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Abstract 

 This paper illustrates a shortcoming of using regression to control for confounds in 

nested designs. As an example, we consider the congruency sequence effect (CSE), which is 

the observation that the congruency effect in distracter interference (e.g., Stroop) tasks is 

smaller following incongruent as compared to congruent trials. The CSE is often interpreted 

as indexing conflict adaptation: a relative increase of attention to the target following 

incongruent trials. However, feature repetitions across consecutive trials can complicate this 

interpretation. To control for this confound, the standard procedure is to delete all trials with a 

stimulus or response repetition and analyze the remaining trials. Notebaert and Verguts (2007) 

present an alternative method that allows researchers to use all trials. Specifically, they 

employ multiple regression to model conflict adaptation independent of feature repetitions. 

We show here that this approach fails to account for certain feature repetition effects. Further, 

modelling these additional effects is typically not possible due to an upper bound on the 

number of degrees of freedom in the experiment. These findings have important implications 

for future investigations of conflict adaptation and, more broadly, for all researchers who 

attempt to regress out confounds in nested designs. 

 

Keywords: congruency sequence effects, conflict adaptation, feature repetitions, regression, 

lack-of-fit tests, nesting 
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Introduction 

 For almost every major finding in experimental psychology there exist multiple 

accounts. What is not always clear is how to best distinguish among these accounts. For 

instance, some have argued that the debate over exemplar versus abstraction accounts of 

category representation is essentially unresolvable, because any effect that appears to support 

one account one could just as easily be explained by the other (Barsalou, 1990). Some debates 

may appear easier to disentangle. However, we argue in the present article that certain 

approaches to distinguishing competing accounts are not as definitive as they initially appear. 

 For example, consider the all-too-frequent situation in which an experimental 

psychologist wishes to determine whether an experimental effect is better explained by a 

confounding variable in the study design than by the variable of interest. In this situation, a 

psychologist might devise an experiment in which the proposed confound can no longer 

influence the effect of interest. If the effect is still observed, then it cannot be explained by the 

(now removed) confound. An alternative approach employs regression to model and remove 

the influence of the confounding variable in the biased (i.e., confounded) data set. The present 

article highlights some limitations of this second, regression approach for nested designs 

using an example from the literature on congruency sequence effects (CSEs; Notebaert & 

Verguts, 2007). In the General Discussion, we review the broader implications of our findings 

for researchers in a variety of domains, including those studying working memory updating, 

size estimation, and resting-state functional connectivity as measured by functional magnetic 

resonance imaging (fMRI). 

 As illustrated in Figure 1, the CSE is the observation that the congruency effect in 

distracter-interference tasks is reduced when the previous trial was incongruent relative to 

congruent (Gratton, Coles, & Donchin, 1992). The CSE is often interpreted as indexing 

conflict adaptation, a process whereby the distribution of attention to the target and/or 
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distracter is adjusted after incongruent trials (e.g., Botvinick, Braver, Barch, Carter, & Cohen, 

2001). Specifically, after experiencing heightened response conflict in a previous incongruent 

trial (relative to a previous congruent trial), participants increase attention to the target and/or 

decrease attention to the distracter, leading to a smaller congruency effect in the current trial. 

(Figure 1) 

 Some researchers, however, argue that feature repetition confounds may explain the 

CSE better than conflict adaptation (Mayr, Awh, & Laurey, 2003; Hommel, Proctor, & Vu, 

2004; for a review, see Schmidt, 2013a). Feature repetitions occur when the target and/or 

distracter repeat across consecutive trials. In the Stroop task, for example, the target colour 

may repeat from one trial to the next (target-target repetition), the distracter word may repeat 

from one trial to the next (distracter-distracter repetition), the distracter word on the previous 

trial may match the target colour on the current trial (distracter-target repetition), or the target 

colour on the previous trial may match the distracter word on the current trial (target-

distracter repetition). Complete repetition trials, in which both the target and distracter repeat, 

are linked to relatively fast performance and occur only when the previous and current trial 

are both congruent (cC trials) or both incongruent (iI trials). In contrast, partial repetition 

trials, in which the target from the previous trial repeats while the distracter alternates, or 

vice-versa, are linked to relatively slow performance and occur frequently when the 

congruency of the previous trial does not match the congruency of the current trial (cI and iC 

trials). Thus, an unequal distribution of different types of feature repetitions across cC, cI, iC, 

and iI trials may account for the CSE better than conflict adaptation (Mayr et al., 2003; 

Hommel et al., 2004). 

 A key question, then, is whether conflict adaptation plays any role in producing the 

CSE independent of feature repetition biases. To answer this question, an unbiased measure of 

the CSE is needed that controls for feature repetition effects. The most common approach is 
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to calculate the CSE after both complete repetition and partial repetition trials have been 

deleted, leaving only complete alternation trials, in which neither the target nor the distracter 

is repeated from the previous trial. Obtaining a significant CSE when employing this 

“repetition deletion technique” could not be explained by feature repetitions and would 

therefore suggest that conflict adaptation may indeed contribute to the CSE. 

 Findings from the repetition deletion technique have been mixed. On the one hand, 

several researchers employing this approach have reported significant CSEs (e.g., Akçay & 

Hazeltine, 2007; Freitas, Bahar, Yang, & Bahar, 2007; Kerns, Cohen, MacDonald, Cho, 

Stenger, & Carter, 2004; Notebaert, Gevers, Verbruggen, & Liefooghe, 2006; Verbruggen, 

Notebaert, Liefooghe, & Vandierendonck, 2006). On the other hand, most of the tasks 

employed by these researchers contained contingency learning confounds (see Schmidt, 2013 

for a review), and subsequent studies have shown that removing both feature repetition and 

contingency learning confounds usually eliminates the CSE (e.g., Mayr et al., 2003; Mordkoff, 

2012; Schmidt & De Houwer, 2011). Thus, some researchers have suggested that the CSE 

reflects learning and memory processes related to feature repetitions and contingency learning 

biases rather than conflict adaptation (e.g., Schmidt, 2013). 

