 0.02 1.11 0.02
diag 0.20 All 0.66 0.70 1.16 1.21
diag 0.20 Cont 0.63 0.68 1.14 1.14
diag 0.35 All 0.91 0.02 1.22 0.01
diag 0.35 Cont 0.91 0.02 1.22 0.01

offdiag 0.20 All 0.90 0.61 1.09 1.19
offdiag 0.20 1 cont 0.92 1.00 1.08 1.18
offdiag 0.20 2 cont 0.81 0.38 1.04 1.15
offdiag 0.35 all 0.95 0.01 1.14 0.02
offdiag 0.35 1 cont 0.99 0.07 1.13 0.30
offdiag 0.35 2 cont 0.92 0.01 1.17 0.01

Table 1: MSE ratios of HSD vs SD for data in 5 dimensions with ϵ = 20% or ϵ = 35% of
independent contamination in the first two components for k = 6 or k = 64. Both uncorrelated
data and correlated data (R2 = 0.9) are considered. The ratio of the overall MSE averages
(all) are shown as well as the ratio of the MSE averages of the contaminated components
(Cont). For the off-diagonal elements we further differentiate between elements with only one
contaminated component (1 cont) and elements with both components contaminated (2 cont).

We first consider the case p = 5 and d = 2. The fraction of independent
contamination in each of the first two components was taken equal to ϵ = 20%
and ϵ = 35%. In Table 1 we show the MSE ratio MSE(THSD)/MSE(TSD) for
the location and similar ratios for the diagonal and off-diagonal elements of the
scatter matrix. Table 1 contains the overall MSE ratio for the various settings
when all components are taken into account, as well as the MSE ratio when
only the contaminated components are taken into account when calculating
the MSE. The latter provides information about the difference in bias between
the two estimators due to the contamination in these components. For the
off-diagonal elements we further differentiate between elements related to two
contaminated components (2 cont) and elements related to a contaminated and
an uncontaminated component (1 cont).

From the results in Table 1 we can see that for ϵ = 20% the HSD is generally
somewhat worse than the SD in case of (highly) correlated data. For uncorre-
lated data the HSD often yields a small improvement over the MSE of the SD,
especially for small k. However, in general the difference between the estimators
is relatively small here as can be seen from the top panel of Figure 13. In this
figure we show boxplots of the absolute errors of the estimates for the com-
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Figure 13: Boxplots of absolute errors of the estimates of the uncontaminated and contami-
nated components of the center. Data were generated in 5 dimensions with a fraction ϵ of
independent contamination in the first two components for different values of k. The top
panels correspond to ϵ = 20% and the bottom panels correspond to ϵ = 35%. The left plots
shows the results for uncorrelated data and the right plots contain the results for correlated
data (R2 = 0.9).

ponents of the center. Separate boxplots are shown for the contaminated and
uncontaminated components. The figures for the elements of the scatter matrix
are similar and therefore not shown. The top panel of Figure 13 corresponds
to ϵ = 20%. From these plots we see that the absolute errors for both SD and
HSD are small. Further examination of the results has shown that both SD and
HSD succeed well in identifying the contaminated observations, by assigning a
large outlyingness measure to them.

The results in Table 1 and the bottom panel of Figure 13 reveal the effect on
the estimators when the fraction of contamination is increased to 35%. When
the contamination is close by (k = 6) the effect on the SD remains small as
can be seen from Figure 13. In this case the huberization only yields a small
improvement for uncorrelated data, but has a small adverse effect for highly
correlated data. When the contamination lies further away from the bulk of the
data, its effect on the SD becomes much larger. The reason is that due to the
large amount of componentwise contamination in some samples, the SD suffers
from the swamping effect illustrated in Figure 5, i.e. regular observations receive
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an outlyingness ri that is far too large, whereas the SD outlyingness of the out-
liers is underestimated. This effect does not occur in all samples, but it strongly
affects the MSE of the SD. In these situations, the HSD succeeds in reducing the
effect of the componentwise contamination. Due to the huberization, the HSD
outlyingnesses do not suffer from the swamping problem and hence the outliers
are recognized and receive a large ri,H whereas regular observations receive a
small ri,H . Therefore, the bias on the contaminated components is much smaller
for the HSD as shown in Figure 13 which results in a much lower MSE as can
be seen in Table 1. These results indicate that the HSD can potentially cope
with larger amounts of (componentwise) contamination than the original SD.

To illustrate this, let us now increase the dimension to p = 7 and intro-
duce 30% of independent contamination in the first five components. This is
a severe case with data that contain only a minority of observations that are
contamination-free. The results in Table 2 show that HSD considerably im-
proves the MSE of the SD estimates as soon as the contamination is far enough
from the majority of the data, both for uncorrelated and correlated data. The
bias in the contaminated components contributes most to the MSE of the SD
and the results of Table 2 show that HSD yields a large bias reduction at the
contaminated components. Indeed, as explained in the previous sections, the SD
outlyingnesses may be severely influenced by the outliers in this case. The HSD
on the other hand, can better cope with these outliers and attributes large out-
lyingnesses to them. A more detailed investigation of all the simulation results
revealed that with increasing outlier distance the MSE of the HSD decreases
most quickly for uncorrelated data. This is illustrated further by the next case.

