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Abstract

As cloud computing is gaining popularity, an important question is how
to optimally deploy software applications on the offered infrastructure in
the cloud. Especially in the context of mobile computing where software
components could be offloaded from the mobile device to the cloud, it is
important to optimize the deployment, by minimizing the network usage.
Therefore we have designed and evaluated graph partitioning algorithms that
allocate software components to machines in the cloud while minimizing the
required bandwidth. Contrary to the traditional graph partitioning problem
our algorithms are not restricted to balanced partitions and take into account
infrastructure heterogenity. To benchmark our algorithms we evaluated their
performance and found they produce 10 to 40% smaller graph cut sizes than
METIS 4.0 for typical mobile computing scenarios.
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1. Introduction

Nowadays, the emergence of cloud computing is leading to a new paradigm
of utility computing [1], where computing power is offered on an on-demand
basis. Users are able to access applications, storage and processing over the
Internet, via services offered by cloud providers on a pay-as-you-use scheme.
The advantages for the end users are reduced cost, higher scalability and
improved performance in comparison to maintaining own private computer
systems, dimensioned for peak load conditions. Moreover the elasticity of
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the cloud reduces the risks of overprovisioning (underutilization) or under-
provisioning (saturation) [2].

The usage of the cloud is not only beneficial for web based applications, but
can also be used for other applications composed of many service compo-
nents following the service-oriented programming paradigm. Some of these
service components may have high needs regarding CPU power or memory
consumption, and should therefore be executed on dedicated server machines
in the cloud rather than on a regular desktop PC or mobile terminal, for ex-
ample recognition components in an object recognition or speech to text
application.

The adoption of the cloud paradigm poses the problem where to deploy
software components, given the many options in terms of available hardware
nodes in even moderate scale data centers. This deployment optimisation is
important to both the cloud user and the cloud provider in order to reduce
costs. All components need to be deployed on a machine with sufficient
CPU power while the communication overhead between different machines is
preferably minimized as this introduces extra latency and network load. This
problem can be modelled as a graph partitioning problem where a weighted
graph of software components has to be partitioned in a number of parts
representing the available machines. Moreover the optimal deployment can
change over time, and thus in order to realise an optimal deployment a fast
algorithm is desired.

An important scenario in this respect is cloud overspilling. In this scenario, a
company offloads work from its own private infrastructure to a public cloud
infrastructure on peak moments as shown in Figure 1. This enables the
company to dimension its infrastructure for the average workload instead of
the peak workload, reducing the underutilization and the cost of the pri-
vate infrastructure. This situation is typical in digital document processing
where one faces strict month-end or year-end deadlines, and thousands of
batches of documents are to be processed. Typically, document processing
systems support workflows consisting of a few tens of components (including
content ingest, reformatting, layouting, merging, versioning, logging, output
generation and printing components). As many of these components come in
different versions, and potentially need to be instantiated for each customer
separately, the number of components in such a scenario quickly amounts to
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Figure 1: Work is offloaded from private infrastructure to a public cloud on peak moments,
reducing underutilization (and the cost) of the private infrastructure.

a few hundreds.

A second use case is situated in the area of integrated simulation tools for en-
gineering purposes [3]. These integrated tools typically involve multi-physics
simulation (e.g. structural analysis, acoustic simulation and engine dynam-
ics simulation in the case of designing a new automobile engine), and the
number of simulation tools involved can easily amount to 10-20 for small
engineering projects to a few 100 individually deployable components for a
realistic engineering project. In such engineering endeavours, often param-
eter sweeps are executed to optimize the design (or to assess the sensitivity
of the resulting design performance w.r.t. these parameters), necessitating
multiple instances of these simulation components running concurrently, in
order to arrive at realistic design times. Again, we end up with component
graph containing a few 100 to 1000 components.

This overspilling problem also arises in the context of mobile computing
where the cloud can be used to enhance the capabilities of a mobile device.
Due to the restricted CPU power of mobile devices, the idea is to offload parts
of the application at runtime to a cloud infrastructure [4]. The question then
is which parts to offload and to deploy on which machines in the cloud — and
how many — in order to spread the load while keeping the needed bandwidth
low. In this case, the complexity of the partitioning problem depends on the
granularity of the offloading, as offloading can be done on component [4],
Java class [5] or method [6] level, resulting in graphs of tens, hundreds or
thousands components.