 Notebaert and Verguts (2007), however, argue that the repetition deletion technique is 

problematic for two reasons. First, statistical power is reduced. This is a valid point, given that 

a very large proportion of trials must be deleted to remove all feature repetitions. This 

problem can be counteracted with longer experiments and/or more participants, but these 

procedures are obviously suboptimal. Second, the CSE is assessed on just one type of 

transition: complete alternation trials. Since the conflict adaptation account should apply 

equally to all types of stimulus transitions, the importance of this point is less clear to us. 

Nevertheless, we agree with the first point that the reduction of power is problematic. 

 To address the two shortcomings above, Notebaert and Verguts (2007) introduced a 
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multiple regression approach (henceforth, NV regression) for estimating the contribution of 

conflict adaptation to reaction time (RT) independent of feature repetition confounds and 

without deleting trials. In this approach, different variables that may influence RT are coded 

by distinct binary regressors. For example, the regression they present employs eight 

regressors: (1) target-target repetitions, (2) distracter-distracter repetitions, (3) feature 

integration (complete repetitions and complete alternations versus partial repetitions), (4) 

negative priming (distracter-target repetitions, wherein both the previous and the current trial 

are incongruent), (5) target-distracter repetitions, (6) previous congruency, (7) current 

congruency, and (8) the CSE (i.e., the previous congruency x current congruency interaction). 

The aim of the NV regression is to determine whether the regression coefficient associated 

with the CSE regressor is significant while controlling for the other variables. Notebaert and 

Verguts reported a significant regression coefficient for the CSE regressor and concluded 

(with some reservations) that conflict adaptation exists. 

 There is a potential problem, however, with the statistical assumptions made by the 

NV regression approach. Each regressor, or variable, in the model represents a simple binary 

effect. The model therefore assumes that the effect of each variable (e.g., target-target 

repetitions) is the same regardless of the level of any other variable (e.g., previous congruency, 

current congruency, or other types of feature repetitions). Put another way, the model does not 

allow for interactions between different variables. This is a problem of nesting. Nesting 

occurs in a statistical model when only a restricted version of the full factorial model is tested. 

In the case of the NV regression, the statistical model is nested because it only tests for a few 

of the simpler main effects, and does not consider the potential interactions between the 

variables. The term “nesting” is also used to describe study designs in which a full factorial 

crossing of study factors produces empty cells (i.e., impossible or unobserved combinations of 

factors). Nesting in the design makes it impossible to test a full factorial model, ultimately 
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requiring nesting in the statistical model. As we explain next, the NV regression approach 

may not always be valid, due to a nested design problem. 

 In particular, the presence of interactions involving two or more variables in the NV 

regression (e.g., a target-target repetition effect that is larger if there is also a target-distracter 

repetition) could complicate the interpretation of the CSE regressor. Specifically, the CSE 

regressor could “steal” variance in RT that originates from un-modelled interactions between 

different types of feature repetitions if it is correlated with these interactions. A significant 

beta parameter for the CSE regressor in such a situation could then potentially reflect 

interactions between different types of feature repetitions, rather than conflict adaptation. In 

sum, although the NV regression aims to assess the CSE independent of feature repetition 

confounds, it could fail to do so if un-modelled interactions involving feature repetitions 

contribute to variance in RT. 

 This problem is only worrisome when the CSE is positively correlated with un-

modelled interactions involving feature repetitions. While some un-modelled interactions 

might be uncorrelated with the CSE (in which case there is no confound) and others might 

reduce the CSE, on the whole feature repetitions tend to engender a positive CSE (e.g., Mayr 

et al., 2003). Thus, if they are positively correlated with the CSE, then un-modelled 

interactions involving feature repetitions will likely increase (rather than decrease) the CSE, 

making it appear as though conflict adaptation contributes to the CSE when it does not. The 

present findings provide some preliminary evidence for this possibility. 

 Before continuing our discussion of Notebaert & Vergut’s (2007) approach, we would 

like to note that the issues we are discussing are not specific to the CSE. Rather, they are more 

general concerns that apply whenever a nested model is employed to eliminate the influence 

of a confounding variable that is only incompletely modelled. Thus, the implications of our 

analysis are important for any study that employs a similar regression approach. To illustrate 
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this point, we describe in the General Discussion how our findings are relevant to other 

subfields of experimental psychology as well as to research in cognitive neuroscience. But, 

first, we return to the potential limitation of the NV regression approach we have identified. 

 Is there a way to avoid this limitation? The only way is to model all possible 

interactions among the four types of feature repetitions, two levels of previous congruency, 

and two levels of current congruency. That is, one could model all the main effects and 

interactions between each of the four types of feature repetitions, previous congruency, and 

current congruency in a 2 x 2 x 2 x 2 x 2 x 2 (and thus 64-cell) design. Sixty-four regressors 

would be required to model all of the possible combinations of these six binary factors. These 

regressors would include 1 intercept, 6 main effects, 15 two-way interactions, 20 three-way 

interactions, 15 four-way interactions, 6 five-way interactions, and 1 six-way interaction. By 

including all 64 regressors, a researcher could ensure that the conflict adaptation regressor is 

not influenced by feature repetition biases. However, this is not possible for two reasons. 

 First, some of the interactions involving feature repetitions cannot be observed in a 

real experiment. For instance, a target-target repetition and a distracter-distracter repetition 

cannot simultaneously occur in a single iC trial. Similarly, a distracter-target repetition and a 

distracter-distracter repetition cannot simultaneously occur in a single incongruent trial. As 

Table 1 illustrates, only 15 of the 64 possible combinations of feature repetitions, previous 

congruency, and current congruency can be observed in an experiment. In statistical terms, 

this means that the design is nested. In effect, the NV regression approach estimates the mean 

RT in each of these 15 conditions with the 8 regressors that Notebaert and Verguts (2007) 

include in their model. Indeed, every observation in the data corresponds to one of these 15 

points on the regression line1 because, as we stated earlier, only 15 of the 64 cells in the 

design can be observed in a real experiment (we revisit this important point later). Returning 

to the main issue, though, 49 (i.e., 64 – 15) of the cells are not observable, meaning that the 
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data required to compute most of the interactions involving feature repetitions are missing. 