ρ = 0 ρ = 0 ρ = 0.9 ρ = 0.9
Comp k = 6 k = 64 k = 6 k = 64

center All 0.99 0.10 0.99 0.15
center Cont 0.99 0.10 0.99 0.14
diag All 0.98 0.11 1.13 0.11
diag Cont 0.97 0.11 1.09 0.11

offdiag All 1.00 0.10 1.00 0.21
offdiag 1 cont 0.99 0.24 1.03 0.76
offdiag 2 cont 1.01 0.10 0.97 0.20

Table 2: MSE ratios of HSD vs SD for data in 7 dimensions with ϵ = 30% of independent
contamination in the first five components for k = 6 or k = 64. Both uncorrelated data and
correlated data (R2 = 0.9) are considered. The ratio of the overall MSE averages (all) are
shown as well as the ratio of the MSE averages of the contaminated components (Cont). For
the off-diagonal elements we further differentiate between elements with only one contaminated
component (1 cont) and elements with both components contaminated (2 cont).

In Table 3, the dimension was increased further to p = 10 with ϵ = 10% and
ϵ = 20% of independent contamination in the first five components. For ϵ = 10%
the results are similar to those for the case p = 5 with 20% of independent
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ρ = 0 ρ = 0 ρ = 0.9 ρ = 0.9
ϵ Comp k = 6 k = 64 k = 6 k = 64

center 0.10 All 0.90 1.03 0.89 0.99
center 0.10 Cont 0.87 1.03 0.89 1.00
center 0.20 All 0.93 0.53 0.92 1.05
center 0.20 Cont 0.92 0.47 0.93 1.07
diag 0.10 All 0.76 0.58 1.17 0.85
diag 0.10 Cont 0.67 0.58 1.09 0.59
diag 0.20 All 0.87 0.32 1.15 0.86
diag 0.20 Cont 0.85 0.32 1.05 0.85

offdiag 0.10 All 0.94 0.65 1.12 1.26
offdiag 0.10 1 cont 0.95 0.88 1.12 1.26
offdiag 0.10 2 cont 0.91 0.48 1.05 1.22
offdiag 0.20 all 0.97 0.16 1.06 1.00
offdiag 0.20 1 cont 0.97 0.69 1.07 1.11
offdiag 0.20 2 cont 0.98 0.15 1.00 0.76

Table 3: MSE ratios of HSD vs SD for data in 10 dimensions with ϵ = 10% or ϵ = 20% of
independent contamination in the first five components for k = 6 or k = 64. Both uncorrelated
data and correlated data (R2 = 0.9) are considered. The ratio of the overall MSE averages
(all) are shown as well as the ratio of the MSE averages of the contaminated components
(Cont). For the off-diagonal elements we further differentiate between elements with only one
contaminated component (1 cont) and elements with both components contaminated (2 cont).

contamination in the first two components. In this setting there is a majority
of contamination-free observations. Therefore, the SD has a small MSE and the
HSD yields similar results. For uncorrelated data, the HSD often gives small
improvements over the SD, but for highly correlated data the effect reverses.

For ϵ = 20% there is no majority of contamination free observations anymore.
The MSE of the SD increases due to bias problems. As can be seen from
Table 3, for uncorrelated data the HSD yields an improvement already for close
by outliers with increasing effect if the distance of the outliers increases. For
highly correlated data on the other hand, the outliers need to be much further
away before the HSD can improve on the SD. Table 3 shows that for k = 64 the
HSD still cannot improve the MSE of the SD.

We repeated the simulation study for large data sets with n = 5000 (for
p = 5) and n = 10000 (for p = 7, 10). The results were similar and are omitted
here.

6. Conclusion

We presented a huberized version of the SD outlyingness where the outly-
ingness of the observations is calculated w.r.t. the huberized data set in which
outliers are componentwise pulled back to the bulk of the data. The huber-
ization clearly improves the outlyingness measure in settings with independent

18



componentwise contamination. Contamination models that include component-
wise outliers are realistic for many high dimensional settings. Such models are
not affine equivariant anymore and the overall fraction of contamination can
easily exceed 50% in higher dimensions. It was shown that in such cases the
HSD suffers less from masking and swamping effects. Hence, HSD can better
withstand the outliers as shown in a simulation study. The improvement of
HSD over SD is largest for data that are uncorrelated or weakly correlated. For
highly correlated data, the contamination needs to lie further from the bulk of
the measurements before the HSD can improve on the SD. In some cases the
increased variability of HSD makes its MSE worse than for SD, even though
the HSD has a smaller bias due to the outliers. A further improvement of the
procedure would be desirable to avoid that its performance is worse than that of
the SD in such cases. Adapted weight functions for the huberized outlyingnesses
may be of interest for this matter, but this requires further research.

As an alternative to our huberization approach, one could consider applying
a univariate outlier detection rule to each of the variables separately to remove
componentwise outliers from the data. A multivariate outlier identification rule
can then be applied to the cleaned data to detect structural outliers. A drawback
of such an approach is that the removal of the componentwise outliers in the
first step creates several empty cells in the data matrix. For the multivariate
outlier detection robust estimates are needed, but multivariate robust estimation
procedures in general cannot easily handle data with empty cells. Restricting
to the observations without empty cells is often not possible either because
the number of complete observations may have become to low (lower than the
dimension). Huberization on the other hand does not create empty cells, but
modifies the outlying values to make them more regular which allows a more
robust multivariate estimation procedure in the second step.
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