Figure 2: A cloudlet consistsing of four devices connected by a wireless network sharing
their resources. Application components are distributed among all devices in the cloudlet,
in order to enhance the user experience of all users.

A special case of deployment optimisation occurs when multiple mobile de-
vices connected via a wireless network share their resources in order to en-
hance the user experience of all users, in a so called “cloudlet” [7] as shown in
Figure 2. This is the case when no internet uplink is available for offloading
to the cloud, or when cloud offloading is not beneficial due to a high WAN
latency. Because the bandwidth is a scarce resource and shared between
all devices in the wireless LAN, a global optimization is needed taking into
account all application components of all devices.

As an use case, we mention a mobile augmented reality application. When
casting such an application into a component framework, the number of
independently deployable components amounts 5 to 10 [7], with different
components for tracking camera movements, building a 3D map of the envi-
ronment, recognizing objects, detecting collisions between objects, rendering
a 3D overlay, etc. Other applications, such as 3D games, are reported to
consist of 10 to 20 components [8]. Assuming a few tens of users connected
to the same cloudlet and hence sharing computing and network resources,
the number of components easily exceeds 100. As these users are connected
through heterogeneous devices (a mix of low-end and high-end devices), an
optimal deployment guaranteeing a minimal quality of experience for all users
should be aimed for.

In this paper we present algorithms to partition a software application, com-
posed of a number of components, on a number of interconnected machines



in the cloud with different capacities while minimizing the communication
cost between the components. In section 2 related work regarding graph
partitioning and task allocation on the grid is discussed. Section 3 more for-
mally describes our problem and in section 4 algorithms are proposed that
solve the problem. In section 5 the different algorithms are evaluated and
compared regarding solution quality and execution time, and the influence of
different parameters is discussed. In view of the use cases mentioned in this
introduction, we focus on graphs containing 100 to 1000 components for this
evaluation. We also compare our solutions to METIS 4.0 for partitioning
graphs in k£ balanced partitions and show the applicability of our algorithms
in the mobile offloading scenario. Finally section 6 concludes this paper.

2. Related work

2.1. Graph partitioning

Graph partitioning is a fundamental problem in many domains of computer
science such as VLSI design [9], parallel processing [10] and load balancing
[11]. The graph partitioning problem tackles the problem of dividing a graph
in £ equal sets while minimizing the edges between the sets. When k£ = 2
this is also referred to as the min-cut bipartitioning problem. Finding a good
solution for this problem is known to be NP-Hard [12]. In the following we
give a brief overview of the state-of-the-art and recent advances in graph
partitioning. For a more detailed survey of graph partitioning techniques we
refer to [13] and [14].

A first class of algorithms are the so called move-based approaches, which try
to iteratively improve the partition by vertex moves or swaps between the
parts such as the Kernighan-Lin (KL) algorithm [15]. By choosing moves that
introduce a cost reduction of the graph cut this algorithm converges to a local
optimum. Fiduccia and Mattheyses introduced a number of optimizations to
the KL algorithm which led to a linear time algorithm for graph partitioning
[16]. These move-based algorithms can be combined with stochastic methods
such as simulated annealing [17], particle swarm optimization [18] or ant
colony optimization [19] in order to escape from local optima. The biggest
disadvantage of iterative improvement methods is that their performance
deteriorates as the graphs get larger.



In order to partition large graphs the multilevel approach became widely
adopted [20], [21], [17], [18], [19], [22]. The main idea is to iteratively coarsen
the initial graph by merging vertices according to a matching untill a small
graph with a similar structure remains. This graph can then be partitioned
with a spectral method [23], [20] or a greedy graph growing algorithm [24].
Next the graph is again iteratively uncoarsened and a local improvement
heuristic such as the KL algorithm is applied at each level. The mutlilevel
scheme is also used in state-of-the-art graph partitioning libraries such as
METIS [24], SCOTCH [25] and JOSTLE [26].

Recent work in graph partitioning explores methods based on diffusion [11]
or maximum flow [27]. Also the combination of known techniques can result
in new heuristics. Chardaire et al. use a PROBE (Population Reinforced
Optimization Based Exploration) heuristic, combining greedy algorithms,
genetic algorithms and KL refinement [28]. Loureiro et al. propose a greedy
graph growing heuristic combined with a local refinement algorithm [29].
Martin uses a genetic algorithm improved with spectral methods and KL
refinement [30].