(Table 1) 

 Second, it is impossible to include all 64 main effect and interaction regressors in the 

model without exceeding the experimental degrees of freedom. Given that only 15 unique 

combinations of the regressors are present in the data from an actual experiment, the model 

has only 14 degrees of freedom before any regressors are included. Thus, to preserve at least 

one degree of freedom, a maximum of 13 regressors can be included,2 which is far less than 

64. If more than 13 regressors are included, then the regression model will be able to 

maximize on random error and perfectly estimate the means for all 15 unique trial types. This 

is the case because each regressor in a model can connect, at a minimum, two points (in this 

case, conditions). Thus, if the number of regressors in a model is one less than the number of 

points to estimate (i.e., if there are 14 regressors to estimate 15 “points” or conditions), then 

the regression will, by definition, be able to perfectly estimate the means for all 15 conditions 

(i.e., connect all the points), even if the regressors included in the model are meaningless. In 

statistical terms, this type of regression model is called a saturated model. Three conclusions 

follow from this line of reasoning: (1) it is impossible for more than 14 regressors to explain 

variance when there are only 15 cell means to estimate, even if more than 14 factors play a 

real role in producing these means, (2) if more than 14 regressors are included, then all 

between-condition variance will be explained, but this will likely be the arbitrary result of 

maximization on random error, and (3) if more than 14 regressors are included, then a test of 

model misspecification, described shortly, is meaningless because the model will always be 

able to explain all between-condition variance (a result of the previous points). 

 In contrast, note that with the repetition deletion technique there is no nesting. As can 

be seen in Table 1, the cells retained in this analysis (grey) vary only in current congruency 

and previous congruency, both of which are fully modelled. One might therefore conclude 
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that the repetition deletion analysis is superior, because nothing is left un-modelled. As 

mentioned earlier, however, the NV regression approach provides greater statistical power. 

Further, the preceding criticisms of NV regression are moot if complex feature repetition 

biases do not actually exist. That is, if: (a) interactions involving feature repetitions have no 

effect on the data, and (b) the variables coded for in the NV regression capture all of the 

actual feature repetition biases, then the NV regression is completely valid. Thus, the goal of 

the present study was to determine whether or not the NV regression is ever invalid. Such a 

result would indicate that caution should be exercised when employing this approach to assess 

the contribution of conflict adaptation to the CSE. 

 To test the validity of the NV regression approach, we first applied Notebaert and 

Verguts’ (2007) model to the correct RT data from Experiments 1 and 2 of Schmidt and De 

Houwer (2011) and to the 25% congruency (i.e., contingency-free) condition from Mordkoff 

(2012).3 Since our main aim was to test the statistical assumptions made by the model, we 

conducted a lack-of-fit test (not to be confused with a goodness-of-fit test), which assesses 

whether a model misestimates observations in a systematic way (e.g., see Faraway, 2004). If it 

does, then the model is misspecified, meaning that one or more additional regressors are 

needed to explain systematic un-modelled variance in the data. Of course, some degree of 

error in condition estimates is expected even in a correctly-specified model due to random 

noise. However this error should be random. Critically, a lack-of-fit test can tell the difference 

between random and systematic error by separating the degree of model misspecification 

from the between-participant error (Faraway, 2004). This is achieved with a statistical test that 

determines whether the degree to which conditional means are inaccurately predicted (termed 

lack-of-fit variance) exceeds the degree expected based on random variation between 

participants (termed pure error variance). 

 Whether or not the lack-of-fit test is significant depends on whether the model is 
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correctly specified. If the model is correctly specified, then the F-value for the lack-of-fit test 

should be about 1 and, hence, not significant. This result should be obtained if the NV 

regression accounts for all relevant feature repetition effects separately from the CSE 

regressor. Of course, a null result does not indicate the model is correct. It merely indicates 

that no evidence for an error in model specification was observed. In contrast, if there is 

significantly more misspecification than expected based on random noise between 

participants, then the F-test will be significant. This result should only be obtained if one or 

more important effects involving feature repetitions has been excluded from the model. 

 How might a lack-of-fit test be conducted on the NV regression model? Recall that 

there are 15 experimentally-producible combinations out of the 64 possible combinations of 

previous congruency, current congruency, and the four repetition types. For this reason, one 

can use the regression equation from the NV approach, which contains eight regressors, to 

estimate the cell means in each of these 15 conditions (the condition-specific weighting for 

each of the eight regressors is presented in Table 2). Subtracting the model-estimated mean 

RT in each condition from each participant’s mean RT in that same condition will reveal how 

much each participant’s RT differed from the model’s RT. Finally, a repeated-measures one-

way ANOVA on these difference scores will reveal whether they differ from a flat line. 

(Table 2) 

 The lack-of-fit test will lead to one of two outcomes. First, if the NV regression is 

correctly-specified, then the mean difference scores across participants in each of the 15 

conditions above will not differ from zero more than would be expected from random, 

between-participant error.4 Thus, if the 15 means are submitted to a one-way ANOVA, the 

ANOVA should return an F-value of roughly 1, so long as an appropriate correction to the 

degrees of freedom is made to account for the fact that eight regression parameters are 

employed to estimate the fifteen condition means.5 Second, if the NV regression is not 
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correctly specified, then at least some of the mean difference scores will differ from zero (and, 

hence, from each other) more than would be expected based on random, between-participant 

error. Thus, if the 15 means are submitted to a one-way ANOVA, the ANOVA should return 

a significant F-value, consistent with a significant degree of model misspecification. To our 

knowledge, the present use of a lack-of-fit test on repeated measures data is unique. However, 

this approach is analogous to previous uses of lack-of-fit tests on other types of data (e.g., see, 

Faraway, 2004; see also, Footnote 4 for a demonstration that this approach works as intended). 

Method and Results 

NV regression 

 We used three different data sets for our analyses. We refer to these as Experiment 1 

(Schmidt & De Houwer, 2011, Experiment 1), Experiment 2 (Schmidt & De Houwer, 2011, 

Experiment 2), and Experiment 3 (Mordkoff, 2012, 25% congruency condition). All three 

experiments employed four alternative-forced-choice (4-AFC) tasks in which each distracter 

was presented equally often with each target to avoid contingency learning biases (for a 

discussion of this issue, see Schmidt, 2013). Experiment 1 employed a Stroop task, 

Experiment 2 employed an Eriksen flanker task, and Experiment 3 employed a Simon task. 

Of importance, the CSE was absent in all three tasks after employing the repetition deletion 

technique, which deletes all trials with feature repetitions from the analyses before calculating 

the CSE. 

 We conducted the NV regression in a trivially-different fashion than Notebaert and 

Verguts (2007). These authors conducted a regression on the correct RT data for each 

participant and then averaged the resulting estimated regression coefficients for each 

condition across participants (c.f., Lorch & Myers, 1990). In contrast, we conducted a linear 

mixed effects (LME) regression model (using the MIXED procedure in SPSS) on the correct 

RT data for each participant, which is essentially identical and typically preferred because it 
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can provide greater flexibility (Van den Noortgate & Onghena, 2006). In this approach, 

participants are added as random factors and a single regression coefficient is calculated for 

each factor across all participants. The eight fixed factors, or regressors, that we included in 

the LME for each experiment are listed in Table 2. 

 It is important to note that, while not reported, we also performed the regression 

analysis identically to Notebaert & Verguts (2007). Critically, we observed no notable 

differences between the regression coefficients or statistical tests yielded by the NV 

regression approach and those yielded by the LME approach that we report in the present 

article, including the critical lack-of-fit test. In fact, the two approaches produced group-

averaged regression coefficients that differed by only fractions of a millisecond. The 

condition estimates used for the lack-of-fit test were therefore also nearly indistinguishable. 

 Returning to how we conducted the LME regression, like Notebaert and Verguts 

(2007), we excluded (a) error trials and (b) correct trials that were preceded by error trials. 

Unlike Notebaert and Verguts, however, we included all eight regressors of the NV regression 

in a single step, rather than adding the previous congruency and CSE regressors in a second 

step. A one-step regression assigns variance to all eight regressors simultaneously, while a 

two-step regression assigns variance to the regressors in the first step before assigning 

variance to the regressors in the second step. Of importance, this methodological choice does 

not influence the outcome of the critical lack-of-fit test, because one- and two-step regressions 

provide the same end fit to a data set. The condition estimates for the lack-of-fit test were 

therefore identical with both approaches. 

 The regression coefficients and statistical tests from the LME models of Experiments 

1, 2, and 3 are presented in Table 3. In all three experiments, there was a significant 

regression coefficient for the congruency effect, indicating faster responses for congruent 

relative to incongruent trials. There were also significant regression coefficients for target-
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target and distracter-distracter repetitions, indicating faster responses for repetitions relative 

to alternations. Finally, there was a significant regression coefficient for the feature repetition 

regressor, indicating that performance averaged across complete repetitions and complete 

alternations was faster than performance for the remaining trials (i.e., partial repetitions). 

 Some effects were significant in only a subset of the experiments. In Experiment 1, 

there was a significant regression coefficient for previous congruency, indicating slower 

responses to trials following a congruent trial. In Experiment 2, there was a marginal 

regression coefficient for target-distracter repetitions, indicating marginally slower responses 

on repetition trials. In Experiment 3, there was a significant regression coefficient for negative 

priming, indicating slower responses for negative priming trials. Most relevant for present 

purposes, the CSE regressor was marginally significant in Experiment 1 and significant in 

Experiment 3, indicating a larger congruency effect after a congruent trial than after an 

incongruent trial. These latter findings contrast with the null CSEs reported with the repetition 

deletion procedure, which also yielded smaller numerical estimates of the CSE (i.e., with 

trims, the effect was only 1 ms in Experiment 1 and 6 ms in Experiment 3).6 These contrasting 

findings are consistent with two possible interpretations: (1) the NV regression provided more 

statistical power than the repetition deletion procedure for detecting a CSE or (2) the NV 

regression was misspecified. 

(Table 3) 

Lack-of-fit tests 

 To investigate whether the NV regression model was misspecified, we conducted a 

lack-of-fit test in each of the three experiments. To this end, we first used the regression 

equations described in the previous section to generate a model-estimated mean RT for each 

of the 15 relevant conditions in Table 2. The conditional mean RTs for participants, model-

estimated mean RTs, and differences between the two are shown in Table 4, separately for 
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each experiment. Positive and negative difference scores, respectively, indicate that model-

estimated mean RT was greater or less than participant mean RT. As can be seen from the 15 

difference scores, the model misestimates the conditional means by an average of 12 ms in 

Experiment 1, 3 ms in Experiment 2, and 7 ms in Experiment 3. Next, for each of the 15 

conditions separately, we subtracted each participant’s mean RT from the model-estimated 

mean RT. Finally, we conducted a repeated-measures one-way ANOVA on these 15 

difference score variables. The ANOVA revealed large violations of sphericity in all three 

experiments. We therefore employed MANOVA to conduct the lack-of-fit test as it makes no 

assumptions about sphericity (see O’Brian & Kaiser, 1985).7 

 The MANOVA revealed that the lack-of-fit test was significant in Experiment 1, F(6,9) 

= 34.846, Wilk’s Λ = .041, p < .001, marginal in Experiment 2, F(6,9) = 2.982, Wilk’s Λ 

= .359, p = .069, and significant in Experiment 3, F(6,9) = 6.613, Wilk’s Λ = .201, p = .006. 

Thus, in general, the degree to which the model did not fit the data exceeded the amount 

expected from random error. This result suggests the model was misspecified, meaning that 

one or more additional regressors would be needed to explain systematic un-modelled 

variance in the data. Thus, the significant CSE yielded by the NV regression approach in 

Experiment 3, which contrasts with the null CSE that were observed with the repetition 

deletion technique, was likely due to un-modelled feature repetition effects.  