All these methods partition the graph in a predefined number of parts of equal
sizes. In the context of cloud computing, not all machines have equal capacity
and also the number of machines that has to be used is not predefined, thus
these algorithms can not be readily used. Therefore, our algorithms take a
number of possible machines with different capacities as input with the only
constraints that no machine can exceed its maximum capacity and every
component has to be deployed on exactly one machine. However, we can
still use the ideas from the original graph partitioning problem to calculate
a good deployment.

2.2. Task allocation on the grid

In the context of grid computing the graph partitioning problem is used
for the allocation of parallel tasks on heterogenous infrastructure. Many
proposed algorithms such as MiniMax [31], VHEM [32], QM [33] PaGrid
[34], and MinEX [35] use the multi level paradigm in combination with a
refinement algorithm, while others like PART [36] use simulated annealing.



These algorithms all focus on parallel applications based on mesh models,
such as fluid dynamics, where a big task is split up in smaller parallel tasks
that are each executed on one of the processors in the grid. The goal is then
to execute all these tasks as fast as possible, thus minimizing the execution
time of the slowest node. In our problem the execution time metric makes
less sense, since we focuse on applications on the cloud, where components
generate load as long as the end user runs the application. Also the structure
of the task graph for the grid is based on the input mesh, while in our case
the graph of cloud applicatons is based on the software components and their
interactions, which is structured differently and of a more modest size.

3. Problem statement

Let G = (V, E) be an undirected graph where V' = {v;,vq,...,ux} is a set
of N vertices and F is a set of edges connecting the vertices. The vertices
represent units of deployment in a distributed software system and the edges
represent communication overhead between those units. Each vertex wv; is
assigned a cost w; that indicates the amount of resources (i.e. CPU power)
this component needs. C' = (¢;;) is the adjacency matrix of G, i.e. if there
exists an edge between v; and v; then ¢;; equals the weight of this edge,
otherwise ¢;; = 0. The edge weights represent the cost of communication
(i.e. bandwidth) between different software components.

The infrastructure is also modelled as an undirected graph S = (K, L), where
K is a set of available machines and L the links between the different ma-
chines. Each machine has a maximum capacity of M,, and each link is
assigned a cost to use this link. From this graph a matrix B = (b,,,) can
be deduced where element b,,, represents the cost to exchange data between
machine m and machine n.

The goal now is to assign each vertex v; to one of the machines so that the
total data exchanged between the machines weighted by B is minimized.
More formally, let the decision variables X;,, represent the graph cut. The
value of X, is equal to 1 if component i is deployed on machine m, and 0
otherwise. We want to minimize the sum of the edge weights of the edges
between nodes deployed on different machines, thus we introduce variable h;;



which is equal to 1 if components 7 and j are deployed on different machines,
0 otherwise. Then the objective function to minimize becomes the weight of
the graph cut (GC):

GC = hij x cij X bpayp() (1)

i?j

With the function P(j) returning the machine where vertex j is deployed on.
Variables h;; can be expressed in terms of X, as follows:

hm:]-_Zsz Xij (2)

Two more constraints are needed to fully describe our problem.

Vh > wi X Xip < My, (3)

Vii ) Xim=1 (4)

Equation 3 states that the total amount of resources used by nodes on a
machine cannot exceed the maximum capacity of that machine. Equation 4
makes sure that every node is deployed on exactly one machine.

4. Algorithms description

4.1. Integer Linear Programming (ILP)

The problem defined in Section 3 can be seen as an Integer Linear Program-
ming (ILP) problem, thus an ILP solver (IBM ILOG CPLEX [37]) can be
used to determine the optimal solution for this problem. The amount of time
and resources needed to solve this problem grows exponentially with the size
of the graph, so heuristics are needed to find a good solution faster. We can
still use the ILP solution for smaller graphs to benchmark our algorithms
that exhibit better scaling behaviour, possibly at the expense of optimality.