(Table 4 about here) 

Discussion 

 One goal of the present commentary was to investigate whether the NV regression 

approach to isolating a conflict adaptation effect is ever invalid. To this end, we applied a 

LME model to the data from Experiments 1 and 2 of Schmidt and De Houwer (2011) and the 

25% congruency (i.e., contingency-free) condition of Mordkoff (2012). A lack-of-fit test 

demonstrated that the NV regression approach significantly misestimated the conditional 
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means in both Experiment 1 (Schmidt & De Houwer, 2011, Experiment 1) and Experiment 3 

(the 25% congruency condition of Mordkoff, 2012) and marginally misestimated the 

conditional means in Experiment 2 (Schmidt & De Houwer, 2011, Experiment 2). Further, the 

CSE estimated with the NV regression approach was significant in Experiment 3 and 

marginally significant in Experiment 1, in contrast to the non-significant CSEs previously 

reported in these experiments by researchers employing the repetition deletion technique. 

These findings suggest that the NV regression approach did not code for all possible effects of 

feature repetitions on RT. Thus, the CSE regressor had the opportunity to “steal” un-modelled, 

correlated RT variance stemming from interactions involving different types of feature 

repetitions, thereby increasing the probability that it would achieve significance. 

 One might wonder whether the NV regression approach simply provides greater 

statistical power for detecting a CSE than the repetition deletion technique. In other words, 

perhaps only the NV regression approach was powerful enough to detect small conflict 

adaptation effects that were truly present in our data sets. This possibility appears unlikely for 

two reasons. First, the estimates of CSE magnitude were numerically larger in Experiments 1 

and 3 when using the NV regression approach relative to the repetition deletion technique. 

However, it is unclear why this should be the case from the perspective of statistical power. 

Indeed, complete alternation trials are generally the slowest of all trials (see Table 4). Thus, 

the conflict adaptation effect should scale up to a larger size with the repetition deletion 

technique (which uses only complete alternation trials) than with the NV regression approach 

(which makes use of all trials). Second, the lack-of-fit results indicate that the (nested) 

regression approach is less valid than the (non-nested) repetition deletion technique, in the 

sense that the CSE regressor has the opportunity to “steal” variance in RT from un-modelled 

repetition effects only with the former approach. This finding may explain why estimates of 

CSE magnitude were higher with the NV regression approach as compared to the repetition 
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deletion technique. Given these considerations, it appears unlikely that the present results 

were driven by increased statistical power for detecting a CSE with the NV regression 

approach as compared to the repetition deletion technique. 

Implications for prior findings with the NV regression approach 

 By showing that the NV regression approach does not account for all effects of feature 

repetitions on RT in the present data set, our findings suggest that certain prior claims of 

CSEs independent of feature repetitions may need to be re-evaluated (e.g., Blais & Verguts, 

2012; Braem, Verguts, Roggeman, & Notebaert, 2012; Eichele, Juvodden, Ullsperger, & 

Eichele, 2010; Steinhauser et al., 2012). For example, Braem and colleagues (2012) reported 

that the CSE was modulated by reward after controlling for feature repetitions with the NV 

regression approach and concluded that reward modulates conflict adaptation. Given the 

present findings, however, it is possible that reward modulated feature repetition effects that 

were not coded in the model. Consistent with this possibility, target repetition effects were 

significantly stronger with reward than without in their experiment. Additional studies could 

be conducted to investigate this alternative interpretation of Braem and colleagues’ finding. 

 A second finding that may deserve further scrutiny is that the CSE is greater with 

small stimulus sets than with large stimulus sets (Blais & Verguts, 2012). To explain this 

result, Blais and Verguts presented a variant of the adaptation-by-binding account (see 

Verguts and Notebaert, 2009), in which conflict-modulated learning occurs most strongly for 

recently encountered stimuli. Based on this variant, Blais and Verguts argued that conflict-

modulated learning, and hence the size of the CSE, should be larger with small stimulus sets 

than with large ones, because each feature occurs more frequently (and, hence, recently) with 

small stimulus sets. Notably, however, the CSE was significantly greater with small than with 

large stimulus sets when the authors employed the NV regression approach to control for 

immediate feature repetitions, but not when the authors removed trials with immediate feature 
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repetitions from the analysis. Given our findings suggesting that the NV regression approach 

does not always “regress out” all possible immediate feature repetition effects, this 

discrepancy suggests an alternative interpretation of Blais and Verguts’ findings. Specifically, 

the CSE yielded by the NV regression approach might have increased as the set size became 

smaller simply because the number of immediate stimulus repetitions increased as the set size 

became smaller. Future studies could be aimed at testing this hypothesis. 

Implications for future studies with the NV regression approach 

 Future studies might potentially identify a differently-specified model that does not 

violate the lack-of-fit test. Although such a development would be encouraging, it is 

important to note that while a significant lack-of-fit test indicates that a model is incorrect, a 

non-significant lack-of-fit test does not indicate that a model is correct. This follows the logic 

of any null statistic: even when evidence for the alternative hypothesis is lacking, the 

alternative hypothesis may nevertheless be true (i.e., there may be a Type 2 error). Critically, 

detected or not, error in the structure of a regression model makes the regression coefficients 

difficult to interpret. In such cases, a regressor in the model (e.g., the CSE regressor) can 

“steal” variance produced by a correlated but un-modelled variable (e.g., interactions between 

different types of feature repetitions), resulting in a significant regression coefficient for that 

regressor in the absence of the theoretical process of interest (e.g., conflict adaptation). These 

considerations suggest that NV regression may not provide unequivocal evidence of CSEs 

independent of feature repetition confounds, even when a lack-of-fit test does not achieve 

significance. 

 Given the limitations of the NV regression approach, future researchers investigating 

the CSE might consider other approaches that (a) delete trials with feature repetitions “after 

the fact” (Kunde & Wühr, 2006; Mayr et al., 2003; Mordkoff, 2012; Schmidt & De Houwer, 

2011) or (b) prevent feature repetitions from occurring in the original trial sequence without 
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introducing contingency learning biases (Jiménez & Méndez, 2012; Mayr et al., 2003; 

Schmidt & Weissman, 2014; Weissman, Jiang, & Egner, in press). Since these approaches 

estimate the CSE solely from performance in complete alternation trials, there should be no 

concerns about the effects of un-modelled feature repetition effects on the CSE. 

 In sum, we have highlighted an important problem associated with “regressing out” 

the influence of a confounding variable in a nested design. As with more typical regression 

approaches, regressing out the influence of a confounding variable in a nested design will fail 

to the extent that the appropriate regressors do not completely capture variance associated 

with the confounding variable. However, this problem is magnified with nested designs 

because there are no regressors to code for various higher-order interactions involving a 

confounding variable. Thus, un-modelled variance due to such interactions may influence 

regression-derived estimates of the variable(s) of interest. Since it is never an experimental 

psychologist’s goal to partially (rather than fully) control for a confounding variable, our 

findings indicate the need for caution when trying to regress out the influence of a 

confounding variable in a nested design. 

 

Broader implications 

 We now turn to the second main goal of our commentary: to illustrate that the problem 

we have identified with regressing out the influence of a confounding variable in a nested 

design exists in many areas of psychology and neuroscience. We now consider three 

examples of the “nested design problem” from the literatures on working memory updating, 

size estimation, and resting-state functional connectivity. As will become clear, the “nested 

design problem” complicates the interpretation of data in multiple domains. 

 First, consider a study from the literature on working memory updating. Kessler and 

Oberauer (2014) presented participants with four items followed by another four items in each 
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trial and manipulated (1) the number of old items that were repositioned or changed to new 

items, (2) the number of new combinations of items, (3) the number of changed sequences of 

successive numbers, and (4) the number of times the list switched from an old to a new item 

when read from left-to-right. This was a nested design, because fully crossing these four 

factors was impossible (e.g., it is impossible to have a new sequence of numbers without 

introducing new or repositioned items). It is therefore possible that the effect of one factor 

(e.g., the number of new or repositioned items) was actually driven by un-modelled 

interactions between two other factors (e.g., the number of new combinations of items and the 

number of new sequences of items). Whether or not such an alternative explanation of these 

data is plausible remains uncertain. However, a lack-of-fit test conducted on such data would 

help to determine whether evidence of misspecification exists in the authors’ best-fitting 

model of the data. Though not conclusive, a non-significant lack-of-fit test would be 

consistent with the authors’ interpretation of the results. 

 Second, consider a study by Kirsch, Königstein, and Kunde (2014) who were 

interested in the roles of motor performance and task feedback on judgments of target size. 

Participants were asked to move a (disappearing) cursor toward a target circle, after which 

they were to estimate the target’s size. The authors reported that size estimations were 

influenced by whether a participant “hit” or “missed” the target. This influence might have 

been due to participants’ knowledge of their actual motor accuracy, as measured by the degree 

to which the final location of their movement deviated from the center of the circle. 

Alternatively, this influence might have been due to the feedback participants received about 

their accuracy. 

 To distinguish between these two potential explanations, the authors gave participants 

“hit” feedback in some trials wherein the target was barely missed and “miss” feedback in 

some trials wherein the target was barely hit. The authors then employed regression to 
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determine whether accuracy feedback influenced the results independent of actual motor 

accuracy. The results of the regression supported this view by showing that size judgments 

were influenced by the feedback regressor after controlling for motor accuracy. However, this 

use of regression is potentially just as problematic as in our earlier example above because the 

experimental design was once again nested. For example, while trials in which the target was 

either just missed or just hit could receive either “hit” or “miss” feedback, clear misses were 

always given “miss” feedback and clear hits were always given “hit” feedback. For this 

reason, very accurate responses only contributed to the estimate for a hit and very inaccurate 

responses only contributed to the estimate for a miss. It is therefore possible that size 

estimates were only affected by motor performance, and that the feedback regressor merely 

capitalized on un-modelled variance from trials with very accurate and/or very inaccurate 

responses, which was not captured by the strictly linear motor accuracy regressor. Although 

this alternative interpretation of the data may not be correct, a lack-of-fit test could reveal 

whether evidence of model misspecification exists. Alternatively, deleting the very accurate 

and very inaccurate responses and restricting the analyses to moderately-inaccurate trials 

would eliminate the nesting problem, similar to the repetition deletion technique for the CSE. 

 Third, consider work from the resting-state functional connectivity literature. In this 

literature, functional MRI is employed to assess the degree to which the blood-oxygenated 

level-dependent (BOLD) signal is correlated between different brain regions across time 

while study participants lie still without performing a task. Numerous researchers have 

reported that resting-state functional connectivity varies across different subject populations 

(e.g., Van Dijk, Sabuncu, & Buckner, 2011). Recently, however, it has been shown that some 

of this variance can be explained by un-modelled, higher-order head motion artifacts (e.g., 

Lemieux et al., 2007; Satterthwaite et al., 2012), which are not completely “regressed out” by 

incorporating linear estimates of motion into regression analyses of resting-state fMRI data 
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(e.g., Power et al., 2014; Satterthwaite et al., 2012). Linear motion regressors probably fail to 

capture all of the motion effect because they do not model all of the ways that motion and 

resting state activation interact. The regression model typically employed is thus a nested 

version of a more complex, correctly-specified model that would include more regressors. 

Determining the correctly-specified model, however, is no easy task. Thus, researchers in this 

field now employ approaches analogous to the repetition deletion technique, such as deleting 

time points at which motion artifacts occur. They also employ several other approaches that 

do not rely on regression to correct for head motion artifacts (Fair et al., 2013). This example 

further illustrates the potential problems associated with trying to “regress out” confounds and 

shows that these problems extend even beyond the experimental psychology literature. 

 Although the experiments discussed above illustrate that the “nested design problem” 

is a pervasive one, we do not mean to suggest that all of the conclusions drawn from these 

experiments are incorrect. For instance, it appears quite reasonable to conclude that 

participants are influenced by feedback when making size judgments (Kirsch et al., 2014). 

Our point is simply to show that there are clear misconceptions over the effectiveness of 

regression approaches to controlling for confounds, particularly when nested designs are 

employed in which higher-order interactions involving a confound cannot be modelled and 

may therefore continue to influence the variable(s) of interest. In such situations, including a 

regressor to code for a confound implies that an effect of interest has been isolated in a 

“confound-free” manner, even though this is unlikely to be the case. In short, while ruling out 

confounds is an important aim in experimental psychology, regression is not necessarily the 

ideal way to accomplish this goal, particularly when nested designs are employed. Further, 

while lack-of-fit tests can be employed to assess whether there is systematic un-modelled 

variance in a data set that likely emanates from un-modelled confounds, such tests are not a 

perfect solution to the “nested design problem.” As mentioned before, while a significant 
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lack-of-fit test gives clear evidence that the model is incorrectly specified, a non-significant 

lack-of-fit test is ambiguous. 