4.2. Multi level graph partitioning (MLKL)

In a first heuristic we use a multilevel refinement strategy as first proposed
by Hendrickson and Leland [20]. The idea is to coarsen down the graph by
merging connected vertices until a small graph is obtained. Then this graph
is partitioned and uncoarsened again, while optimising the partition in each
uncoarsening step. Thus, the partitioning consists of three phases:

Coarsening The graph G is coarsened in a sequence of smaller graphs
G1,Ga, ..., Gy, such that |Vi| > [Va| > ... > |V,]

Initial partitioning A partition P is computed on the coarsest level of the
graph.

Uncoarsening and refinement Partition P of graph G,, is uncoarsened
back through all the intermediate graphs. Each uncoarsening step a
refinement algorithm is executed in order to find a better partition.

4.2.1. Coarsening

During coarsening, from graph G; a graph with fewer vertices G, is created
by collapsing edges and combining the vertices connected by those edges.
When an edge is collapsed the two vertices connected by the edge are reduced
into one whose weight is the sum of the weights of both vertices. When both
vertices have an edge to a third node, these two edges are collapsed in one
edge with a summed edge weight. Every iteration of coarsening, a matching —
a set of edges without common vertices — is created and the matched vertices
are combined. In order to find a small edge cut, it is beneficial to collapse
heavy weighted edges, since these are unlikely to be in the best cut.

Our coarsening algorithm uses the heavy-edge matching (HEM) algorithm
which is a widely used coarsening scheme proposed by [24]. The vertices
of the graph are visited in a random order and each vertex u is matched
with an unmatched neighbor v such that the weight of the edge (u,v) is the
maximum over all valid incident edges of u. In order to be able to map the
vertices of the coarsest graph on the different machines we added one more
constraint to only match two vertices when the sum of their vertex weights
is smaller than the size of the smallest part.



4.2.2. Initial partitioning

After coarsening the problem consists of choosing a feasible deployment of the
software components on the infrastructure at hand. We assume that there
are enough machines and resources available to find such a deployment. This
problem reduces to a simple bin packing problem that can be solved with a
first-fit algorithm.

The vertices are ordered by descending vertex weight and the machines are
ordered by descending maximum capacity. For each vertex the list of ma-
chines is iterated and it is assigned to the first one that has enough capacity
left and capacity of that machine is diminished with the vertex weight of that
vertex.

Algorithm 1 Calculate initial partition
vertices : OrderedList
machines : OrderedList
for all vertex v; € vertices do
for all machine m € machines do
if w; < M,, then
P(i) < m
break
end if
end for
end for

4.2.3. Uncoarsening and refinement

In the final step the graph is gradually uncoarsened again and a KL-like
algorithm is applied to improve the initial partition found in the previous
step. The proposed algorithm is based upon the refinement algorithm of
Hendrickson et al. [20]. The fundamental idea of the algorithm is the concept
of the gain associated with moving a vertex to a different part. The gain
reflects the net change in cut size that would result from switching a vertex
from one machine to another. More formally, the gain introduced by moving
vertex ¢ from set m to set n, the corresponding gain ¢,,,; can be expressed
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as

9mni = Z Cij Xbmn_ Z Cij X bmn+ Z Cij X (bmp_bnp)

JEVEP(j)=n JEVEP()=m JEV&P(§)=pptm.ptn
(5)

where again the function P(j) returns the current part of vertex j. The
base refinement algorithm is presented in pseudocode as Algorithm 2, and is
composed of two loops. Each pass of the outer loop will try moving vertices
around to find a better cut. This outer loop ends after a pass that did not
improve the best partition so far, implying that the algorithm has reached a
local optimum. To avoid that the algorithm gets stuck in an infinite loop a
vertex can only be moved once during a single pass of the outer loop. The
inner loop will iteratively select a vertex to move i.e. the vertex having the
largest gain, subject to some additional rules. Notice that this also could
be a move with a negative gain. This gives the algorithm the possibility to
escape to some extent from getting stuck in a local optimum. When a vertex
is moved the gains of all its neighbors should be updated. This process
completes when no more suitable move is found.

When a better partition is found, the inner loop will only accept moves with
positive gain and then start another pass. The rationale for this is that
when the algorithm finds a better partition, it will try to descend as deep
as possible to get the local optimum. Then, a new iteration is started, and
the moves that were in MovedList in the previous iteration can again be
selected to come closer to the optimum.

Instead of creating balanced partitions, we need to make sure that no machine
gets overloaded. A naive rule in this respect would be to forbid vertex moves
that would violate the capacity condition of the target. However, this rule
could cause to move to local optima, from which there is no escape (see
Fig. 3).

Therefore we do allow a move to a part that exceeds the maximum part
weight, provided that there is no other part with excessive weight. If there
is a part s with too much weight, then we choose the vertex with the
highest gain that moves away from m and reduces the amount of over-
load. This way situations as in figure 3 will also converge to an optimum
(m0 = {n0,n2}, ml = {nl,n3,nd}).
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Algorithm 2 KL Refinement

Bestpartition < Currentpartition
Compute initial gains
Compute Vp : Free(p) the amount of free space on part p
repeat
MovedList < EmptyList
repeat
repeat
Select vertex move, not in MovedList with highest gain g,
if Jp: Free(p) <0 then
if Free(m) <0 and Free(n) — w; > Free(m) then
MoveFound < True
end if
else
MoveFound < True
end if
until MoveFound
if MoveFound then
Perform move and add move to MovedList
Update gains of neighbors of moved vertex
if Currentpartition < Bestpartition then
Bestpartition < Currentpartition
if No possible moves with positive gain then
Break
end if
end if
end if
until No more moves possible
until No better partition found
return BestPartition

12
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Figure 3: This partition cannot be optimized when no moves exceeding the target parts
maximum boundary are allowed.

When two possible moves have equal gain, we prefer moves that do not exceed
the target parts boundary. If that does not differentiate the possible moves,
we prefer the ones to a part that is not empty. When still no differentiation
is made between two moves, ties are broken randomly.

Instead of continuing until all vertices are moved, one can stop the algorithm
earlier to save time, for example when the graph cut of the current partition
deviates more than a certain cutoff threshold of the best solution found at
that moment. Proper choices for this threshold can reduce the execution
time while not sacrificing much solution quality. If a threshold value of 0 is
chosen, the algorithm will not accept any moves with negative gain, and the
algorithm will behave like a steepest descent algorithm ending in the nearest
local minimum.

4.8. Simulated Annealing (SA)

A second approach followed for solving the k-partitioning problem, is based
on simulated annealing (SA), a combinatorial optimization technique intro-
duced by Kirkpatrick [38] and independently by Cerny [39], inspired by the
cooling process of metal. To use the SA technique in the context of the k-
partitioning problem, we use it as a refinement technique after bin packing,
inspired by Johnson et al. who showed the effectiveness of SA for the graph
bipartitioning problem [40].

The SA algorithm moves from one solution to a neighbor solution by moving
a vertex from one part to another. A move will be accepted with probability
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exp(g/T), in which g is the gain of a move, as introduced in Section 4.2, and
T the temperature parameter that is lowered gradually over time. The algo-
rithm in pseudocode is shown as Algorithm 3. In order to find the optimum
in situations as described in Figure 3, vertex ¢ is moved with positive gain
to a part that has not enough capacity left with probability exp(%)
where Free(p) is the amount of free space on part p. By making this also
dependent on the temperature this assures that towards the end of the al-
gorithm it will converge to a valid solution without causing overoccupied

parts.

Algorithm 3 Simulated Annealing
Bestpartition < Currentpartition
Temperature < StartTemperaturel]
repeat

counter < 0
repeat
counter + +
Calculate gain g to move vertex i to part p
if ¢ > 0 then
if Free(p) > w; then
Perform move

else
. . Free(p)—w;
Perform move with probability eTemperature
end if
else

if Free(p) > w; then
Perform move with probability ¢ Temperature
end if
end if
if Currentpartition < Bestpartition then
Bestpartition < Currentpartition
end if
until counter > L (epoch length)
Temperature <— a.T'emperature
until stopcondition
return BestPartition
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The performance of SA is very dependent on the choice of the different
annealing parameters: the intial temperature 77, the cooling schedule, the
epoch lenght L, and the stopping condition [40]. Park et al. later proposed
a better set of annealing parameters that led to better results [41], on which
we have based our parameter values.