 Given the discussion above, one might conclude that regression should never be 

employed to control for confounds. However, this is not the case. In some situations, 

employing a regression approach to “regress out” the influence a confounding variable may 

not introduce a nesting problem because, unlike with the CSE, it may be possible to collect 

data from all of the cells in the factorial design. In other situations, a regression approach, 

even if imperfect (i.e., for the reasons discussed in the present paper), may be the approach 

that allows the highest level of control over confounds. For instance, if the feature repetition 

deletion technique could not be employed to assess the CSE, then the NV regression approach 

would be the best option available. For these reasons, regression will in many cases provide a 

very useful data analysis approach. We only aim to caution that the caveats of this approach 

should be carefully considered and that easier-to-interpret analysis techniques (e.g., the 

repetition deletion technique) should be sought out and preferred wherever possible. 

 

Conclusion 

 Notebaert and Verguts (2007) correctly concluded that “the explanatory value of a 

factor depends on the other factors included in the regression” (p. 1259). Further, they 

correctly acknowledged that the significance of the CSE regressor in their analysis may have 

been driven by feature repetition effects that were not coded in the regression model. 

Consistent with this possibility, the present findings suggest that the NV regression approach 

may not effectively isolate the CSE from feature repetition confounds. We therefore suggest 

that investigating the CSE in complete alternation trials is the best approach to controlling for 

feature repetition effects. A second goal of this report was to highlight the broader problem of 

attempting to “regress out” the influence of a confounding variable in a nested design. This 
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practice is widespread in experimental psychology and cognitive neuroscience and can lead to 

false confidence that a variable of interest influences a dependent measure independent of 

(incompletely-modelled) confounding variables. When clearer dissociation procedures exist, 

as they do with the CSE, then regression should be employed with greater caution or 

completely avoided. 
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Footnotes 

1 Actually, in the datasets used by Notebaert and Verguts (2007) there were less than 15 

cells to estimate with their 8 regressors. If a task has less than four response options, then 

the number of possible conditions is reduced (for further explanation, see Schmidt & De 

Houwer, 2011). 

2 An anonymous reviewer suggested that this claim is false because, in each participant, 

there are multiple observations (i.e., trials) for each of the 15 trial types. However, the 

number of observations per trial type is irrelevant. What is relevant is that there exist only 

15 points on the regression line for the model to estimate. Therefore, only 14 regressors 

(plus the intercept) are needed to perfectly estimate these 15 points. This fact can be 

demonstrated by adding 6 random (but non-redundant) regressors to the eight that are 

already included in the NV regression model. As we confirmed in further (unreported) 

analyses of the data from Experiment 1, this procedure resulted in all of the variance 

between the 15 conditions being explained. Therefore, the value of the F-statistic 

corresponding to the lack-of-fit test was exactly zero. 

3 Related to the first footnote, these three data sets are most desirable, because all 15 of these 

combinations are possible in these four-choice tasks, allowing for maximal degrees of 

freedom in the present analysis. These experiments are also contingency-unbiased, 

preventing other potential complications with a contingency learning confound. In contrast, 

the data from Notebaert and Verguts’ (2007) three-choice task, for which we did not 

compute a lack-of-fit statistic, is missing one of the 15 aforementioned combinations 

(condition 9 in Tables 2 & 4). This is not a trivial issue for two reasons: (1) degrees of 

freedom are already limited, and (2) the combination lost is a particularly interesting one, 

representing complete alternations for one of the four cells of the CSE design. A final 

interesting point is that all three of these data sets provided no significant evidence for a 
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CSE independent of feature repetition biases. 

4 An anonymous reviewer suggested that this lack-of-fit test is biased toward producing a 

significant F-value. The reason is that the subset of the 64 combinations of previous 

congruency, current congruency, and the four repetition types that can be observed in a real 

experiment is not random. Contrary to the reviewer’s suggestion, however, we would 

argue that if the model is correctly-specified, then it should be able to correctly reproduce 

the real-world parameters that were used to create the data set, regardless of whether the 

missing cells are randomly or non-randomly selected. To determine which view is correct, 

we conducted a simulation, suggested by the reviewer, which involved computing the cell 

values for the 64 combinations of our six factors described above using the NV regression 

parameters from Experiment 1. We added some random normal error for each observation 

(SE = 10) and included 100 simulated participants. When applied to this simulated data, the 

NV regression did an exceptional job of replicating the regression parameters that were 

used to generate the data, whether it was applied to all 64 combinations or to just the 15 

combinations that are observable in actual participants. Further, when a lack-of-fit test was 

applied to the difference scores between the simulated and model-estimated RTs for the 15 

observable conditions, the test was not significant, F(6,86) = .992, Wilk’s Λ = .935, p 

= .474. These values are exactly what one would expect with no model misspecification, 

and thus indicate that the lack-of-fit test we employ is not biased. In fact, the only way the 

reviewer’s view could be correct is if non-randomly selecting a subset of trial types caused 

the NV regression to inaccurately compute the regression coefficients for the eight factors 

in the model. If this were the situation, which our simulation shows is not the case, then it 

would be just as detrimental to the validity of the NV regression as the limitation we have 

identified. 

5 Each of the eight regressors will increase the ability of the model to capitalize on random 
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error. Thus, the degrees of freedom for the numerator should equal 15 (conditions) – 8 

(regressors) – 1 (intercept) = 6. Without this correction, Type 2 errors will be artificially 

inflated. Appropriately, this means that the degrees of freedom for the numerator will be 0 

if there are 14 or more regressors. Since all conditions would be perfectly estimated in this 

scenario, there are no degrees of freedom (see Footnote 2). 