4.8.1. Initial temperature Ty

Kirkpatrick et al. [38] propose a value of 77 high enough to make the initial
probability of accepting transitions to be close to 1. However, a too high
initial temperature may lead to an unnecessary long computation time as
pointed out in [40] and [41], where it is suggested that the initial temper-
ature is chosen such that the fraction of accepted uphill transitions at the
initial temperature is equal to a parameter Pj, called the inital acceptanc

probability. The initial temperature is then calculated as T} = 2 where A
is calculated with the initial negative gains only.

o[>

4.3.2. Cooling function

The cooling function will gradually decrease the temperature until the algo-
rithm reaches its stopping condition. We adopt a simple geometric cooling
function, in which the temperature at the kth epoch is given by T}, = ax T},_1
where a(0 < a < 1) is a parameter called the cooling ratio. Johnson et al.
[40] showed that other cooling functions such as linear or logarithmic func-
tions do not affect the performance.

4.8.3. Epoch length L

The epoch length L is the number of moves tried at each temperature level.
Johnson et al. state that the epoch length should be chosen proportional
with the neighborhood size. In our case each vertex can be moved to one of
the other machines, thus the epoch lenght becomes L = s x N x (K — 1) with
N the number of vertices and K the number of machines used. Experiments
showed 50 to be a good value for s.

4.3.4. Stopping condition

The stopping condition decides when the algorithm reaches the frozen state
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and further search for a solution should be stopped. Trivial stopping con-
ditions terminate the algorithm when the epoch count reaches a predefined
maximum, or when the temperature drops below a pre-selected final temper-
ature. We use Johnson’s stopping rule [40] which increments a counter by
one at the end of an epoch and the fraction of accepted moves is less than
a predefined limit F},;, and the counter is reset to 0 when a better solution
is found. The SA is terminated when the counter reaches a predetermined
limit 1.

The actual values for the different parameters we use are shown in Table 1,

which are based on the ones stated in [40] and [41], and which lead to good
results for our problem.

Table 1: Simulated annealing parameter values used in our SA refinement algorithm.

Parameter Value

P 0.627
« 0.908
s 50
Fin 0.02
1 5

Because of the randomness in Simulated Annealing, different runs can lead to
different solutions. The quality of the solution can be improved by executing
the SA algorithm multiple times and taking the best solution. This comes of
course at the cost of more computation time.

4.4. Hybrid algorithm (KLSA)

Because of the random factor of SA, it will typically explore a larger solution
space than KL based refinement, and hence arrive at better solutions at the
cost of more computation time. To combine the best of both approaches, a
hybrid approach is pursued in this section. The hybrid algorithm very much
resemble the multi-level algorithm: only at the coarsest level the partition is
first refined with a few runs of SA. At the coarsest level a better solution can
be found with SA while the extra computation cost remains relatively low.
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In further uncoarsening iterations KL refinement is used again, since this is
faster. Moreover, due to the characteristics of coarsening and uncoarsening,
the globally optimal solution is expected to be situated in the neighborhood
of the coarsest graph, and thus the local optimum where KL gets stuck in
the end is more likely also the global optimum. Again, the SA refinement at
the coarsest level can be performed multiple times in order to get a better
solution.

5. Evaluation Results

To evaluate our algorithms we generated test graphs with different node sizes.
Graphs were generated with the Eppstein power law generator [42] and the
weights of the nodes and edges are assigned according an exponential distri-
bution with parameter \ equal to 0.1 and 0.005 respectively. Although the
actual graph structure of an application will depend on the software design,
we chose these graph configurations as most design principles aim to reduce
the dependencies between between different software components and thus
resulting in graphs with few nodes with many neighbors. The resulting node
weights are restricted between 1 and 100, which could intuitively represent
the percentage CPU time needed for this component on a single processor
core.

These nodes have to be deployed on machines with randomly generated ca-
pacities of 100, 200, ..., 800 which represents machines equipped single, dual,
..., eight core processors. The number of machines is chosen such that their
total capacity is about 150% of the total node weight of the graph. For each
graph size we generate 100 graphs and machine weights and calculate the
best deployment with our different algorithms implemented in Java, which
are evaluated according resulting graph cut size and processing time. All
calculations were performed on Intel Xeon L5420 (2.5 GHz) quad core pro-
Cessors.

First we compare our algorithms with the theoretically optimal ILP solution
for small graph sizes to show the effectiveness of our approach. For bigger
graphs we compare our three heuristics on solution quality and execution
time and look at the influence of the cutoff threshold for KL refinement and
the number of executions for SA. To benchmark our algorithms to the state-
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of-the-art we compare the solution quality of our algorithms with METIS
4.0. Finally we also show the effectiveness of our algorithms in the offloading
scenario where a mobile device distributes its load to the cloud.