6 In the ideal situation, one would determine whether estimates of the CSE derived from the 

NV regression and repetition deletion approaches differ from one another. However, the 

sample size required to make this comparison with high statistical power is often 

prohibitive. For instance, if the true CSE magnitude in Experiment 1 was zero, then 

detecting a difference between 0 ms (estimated with the repetition deletion technique) and 

7 ms (estimated with the NV regression approach) would require a sample size of around 

300 participants to achieve a relatively high power of .8. This is due, in part, to the fact that 

the NV regression approach produces a significant CSE only because a relatively small 

parameter estimate for the CSE is associated with a very (probably artificially) small 

estimate of the error variance. In contrast, the repetition deletion technique estimates the 

CSE to be around 0 ms and is associated with a relatively high estimate of the error 

variance. Thus, detecting a significant difference between these only slightly different 

estimates of the CSE is difficult, in part, because one is associated with a much higher 

estimate of the error variance than the other. 

7 Given a major violation of sphericity and an acceptable sample size, MANOVA is 

generally a more powerful approach for dealing with violations of sphericity. 
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Table 1. The 15 experimentally-observable combinations of current congruency, 
previous congruency, and the four types of feature repetitions. 

distracter-distracter:  Repetition (R)   Alternation (A)  
target-target:  R   A   R   A  

distracter-target:  R   A   R   A   R   A   R   A  
target-distracter: R A R A R A R A R A R A R A R A 

Congruent-Congruent �               � 
Congruent-Incongruent       �   �      � 
Incongruent-Congruent      �     �     � 
Incongruent-Incongruent    �    �    � � � � � 
*The four shaded cells are those used in the repetition deletion analysis. 
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Table 2. Different linear combinations of eight regressors were employed to predict 
mean RT in 15 unique trial types. 

Trial Type 

C
ongruency 

T
arget-

T
arget 

D
istracter- 

D
istracter 

F
eature 

Integration
 

N
egative 

P
rim

ing 

T
arget-

D
istracter 

P
revious 

C
ongruency 

C
onflict 

A
daptation 

Congruent–Congruent         
(1) BLUEblue → REDred 0 0 0 1 0 0 0 1 
(2) BLUEblue → BLUEblue 0 1 1 1 0 1 0 1 

Congruent–Incongruent         
(3) BLUEblue → REDgreen 1 0 0 1 0 0 0 0 
(4) BLUEblue → BLUEred 1 0 1 0 0 1 0 0 
(5) BLUEblue → REDblue 1 1 0 0 0 0 0 0 

Incongruent–Congruent         
(6) REDblue → GREENgreen 0 0 0 1 0 0 1 0 
(7) REDblue → REDred 0 0 1 0 0 0 1 0 
(8) REDblue → BLUEblue 0 1 0 0 0 1 1 0 

Incongruent–Incongruent         
(9) REDblue → GREENyellow 1 0 0 1 0 0 1 1 
(10) REDblue → REDgreen 1 0 1 0 0 0 1 1 
(11) REDblue → GREENblue 1 1 0 0 0 0 1 1 
(12) REDblue → REDblue 1 1 1 1 0 0 1 1 
(13) REDblue → GREENred 1 0 0 1 1 0 1 1 
(14) REDblue → BLUEgreen 1 0 0 1 0 1 1 1 
(15) REDblue → BLUEred 1 0 0 1 1 1 1 1 

*Although example Stroop trial types from Experiment 1 are provided in the Table, the 
same analysis was employed with analogous flanker and Simon trial types, respectively, 
in Experiments 2 and 3. 
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Table 3. Regression model results. 
Regressor Estimate t p 

Experiment 1    
  Intercept 506 27.149 <.001 
  Current congruency -57 -14.393 <.001 
  Target-target 209 53.651 <.001 
  Distracter-distracter 31 7.960 <.001 
  Feature integration 15 3.648 <.001 
  Negative priming 1 .141 .888 
  Target-distracter -2 -.453 .651 
  Previous congruency 9 2.327 .020 
  CSE 7 1.700 .089 
    
Experiment 2    
  Intercept 543 36.448 <.001 
  Current congruency -36 -13.126 <.001 
  Target-target 101 37.301 <.001 
  Distracter-distracter 14 5.355 <.001 
  Feature integration 17 5.949 <.001 
  Negative priming -3 -.973 .331 
  Target-distracter -4 -1.885 .059 
  Previous congruency -1 -.504 .614 
  CSE 2 .692 .489 
    
Experiment 3    
  Intercept 515 30.990 <.001 
  Current congruency -57 -14.480 <.001 
  Target-target 100 23.166 <.001 
  Distracter-distracter 18 4.090 <.001 
  Feature integration 18 4.053 <.001 
  Negative priming -13 -2.606 .009 
  Target-distracter -2 -.617 .537 
  Previous congruency -4 -.995 .320 
  CSE 9 2.163 .031 
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Table 4. Actual and model-estimated mean RTs in milliseconds (data from Schmidt & De 
Houwer, 2011; Mordkoff, 2012). 
Trial  Experiment 1  Experiment 2  Experiment 3  
Type  Obs Est Diff  Obs Est Diff  Obs Est Diff  

cC              
(1)

  687 698 11  618 613 -5  554 557 4  
(2)

  486 459 -27  492 503 10  462 441 -20  
cI              

(3)
  776 761 -15  655 651 -4  630 623 -7  

(4)
  740 746 6  652 658 5  620 625 6  

(5)
  554 567 13  565 567 2  536 540 4  

iC              
(6)

  684 695 12  615 617 1  560 570 10  
(7)

  673 679 7  617 619 2  586 570 -15  
(8)

  529 503 -26  543 537 -6  494 490 -4  
iI              

(9)
  765 745 -20  645 650 6  630 618 -12  

(10)
  737 729 -8  657 653 -4  615 618 3  

(11)
  543 551 8  566 566 0  531 536 5  

(12)  494 505 11  538 535 -2  493 500 7  
(13)

  750 744 -6  654 654 0  634 631 -3  
(14)

  736 747 11  657 655 -2  618 620 2  
(15)

  739 746 7  656 658 2  629 633 4  
*Obs = observed (participant); Est = estimated (model); Diff = difference. 
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Figure 1. Example congruency sequence effect. 
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