5.1. Evaluation of MLKL, SA and KLSA

To evaluate how good deployments are found for cloud applications, we as-
sume that the communication links between the different servers in the dat-
acenter are equally weighted, and thus Vm,n : b, = 1. Since the graphs
represent interacting software components, we also assume that the graph
size of interest is a few hundred nodes. For small graphs we can compare
solutions to the optimal ILP solution as shown in Figure 4.
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Figure 4: The left shows the median of the resulting graph cut size of the MLKL, SA and
KLSA relative to the optimal ILP solution. Simulated annealing reaches the optimum in
more than 50% of the cases, while MLKL performs worse. KLSA is a bit better than
MLKL but can not achieve the quality of SA. The right shows the execution time of
the different algorithms. Better solution quality comes at a price: KLSA and SA use
respectively 2 to 10 times more execution time than MLKL.

Both the SA and KLSA algorithm use the best solution of 4 parallel execu-
tions of simulated annealing. For small graphs simulated annealing performs
best as it results in the optimal solution in more than 50% of the cases. The
hybrid solution tends to give slightly better results than MLKL. However
better solution quality comes at the cost of execution time: KLSA and SA
use respectively 2 to 10 times the execution time of MLKL.
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For larger graphs the ILP solver takes too long to find a solution so we com-
pare the algorithms relative to the MLKL algorithm. We will also discuss the
influence of different parameters: the cutoff threshold for the KL refinement
and the number of parallel executions of the SA refinement.

Figure 5 on the left shows the solution quality of the MLKL algorithm for
values 0, 100, 500 and 1500 for the cutoff threshold. KL refinement is stopped
when the graph cut of the current partition deviates more than a certain
cutoff threshold of the best solution found at that moment. A cutoff threshold
of 0 means that no moves with negative gains are allowed and then the
refinement behaves as a steepest descent algorithm. The higher the threshold,
the more it approaches the original solution without threshold. As the graph
size gets larger, less improvement is reached by allowing moves with negative
gains. On the right the average execution time of the different algorithms is
plotted. Using a cutoff threshold can lower the execution time at the cost of
solution quality. Choosing a threshold high enough (1500 in our case) leads
to a small profit in execution time without sacrificing much solution quality.

14

1800

MLKLO ——

MLKL O —— |
M MLKL 100 =1 | MLKL 100 ===
12bm MLKL 500 s | 1600 WKL 500 e
MLKL 1500 MLKL 1500 s

~ 1400 MLKL  m—
1L o
1200

0.8 1000

06 | 800

Execution time (ms)

600

04 -

Graph cut size relative to MLKL

400

0.2 - 200 |

U 0
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
#nodes #nodes

(a) (b)

Figure 5: The left graph shows the influence of a cutoff threshold on the solution quality
relative to the MLKL algorithm without cutoff threshold, while the right shows the exe-
cution time. A lower cutoff threshold lowers execution time at the cost of a lower solution
quality. The improvement of solution quality by allowing moves with negative gains is
lowered as graph size gets larger.

Figure 6 shows the solution quality of the SA algorithm compared to the
MLKL algorithm (left) and the execution time (right) for different number
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of execution runs. For smaller graphs SA finds better solutions than MLKL,
but as the graph size gets larger MLKL becomes better, as due to the increase
in search space SA will less likely find the random move that leads to a better
solution. More execution runs of the SA algorithm leads to better solution
quality at the cost of more execution time. Since the experiments were
conducted on quad core machines there is a much bigger increase between 4
and 8 than between 1 and 4. As allready seen for small graphs in Figure 4,
the execution time of SA is much higher than of MLKL.
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Figure 6: The left graph shows the solution quality of SA relative to the MLKL algorithm,
while the right shows the execution time. For smaller graphs SA results in better partitions,
but uses much more execution time than MLKL.

The hybrid approach (KLSA) shown on figure 7 does a few percents better
than MLKL, but this improvement becomes smaller as the graph size gets
larger. Again this improvement comes at the cost of execution time. Since
the expensive SA refinement is now only executed at the coarsest level, its
execution time is lower than SA but still much higher than MLKL.

5.2. Comparison with METIS 4.0

A special case of our problem statement, where Vm,n : b,,, = 1 and Vm :
M,, = (3, w;)(1 + )/ K represents the traditional graph partitioning prob-
lem that partitions the graph in K balanced partitions with imbalance factor
B. For this problem we can compare our algorithm to well known graph par-
titioning software such as METIS [24].
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Figure 7: The left graph shows the solution quality of KLSA relative to the MLKL algo-
rithm, while the right shows the execution time. KLSA results in slightly better partitions
than MLKL, but this improvement diminishes as the graph size gets larger. Regarding
execution time it performs better than SA, but it is still slower than MLKL.
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Figure 8: Solution quality of the MLKL algorithm relative to METIS 4.0 to partition the
graph in 2, 4, 8, 16, 32 or 64 balanced parts. Our algorithm results in 10 to 40% lower
graph cuts.

Figure 8 shows the solution quality of our MLKL algorithm relative to the
solution of kmetis to partition our graphs in 2, 4, 8, 16, 32 and 64 balanced
parts. Although both algorithms are based on the multilevel partitioning
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paradigm and KL like refinement, our algorithm results in 10 to 40% lower
cut sizes. This is due to the fact that our algorithm allows more imbalance
during the refinement, and the faster cutoff during refinement of METIS, as
it is designed to scale to larger (> 10000 vertices) graphs.

5.3. Offloading scenario

Until now we always assumed that all application components are deployed
in the cloud where all servers are interconnected by the same links and thus
Vm,n : by, = 1. However, in the context of mobile cloud computing where
the cloud is used to offload parts of the application from the mobile device to
the cloud, an important limiting factor will be the wireless link connecting
the device to the internet. Depending on the technology and the signal
strength the available bandwidth between the mobile device and the cloud
— and thus the optimal deployment — will vary. In order to calculate an
optimal deployment in this case, the b,,, parameters can be used to attach
more importance to the wireless link and try to limit the amount of data
exchanged via that link.

To calculate the optimal deployment in the offloading scenario, we added one
extra machine mge,ice With a small capacity of 25 to our randomly generated
list of machines and locked one of the nodes to this machine. This represents
for example a node that takes care of the input or the GUI and must be de-
ployed on the mobile device. The connectivity weights between the machines
are set to 1 between the server machines, but to a > 1 for each link between
a server and Mgepice- When increasing o the algorithm will calculate a new
deployment and will try to lower the bandwidth on the wireless link.

Of course the granularity with which one can influence the bandwidth on the
wireless link will depend on the design of the software and the granularity
of the components. If the software is composed of many small components
one will be able to gradually tune the bandwidth requirements, but when the
software is composed of few big components less possibilities are available.
Figure 9 shows the weight on the wireless link in function of « for six graphs.
On the left results are shown for three graphs composed of 500 small (A=0.5)
components, while on the right the results for three coarser graphs of 200
bigger (A=0.1) components are plotted. The more fine grained graphs on the
left can be tuned more gradually than the coarser graphs on the right.
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Figure 9: By increasing the parameter o the bandwidth on the wireless link can be influ-
enced. For fine grained graphs composed of many small components shown on the left the
influence is more gradual than for coarser graphs shown on the right.

6. Conclusions and future work

In this paper we presented algorithms for partitioning software graphs for de-
ployment on the cloud. The best partition is calculated taking into account
the infrastructure heterogenity. In contrast to deployment optimalization for
computational grids, we do not minimize execution time of a set of mesh
structured tasks, but we focus on minimizing bandwidth between software
components. A multilevel KL, based algorithm is presented as a fast parti-
tioner which allows realtime deployment calculations. Simulated annealing
improves the solution quality for small graph sizes, at the cost of computation
capacity. A hybrid algorithm produces slightly better partitions than KL in
an intermediate execution time. We compared our KL based algorithm to
METIS for a wide range of graphs and found 10 to 40% better partitions.
We also showed how our algorithm can be used to adapt the deployment to
take into account wireless link quality in a mobile cloud computing use case.

Future work consists of integrating these algorithms in an actual software
deployment framework to automatically distribute software components on
a cloud infrastructure. The algorithms can also be adapted to optimize al-
ternative objectives, for example energy consumption.
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